JP2002220634A - High tension steel superior in resistance to stress aging, and manufacturing method therefor - Google Patents

High tension steel superior in resistance to stress aging, and manufacturing method therefor

Info

Publication number
JP2002220634A
JP2002220634A JP2001019741A JP2001019741A JP2002220634A JP 2002220634 A JP2002220634 A JP 2002220634A JP 2001019741 A JP2001019741 A JP 2001019741A JP 2001019741 A JP2001019741 A JP 2001019741A JP 2002220634 A JP2002220634 A JP 2002220634A
Authority
JP
Japan
Prior art keywords
less
steel
strength
strain aging
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001019741A
Other languages
Japanese (ja)
Other versions
JP3654194B2 (en
Inventor
Hideji Okaguchi
秀治 岡口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001019741A priority Critical patent/JP3654194B2/en
Publication of JP2002220634A publication Critical patent/JP2002220634A/en
Application granted granted Critical
Publication of JP3654194B2 publication Critical patent/JP3654194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide high tension steel superior in resistance to stress aging, with a tensile strength of 600 MPa or more. SOLUTION: The steel comprises including 0.01-0.10% C, 0.30% or less Si, 1.00-2.50% Mn, 0.005% or less S, 0.010% or less P, 0.005-0.06% Nb, 0.004-0.025% Ti, 0.05% or less sol.Al, 0.0050% or less N, 0.003% or less O, 0-1.5% Cu, 0-2.5% Ni, 0-0.80% Mo, 0-1.0% Cr, 0-0.1% V 0-0.03% Zr, 0-0.0030% Ca, and 0-0.002% B, and having a value A defined in an expression 'A=50N+C+0.3Si+10(P+O)' of 0.44 or less, and a value B defined in an expression 'B=(50N+C+100)/(4Nb+10Ti+2sol.Al)' of 1.6 or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、引張強さが600
MPa以上、好ましくは760MPa以上の耐歪み時効
特性に優れた高張力鋼材に関し、より詳しくは天然ガス
や原油を輸送するラインパイプや各種圧力容器などの溶
接構造物を製造するのに使用して好適な鋼材(鋼板、鋼
管、形鋼、棒鋼など)とその製造方法に関する。
[0001] The present invention relates to a method for producing a steel sheet having a tensile strength of 600.
High-strength steel material excellent in strain aging resistance of not less than MPa, preferably not less than 760 MPa, and more particularly suitable for use in manufacturing welded structures such as line pipes and various pressure vessels for transporting natural gas and crude oil. The present invention relates to various steel materials (steel plates, steel pipes, steel bars, steel bars, etc.) and methods for producing the same.

【0002】[0002]

【従来の技術】天然ガスや原油を長距離輸送するパイプ
ラインにおいて、輸送コストの低減は普遍的なニーズで
あり、操業圧力の上昇による輸送効率の改善が必要とさ
れている。操業圧力を高めるには、従来からの強度グレ
ードのラインパイプの肉厚を増加させる方法が考えられ
る。しかし、この方法は、現地での溶接施工能率を低下
させる他、構造物の質量増加による施工効率の低下を生
じさせる問題がある。
2. Description of the Related Art In pipelines for transporting natural gas and crude oil over long distances, reduction of transportation costs is a universal need, and there is a need to improve transportation efficiency by increasing operating pressure. In order to increase the operating pressure, a method of increasing the wall thickness of a conventional strength grade line pipe can be considered. However, this method has a problem that the welding efficiency at the site is reduced and the efficiency of the welding is reduced due to an increase in the mass of the structure.

【0003】これに対し、ラインパイプの素材自体を高
強度化して肉厚の増大を制限するニーズが高まってお
り、現在、API(米国石油協会)においてX80グレ
ード(引張強さ620MPa以上)鋼が規格化され、実
用に供されてきた。
On the other hand, there is an increasing need to increase the strength of the linepipe material itself to limit the increase in wall thickness. At present, the API (American Petroleum Institute) uses X80 grade (tensile strength of 620 MPa or more) steel. It has been standardized and put to practical use.

【0004】さらに、高強度なラインパイプ用材として
は、特開平8−199292号公報および同8−269
546号公報に示されるように、Mn含有量を高めに設
定したX100グレード(引張強さ760MPa以上)
超級の高強度鋼がある。
Further, high-strength line pipe materials are disclosed in JP-A-8-199292 and JP-A-8-269.
No. 546, X100 grade (tensile strength of 760 MPa or more) with a high Mn content
There is super-grade high-strength steel.

【0005】しかし、ラインパイプの主力であるUOE
鋼管に代表される大径の溶接鋼管やERW鋼管に代表さ
れる中小径の溶接鋼管は、素材の鋼板の管状への成形が
室温下、すなわち冷間加工でおこなわれ、いわゆる加工
歪みが生じるため、素材の鋼板に高性能な材料(鋼)か
らなるものを用いても、製品の溶接鋼管では素材の鋼板
の特性が保持されない可能性がある。
[0005] However, UOE, which is the mainstay of line pipe,
For large-diameter welded steel pipes represented by steel pipes and medium- and small-diameter welded steel pipes represented by ERW steel pipes, the forming of a steel sheet into a tube at room temperature is performed at room temperature, that is, by cold working, which causes so-called processing distortion. Even if a high-performance material (steel) is used as the material steel plate, the properties of the material steel plate may not be maintained in the welded steel pipe of the product.

【0006】また、冷間加工に供せられない鋼材におい
ても、溶接時や熱処理時に生じる熱歪み、および構造部
材として長期間使用される間に生ずる歪みなどの歪みが
部分的に蓄えられる場合がある。
Further, even in a steel material that cannot be subjected to cold working, distortion such as thermal distortion generated during welding or heat treatment and distortion generated during long-term use as a structural member may be partially accumulated. is there.

【0007】こうした歪みは、5%以下の小さな歪み量
であるが、歪んだ鋼材がさらに長期間使用される場合に
は、歪み時効による鋼材の劣化に留意する必要がある。
[0007] Such distortion is a small amount of distortion of 5% or less, but when the distorted steel material is used for a longer period of time, it is necessary to pay attention to deterioration of the steel material due to strain aging.

【0008】なお、歪み時効は、鋼材が室温下で長期間
使用されることによって生ずるが、コーティング処理な
どのために鋼材が100〜250℃に加熱されることに
よって促進する。
The strain aging occurs when the steel material is used at room temperature for a long period of time, but is accelerated by heating the steel material to 100 to 250 ° C. for a coating treatment or the like.

【0009】歪み時効による鋼材の劣化は、引張強さが
392MPa以上や490MPa以上級の従来から多用
されている鋼材においてもある程度生ずることは知られ
ているが、歪み時効処理材のシャルピー衝撃試験などに
より実用上ほとんど問題のないことが確認されている。
[0009] It is known that the deterioration of steel due to strain aging occurs to some extent even in steels having a tensile strength of 392 MPa or more and 490 MPa or more, which are conventionally used frequently. As a result, it has been confirmed that there is almost no practical problem.

【0010】これに対し、引張強さが620MPa以上
の前述したX80グレード鋼級以上の高強度鋼において
は、歪み時効による鋼材の劣化についての系統的な調査
がされていないのが現状である。特に、シャルピー特性
などの靭性低下だけではなく、引張試験時の一様伸びの
低下など、加工硬化特性に対する対策を講じる必要があ
る。
On the other hand, in the high-strength steels having a tensile strength of 620 MPa or more and the above-mentioned X80 grade steel grade or more, at present, no systematic investigation has been made on the deterioration of steel materials due to strain aging. In particular, it is necessary to take measures against work hardening characteristics, such as a decrease in uniform elongation during a tensile test, as well as a decrease in toughness such as Charpy characteristics.

【0011】しかし、一般に、金属材料は高強度化する
ほど伸び、延性、特に一様伸び特性が低下するため、歪
み時効処理による加工硬化特性の劣化が必要になると考
えられている。
However, it is generally considered that the higher the strength of the metal material, the lower the elongation and ductility, particularly the uniform elongation characteristics, and therefore, it is necessary to deteriorate the work hardening characteristics due to the strain aging treatment.

【0012】本発明者が、引張強さ600MPa以上の
種々の溶接構造用鋼材について検討した結果、多くの溶
接構造用鋼材で、歪み量3%の冷間加工後、250℃に
1時間保持後空冷する時効処理後に、靭性および加工硬
化特性の劣化が生じることが判明した。特に、一様伸び
については、著しい低下が生じる場合があり、構造部材
としての安全性を損なう可能性があった。しかしなが
ら、こうした高強度鋼の問題に対し、耐歪み時効特性を
向上させて構造用材料としての安全性を高める技術は、
皆無といっていいほどなかった。
As a result of studying various welded structural steel materials having a tensile strength of 600 MPa or more, the present inventor has found that many welded structural steel materials have been subjected to cold working with a strain amount of 3% and held at 250 ° C. for one hour. It has been found that the toughness and the work hardening characteristics deteriorate after the aging treatment by air cooling. In particular, with respect to uniform elongation, a remarkable decrease may occur, and the safety as a structural member may be impaired. However, in response to these problems of high-strength steel, technology that improves strain aging resistance and enhances safety as a structural material has
It was almost nothing.

【0013】[0013]

【発明が解決しようとする課題】本発明は、上記のよう
な実状に鑑みてなされたもので、その目的は、引張強さ
が600MPa以上、好ましくは760MPa以上の耐
歪み時効特性と溶接部靭性に優れた高張力鋼材、より具
体的には良好な靭性と溶接性を有するとともに、その溶
接部の靭性に優れ、例えば、3%歪み時効処理後の一様
伸び率が歪み時効処理前の一様伸び率の0.45倍以
上、より好ましくは0.6倍以上というような歪み時効
処理後においても優れた加工硬化特性と低温靭性を有す
る溶接鋼管などの溶接構造用物の素材として用いて好適
な鋼板に代表される高強度鋼材とその製造法を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a strain aging resistance and a weld toughness having a tensile strength of 600 MPa or more, preferably 760 MPa or more. High tensile strength steel material, more specifically, has good toughness and weldability, and also has excellent toughness in the welded portion. For example, the uniform elongation after 3% strain aging treatment is one It is used as a material for welded structures such as welded steel pipes having excellent work hardening characteristics and low temperature toughness even after strain aging treatment such as 0.45 times or more, more preferably 0.6 times or more of the same elongation. It is an object of the present invention to provide a high-strength steel material represented by a suitable steel plate and a method for producing the same.

【0014】[0014]

【課題を解決するための手段】本発明者は、上記の課題
を達成するために、引張強さが600MPa以上、望ま
しくは760MPa以上の溶接構造物用の高強度鋼の高
靭化、溶接性の向上および耐歪み時効特性の向上に対
し、種々検討を行った結果、以下のことを知見した。 (a)歪み時効の直接の原因となるNとCの含有量、お
よび高強度鋼の歪み時効を促進するSi、PおよびO
(酸素)の含有量を制限、具体的には式「A=50N+
C+0.3Si+10(P+O)(ここで、各元素記号
は鋼中に含まれる各元素の含有量(質量%)を意味す
る)」で定義されるA値が0.44以下になるように各
元素の含有量を後述する範囲内において調整すれば、歪
み時効後の低温靭性と一様伸びが向上する。 (b)Nb、TiおよびAlは、引張強さ600MPa
以上の高強度鋼の歪み時効特性を軽減させる作用を有
し、少なくともNb、Ti、Alの3元素を必須成分と
して添加するとともに、式「B=(50N+C+10
O)/(4Nb+10Ti+2sol.Al)(ここ
で、各元素記号は鋼中に含まれる各元素の含有量(質量
%)を意味する)」で定義されるB値が1.6以下にな
るように各元素の含有量を後述する範囲内において調整
すれば、時効特性感受性が低下し、歪み時効による劣化
が抑制される。 (c)そして、後述する組成範囲内において上記の両式
を満たす場合には、溶接性と靭性並びにその溶接部の靭
性に優れ、しかも、製造条件の如何にかかわらず、3%
の歪み時効処理後の一様伸び率が歪み時効処理前の一様
伸び率の0.45倍以上という優れた加工硬化特性と良
好な低温靭性を有する溶接鋼管などの溶接構造用物の素
材として用いて好適な鋼板に代表される高強度鋼材が得
られる。 (d)また、鋼板に代表される上記の高強度鋼材は、素
材の鋼を950〜1200℃に加熱後、仕上温度850
〜650℃で熱間圧延を終了し、500℃を下回らない
温度域から300℃以下にまで4℃/秒以上の冷却速度
で加速冷却することにより、上記3%の歪み時効処理後
の一様伸び率が歪み時効処理前の一様伸び率の0.6倍
以上という優れた加工硬化特性を有する製品を安定して
製造可能である。
In order to achieve the above-mentioned object, the present inventor has developed a method for increasing the toughness and weldability of a high-strength steel for a welded structure having a tensile strength of 600 MPa or more, preferably 760 MPa or more. As a result of various investigations on the improvement of the strain and the improvement of the strain aging resistance, the following was found. (A) N and C contents which directly cause strain aging, and Si, P and O which promote strain aging of high strength steel
The content of (oxygen) is limited, specifically, the formula “A = 50N +
C + 0.3Si + 10 (P + O) (where each element symbol means the content (% by mass) of each element contained in the steel) "so that the A value is 0.44 or less. Is adjusted within the range described below, the low-temperature toughness and uniform elongation after strain aging are improved. (B) Nb, Ti and Al have a tensile strength of 600 MPa
It has the effect of reducing the strain aging characteristics of the high-strength steel described above, and at least three elements of Nb, Ti, and Al are added as essential components, and the formula "B = (50N + C + 10
O) / (4Nb + 10Ti + 2sol.Al) (where each element symbol means the content (% by mass) of each element contained in steel) so that the B value becomes 1.6 or less. If the content of each element is adjusted within the range described later, the aging characteristic sensitivity is reduced, and the deterioration due to strain aging is suppressed. (C) When both of the above formulas are satisfied within the composition range described later, the weldability and toughness and the toughness of the weld are excellent, and 3% regardless of the manufacturing conditions.
As a material for welded structures such as welded steel pipes with excellent work hardening characteristics and good low temperature toughness, the uniform elongation after strain aging treatment is 0.45 times or more the uniform elongation before strain aging treatment A high-strength steel material typified by a suitable steel plate can be obtained. (D) In addition, the above-mentioned high-strength steel material represented by a steel plate is obtained by heating a material steel to 950 to 1200 ° C., and then finishing at a temperature of 850.
Hot rolling is completed at ~ 650 ° C and accelerated cooling at a cooling rate of 4 ° C / sec or more from a temperature range not lower than 500 ° C to 300 ° C or less, so that uniformity after the above 3% strain aging treatment is achieved. It is possible to stably produce a product having an excellent work hardening property in which the elongation is 0.6 times or more the uniform elongation before the strain aging treatment.

【0015】上記の知見に基づいて完成させた本発明の
要旨は、下記(1)、(2)の耐歪み時効特性に優れた
高強度鋼材、下記(3)の高強度鋼材の製造方法、下記
(4)の耐歪み時効特性に優れた高強度溶接鋼管および
下記(5)の高強度溶接鋼管の製造方法にある。 (1)化学組成が、質量%で、C:0.01〜0.10
%、Si:0.30%以下、Mn:1.00〜2.50
%、P:0.010%以下、S:0.005%以下、N
b:0.005〜0.06%、Ti:0.004〜0.
025%、sol.Al:0.05%以下、N:0.0
050%以下、O(酸素):0.003%以下、Cu:0
〜1.5%、Ni:0〜2.5%、Mo:0〜0.80
%、Cr:0〜1.0%、V:0〜0.1%、Zr:0
〜0.03%、Ca:0〜0.0030%、B:0〜
0.002%を含み、残部が実質的にFeで、下記の
(1) 式で定義されるA値が0.44以下、(2) 式で定義
されるB値が1.6以下の鋼からなり、引張強さが60
0MPa以上である耐歪み時効特性に優れた高強度鋼
材。
The gist of the present invention completed on the basis of the above findings is as follows: (1) and (2) a high-strength steel material excellent in strain aging resistance; A method for producing a high-strength welded steel pipe excellent in strain aging resistance (4) and a method for producing a high-strength welded steel pipe (5) below. (1) Chemical composition in mass%, C: 0.01 to 0.10
%, Si: 0.30% or less, Mn: 1.00 to 2.50
%, P: 0.010% or less, S: 0.005% or less, N
b: 0.005 to 0.06%, Ti: 0.004 to 0.
025%, sol. Al: 0.05% or less, N: 0.0
050% or less, O (oxygen): 0.003% or less, Cu: 0
-1.5%, Ni: 0-2.5%, Mo: 0-0.80
%, Cr: 0 to 1.0%, V: 0 to 0.1%, Zr: 0
~ 0.03%, Ca: 0 ~ 0.0030%, B: 0 ~
0.002%, with the balance being substantially Fe,
It is made of steel having an A value defined by the formula (1) of 0.44 or less and a B value defined by the formula (2) of 1.6 or less, and having a tensile strength of 60 or less.
High-strength steel with excellent strain aging resistance of 0 MPa or more.

【0016】 A=50N+C+0.3Si+10(P+O) ・・・・・・・・・ (1) B=(50N+C+10O)/(4Nb+10Ti+2sol.Al) ・・・・ (2) ここで、(1) 式と(2) 式中の元素記号は鋼中に含まれる
各元素の含有量(質量%)を意味する。 (2)鋼材が、鋼板である上記(1)に記載の高強度鋼
材。 (3)質量%で、C:0.01〜0.10%、Si:
0.30%以下、Mn:1.00〜2.50%、P:
0.010%以下、S:0.005%以下、Nb:0.
005〜0.06%、Ti:0.004〜0.025
%、sol.Al:0.05%以下、N:0.0050
%以下、O(酸素):0.003%以下、Cu:0〜1.
5%、Ni:0〜2.5%、Mo:0〜0.80%、C
r:0〜1.0%、V:0〜0.1%、Zr:0〜0.
03%、Ca:0〜0.0030%、B:0〜0.00
2%を含み、残部が実質的にFeからなり、下記の(1)
式で定義されるA値が0.44以下、(2) 式で定義され
るB値が1.6以下の鋼を、950〜1200℃に加熱
後、熱間圧延をおこなって仕上温度850〜650℃で
圧延を終了し、500℃を下回らない温度域から300
℃以下の温度にまで4℃/秒以上の冷却速度で加速冷却
する引張強さ600MPa以上の耐歪み時効特性に優れ
た高強度鋼材の製造法。
A = 50N + C + 0.3Si + 10 (P + O) (1) B = (50N + C + 10O) / (4Nb + 10Ti + 2sol.Al) (2) Here, equation (1) and ( 2) The symbol of the element in the formula means the content (% by mass) of each element contained in the steel. (2) The high-strength steel material according to (1), wherein the steel material is a steel plate. (3) In mass%, C: 0.01 to 0.10%, Si:
0.30% or less, Mn: 1.00 to 2.50%, P:
0.010% or less, S: 0.005% or less, Nb: 0.
005 to 0.06%, Ti: 0.004 to 0.025
%, Sol. Al: 0.05% or less, N: 0.0050
%, O (oxygen): 0.003% or less, Cu: 0-1.
5%, Ni: 0 to 2.5%, Mo: 0 to 0.80%, C
r: 0 to 1.0%, V: 0 to 0.1%, Zr: 0 to 0.
03%, Ca: 0 to 0.0030%, B: 0 to 0.00
2%, the balance being substantially composed of Fe, and the following (1)
The A value defined by the formula is 0.44 or less, and the B value defined by the formula (2) is 1.6 or less. After the steel is heated to 950 to 1200 ° C., hot rolling is performed, and the finishing temperature is 850 to 850 ° C. Rolling is completed at 650 ° C.
A method for producing a high-strength steel material excellent in strain aging resistance having a tensile strength of 600 MPa or more, which is accelerated to a temperature of 4 ° C. or lower at a cooling rate of 4 ° C./sec or more.

【0017】 A=50N+C+0.3Si+10(P+O) ・・・・・・・・・ (1) B=(50N+C+10O)/(4Nb+10Ti+2sol.Al) ・・・・ (2) ここで、(1) 式と(2) 式中の元素記号は鋼中に含まれる
各元素の含有量(質量%)を意味する。 (4)母材部が、上記(2)に記載の高強度鋼板である
耐歪み時効特性に優れた高強度溶接鋼管。 (5)上記(2)に記載の高強度鋼板を、600℃以下
の温度域で管状に成形し、その突き合わせ部を溶接接合
する耐歪み時効特性に優れた高強度溶接鋼管の製造方
法。
A = 50N + C + 0.3Si + 10 (P + O) (1) B = (50N + C + 10O) / (4Nb + 10Ti + 2sol.Al) (2) where (1) and (2) 2) The symbol of the element in the formula means the content (% by mass) of each element contained in the steel. (4) A high-strength welded steel pipe in which a base material portion is the high-strength steel sheet according to (2) above, which has excellent strain aging resistance. (5) A method for producing a high-strength welded steel pipe excellent in strain aging resistance, in which the high-strength steel sheet according to (2) is formed into a tubular shape in a temperature range of 600 ° C or lower and the butted portions are welded and joined.

【0018】[0018]

【発明の実施の形態】以下、本発明を上記のように定め
た理由について詳しく説明する。なお、以下の説明にお
いて、「%」は特に断らない限り「質量%」を意味す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the reasons for defining the present invention as described above will be described in detail. In the following description, “%” means “% by mass” unless otherwise specified.

【0019】まず、鋼の化学組成について説明する。First, the chemical composition of steel will be described.

【0020】C:0.01〜0.10% Cは、母材の強度を確保する目的で含有させるが、0.
01%未満では焼入性が不足で引張強さ600MPa以
上の確保が難しく、また母材の靭性も十分ではない。一
方、0.10%を超えて含有させると、母材の靭性およ
び溶接性、さらにはその溶接熱影響部の靭性が低下する
だけでなく、耐歪み時効特性の劣化が生ずる。よって、
C含有量は0.01〜0.10%とした。好ましい範囲
は0.01〜0.06%である。
C: 0.01 to 0.10% C is contained for the purpose of ensuring the strength of the base material.
If it is less than 01%, the hardenability is insufficient and it is difficult to secure a tensile strength of 600 MPa or more, and the toughness of the base material is not sufficient. On the other hand, when the content exceeds 0.10%, not only the toughness and weldability of the base material, but also the toughness of the heat affected zone of the base metal are reduced, and the strain aging resistance is deteriorated. Therefore,
The C content was 0.01 to 0.10%. A preferred range is 0.01 to 0.06%.

【0021】Si:0.30%以下 Siは、脱酸剤として通常添加されるが、その含有量が
0.30%を超えると母材およびその溶接部ともの靭性
低下をもたらすだけでなく、耐歪み時効特性も低下す
る。よって、Si含有量は0.30%以下とした。好ま
しい上限は0.15%、より好ましい上限は0.10%
である。
Si: 0.30% or less Si is usually added as a deoxidizing agent, but if its content exceeds 0.30%, not only will the toughness of the base metal and its weld be reduced, but also The strain aging resistance is also reduced. Therefore, the Si content is set to 0.30% or less. A preferred upper limit is 0.15%, and a more preferred upper limit is 0.10%.
It is.

【0022】Mn:1.00〜2.50% Mnは、鋼の焼入性を向上させ、強度を高めるために添
加含有させるが、その含有量が1.00%未満では、所
望の強度を確保することが困難である。一方、2.50
%を超えて含有させると、母材およびその溶接部ともに
靭性低下を招く。よって、Mn含有量は1.00〜2.
50%とした。なお、溶接部の靭性を向上させる観点か
らはMnは少ない方が望ましく、Mn含有量の好ましい
範囲は1.00〜1.90%、より好ましい範囲は1.
00〜1.70%である。
Mn: 1.00 to 2.50% Mn is added to improve the hardenability of the steel and to increase the strength. If the content is less than 1.00%, the desired strength is reduced. It is difficult to secure. On the other hand, 2.50
%, The toughness of both the base metal and the welded portion is reduced. Therefore, the Mn content is 1.00-2.
50%. In addition, from the viewpoint of improving the toughness of the welded portion, it is desirable that Mn is small, and the preferable range of the Mn content is 1.00 to 1.90%, and the more preferable range is 1.
It is 00 to 1.70%.

【0023】P:0.010%以下 Pは、不純物元素であり、母材およびその溶接熱影響部
の低温靭性を損なうだけでなく、溶接性をも低下させ、
さらに耐歪み時効特性も低下させる。したがって、P含
有量は低ければ低いほどよいが、過度な低減はコスト上
昇を招くことと、0.010%までであれば特に問題な
いことから、その上限を0.010%とした。好ましい
上限は0.005%である。
P: not more than 0.010% P is an impurity element, which not only impairs the low-temperature toughness of the base material and its heat affected zone, but also reduces the weldability.
Further, the strain aging resistance is also reduced. Therefore, the lower the P content, the better. However, an excessive reduction leads to an increase in cost, and there is no particular problem up to 0.010%. Therefore, the upper limit is set to 0.010%. A preferred upper limit is 0.005%.

【0024】S:0.005%以下 Sは、上記のPと同様の不純物元素であり、母材および
その溶接熱影響部の低温靭性を損なうだけでなく、溶接
性をも低下させる。したがって、S含有量は、上記のP
と同様に、低ければ低いほどよいが、過度な低減はコス
ト上昇を招くことと、0.005%までであれば特に問
題ないことから、その上限を0.005%とした。好ま
しい上限は0.002%である。
S: not more than 0.005% S is an impurity element similar to that of P described above, and not only impairs the low-temperature toughness of the base metal and its heat affected zone but also lowers the weldability. Therefore, the S content is above the above P
Similarly to the above, the lower the better, the better. However, an excessive reduction leads to an increase in cost, and there is no particular problem up to 0.005%, so the upper limit was made 0.005%. A preferred upper limit is 0.002%.

【0025】Nb:0.005〜0.06% Nbは、母材の組織を微細化させて高強度鋼の靭性を大
幅に向上させるだけでなく、耐歪み時効特性に有害な元
素のC、Nと結合してこれらの元素を安定化させ、耐歪
み時効特性を向上させる効果がある。しかし、その含有
量が0.005%未満では前記の効果が得られず、逆に
0.06%を超えて含有させると母材の溶接性を損なう
だけでなく、靭性および耐歪み時効特性をもかえって低
下させる。よって、Nb含有量は0.005〜0.06
%とした。好ましい範囲は0.005〜0.03%、よ
り好ましい範囲は0.005〜0.02%である。
Nb: 0.005 to 0.06% Nb not only refines the microstructure of the base material to greatly improve the toughness of the high-strength steel, but also C, an element harmful to strain aging resistance, It has the effect of stabilizing these elements by bonding with N and improving the strain aging resistance. However, if the content is less than 0.005%, the above effects cannot be obtained. Conversely, if the content exceeds 0.06%, not only the weldability of the base material is impaired, but also the toughness and strain aging resistance are reduced. Instead, lower it. Therefore, the Nb content is 0.005 to 0.06.
%. A preferred range is 0.005 to 0.03%, and a more preferred range is 0.005 to 0.02%.

【0026】Ti:0.004〜0.025% Tiは、耐歪み時効特性に有害な元素のC、Nと結合し
てこれらの元素を安定化させ、耐歪み時効特性を大幅に
向上させるだけでなく、母材およびその溶接熱影響部の
組織を微細化させて高強度鋼の母材とその溶接熱影響部
の低温靭性を向上させる効果がある。しかし、その含有
量が0.004%未満では前記の効果が得られず、逆に
0.025%を超えて含有させると耐歪み時効特性を損
なうだけでなく、溶接性および靭性をもかえって低下さ
せる。よって、Ti含有量は0.004〜0.025%
とした。好ましい範囲は0.004〜0.015%であ
る。
Ti: 0.004% to 0.025% Ti combines with elements C and N which are harmful to strain aging resistance, stabilizes these elements, and greatly improves strain aging resistance. Rather, the microstructure of the base metal and its heat affected zone is refined to improve the low temperature toughness of the high strength steel base metal and its heat affected zone. However, if the content is less than 0.004%, the above effects cannot be obtained. Conversely, if the content exceeds 0.025%, not only the strain aging resistance is impaired, but also the weldability and toughness are lowered. Let it. Therefore, the Ti content is 0.004 to 0.025%
And A preferred range is 0.004 to 0.015%.

【0027】sol.Al:0.05%以下 Alは、脱酸剤として添加されるが、耐歪み時効特性に
有害な元素のNと結合して安定化させ、耐歪み時効特性
を大幅に向上させる効果がある。このAlによる耐歪み
時効特性の向上効果は極微量のsol.Al含有量で得
られるが、その効果は0.002%以上のsol.Al
含有量で顕著になる。しかし、その含有量がsol.A
l含有量で0.05%を超えると、溶接部の靭性が劣化
するだけでなく、耐歪み時効特性や溶接性がかえって低
下する。よって、sol.Al含有量は0.05%以下
とした。好ましい上限は0.03%である。
Sol. Al: 0.05% or less Al is added as a deoxidizing agent, but has an effect of stabilizing by combining with N which is an element harmful to strain aging resistance, and significantly improving strain aging resistance. The effect of improving the strain aging resistance by Al is very small. Al content is obtained, but its effect is 0.002% or more of sol. Al
It becomes remarkable in the content. However, the content of sol. A
If the l content exceeds 0.05%, not only the toughness of the welded portion is deteriorated, but also the strain aging resistance and the weldability are rather reduced. Therefore, sol. The Al content was 0.05% or less. A preferred upper limit is 0.03%.

【0028】N:0.0050%以下 Nは、耐歪み時効特性に極めて有害な不純物元素であ
り、その含有量が0.0050%を超えると、母材およ
びその溶接部の靭性低下が著しくなるだけでなく、他の
耐歪み時効特性向上対策を講じても良好な耐歪み時効特
性が得られなくなる。よって、N含有量は0.0050
%以下とした。なお、N含有量は低ければ低いほど望ま
しく、好ましい上限は0.0030%である。
N: 0.0050% or less N is an impurity element which is extremely harmful to strain aging resistance. If its content exceeds 0.0050%, the toughness of the base metal and its welded portion is significantly reduced. In addition, even if other measures are taken to improve strain aging resistance, good strain aging resistance cannot be obtained. Therefore, the N content is 0.0050
% Or less. Note that the lower the N content, the more desirable, and a preferable upper limit is 0.0030%.

【0029】O(酸素):0.003%以下 Oは、上記のNと同様に、耐歪み時効特性に極めて有害
な不純物元素であり、その含有量が0.003%を超え
ると、母材およびその溶接部の靭性低下が著しくなるだ
けでなく、他の耐歪み時効特性向上対策を講じても良好
な耐歪み時効特性が得られなくなる。よって、O含有量
は0.003%以下とした。なお、O含有量は低ければ
低いほど望ましく、好ましい上限は0.0020%、よ
り好ましい上限は0.0015%である。
O (oxygen): 0.003% or less O, like N, is an extremely harmful impurity element for strain aging resistance, and when its content exceeds 0.003%, Further, not only does the toughness of the welded portion significantly decrease, but even if other measures are taken to improve the strain aging resistance, good strain aging resistance cannot be obtained. Therefore, the O content is set to 0.003% or less. The lower the O content is, the more desirable it is. A preferable upper limit is 0.0020%, and a more preferable upper limit is 0.0015%.

【0030】以下の各元素は添加しなくもよいが、下記
の範囲内で添加含有させれば、耐歪み時効特性を損なう
ことなく、母材および溶接熱影響部の強度、靭性および
耐食性などを向上させることができる。このため、より
厚肉の鋼板や強度の高い高強度鋼材などを製造する際に
は、必要に応じてこれら元素の1種以上を添加してもよ
い。
The following elements need not be added, but if they are added and contained within the following ranges, the strength, toughness, corrosion resistance, etc. of the base metal and the weld heat-affected zone can be improved without impairing the strain aging resistance. Can be improved. For this reason, when manufacturing a thicker steel plate or a high-strength high-strength steel material, one or more of these elements may be added as necessary.

【0031】Cu:Cuは、焼入性を向上させ、溶接性
をあまり損なうことなく母材を強靭化する作用を有し、
その効果は0.1%以上の含有量で顕著になる。しか
し、1.5%を超えて含有させると、母材およびその溶
接部の靭性を損なうだけでなく、熱間延性を大きく低下
させる場合がある。このため、添加する場合のCu含有
量は0.1〜1.5%とするのがよい。
Cu: Cu has an effect of improving hardenability and toughening a base material without significantly impairing weldability.
The effect becomes remarkable at a content of 0.1% or more. However, when the content exceeds 1.5%, not only the toughness of the base material and the welded portion thereof is impaired, but also the hot ductility may be significantly reduced. Therefore, when added, the Cu content is preferably set to 0.1 to 1.5%.

【0032】Ni:Niは、高強度鋼の低温靭性、脆性
亀裂伝播停止性能および溶接性を改善する作用を有し、
その効果は0.20%以上の含有量で顕著になる。しか
し、2.5%を超えて含有させると、焼入れ−焼戻し処
理によって過度の残留オーステナイトが生成し、降伏強
さが低下する場合がある。このため、添加する場合のN
i含有量は0.20〜2.5%とするのがよい。
Ni: Ni has an effect of improving low-temperature toughness, brittle crack propagation stopping performance and weldability of high-strength steel,
The effect becomes remarkable at a content of 0.20% or more. However, when the content exceeds 2.5%, excessive quenching-tempering generates excessive retained austenite, and the yield strength may decrease. Therefore, when N is added,
The i content is preferably set to 0.20 to 2.5%.

【0033】Cr:Crは、焼入性を向上させるととも
に、焼戻し処理時の析出強化によって強度および靭性を
向上させる作用を有し、その効果は0.10%以上の含
有量で顕著になる。しかし、1.0%を超えて含有させ
ると、強度を過度に高め、母材およびその溶接部の靭性
を損なう。このため、添加する場合のCr含有量は0.
10〜1.0%とするのがよい。
Cr: Cr has an effect of improving hardenability and improving strength and toughness by precipitation strengthening during tempering, and the effect becomes remarkable at a content of 0.10% or more. However, if the content exceeds 1.0%, the strength is excessively increased, and the toughness of the base material and its welded part is impaired. Therefore, when Cr is added, the content of Cr is 0.1.
The content is preferably set to 10 to 1.0%.

【0034】Mo:Moは、焼入性を向上させるととも
に、固溶強化によって強度および靭性を向上させる他、
Nbとの複合添加時には組織の微細化を促進すると同時
に適度な残留オーステナイトを鋼中に分散させて耐歪み
脆化特性を向上させる作用を有し、その効果は0.10
%以上の含有量で顕著になる。しかし、0.80%を超
えて含有させると、強度を過度に高め、母材およびその
溶接部の靭性を損なう。このため、添加する場合のMo
含有量は0.10〜0.80%とするのがよい。
Mo: Mo not only improves hardenability but also improves strength and toughness by solid solution strengthening.
At the time of addition with Nb, it has the effect of promoting the refinement of the structure and dispersing an appropriate amount of retained austenite in the steel to improve the resistance to strain embrittlement.
% Or more becomes significant. However, when the content exceeds 0.80%, the strength is excessively increased, and the toughness of the base material and the welded portion thereof is impaired. Therefore, when Mo is added,
The content is preferably 0.10 to 0.80%.

【0035】V:Vは、焼入性を向上させ、強度および
靭性を向上させる他、耐歪み時効特性に有害な元素を安
定化して耐歪み時効特性をも向上させる作用を有し、そ
の効果は0.005%以上の含有量で顕著になる。しか
し、0.1%を超えて含有させると、強度を過度に高
め、母材およびその溶接部の靭性を損なう。このため、
添加する場合のV含有量は0.005〜0.1%とする
のがよい。
V: V has the effect of improving hardenability, improving strength and toughness, stabilizing elements harmful to strain aging resistance, and also improving strain aging resistance. Becomes remarkable at a content of 0.005% or more. However, when the content exceeds 0.1%, the strength is excessively increased, and the toughness of the base material and the welded portion thereof is impaired. For this reason,
When added, the V content is preferably 0.005 to 0.1%.

【0036】Ca:Caは、鋼中の介在物の形態を制御
し、母材およびその溶接部の靭性や耐食性を向上させる
他、耐歪み時効特性に有害な元素を安定化して耐歪み時
効特性をも向上させる作用を有し、その効果は0.00
05%の含有量で顕著になる。しかし、0.0030%
を超えて含有させると、鋼の清浄度が低下し、母材およ
びその溶接部の靭性が低下するだけでなく、耐歪み時効
特性も低下する。このため、添加する場合のCa含有量
は0.0005〜0.0030%とするのがよい。
Ca: Ca controls the form of inclusions in the steel, improves the toughness and corrosion resistance of the base metal and its welds, and stabilizes the elements harmful to the strain aging resistance to thereby prevent the strain aging. Has the effect of improving the
It becomes significant at a content of 05%. However, 0.0030%
When the content exceeds the above range, not only the cleanliness of the steel decreases, but also the toughness of the base metal and the welded portion thereof decreases, as well as the strain aging resistance. For this reason, the Ca content when added is preferably 0.0005 to 0.0030%.

【0037】Zr:Zrは、鋼中の介在物の形態を制御
し、母材およびその溶接部の靭性や耐食性を向上させる
他、耐歪み時効特性に有害な元素を安定化して耐歪み時
効特性を向上させる作用をも有し、その効果は0.00
5%の含有量で顕著になる。しかし、0.03%を超え
て含有させると、鋼の清浄度が低下し、母材およびその
溶接部の靭性が低下するだけでなく、耐歪み時効特性も
低下する。このため、添加する場合のZr含有量は0.
005〜0.03%とするのがよい。
Zr: Zr controls the morphology of inclusions in the steel, improves the toughness and corrosion resistance of the base metal and its welds, and also stabilizes elements harmful to the strain aging resistance and strain aging resistance. It also has the effect of improving
It becomes significant at a content of 5%. However, if the content exceeds 0.03%, the cleanliness of the steel decreases, and not only the toughness of the base metal and the welded portion thereof, but also the strain aging resistance decreases. For this reason, when added, the Zr content is 0.1.
005-0.03% is good.

【0038】B:Bは、焼入性を向上させ、強度および
靭性を向上させる作用を有し、その効果は0.0003
%以上の含有量で顕著になる。しかし、0.003%を
超えて含有させると、強度を過度に高め、母材およびそ
の溶接部の靭性を損なう。このため、添加する場合のB
含有量は0.0003〜0.003%とするのがよい。
B: B has an effect of improving hardenability and improving strength and toughness, and its effect is 0.0003.
% Or more becomes significant. However, when the content exceeds 0.003%, the strength is excessively increased, and the toughness of the base material and the welded portion thereof is impaired. Therefore, when B is added,
The content is preferably set to 0.0003 to 0.003%.

【0039】C、Si、P、Nb、Ti、Al、Nおよ
びOの関係:これら元素の含有量は、上記の範囲内にお
いて、下記の(1) 式で定義されるA値が0.44以下、
(2) 式で定義されるB値が1.6以下となる含有量でな
ければならない。すなわち、A値が0.44を超える
か、またはB値が1.6を超えると、歪み時効感受性が
増大し、所望の耐歪み時効特性が確保できない。このこ
とは、後述する実施例の結果からも明らかである。な
お、A値の好ましい上限は0.35、B値の好ましい上
限は0.80である。
Relationship between C, Si, P, Nb, Ti, Al, N and O: The content of these elements is within the above range, and the A value defined by the following equation (1) is 0.44. Less than,
(2) The content must be such that the B value defined by the equation is 1.6 or less. That is, when the A value exceeds 0.44 or the B value exceeds 1.6, the strain aging sensitivity increases, and the desired strain aging resistance cannot be secured. This is clear from the results of the examples described later. The preferred upper limit of the A value is 0.35, and the preferred upper limit of the B value is 0.80.

【0040】 A=50N+C+0.3Si+10(P+O) ・・・・・・・・・ (1) B=(50N+C+10O)/(4Nb+10Ti+2sol.Al) ・・・・ (2) ここで、(1) 式と(2) 式中の元素記号は鋼中に含まれる
各元素の含有量(質量%)を意味する。
A = 50N + C + 0.3Si + 10 (P + O) (1) B = (50N + C + 10O) / (4Nb + 10Ti + 2sol.Al) (2) Here, the equation (1) and ( 2) The symbol of the element in the formula means the content (% by mass) of each element contained in the steel.

【0041】次に、製造方法について説明する。Next, the manufacturing method will be described.

【0042】素材鋼の加熱温度:加熱温度が1200℃
を超えると、その後の熱間圧延後に、歪み時効に有害な
元素を安定化できず、より良好な耐歪み時効特性の確保
が困難になると同時に、構造用鋼材としての良好な低温
靭性を確保することも難しくなる。また、950℃未満
では目的とする600MPa以上の引張強さを安定して
確保することが難しくなる。このため、素材鋼の加熱温
度は950〜1200℃とするのが望ましい。
Heating temperature of raw steel: 1200 ° C.
If it exceeds, after the subsequent hot rolling, elements harmful to strain aging cannot be stabilized, and it becomes difficult to secure better strain aging resistance, and at the same time, to secure good low-temperature toughness as a structural steel material It becomes difficult. If the temperature is lower than 950 ° C., it is difficult to stably secure the target tensile strength of 600 MPa or more. For this reason, the heating temperature of the raw steel is desirably 950 to 1200 ° C.

【0043】熱間圧延の仕上温度:圧延仕上温度が85
0℃を超えると、仕上げ圧延後直ちに水冷(直接焼入
れ)したとしても、所望の低温靭性を安定して確保する
ことが難しくなる。また、650℃未満では目的とする
600MPa以上の引張強さを安定して確保することが
難しくなる。このため、熱間圧延の仕上温度は650〜
850℃とするのが望ましい。好ましい範囲は700〜
800℃である。
Finishing temperature of hot rolling: Rolling finishing temperature is 85
If the temperature exceeds 0 ° C., it becomes difficult to stably secure a desired low-temperature toughness even if water cooling (direct quenching) is performed immediately after the finish rolling. If the temperature is lower than 650 ° C., it is difficult to stably secure the target tensile strength of 600 MPa or more. For this reason, the finishing temperature of hot rolling is 650 to
It is desirable that the temperature be 850 ° C. The preferred range is 700 to
800 ° C.

【0044】水冷(加速冷却)開始温度:直接焼入れ時
の水冷開始温度が500℃を下回ると、圧延仕上温度が
850〜650℃の範囲であっても、良好な強度および
低温靭性を安定して確保することが難しくなるだけでな
く、より良好な耐歪み時効特性の確保も困難になる。こ
のため、水冷開始温度は500℃以上とするのがの望ま
しい。
Water cooling (accelerated cooling) start temperature: If the water cooling start temperature during direct quenching is lower than 500 ° C., good strength and low-temperature toughness can be stably maintained even if the rolling finish temperature is in the range of 850 to 650 ° C. Not only is it difficult to ensure, but it is also difficult to ensure better strain aging resistance. For this reason, it is desirable that the water cooling start temperature be 500 ° C. or higher.

【0045】加速冷却速度:熱間圧延後の加速冷却は、
鋼中の残留オーステナイトの分解を防ぎ、耐歪み時効特
性をより一層向上させるのに必要であるが、4℃/秒未
満の冷却速度では残留オーステナイトの分解を十分に防
ぐことができず、耐歪み時効特性をより一層向上させる
ことが困難になる。このため、加速冷却速度は4℃/秒
以上とするのがの望ましい。好ましくは10℃/秒以上
とするのがより望ましい。なお、加速冷却速度は、速け
れば速いほどよく、上限は特に定める必要はないが、あ
まり速くするとコスト増になりやすいので、100℃/
秒以下とするのがよい。
Accelerated cooling rate: Accelerated cooling after hot rolling is as follows:
It is necessary to prevent the decomposition of retained austenite in steel and to further improve the strain aging resistance, but at a cooling rate of less than 4 ° C./sec, the decomposition of residual austenite cannot be sufficiently prevented, and It becomes difficult to further improve the aging characteristics. For this reason, the accelerated cooling rate is desirably set to 4 ° C./sec or more. More preferably, it is more preferably at least 10 ° C./sec. The faster the accelerated cooling rate, the better. The upper limit does not need to be particularly defined. However, if the rate is too high, the cost tends to increase.
It is good to be less than seconds.

【0046】加速冷却の停止温度:加速冷却時の冷却停
止温度が300℃を超えると、目的とする600MPa
以上の引張強さ、および所望の靭性を確保することが難
しくなるだけでなく、歪み時効脆化の抑制に有効な適量
の残留オーステナイトが分解し、より良好な耐歪み時効
特性の確保も困難になる。このため、加速冷却の停止温
度は300℃以下とするのがの望ましい。なお、加速冷
却停止後、室温になるまでの間の冷却には何らの制約も
なく、空冷または徐冷などすればよい。
Stop temperature of accelerated cooling: If the cooling stop temperature during accelerated cooling exceeds 300 ° C., the target 600 MPa
Not only is it difficult to ensure the above tensile strength and desired toughness, but also an appropriate amount of retained austenite effective for suppressing strain aging embrittlement is decomposed, making it difficult to ensure better strain aging resistance. Become. For this reason, it is desirable that the stop temperature of the accelerated cooling be 300 ° C. or less. Note that there is no restriction on cooling until the room temperature is reached after the accelerated cooling is stopped, and air cooling or slow cooling may be used.

【0047】さらに、溶接鋼管の製造方法について説明
する。
Further, a method for manufacturing a welded steel pipe will be described.

【0048】本発明の溶接鋼管は、上記条件のもとに製
造された鋼板を管状に成形し、その突き合わせ部を溶接
接合して製造されるが、その際、鋼板の管状への成形
は、600℃以下の温度域でおこなう必要がある。これ
は、成形温度が600℃を超えると、硬質相の機能を低
下させる恐れがあるためである。
The welded steel pipe of the present invention is manufactured by forming a steel plate manufactured under the above conditions into a tube and welding and joining the butt portions. At this time, the steel plate is formed into a tube. It is necessary to perform in a temperature range of 600 ° C. or less. This is because if the molding temperature exceeds 600 ° C., the function of the hard phase may be reduced.

【0049】鋼板の管状への成形は、成形後の鋼管外径
をD(mm)、肉厚(鋼板板厚)をt(mm)とした場
合、(t/D)値が0.1以下になるように成形するの
が望ましい。これは、(t/D)値が0.1を超える
と、靭性と耐歪み時効脆化特性が劣化し、所望の靭性と
耐歪み時効脆化特性が確保しにくくなるためである。
When the steel plate is formed into a tubular shape, the (t / D) value is 0.1 or less, where D (mm) is the outer diameter of the formed steel pipe and t (mm) is the wall thickness (steel plate thickness). It is desirable to mold so that This is because, when the (t / D) value exceeds 0.1, toughness and strain aging embrittlement resistance deteriorate, and it becomes difficult to secure desired toughness and strain aging embrittlement resistance.

【0050】以下、本発明を実施例に基づいて説明す
る。
Hereinafter, the present invention will be described with reference to examples.

【0051】[0051]

【実施例】表1に示す化学組成を有する14種類の鋼か
らなるスラブを準備した。
EXAMPLES Slabs composed of 14 types of steels having the chemical compositions shown in Table 1 were prepared.

【0052】[0052]

【表1】 準備した各スラブは、表2に示す種々の条件で板厚20
mmの鋼板に成形した。その際、加速冷却停止温度が室
温以外の各鋼板は、加速冷却後、室温になるまでの間を
大気放冷(空冷)とした。
[Table 1] Each of the prepared slabs had a thickness of 20 under various conditions shown in Table 2.
mm. At that time, each steel plate whose accelerated cooling stop temperature was other than room temperature was allowed to cool to the air (air cooling) until it reached room temperature after accelerated cooling.

【0053】[0053]

【表2】 得られた各鋼板は、その一辺にX開先を加工して突き合
わせ、入熱量7kJ/mmでサブマージドアーク溶接
し、その母材からJIS Z 2201に規定される4
号試験片とJIS Z 2202規定されるVノッチ試
験片を採取する一方、溶接継手部から溶接熱影響部(H
AZ)の幅方向中央がノッチ底に位置するJIS Z
2202規定されるVノッチ試験片を採取した。
[Table 2] Each of the obtained steel plates is formed by joining an X groove on one side of the steel plate, butted, and subjected to submerged arc welding at a heat input of 7 kJ / mm.
No. test specimen and a V-notch test specimen specified in JIS Z 2202, while the welded heat-affected zone (H
AZ) JIS Z whose center in the width direction is located at the bottom of the notch
A 2202-specified V-notch specimen was taken.

【0054】採取した各試験片は、引張試験とシャルピ
ー衝撃試験に供し、母材の降伏強さ(MPa)、引張強
さ(MPa)、一様伸び率(%)および破面遷移温度
(vTs:℃)を調べる一方、−30℃におけるHAZ
のシャルピー吸収エネルギー(vE−30℃:J)を調
べた。
Each specimen was subjected to a tensile test and a Charpy impact test, and the yield strength (MPa), tensile strength (MPa), uniform elongation (%), and fracture surface transition temperature (vTs) of the base metal were obtained. : H) at −30 ° C.
Was examined for Charpy absorbed energy (vE- 30 ° C : J).

【0055】また、各鋼板の一部には、歪み量が1.5
%と3.0%の引張歪みを付与した後、250℃に1時
間加熱保持する歪み時効処理をおこない、この歪み時効
処理後の各鋼板からJIS Z 2201に規定される
4号試験片とJIS Z 2202規定されるVノッチ
試験片を採取して引張試験とシャルピー衝撃試験に供
し、一様伸び率(%)と破面遷移温度(vTs:℃)を
調べ、これらの調査結果を表2に併せて示した。
Also, a part of each steel plate has a strain amount of 1.5.
% And 3.0% tensile strain, and then subjected to a strain aging treatment of heating and holding at 250 ° C. for 1 hour, and from each steel plate after this strain aging treatment, a No. 4 test piece specified in JIS Z 2201 and JIS A V-notch test piece defined by Z 2202 was sampled and subjected to a tensile test and a Charpy impact test to determine a uniform elongation (%) and a fracture surface transition temperature (vTs: ° C). Also shown.

【0056】表2に示す結果からわかるように、鋼の化
学組成と製造条件が本発明で規定する範囲内である試番
1〜11の鋼板は、いずれも引張強さが632MPa以
上と高く、一様伸び率が3.9%以上、vTsが−78
℃以下、HAZのvE−30 が148J以上と良好で
あるだけでなく、3.0%の歪み時効処理後の一様伸び
率が歪み時効処理前の60%以上の値を保っている。
As can be seen from the results shown in Table 2, the steel sheets Nos. 1 to 11 in which the chemical composition and the manufacturing conditions of the steel are within the ranges specified in the present invention have a high tensile strength of 632 MPa or more. Uniform elongation is 3.9% or more, vTs is -78
Not only is the HAZ vE- 30 ° C or lower being not more than 148 J or better, the uniform elongation after strain aging treatment of 3.0% is maintained at a value of 60% or more before strain aging treatment.

【0057】また、鋼の化学組成は本発明で規定する範
囲内であるが、製造条件が本発明で望ましいとする範囲
を外れる試番12〜15の鋼板は、いずれも引張強さが
692MPa以上と高く、一様伸び率が9.1%以上、
vTsが−52℃以下、HAZのvE−30℃が185
J以上と良好であるだけでなく、3.0%の歪み時効処
理後の一様伸び率が歪み時効処理前の45%以上の値を
保っている。
Although the chemical composition of the steel is within the range specified in the present invention, the steel sheets of Nos. 12 to 15 whose production conditions are out of the range desired in the present invention have a tensile strength of 692 MPa or more. And the uniform elongation is 9.1% or more,
vTs is −52 ° C. or lower, vE of HAZ −30 ° C. is 185
Not only is it good as J or more, but the uniform elongation after strain aging treatment of 3.0% maintains a value of 45% or more before strain aging treatment.

【0058】これに対し、前述した(2) 式で定義される
B値が本発明で規定する上限値の1.6を超える試番1
6や、同じく(1) 式で定義させるA値が本発明で規定す
る上限値の0.44を超える試番17の鋼板など、鋼の
化学組成が本発明で規定する範囲を外れる試番16〜2
0の鋼板は、製造条件が本発明で望ましいとする範囲内
にもかかわらず、3.0%の歪み時効処理後の一様伸び
率が、いずれも、歪み時効処理前の9〜37%と悪い。
On the other hand, when the B value defined by the above-mentioned formula (2) exceeds the upper limit of 1.6 defined in the present invention, the sample No. 1
Sample No. 6 or a sample No. 16 in which the chemical composition of the steel is out of the range specified by the present invention, such as a sample No. 17 steel plate whose A value defined by the equation (1) exceeds the upper limit of 0.44 specified by the present invention. ~ 2
The steel sheet of No. 0 has a uniform elongation after strain aging treatment of 3.0% and a uniform elongation rate of 9 to 37% before strain aging treatment, even though the manufacturing conditions are within a range desirable in the present invention. bad.

【0059】[0059]

【発明の効果】本発明の高強度鋼材、たとえば鋼板は、
耐歪み時効特性に優れており、耐歪み時効特性が良好な
高強度溶接鋼管のような溶接構造物を得るのに使用して
好適で、産業上極めて有用である。
The high-strength steel material of the present invention, for example, a steel plate,
It has excellent strain aging resistance and is suitable for use in obtaining a welded structure such as a high-strength welded steel pipe having good strain aging resistance, and is extremely useful in industry.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】化学組成が、質量%で、C:0.01〜
0.10%、Si:0.30%以下、Mn:1.00〜
2.50%、P:0.010%以下、S:0.005%
以下、Nb:0.005〜0.06%、Ti:0.00
4〜0.025%、sol.Al:0.05%以下、
N:0.0050%以下、O(酸素):0.003%以
下、Cu:0〜1.5%、Ni:0〜2.5%、Mo:
0〜0.80%、Cr:0〜1.0%、V:0〜0.1
%、Zr:0〜0.03%、Ca:0〜0.0030
%、B:0〜0.002%を含み、残部が実質的にFe
で、下記の(1) 式で定義されるA値が0.44以下、
(2) 式で定義されるB値が1.6以下の鋼からなり、引
張強さが600MPa以上である耐歪み時効特性に優れ
た高強度鋼材。 A=50N+C+0.3Si+10(P+O) ・・・・・・・・・・ (1) B=(50N+C+10O)/(4Nb+10Ti+2sol.Al) ・・・・ (2) ここで、(1) 式と(2) 式中の元素記号は鋼中に含まれる
各元素の含有量(質量%)を意味する。
(1) a chemical composition having a mass ratio of C: 0.01 to
0.10%, Si: 0.30% or less, Mn: 1.00
2.50%, P: 0.010% or less, S: 0.005%
Hereinafter, Nb: 0.005 to 0.06%, Ti: 0.00
4 to 0.025%, sol. Al: 0.05% or less,
N: 0.0050% or less, O (oxygen): 0.003% or less, Cu: 0 to 1.5%, Ni: 0 to 2.5%, Mo:
0 to 0.80%, Cr: 0 to 1.0%, V: 0 to 0.1
%, Zr: 0 to 0.03%, Ca: 0 to 0.0030
%, B: 0 to 0.002%, the balance being substantially Fe
A value defined by the following equation (1) is 0.44 or less,
(2) A high-strength steel material comprising a steel having a B value defined by the formula of 1.6 or less and having a tensile strength of 600 MPa or more and excellent in strain aging resistance. A = 50N + C + 0.3Si + 10 (P + O) (1) B = (50N + C + 10O) / (4Nb + 10Ti + 2sol.Al) (2) where (1) and (2) The symbol of the element in the formula means the content (% by mass) of each element contained in the steel.
【請求項2】鋼材が、鋼板である請求項1に記載の高強
度鋼材。
2. The high-strength steel according to claim 1, wherein the steel is a steel plate.
【請求項3】質量%で、C:0.01〜0.10%、S
i:0.30%以下、Mn:1.00〜2.50%、
P:0.010%以下、S:0.005%以下、Nb:
0.005〜0.06%、Ti:0.004〜0.02
5%、sol.Al:0.05%以下、N:0.005
0%以下、O(酸素):0.003%以下、Cu:0〜
1.5%、Ni:0〜2.5%、Mo:0〜0.80
%、Cr:0〜1.0%、V:0〜0.1%、Zr:0
〜0.03%、Ca:0〜0.0030%、B:0〜
0.002%を含み、残部が実質的にFeで、下記の
(1) 式で定義されるA値が0.44以下、(2) 式で定義
されるB値が1.6以下の鋼を、950〜1200℃に
加熱後、熱間圧延をおこなって仕上温度850〜650
℃で圧延を終了し、500℃を下回らない温度域から3
00℃以下の温度にまで4℃/秒以上の冷却速度で加速
冷却する引張強さ600MPa以上の耐歪み時効特性に
優れた高強度鋼材の製造方法。 A=50N+C+0.3Si+10(P+O) ・・・・・・・・・・ (1) B=(50N+C+10O)/(4Nb+10Ti+2sol.Al) ・・・・ (2) ここで、(1) 式と(2) 式中の元素記号は鋼中に含まれる
各元素の含有量(質量%)を意味する。
3. C: 0.01 to 0.10% by mass%, S:
i: 0.30% or less, Mn: 1.00 to 2.50%,
P: 0.010% or less, S: 0.005% or less, Nb:
0.005 to 0.06%, Ti: 0.004 to 0.02
5%, sol. Al: 0.05% or less, N: 0.005
0% or less, O (oxygen): 0.003% or less, Cu: 0 to 0
1.5%, Ni: 0 to 2.5%, Mo: 0 to 0.80
%, Cr: 0 to 1.0%, V: 0 to 0.1%, Zr: 0
~ 0.03%, Ca: 0 ~ 0.0030%, B: 0 ~
0.002%, with the balance being substantially Fe,
A steel having an A value defined by the formula (1) of 0.44 or less and a B value defined by the formula (2) of 1.6 or less is heated to 950 to 1200 ° C., and then hot-rolled to finish. Temperature 850-650
Rolling is completed at a temperature of not more than 500 ° C.
A method for producing a high-strength steel material excellent in strain aging resistance with a tensile strength of 600 MPa or more, which is accelerated to a temperature of 00 ° C. or less at a cooling rate of 4 ° C./sec or more. A = 50N + C + 0.3Si + 10 (P + O) (1) B = (50N + C + 10O) / (4Nb + 10Ti + 2sol.Al) (2) where (1) and (2) The symbol of the element in the formula means the content (% by mass) of each element contained in the steel.
【請求項4】母材部が、請求項2に記載の高強度鋼板で
ある耐歪み時効特性に優れた高強度溶接鋼管。
4. A high-strength welded steel pipe whose base material is the high-strength steel sheet according to claim 2, which is excellent in strain aging resistance.
【請求項5】請求項2に記載の高強度鋼板を、600℃
以下の温度域で管状に成形し、その突き合わせ部を溶接
接合する耐歪み時効特性に優れた高強度溶接鋼管の製造
方法。
5. The high-strength steel sheet according to claim 2,
A method for producing a high-strength welded steel pipe having excellent strain aging resistance, which is formed into a tubular shape in the following temperature range and the butt portion is welded and joined.
JP2001019741A 2001-01-29 2001-01-29 High-strength steel material with excellent strain aging resistance and its manufacturing method Expired - Fee Related JP3654194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001019741A JP3654194B2 (en) 2001-01-29 2001-01-29 High-strength steel material with excellent strain aging resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001019741A JP3654194B2 (en) 2001-01-29 2001-01-29 High-strength steel material with excellent strain aging resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2002220634A true JP2002220634A (en) 2002-08-09
JP3654194B2 JP3654194B2 (en) 2005-06-02

Family

ID=18885567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019741A Expired - Fee Related JP3654194B2 (en) 2001-01-29 2001-01-29 High-strength steel material with excellent strain aging resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3654194B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060839A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor
JP2005060840A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor
JP2005060838A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor
WO2006098198A1 (en) 2005-03-17 2006-09-21 Sumitomo Metal Industries, Ltd. High tension steel plate, welded steel pipe and method for production thereof
JP2007023346A (en) * 2005-07-19 2007-02-01 Jfe Steel Kk Method for producing high strength welded steel tube excellent in strain-aging characteristic
JP2007119899A (en) * 2005-09-28 2007-05-17 Kobe Steel Ltd 490 MPa-CLASS LOW-YIELD RATIO COLD-FORMED STEEL PIPE HAVING EXCELLENT WELDABILITY AND ITS PRODUCTION METHOD
US7520943B2 (en) 2003-06-12 2009-04-21 Jfe Steel Corporation Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness
JP2009091653A (en) * 2007-09-19 2009-04-30 Jfe Steel Kk High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
CN104789863A (en) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 X80 pipeline steel with good anti-strain aging property, pipeline pipe and manufacturing method of pipeline pipe

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520943B2 (en) 2003-06-12 2009-04-21 Jfe Steel Corporation Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness
EP2853615A1 (en) 2003-06-12 2015-04-01 JFE Steel Corporation Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same
JP4507747B2 (en) * 2003-07-31 2010-07-21 Jfeスチール株式会社 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP4507746B2 (en) * 2003-07-31 2010-07-21 Jfeスチール株式会社 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP2005060840A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor
JP4507745B2 (en) * 2003-07-31 2010-07-21 Jfeスチール株式会社 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
JP2005060838A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor
JP2005060839A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor
WO2006098198A1 (en) 2005-03-17 2006-09-21 Sumitomo Metal Industries, Ltd. High tension steel plate, welded steel pipe and method for production thereof
US8177925B2 (en) 2005-03-17 2012-05-15 Sumitomo Metal Industries, Ltd. High-tensile steel plate, welded steel pipe or tube, and methods of manufacturing thereof
JP2007023346A (en) * 2005-07-19 2007-02-01 Jfe Steel Kk Method for producing high strength welded steel tube excellent in strain-aging characteristic
JP2007119899A (en) * 2005-09-28 2007-05-17 Kobe Steel Ltd 490 MPa-CLASS LOW-YIELD RATIO COLD-FORMED STEEL PIPE HAVING EXCELLENT WELDABILITY AND ITS PRODUCTION METHOD
JP2009091653A (en) * 2007-09-19 2009-04-30 Jfe Steel Kk High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
CN104789863A (en) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 X80 pipeline steel with good anti-strain aging property, pipeline pipe and manufacturing method of pipeline pipe
US20180073094A1 (en) * 2015-03-20 2018-03-15 Baoshan Iron & Steel Co., Ltd. X80 pipeline steel with good strain-aging performance, pipeline tube and method for producing same
US11053563B2 (en) * 2015-03-20 2021-07-06 Baoshan Iron & Steel Co., Ltd. X80 pipeline steel with good strain-aging performance, pipeline tube and method for producing same

Also Published As

Publication number Publication date
JP3654194B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP4837807B2 (en) High strength welded steel pipe and manufacturing method thereof
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
WO2009125863A1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JPH10237583A (en) High tensile strength steel and its production
WO2008004680A1 (en) High-strength steel pipe with excellent low-temperature toughness for line pipe, high-strength steel plate for line pipe, and processes for producing these
JP5157066B2 (en) A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance and DWTT characteristics.
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP5124854B2 (en) Steel plate for line pipe, method for producing the same, and line pipe
JP2008248330A (en) Low yield ratio high strength high toughness steel pipe and manufacturing method therefor
JP2006233263A (en) Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness
WO2005108636A1 (en) Super high strength uoe steel pipe and method for production thereof
JP3770106B2 (en) High strength steel and its manufacturing method
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP2005232513A (en) High strength steel sheet and manufacturing method
JP3654194B2 (en) High-strength steel material with excellent strain aging resistance and its manufacturing method
JP5368820B2 (en) 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3654194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees