JP2005060840A - Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor - Google Patents

Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor Download PDF

Info

Publication number
JP2005060840A
JP2005060840A JP2004225684A JP2004225684A JP2005060840A JP 2005060840 A JP2005060840 A JP 2005060840A JP 2004225684 A JP2004225684 A JP 2004225684A JP 2004225684 A JP2004225684 A JP 2004225684A JP 2005060840 A JP2005060840 A JP 2005060840A
Authority
JP
Japan
Prior art keywords
steel pipe
temperature
less
ferrite
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004225684A
Other languages
Japanese (ja)
Other versions
JP4507747B2 (en
Inventor
Toyohisa Shingu
豊久 新宮
Shigeru Endo
茂 遠藤
Nobuyuki Ishikawa
信行 石川
Mitsuhiro Okatsu
光浩 岡津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004225684A priority Critical patent/JP4507747B2/en
Publication of JP2005060840A publication Critical patent/JP2005060840A/en
Application granted granted Critical
Publication of JP4507747B2 publication Critical patent/JP4507747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel pipe with the low yield ratio, high strength, high toughness and superior strain age-hardening resistance, which is manufactured at high manufacturing efficiency and at a low cost. <P>SOLUTION: The steel pipe with the low yield ratio, high strength, high toughness and superior strain age-hardening resistance comprises, by mass%, 0.03-0.1% C, 0.01-0.5% Si, 1.2-2.5% Mn, 0.08% or less Al, one or more elements selected among 0.005-0.04% Ti, 0.005-0.07% Nb and 0.005-0.1% V, while controlling a ratio, by atom%, of a C content to the total content of Ti, Nb and V, namely C/(Ti+Nb+V) to 1.2-3, and the balance substantially Fe; and has a metallographic structure of a three-phase structure consisting substantially of ferrite, bainite and island martensite, in which an area fraction of the island martensite is 3 to 20%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主に原油や天然ガスを輸送するラインパイプに好適な、コーティング処理後の材質劣化の小さな大径溶接鋼管(UOE鋼管、スパイラル鋼管)及びその製造方法に関するものである。   The present invention relates to a large-diameter welded steel pipe (UOE steel pipe, spiral steel pipe) that is suitable for a line pipe for mainly transporting crude oil and natural gas and has a small material deterioration after coating treatment, and a method for producing the same.

主に原油や天然ガスを輸送するラインパイプにおいては、高強度、高靱性化に加え、耐震性の観点から低降伏比化も要求されている。一般に、鋼材の金属組織を、フェライトの様な軟質相の中に、ベイナイトやマルテンサイトなどの硬質相が適度に分散した組織にすることで、鋼材の低降伏比化が可能であることが知られている。この様な軟質相の中に硬質相が適度に分散した組織を得る製造方法として、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの2相域からの焼き入れ(Q’)を施す熱処理方法(例えば、特許文献1参照)が知られている。   In line pipes that mainly transport crude oil and natural gas, in addition to high strength and toughness, a low yield ratio is also required from the viewpoint of earthquake resistance. In general, it is known that the yield ratio of steel can be reduced by making the microstructure of steel a structure in which a hard phase such as bainite or martensite is appropriately dispersed in a soft phase such as ferrite. It has been. As a production method for obtaining a structure in which a hard phase is appropriately dispersed in such a soft phase, quenching from a two-phase region of ferrite and austenite (Q ′) between quenching (Q) and tempering (T). There is known a heat treatment method (see, for example, Patent Document 1).

また、特許文献1に開示されている様な複雑な熱処理を行わずに低降伏比化を達成する技術として、Ar3変態点以上で鋼材の圧延を終了し、その後の加速冷却速度と冷却停止温度を制御することで、針状フェライトとマルテンサイトの2相組織とし、低降伏比化を達成する方法が知られている(例えば特許文献2参照。)。   Further, as a technique for achieving a low yield ratio without performing a complicated heat treatment as disclosed in Patent Document 1, the rolling of the steel material is completed at the Ar3 transformation point or higher, and the subsequent accelerated cooling rate and cooling stop temperature. Is known to achieve a low yield ratio with a two-phase structure of acicular ferrite and martensite (see, for example, Patent Document 2).

しかし、ラインパイプに用いられるUOE鋼管やERW鋼管の様な溶接鋼管は、鋼板を冷間で管状へ成形して、突き合わせ部を溶接後、通常防食等の観点から鋼管外面にコーティング処理が施されるため、製管時の加工歪みとコーティング処理時の加熱により歪み時効が生じ、降伏応力が上昇する。そのため、上述の様な方法にて素材の鋼板の低降伏比を達成しても、鋼管における低降伏比化を達成することは困難である。   However, welded steel pipes such as UOE steel pipes and ERW steel pipes used for line pipes are formed by cold forming the steel sheet into a tubular shape, welding the butt, and then usually coating the outer surface of the steel pipe from the standpoint of corrosion protection. Therefore, strain aging occurs due to processing strain during pipe making and heating during coating treatment, and yield stress increases. Therefore, even if the low yield ratio of the raw steel plate is achieved by the method described above, it is difficult to achieve a low yield ratio in the steel pipe.

耐歪み時効特性に優れた鋼材およびその製造方法としては、歪み時効の原因であるC、N含有量を制限し、且つNb、Tiを添加しC、Nと結合させることで、歪み時効を抑制する方法が知られている(例えば、特許文献3参照)。
特開昭55−97425号公報 特開平1−176027号公報 特開2002-220634号公報
Strain aging is suppressed by limiting the C and N contents that cause strain aging, and adding Nb and Ti to bond with C and N as a steel material with excellent strain aging characteristics and its manufacturing method. There is a known method (see, for example, Patent Document 3).
JP-A-55-97425 Japanese Patent Laid-Open No. 1-176027 JP 2002-220634 A

しかし、特許文献3に記載の技術では、その実施例が示すように、熱間圧延仕上り温度が低いため、極端に生産性が低下し製造コストの上昇を招く。   However, in the technique described in Patent Document 3, as shown in the examples, since the hot rolling finish temperature is low, the productivity is extremely lowered and the manufacturing cost is increased.

このように従来の技術では、生産性を低下させることなく、また製造コストを上昇させることなく、コーティング処理後も低降伏比を有する鋼管を製造することは困難である。   As described above, in the conventional technique, it is difficult to manufacture a steel pipe having a low yield ratio even after the coating process without reducing productivity and without increasing manufacturing cost.

したがって本発明の目的は、このような従来技術の課題を解決し、高製造効率、低コストで製造できる、耐歪時効特性に優れた低降伏比高強度高靱性鋼管およびその製造方法を提供することにある。   Therefore, an object of the present invention is to solve such problems of the prior art, and to provide a low yield ratio high strength high toughness steel pipe excellent in strain aging characteristics that can be manufactured at high manufacturing efficiency and low cost, and a method for manufacturing the same. There is.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)、質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:1.2〜2.5%、Al:0.08%以下を含有し、Ti:0.005〜0.04%、Nb:0.005〜0.07%、V:0.005〜0.1%の中から選ばれる少なくとも2種以上を含有し、残部が実質的にFeからなり、原子%でのC量とTi、Nb、Vの合計量との比であるC/(Ti+Nb+V)が1.2〜3であり、金属組織が実質的にフェライトとベイナイトと島状マルテンサイトとの3相組織であり、島状マルテンサイトの面積分率が3〜20%であることを特徴とする、耐歪時効特性に優れた低降伏比高強度高靭性鋼管。
(2)、さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Ca:0.0005〜0.003%、B:0.005%以下の中から選ばれる1種又は2種以上を含有することを特徴とする(1)に記載の耐歪時効特性に優れた低降伏比高強度高靭性鋼管。
(3)、(1)または(2)に記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar3温度以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で450〜650℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行い、金属組織が実質的にフェライトとベイナイトと島状マルテンサイトとの3相組織であり、島状マルテンサイトの面積分率が3〜20%である鋼板として、該鋼板を冷間にて管状に成形し、突き合わせ部を溶接して鋼管とすることを特徴とする、耐歪時効特性に優れた低降伏比高強度高靭性鋼管の製造方法。
The features of the present invention for solving such problems are as follows.
(1) By mass%, C: 0.03 to 0.1%, Si: 0.01 to 0.5%, Mn: 1.2 to 2.5%, Al: 0.08% or less And at least two selected from Ti: 0.005-0.04%, Nb: 0.005-0.07%, V: 0.005-0.1%, with the balance being substantially And C / (Ti + Nb + V), which is a ratio of the amount of C in atomic% and the total amount of Ti, Nb, and V, is 1.2 to 3, and the metal structure is substantially composed of ferrite and bainite. A low yield ratio, high strength, high toughness steel pipe excellent in strain aging resistance, characterized by having a three-phase structure with island martensite and having an area fraction of island martensite of 3-20%.
(2) Further, in terms of mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Ca: 0.0005 to 0.003%, B: 0.005 % Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance as described in (1), containing one or two or more selected from below.
(3) After the steel having the component composition described in (1) or (2) is heated to a temperature of 1000 to 1300 ° C. and hot-rolled at a rolling end temperature of Ar 3 temperature or higher, 5 ° C./s or higher Accelerated cooling to 450 to 650 ° C. at a cooling rate of 5 ° C., followed by immediate reheating to 550 to 750 ° C. at a heating rate of 0.5 ° C./s or more, and the metal structure is substantially ferrite, bainite and island As a steel plate having a three-phase structure with martensite and an island-like martensite area fraction of 3 to 20%, the steel plate is cold formed into a tubular shape, and the butt portion is welded to form a steel pipe A method for producing a low yield ratio, high strength, high toughness steel pipe excellent in strain aging characteristics.

本発明によれば、耐歪時効特性に優れた低降伏比高強度高靱性鋼管を、高製造効率、低コストで製造することができる。このためラインパイプに使用する鋼管を、安価で大量に安定して製造することができ、生産性および経済性を著しく高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the low yield ratio high strength high toughness steel pipe excellent in the strain aging characteristic can be manufactured with high manufacturing efficiency and low cost. For this reason, the steel pipe used for a line pipe can be manufactured stably in large quantities at low cost, and productivity and economy can be remarkably improved.

本発明者らは前記課題を解決するために、鋼管原板の製造方法、特に制御圧延後の加速冷却とその後の再加熱という製造プロセスについて鋭意検討した結果、以下の(a)〜(d)の知見を得た。   In order to solve the above-mentioned problems, the present inventors have intensively studied a manufacturing method of a steel pipe original sheet, particularly a manufacturing process of accelerated cooling after controlled rolling and subsequent reheating, and as a result, the following (a) to (d) Obtained knowledge.

(a)、加速冷却過程でベイナイト変態途中すなわち未変態オーステナイトが存在する温度領域で冷却を停止し、その後ベイナイト変態終了温度(以下Bf点と記載する。)以上から再加熱を行うことにより、鋼板の金属組織が、フェライト、ベイナイトの混合相中に硬質相である島状マルテンサイト(以下MAと記載する。)が均一に生成した3相組織となり、低降伏比化が可能である。また、このMAはコーティング時に300℃以下に加熱されても安定である。MAは、たとえば3%ナイタール溶液(nitral:硝酸アルコール溶液)でエッチング後、電解エッチングして観察すると、容易に識別可能である。図2は走査型電子顕微鏡(SEM)で鋼管のミクロ組織を観察した場合の写真であるが、MAは白く浮き立った部分として観測され、フェライト、ベイナイトの混合組織にMAが均一に生成している様子が確認できる。また、このMAはコーティング時の加熱後も安定である。   (A) In the accelerated cooling process, during the bainite transformation, that is, in the temperature region where untransformed austenite exists, the cooling is stopped, and then the bainite transformation finish temperature (hereinafter referred to as the Bf point) is reheated to perform heating. Is a three-phase structure in which island-like martensite (hereinafter referred to as MA), which is a hard phase, is uniformly formed in the mixed phase of ferrite and bainite, and a low yield ratio is possible. Further, this MA is stable even when heated to 300 ° C. or lower during coating. MA can be easily identified by, for example, etching with a 3% nital solution (nitral: nitric alcohol solution) and then observing it by electrolytic etching. FIG. 2 is a photograph when the microstructure of a steel pipe is observed with a scanning electron microscope (SEM). MA is observed as a white floating portion, and MA is uniformly generated in a mixed structure of ferrite and bainite. The state can be confirmed. This MA is also stable after heating during coating.

(b)、再加熱時の未変態オーステナイトからのフェライト変態時に、Ti、Nb、Vの中から選ばれる少なくとも2種以上含む複合析出物が析出する。また、加速冷却時に変態したベイナイトはCを過飽和に固溶しており、再加熱後の空冷時にベイナイト中からも前述の微細析出物が析出する。微細析出物の析出により、歪み時効の原因となる固溶CやNが減少するため、鋼管成形、コーティング処理後の歪み時効による降伏応力上昇を抑制することが可能である。   (B) At the time of ferrite transformation from untransformed austenite at the time of reheating, a composite precipitate containing at least two or more selected from Ti, Nb, and V is deposited. Moreover, the bainite transformed at the time of accelerated cooling dissolves C in a supersaturated state, and the above-described fine precipitates are precipitated from the bainite during air cooling after reheating. The precipitation of fine precipitates reduces the solid solution C and N that cause strain aging, so that it is possible to suppress an increase in yield stress due to strain aging after steel pipe forming and coating treatment.

(c)、上記の複合析出物は非常に微細であるため、加速冷却時のベイナイト変態による強化に加え、微細析出物による析出強化が得られるため、合金元素が少ない低成分系の鋼においても高強度化が可能になる。   (C) Since the above composite precipitates are very fine, in addition to strengthening by bainite transformation during accelerated cooling, precipitation strengthening by fine precipitates can be obtained, so even in low-component steels with few alloying elements High strength can be achieved.

(d)、上記(a)、(b)および(c)の効果は、Mn等の焼入性向上元素を添加しMAの生成を促進すると共に、Ti、Nb、V等の炭化物形成元素を添加した鋼を用いることで得られる。   (D) The effects of the above (a), (b) and (c) are achieved by adding a hardenability improving element such as Mn to promote the formation of MA, and at the same time, forming carbide forming elements such as Ti, Nb and V. It can be obtained by using added steel.

本発明は上記の知見により得られたもので、圧延後の加速冷却によって生成したベイナイト相と、その後の再加熱によって生じるTi、Nb、Vを含有する析出物が分散析出したフェライト相、ベイナイト相と、硬質相であるMAが均一に生成した3相組織を有する耐歪み時効特性に優れた低降伏比高強度高靱性鋼管に関するものである。   The present invention was obtained from the above findings, and a bainite phase produced by accelerated cooling after rolling, and a ferrite phase and a bainite phase in which precipitates containing Ti, Nb, and V produced by subsequent reheating were dispersed and precipitated. And a low yield ratio, high strength, high toughness steel pipe having a three-phase structure in which MA, which is a hard phase, is uniformly formed and having excellent strain aging resistance.

以下、本発明の高強度鋼管について詳しく説明する。まず、本発明の高強度鋼管の組織について説明する。   Hereinafter, the high-strength steel pipe of the present invention will be described in detail. First, the structure of the high-strength steel pipe of the present invention will be described.

本発明では、フェライト、ベイナイトに硬質相であるMAが均一に生成した組織とし、且つフェライト相中に微細析出物を析出させ歪み時効の原因となる固溶C、Nを減少させることで、コーティング処理後の鋼管において低降伏比を達成している。本発明における、MA生成のメカニズムは以下の通りである。スラブを加熱後、オーステナイト領域で圧延を終了し、その後Ar3変態温度以上で加速冷却を開始する。加速冷却をベイナイト変態途中すなわち未変態オーステナイトが存在する温度域で終了し、その後ベイナイト変態終了温度(Bf点)以上で再加熱を行い、その後冷却するという製造プロセスである。その組織の変化は次の通りである。加速冷却終了時のミクロ組織はベイナイトと未変態オーステナイトであり、Bf点以上で再加熱を行うことで未変態オーステナイトからのフェライト変態が生じるが、フェライトはC固溶量が少ないためCが未変態オーステナイトへ排出される。そのため、再加熱時のフェライト変態の進行に伴い、未変態オーステナイト中のC量が増加する。このとき、焼き入れ性を高め、オーステナイト安定化元素である、Mn、Cu、Ni等が一定以上含有されていると、再加熱終了時でもCが濃縮した未変態オーステナイトが残存し、再加熱後の冷却でMAへと変態し、最終的にベイナイト、フェライト、MAの3相組織となる。本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点以下となるとベイナイト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点以上とする必要がある。また、再加熱後の冷却については、MAの変態や後述する微細炭化物の粗大化に影響を与えないため特に規定しないが、基本的に空冷とすることが好ましい。本発明では、ベイナイト変態途中で加速冷却を停止し、その後連続的に再加熱を行うことで、製造効率を低下させることなく硬質相であるMAを生成させることができ、硬質相を含んだ複合組織である3相組織とすることで低降伏比が達成できる。3相組織中のMAの割合は、MAの面積分率(圧延方向や板幅方向等の鋼板の任意の断面におけるMAの面積の割合)で、3〜20%とすることが望ましい。MAの面積分率が3%未満では低降伏比化を達成するには不十分な場合があり、また20%を超えると母材靱性を劣化させる場合がある。また、低降伏比化および母材靭性の観点から、MAの面積分率は5〜15%とすることが特に望ましい。なお、MAの面積分率は、例えばSEM観察により得られたミクロ組織を画像処理することによってMAの占める面積率を求めることで得ることができる。また、MAが粗大であると破壊の起点となり母材靭性を劣化させるため、MAの平均粒径は、10μm以下であることが望ましい。なお、MAの平均粒径は、SEM観察により得られたミクロ組織を画像処理し、個々のMAと同じ面積の円の直径を個々のMAについて求め、それらの直径の平均値として求めることができる。   In the present invention, a structure in which MA, which is a hard phase, is uniformly formed in ferrite and bainite, and fine precipitates are precipitated in the ferrite phase to reduce the solid solution C and N that cause strain aging. A low yield ratio is achieved in the treated steel pipe. The mechanism of MA generation in the present invention is as follows. After heating the slab, rolling is finished in the austenite region, and then accelerated cooling is started at the Ar3 transformation temperature or higher. This is a manufacturing process in which accelerated cooling is terminated during bainite transformation, that is, in a temperature range where untransformed austenite exists, and then reheated at a temperature equal to or higher than the bainite transformation finish temperature (Bf point) and then cooled. The changes in the organization are as follows. Microstructures at the end of accelerated cooling are bainite and untransformed austenite, and reheating at the Bf point or higher causes ferrite transformation from untransformed austenite. However, since ferrite has a small amount of C solid solution, C is untransformed. Discharged into austenite. Therefore, the amount of C in untransformed austenite increases with the progress of ferrite transformation during reheating. At this time, if the hardenability is increased and austenite stabilizing elements such as Mn, Cu, Ni, etc. are contained in a certain amount or more, untransformed austenite in which C is concentrated remains even after reheating, and after reheating It is transformed into MA by cooling, and finally becomes a three-phase structure of bainite, ferrite, and MA. In the present invention, after accelerated cooling, it is important to perform reheating from a temperature range in which untransformed austenite exists, and when the reheating start temperature falls below the Bf point, bainite transformation is completed and untransformed austenite does not exist. The reheating start needs to be higher than the Bf point. Further, the cooling after reheating is not particularly specified because it does not affect the transformation of MA and the coarsening of fine carbide described later, but basically it is preferably air cooling. In the present invention, accelerated cooling is stopped in the middle of bainite transformation, and then reheating is performed continuously, so that MA that is a hard phase can be generated without lowering the production efficiency, and a composite containing a hard phase. A low yield ratio can be achieved by using a three-phase structure. The proportion of MA in the three-phase structure is preferably an area fraction of MA (ratio of the area of MA in an arbitrary cross section of the steel sheet in the rolling direction, the sheet width direction, etc.) and 3 to 20%. If the area fraction of MA is less than 3%, it may be insufficient to achieve a low yield ratio, and if it exceeds 20%, the base material toughness may be deteriorated. Further, from the viewpoint of lowering the yield ratio and the base material toughness, the area fraction of MA is particularly preferably 5 to 15%. Note that the area fraction of MA can be obtained, for example, by determining the area ratio occupied by MA by image processing the microstructure obtained by SEM observation. Further, if the MA is coarse, it becomes a starting point of fracture and deteriorates the toughness of the base material. Therefore, the average particle size of the MA is preferably 10 μm or less. The average particle diameter of MA can be obtained as an average value of the diameters obtained by subjecting the microstructure obtained by SEM observation to image processing, obtaining the diameter of a circle having the same area as each MA, and obtaining the diameter of each MA. .

また、鋼管成形、コーティング処理後の歪み時効による降伏応力上昇を抑制し、且つ高強度化を達成するために、加速冷却時のベイナイト変態による変態強化と、加速冷却後に再加熱してフェライト中に析出する微細複合炭化物の析出による析出強化を複合して活用することにより、合金元素を多量に添加することなく高強度化を達成する。フェライトは延性に富んでおり、一般的には軟質であるが、本発明では以下に述べる微細な複合炭化物の析出により高強度化する。合金元素を多量に添加しない場合には、加速冷却で得られるベイナイト単相組織だけでは強度不足であるが、析出強化されたフェライトにより十分な強度を有するものとなる。析出強化を活用した鋼板では一般的に高降伏比となるが、本発明ではフェライトやベイナイトのような他相と硬度差の大きなMAを均一に生成させることにより低降伏化を実現している。さらに、歪み時効の原因である固溶C、Nが微細析出物として固定されるため、鋼管成形、コーティング時の加熱後の歪み時効を抑制することが可能である。   In addition, in order to suppress the yield stress increase due to strain aging after steel pipe forming and coating treatment and achieve high strength, transformation strengthening by bainite transformation during accelerated cooling and reheating after accelerated cooling into the ferrite By combining and utilizing precipitation strengthening by precipitation of fine composite carbides that precipitate, high strength can be achieved without adding a large amount of alloying elements. Ferrite is rich in ductility and is generally soft, but in the present invention, the strength is increased by the precipitation of fine composite carbide described below. When a large amount of the alloy element is not added, the strength is insufficient only by the bainite single-phase structure obtained by accelerated cooling, but the precipitation strengthened ferrite has sufficient strength. A steel plate utilizing precipitation strengthening generally has a high yield ratio, but in the present invention, low yield is achieved by uniformly generating MA having a large hardness difference from other phases such as ferrite and bainite. Furthermore, since solid solution C and N which are the cause of strain aging are fixed as fine precipitates, it is possible to suppress strain aging after heating during steel pipe forming and coating.

なお、金属組織が、実質的にフェライトとベイナイトと島状マルテンサイトとの3相組織からなるとは、本発明の作用効果を無くさない限り、フェライト、ベイナイトおよびMA以外の組織を含有するものが、本発明の範囲に含まれることを意味する。   Note that the metal structure substantially consists of a three-phase structure of ferrite, bainite, and island martensite, as long as the effects of the present invention are not lost, those containing structures other than ferrite, bainite, and MA, It is meant to be included in the scope of the present invention.

フェライトとベイナイトとMAとの3相組織に、パーライトなどの異なる金属組織が1種または2種以上混在する場合は、強度が低下するため、フェライト、ベイナイトおよびMA以外の組織の面積分率は少ない程良い。しかし、フェライト、ベイナイトおよびMA以外の組織の面積分率が低い場合は影響が無視できるため、トータルの面積分率で3%未満の他の金属組織を、すなわちパーライトやセメンタイト等を1種または2種以上含有してもよい。また、強度確保の観点からフェライトの面積分率を5%以上に、母材の靭性確保の観点からベイナイトの面積分率を10%以上にすることが望ましい。   When one or more different metal structures such as pearlite are mixed in the three-phase structure of ferrite, bainite, and MA, the strength decreases, so the area fraction of the structure other than ferrite, bainite, and MA is small. Moderately good. However, since the influence can be ignored when the area fraction of the structure other than ferrite, bainite and MA is low, other metal structures of less than 3% in total area fraction, that is, one or two of pearlite, cementite, etc. You may contain more than a seed. Further, it is desirable that the area fraction of ferrite is 5% or more from the viewpoint of securing strength, and the area fraction of bainite is 10% or more from the viewpoint of securing toughness of the base material.

次に、上記のフェライト相内に析出する微細な析出物について説明する。   Next, the fine precipitate which precipitates in the ferrite phase will be described.

本発明の鋼管では、フェライト相、ベイナイト相中のTi、Nb、Vの中から選ばれる2種以上を含有する複合析出物を、析出強化と耐歪み時効特性向上に活用している。Ti、Nb、Vは鋼中で炭化物を形成する元素であり、個々炭化物の析出により鋼を強化することは従来行われているが、本発明ではTi、Nb、Vの中から選ばれる2種以上を複合添加して、Ti、Nb、Vの中から選ばれる2種以上を含有する複合炭化物を鋼中に微細に分散析出させることにより、個々の炭化物による析出強化の場合に比べて、より大きな強度向上効果が得られることが特徴である。この従来にない大きな強度向上効果は、この複合炭化物が安定でかつ成長速度が遅いので、粒径が10nm未満の極めて微細な析出物が得られることによるものである。この複合炭化物の微細析出物の個数率はTiNを除いた全析出物の95%以上であることが好ましい。なお、この微細な複合炭化物の析出物の平均粒径は、透過型電子顕微鏡(TEM)で撮影した写真を画像処理し、個々の析出物と同じ面積の円の直径を個々の複合炭化物について求め、それらの直径の平均値として求めることができる。   In the steel pipe of the present invention, a composite precipitate containing two or more selected from Ti, Nb, and V in a ferrite phase and a bainite phase is utilized for precipitation strengthening and strain aging resistance improvement. Ti, Nb, and V are elements that form carbides in steel, and it has been conventionally performed to strengthen steel by precipitation of individual carbides. In the present invention, two kinds selected from Ti, Nb, and V are used. Compared with the precipitation strengthening by individual carbides, by adding the above, and finely dispersing and precipitating composite carbide containing two or more selected from Ti, Nb, and V in steel. It is characterized in that a large strength improvement effect can be obtained. This unprecedented strength improvement effect is due to the fact that this composite carbide is stable and has a slow growth rate, so that extremely fine precipitates having a particle size of less than 10 nm can be obtained. The number ratio of fine precipitates of the composite carbide is preferably 95% or more of the total precipitates excluding TiN. The average particle size of the fine composite carbide precipitates is obtained by subjecting a photograph taken with a transmission electron microscope (TEM) to image processing, and obtaining the diameter of a circle having the same area as each precipitate for each composite carbide. , And can be obtained as an average value of their diameters.

フェライト相中の析出物は、再加熱時の未変態オーステナイトからのフェライト変態界面において析出し、ベイナイト相中の析出物は再加熱後の空冷時に析出する。   Precipitates in the ferrite phase precipitate at the ferrite transformation interface from untransformed austenite during reheating, and precipitates in the bainite phase precipitate during air cooling after reheating.

本発明の鋼管は以上のように、析出物が微細析出したフェライト、ベイナイト相と、MAとの3相からなる複合組織を有するが、このような組織は以下のような組成の鋼を用いて、以下のような方法で製造することにより得ることができる。   As described above, the steel pipe of the present invention has a composite structure composed of three phases of ferrite, bainite phase, and MA in which precipitates are finely precipitated. Such a structure uses steel having the following composition. It can be obtained by the following method.

まず、本発明の高強度鋼管の化学成分について説明する。以下の説明において%で示す単位は全て質量%である。   First, chemical components of the high-strength steel pipe of the present invention will be described. In the following description, all units represented by% are mass%.

C:0.03〜0.1%とする。Cは炭化物として析出強化に寄与し、且つMA生成に重要な元素であるが、0.03%未満ではMAの生成に不十分であり、また十分な強度が確保できない。0.1%を超える添加はHAZ靭性を劣化させるだけでなく、耐歪み時効特性が低下するため、C含有量を0.03〜0.1%に規定する。さらに好適には、0.03〜0.08%である。   C: Set to 0.03 to 0.1%. C contributes to precipitation strengthening as a carbide and is an important element for MA formation. However, if it is less than 0.03%, it is insufficient for formation of MA, and sufficient strength cannot be secured. Addition exceeding 0.1% not only deteriorates the HAZ toughness but also deteriorates the strain aging resistance, so the C content is specified to be 0.03 to 0.1%. More preferably, it is 0.03 to 0.08%.

Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるばかりか、耐歪み時効特性を低下させるため、Si含有量を0.01〜0.5%に規定する。さらに好適には、0.01〜0.3%である。   Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, not only the toughness and weldability are deteriorated, but also the strain aging resistance is lowered. The Si content is specified to be 0.01 to 0.5%. More preferably, it is 0.01 to 0.3%.

Mn:1.2〜2.5%とする。Mnは強度、靭性向上、更に焼き入れ性を向上しMA生成を促すために添加するが、1.2%未満ではその効果が十分でなく、2.5%を超えると靱性ならびに溶接性が劣化するため、Mn含有量を1.2〜2.5%に規定する。Cu、Ni等を複合添加しない場合は、成分や製造条件の変動によらず、安定してMAを生成するために、1.5%以上添加することが望ましい。   Mn: 1.2 to 2.5%. Mn is added to improve strength and toughness, further improve hardenability and promote MA formation. However, if it is less than 1.2%, its effect is not sufficient, and if it exceeds 2.5%, toughness and weldability deteriorate. Therefore, the Mn content is specified to be 1.2 to 2.5%. In the case where Cu, Ni, or the like is not added in combination, it is desirable to add 1.5% or more in order to stably produce MA regardless of changes in components and manufacturing conditions.

Al:0.08%以下とする。Alは脱酸剤として添加されるが、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.08%以下に規定する。好ましくは、0.01〜0.08%とする。   Al: 0.08% or less. Al is added as a deoxidizer, but if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is specified to be 0.08% or less. Preferably, the content is 0.01 to 0.08%.

本発明の鋼板はTi、Nb、Vの中から選ばれる2種以上を含有する。   The steel plate of this invention contains 2 or more types chosen from Ti, Nb, and V.

Ti:0.005〜0.04%とする。0.005%以上添加することで、Nbおよび/またはVと共に微細な複合炭化物を形成し、強度上昇や耐歪み時効特性に大きく寄与する。しかし、0.04%を超える添加は溶接熱影響部靭性の劣化を招くため、Ti含有量は0.005〜0.04%に規定する。さらに、Ti含有量を0.02%未満にすると、より優れた靭性を示すため、Ti含有量を0.005〜0.02%未満とすることが好ましい。   Ti: 0.005 to 0.04%. By adding 0.005% or more, fine composite carbide is formed together with Nb and / or V, and greatly contributes to strength increase and strain aging resistance. However, since addition exceeding 0.04% causes deterioration of the weld heat affected zone toughness, the Ti content is specified to be 0.005 to 0.04%. Furthermore, when the Ti content is less than 0.02%, more excellent toughness is exhibited, so that the Ti content is preferably less than 0.005 to 0.02%.

Nb:0.005〜0.07%とする。Nbは組織の微細粒化により靭性を向上させるが、Ti及び/またはVと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.07%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.07%に規定する。   Nb: 0.005 to 0.07%. Nb improves toughness by refining the structure, but forms a composite precipitate with Ti and / or V and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the weld heat-affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.07%.

V:0.005〜0.1%とする。VもTi、Nbと同様にTi及び/またはNbと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.1%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.005〜0.1%に規定する。   V: Set to 0.005 to 0.1%. V, like Ti and Nb, forms a composite precipitate with Ti and / or Nb and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the weld heat affected zone deteriorates, so the V content is specified to be 0.005 to 0.1%.

本発明の高強度鋼管は上記の成分の鋼を用いることで、Ti、Nb、Vのいずれか2種以上を含有する微細複合析出物が得られるが、析出強化を最大限に利用し且つMAを生成させるためには、複合析出物を形成する元素の含有量の割合を以下のように制限することが必要である。すなわち、原子%でのC量とTi、Nb、Vの合計量の比である、C/(Ti+Nb+V)は1.2〜3とする。本発明による高強度化はTi、Nb、Vのいずれか2種以上を含有する微細炭化物の析出によるものである。このとき各元素の原子%の含有量で表される、C/(Ti+Nb+V)の値が1.2未満の場合、Cが全て微細複合析出物に消費され、MAが生成しないため低降伏比化が達成できない。また、3を超える場合はCが過剰であり、溶接熱影響部に島状マルテンサイトなどの硬化組織が形成し溶接熱影響部靭性の劣化を招くため、C/(Ti+Nb+V)の値を1.2〜3とする。さらに好適には、1.4〜3である。なお、質量%の含有量を用いる場合には、各元素記号を質量%での各元素の含有量として(C/12.01)/(Ti/47.9+Nb/92.91+V/50.94)の値を1.2〜3とする。
さらに好適には、1.4〜3である。
The high-strength steel pipe of the present invention can obtain fine composite precipitates containing any two or more of Ti, Nb, and V by using the steel of the above components. In order to generate the above, it is necessary to limit the content ratio of the elements forming the composite precipitate as follows. That is, C / (Ti + Nb + V), which is a ratio of the amount of C in atomic% and the total amount of Ti, Nb, and V, is set to 1.2-3. Strengthening according to the present invention is due to the precipitation of fine carbides containing any two or more of Ti, Nb, and V. At this time, when the value of C / (Ti + Nb + V) represented by the atomic% content of each element is less than 1.2, all of C is consumed in the fine composite precipitate, and MA is not generated, so the yield ratio is reduced. Cannot be achieved. When C exceeds 3, C is excessive, and a hardened structure such as island martensite is formed in the weld heat affected zone, resulting in deterioration of the weld heat affected zone toughness. Therefore, the value of C / (Ti + Nb + V) is 1. 2-3. More preferably, it is 1.4-3. In addition, when content of mass% is used, each element symbol is defined as content of each element in mass% (C / 12.01) / (Ti / 47.9 + Nb / 92.91 + V / 50.94). Is set to 1.2-3.
More preferably, it is 1.4-3.

本発明では、鋼管の強度靱性をさらに改善し、且つ焼き入れ性を向上させMAの生成を促す目的で、以下に示すCu、Ni、Cr、B、Caの1種又は2種以上を含有してもよい。   In the present invention, for the purpose of further improving the strength toughness of the steel pipe and improving the hardenability and promoting the production of MA, it contains one or more of Cu, Ni, Cr, B, and Ca shown below. May be.

Cu:0.5%以下とする。Cuは靭性の改善と強度の上昇に有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。   Cu: 0.5% or less. Cu is an element effective for improving toughness and increasing strength. In order to acquire the effect, it is preferable to add 0.1% or more. However, if it is added in a large amount, weldability deteriorates.

Ni:0.5%以下とする。Niは靭性の改善と強度の上昇に有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加するとコスト的に不利になり、また、溶接熱影響部靱性が劣化するため、添加する場合は0.5%を上限とする。   Ni: 0.5% or less. Ni is an element effective for improving toughness and increasing strength. In order to obtain the effect, it is preferable to add 0.1% or more, but adding a large amount is disadvantageous in terms of cost, and the weld heat affected zone toughness deteriorates. Is the upper limit.

Cr:0.5%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。   Cr: 0.5% or less. Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. In order to acquire the effect, it is preferable to add 0.1% or more. However, if it is added in a large amount, weldability deteriorates.

B:0.005%以下とする。Bは強度上昇、HAZ靭性改善に寄与する元素である。その効果を得るためには、0.0005%以上添加することが好ましいが、0.005%を超えて添加すると溶接性を劣化させるため、添加する場合は0.005%以下とする。   B: Set to 0.005% or less. B is an element contributing to strength increase and HAZ toughness improvement. In order to obtain the effect, it is preferable to add 0.0005% or more, but if added over 0.005%, the weldability is deteriorated, so when added, the content is made 0.005% or less.

Ca:0.0005〜0.003%とする。Caは硫化物系介在物の形態を制御して靭性を改善する。0.0005%以上でその効果が現れ、0.003%を超えると効果が飽和し、逆に清浄度を低下させて靭性を劣化させるため、添加する場合には0.0005〜0.003%とする。   Ca: 0.0005 to 0.003%. Ca improves the toughness by controlling the form of sulfide inclusions. The effect appears at 0.0005% or more, and when it exceeds 0.003%, the effect is saturated, and conversely, the cleanliness is lowered and the toughness is deteriorated. And

N:好ましくは0.007%以下とする。Nは不可避的不純物として扱うが、0.007%を越えると、溶接熱影響部靭性が劣化するため、好ましくは0.007%以下とする。   N: Preferably it is 0.007% or less. N is treated as an unavoidable impurity, but if over 0.007%, the weld heat affected zone toughness deteriorates, so the content is preferably made 0.007% or less.

さらに、Ti量とN量の比であるTi/Nを最適化することで、TiN粒子により溶接熱影響部のオーステナイト粗大化を抑制することでき、良好な溶接熱影響部靭性を得ることが出来るため、好ましくはTi/Nを2〜8、さらに好ましくは2〜5とする。   Furthermore, by optimizing Ti / N, which is the ratio of Ti amount to N amount, the austenite coarsening of the weld heat affected zone can be suppressed by TiN particles, and good weld heat affected zone toughness can be obtained. Therefore, Ti / N is preferably 2 to 8, and more preferably 2 to 5.

上記以外の残部は実質的にFeからなり、不可避不純物をはじめ、本発明の作用効果を害さない元素を微量に添加することができる。例えば、Mg、REM、W、Zrをそれぞれ、0.02%以下添加しても良い。   The remainder other than the above consists essentially of Fe, and it is possible to add a trace amount of elements that do not impair the effects of the present invention, including inevitable impurities. For example, each of Mg, REM, W, and Zr may be added by 0.02% or less.

次に、本発明の高強度鋼管原板の製造方法について説明する。   Next, the manufacturing method of the high intensity | strength steel pipe original plate of this invention is demonstrated.

本発明の高強度鋼管原板は上記の成分組成を有する鋼を用い、加熱温度:1000〜1300℃、圧延終了温度:Ar3温度以上で熱間圧延を行い、その後5℃/s以上の冷却速度で450〜650℃まで加速冷却を行い、その後Bf点以上の温度から0.5℃/s以上の昇温速度で550〜750℃の温度まで再加熱を行うことで、金属組織をフェライトとベイナイトとMAの3相組織とし、Ti、Nb、Vの中から選ばれる2種以上を含有する微細な複合炭化物をフェライト中に分散析出することができる。ここで、加熱温度、圧延終了温度、冷却終了温度および、再加熱温度等の温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを考慮して、計算により求めたものである。また、冷却速度は、熱間圧延終了後、冷却終了温度(450〜650℃)まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。また、昇温速度は、冷却後、再加熱温度(550〜750℃)の温度までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。以下、各製造条件について詳しく説明する。   The high-strength steel pipe sheet of the present invention uses steel having the above composition, and is hot-rolled at a heating temperature of 1000 to 1300 ° C. and a rolling end temperature of Ar 3 temperature or higher, and then at a cooling rate of 5 ° C./s or higher. Accelerated cooling to 450 to 650 ° C., and then reheating from a temperature above the Bf point to a temperature of 550 to 750 ° C. at a temperature rising rate of 0.5 ° C./s or more, the metal structure becomes ferrite and bainite. With a three-phase structure of MA, fine composite carbide containing two or more selected from Ti, Nb, and V can be dispersed and precipitated in ferrite. Here, the heating temperature, the rolling end temperature, the cooling end temperature, the reheating temperature, and the like are the average temperature of the steel sheet. The average temperature is obtained by calculation based on the surface temperature of the slab or steel plate, taking into account parameters such as plate thickness and thermal conductivity. The cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling end temperature (450 to 650 ° C.) by the time required for the cooling after the hot rolling is completed. The temperature increase rate is an average temperature increase rate obtained by dividing the temperature difference required for reheating up to the reheating temperature (550 to 750 ° C.) by the time required for reheating after cooling. Hereinafter, each manufacturing condition will be described in detail.

加熱温度:1000〜1300℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度ならびに降伏比が得られず、1300℃を超えると母材靭性が劣化するため、1000〜1300℃とする。   Heating temperature: 1000-1300 ° C. If the heating temperature is less than 1000 ° C, the solid solution of the carbide is insufficient and the required strength and yield ratio cannot be obtained, and if it exceeds 1300 ° C, the base metal toughness deteriorates, so the temperature is set to 1000 to 1300 ° C.

圧延終了温度:Ar3温度以上とする。圧延終了温度がAr3温度未満であると、その後のフェライト変態速度が低下するため、再加熱によるフェライト変態時に十分な微細析出物の分散析出が得られず、強度が低下する。また、再加熱時の未変態オーステナイトへのCの濃縮が不十分となりMAが生成しないため、圧延終了温度をAr3温度以上とする。   Rolling end temperature: Ar3 temperature or higher. If the rolling end temperature is lower than the Ar3 temperature, the subsequent ferrite transformation rate is lowered, so that sufficient precipitation of fine precipitates cannot be obtained during ferrite transformation by reheating, and the strength is lowered. Moreover, since the concentration of C into untransformed austenite at the time of reheating is insufficient and MA is not generated, the rolling end temperature is set to the Ar3 temperature or higher.

圧延終了後、直ちに5℃/s以上の冷却速度で冷却する。冷却速度が5℃/s未満では冷却時にパーライトを生成するため、MAが生成せず、またベイナイトによる強化が得られないため、十分な強度が得られない。よって、圧延終了後の冷却速度を5℃/s以上に規定する。また、冷却開始温度がAr3温度以下となりフェライトが生成すると、再加熱時に微細析出物の分散析出が得られず強度不足を招き、且つMAの生成も起こらないため、冷却開始温度をAr3温度以上とする。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。本発明では、加速冷却によりベイナイト変態領域まで過冷することにより、その後の再加熱時に温度保持することなくフェライト変態を完了させることが可能である。   Immediately after the end of rolling, it is cooled at a cooling rate of 5 ° C./s or more. When the cooling rate is less than 5 ° C./s, pearlite is generated at the time of cooling, so that MA is not generated and strengthening by bainite cannot be obtained, so that sufficient strength cannot be obtained. Therefore, the cooling rate after the end of rolling is specified to be 5 ° C./s or more. In addition, when the cooling start temperature is lower than the Ar3 temperature and ferrite is generated, fine precipitates are not dispersed and precipitated at the time of reheating, resulting in insufficient strength and no MA formation. Therefore, the cooling start temperature is set to be higher than the Ar3 temperature. To do. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process. In the present invention, the ferrite transformation can be completed without maintaining the temperature during the subsequent reheating by supercooling to the bainite transformation region by accelerated cooling.

冷却停止温度:450〜650℃とする。このプロセスは本発明において、重要な製造条件である。本発明では再加熱後に存在するCの濃縮した未変態オーステナイトがその後の空冷時にMAへと変態する。すなわち、ベイナイト変態途中の未変態オーステナイトが存在する温度域で冷却を停止する必要がある。冷却停止温度が450℃未満では、ベイナイト変態が完了するため空冷時にMAが生成せず低降伏比化が達成できない。650℃を超えると冷却中にパーライトが析出するため微細炭化物の析出が不十分となり十分な強度が得られず、また、パーライトにCが消費されMAが生成しないため、加速冷却停止温度を450〜650℃に規定する。MA生成の観点からは、好ましくは500〜650℃であり、より好ましくは530〜650℃である。   Cooling stop temperature: 450 to 650 ° C. This process is an important manufacturing condition in the present invention. In the present invention, C-concentrated untransformed austenite present after reheating is transformed into MA upon subsequent air cooling. That is, it is necessary to stop the cooling in a temperature range where untransformed austenite during the bainite transformation exists. If the cooling stop temperature is less than 450 ° C., the bainite transformation is completed, so MA is not generated during air cooling, and a low yield ratio cannot be achieved. When the temperature exceeds 650 ° C., pearlite is precipitated during cooling, so that the precipitation of fine carbides is insufficient and sufficient strength cannot be obtained. Further, C is consumed in the pearlite and MA is not generated. Specified at 650 ° C. From a viewpoint of MA production | generation, Preferably it is 500-650 degreeC, More preferably, it is 530-650 degreeC.

加速冷却停止後直ちに0.5℃/s以上の昇温速度で550〜750℃の温度まで再加熱を行う。このプロセスも本発明において重要な製造条件である。軟質相の強化や耐歪み時効特性向上に寄与する微細析出物は、再加熱時に析出する。さらに、再加熱時の未変態オーステナイトからフェライト変態と、それに伴う未変態オーステナイトへのCの排出により、再加熱後の空冷時にCが濃化した未変態オーステナイトがMAへと変態する。このような微細複合炭化物の析出物ならびにMAを得るためには、加速冷却後Bf点以上の温度から550〜700℃の温度域まで再加熱する必要がある。昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるため、微細複合炭化物の分散析出やMAが得られず、十分な強度、低降伏比を得ることができない。再加熱温度が550℃未満では十分な析出駆動力が得られず微細複合炭化物の量が少ないため、耐歪み時効特性の低下や強度不足を招き、750℃を超えると析出物が粗大化し十分な強度が得られないため、再加熱の温度域を550〜750℃に規定する。本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点以下となるとベイナイト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点以上とする必要がある。確実にフェライト変態させるためには、再加熱開始温度より50℃以上昇温することが望ましい。再加熱温度において、特に温度保持時間を設定する必要はない。本発明の製造方法を用いれば再加熱後直ちに冷却しても、十分な微細複合炭化物が得られるため高い強度が得られる。しかし、十分な微細複合炭化物を確保するために、30分以内の温度保持を行うことができる。30分を超えて温度保持を行うと、複合炭化物の粗大化を生じ強度が低下する場合がある。また、再加熱後の冷却過程において冷却速度によらず微細複合炭化物は粗大化しないため、再加熱後の冷却速度は基本的には空冷とすることが好ましい。   Immediately after the accelerated cooling is stopped, reheating is performed to a temperature of 550 to 750 ° C. at a temperature rising rate of 0.5 ° C./s or more. This process is also an important production condition in the present invention. Fine precipitates that contribute to the strengthening of the soft phase and the improvement of strain aging characteristics are precipitated during reheating. Furthermore, due to the C transformation from untransformed austenite during reheating to ferrite transformation and accompanying untransformed austenite, untransformed austenite enriched in C during air cooling after reheating transforms to MA. In order to obtain such fine composite carbide precipitates and MA, it is necessary to reheat from a temperature above the Bf point to a temperature range of 550 to 700 ° C. after accelerated cooling. If the rate of temperature increase is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency is deteriorated and pearlite transformation occurs, so that dispersion precipitation of fine composite carbide and MA are obtained. Thus, sufficient strength and low yield ratio cannot be obtained. If the reheating temperature is less than 550 ° C., sufficient precipitation driving force cannot be obtained, and the amount of fine composite carbide is small. This results in a decrease in strain aging characteristics and insufficient strength, and when it exceeds 750 ° C., the precipitate becomes coarse and sufficient. Since strength cannot be obtained, the temperature range of reheating is specified to be 550 to 750 ° C. In the present invention, after accelerated cooling, it is important to perform reheating from a temperature range in which untransformed austenite exists, and when the reheating start temperature falls below the Bf point, bainite transformation is completed and untransformed austenite does not exist. The reheating start needs to be higher than the Bf point. In order to reliably transform the ferrite, it is desirable to raise the temperature by 50 ° C. or more from the reheating start temperature. There is no need to set the temperature holding time at the reheating temperature. Even if it cools immediately after reheating if the manufacturing method of this invention is used, since sufficient fine composite carbide | carbonized_material will be obtained, high intensity | strength will be obtained. However, in order to ensure a sufficient fine composite carbide, the temperature can be maintained within 30 minutes. If the temperature is maintained for more than 30 minutes, the composite carbide may become coarse and the strength may decrease. Further, in the cooling process after reheating, the fine composite carbide does not become coarse regardless of the cooling rate. Therefore, it is preferable that the cooling rate after reheating is basically air cooling.

加速冷却後の再加熱を行うための設備として、加速冷却を行うための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましい。   As equipment for performing reheating after accelerated cooling, a heating device can be installed downstream of the cooling equipment for performing accelerated cooling. As the heating device, it is preferable to use a gas combustion furnace or induction heating device capable of rapid heating of the steel sheet.

本発明の製造方法を実施するための設備の一例を図1に示す。図1に示すように、圧延ライン1には上流から下流側に向かって熱間圧延機3、加速冷却装置4、誘導加熱装置5、ホットレベラー6が配置されている。誘導加熱装置5あるいは他の熱処理装置を、圧延設備である熱間圧延機3およびそれに引き続く冷却設備である加速冷却装置4と同一ライン上に設置する事によって、圧延、冷却終了後迅速に再加熱処理が行えるので、圧延冷却後の鋼板温度を過度に低下させることなく加熱することができる。   An example of equipment for carrying out the production method of the present invention is shown in FIG. As shown in FIG. 1, a hot rolling mill 3, an acceleration cooling device 4, an induction heating device 5, and a hot leveler 6 are arranged in the rolling line 1 from the upstream side toward the downstream side. By installing the induction heating device 5 or other heat treatment device on the same line as the hot rolling mill 3 that is a rolling facility and the accelerated cooling device 4 that is a subsequent cooling facility, reheating is performed quickly after the end of rolling and cooling. Since it can process, it can heat, without reducing the steel plate temperature after rolling cooling too much.

さらに、溶接鋼管の製造方法について説明する。   Furthermore, the manufacturing method of a welded steel pipe is demonstrated.

本発明の溶接鋼管は、上述の製造条件で製造された鋼板を冷間にて管状に成形し、突き合わせ部を溶接して鋼管とする。管状への成形方法については特に規定しない。成形した鋼管のコーティング処理は、鋼管の温度が300℃以下の範囲で行うことが好ましい。コーティング時の鋼管の加熱温度が300℃を超えると、耐歪み特性の低下やMA分解による応力比の増加を招く場合がある。   The welded steel pipe of the present invention is a steel pipe manufactured by cold forming a steel plate manufactured under the above-described manufacturing conditions into a tubular shape and welding the butted portion. The method for forming into a tubular shape is not particularly specified. The coating treatment of the formed steel pipe is preferably performed at a temperature of the steel pipe of 300 ° C. or less. When the heating temperature of the steel pipe at the time of coating exceeds 300 ° C., the strain resistance characteristics may be lowered or the stress ratio may be increased due to MA decomposition.

図2に上記の製造方法を用いて製造した本発明鋼管(0.05mass%C−1.8mass%Mn−0.01mass%Ti−0.04mass%Nb−0.05mass%V)を走査型電子顕微鏡(SEM)で観察した写真を示す。図2によれば、フェライト(F)、ベイナイト(B)の混合組織に島状マルテンサイト(MA)が均一に生成している様子が確認できる。   FIG. 2 shows a scanning electron of a steel pipe of the present invention (0.05 mass% C-1.8 mass% Mn-0.01 mass% Ti-0.04 mass% Nb-0.05 mass% V) manufactured using the above manufacturing method. The photograph observed with the microscope (SEM) is shown. According to FIG. 2, it can be confirmed that island martensite (MA) is uniformly formed in the mixed structure of ferrite (F) and bainite (B).

表1に示す化学成分の鋼(鋼種A〜I)を連続鋳造法によりスラブとし、これを用いて板厚18、26mmの鋼板を製造し、外径24、48インチの溶接鋼管(No.1〜14)を製造した。   Steel of chemical composition shown in Table 1 (steel types A to I) was made into a slab by a continuous casting method, and a steel plate having a plate thickness of 18 and 26 mm was produced using this slab, and a welded steel pipe having an outer diameter of 24 and 48 inches (No. 1 To 14).

加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行い鋼板を作製し、該鋼板を用いUOEプロセスにて溶接鋼管を製造し、その後鋼管外面にコーティング処理を施した。誘導加熱炉は加速冷却設備と同一ライン上に設置した。各鋼管(No.1〜14)の製造条件を表2に示す。なお、加熱温度、圧延終了温度、冷却停止(終了)温度および、再加熱温度等の温度は鋼板の平均温度とした。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータ、計算により求めた。また、冷却速度は、熱間圧延終了後、冷却停止(終了)温度まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。また、再加熱速度(昇温速度)は、冷却後、再加熱温度までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。   After the heated slab is rolled by hot rolling, it is immediately cooled using a water-cooled accelerated cooling facility, reheated using an induction heating furnace or a gas combustion furnace, and a steel plate is produced. A welded steel pipe was produced by the process, and then the outer surface of the steel pipe was coated. The induction furnace was installed on the same line as the accelerated cooling equipment. Table 2 shows the production conditions of each steel pipe (No. 1 to 14). The heating temperature, rolling end temperature, cooling stop (end) temperature, reheating temperature, and other temperatures were the average temperature of the steel sheet. The average temperature was determined from the surface temperature of the slab or steel plate by parameters and calculations such as plate thickness and thermal conductivity. The cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling stop (end) temperature after the hot rolling is finished by the time required for the cooling. The reheating rate (temperature increase rate) is an average temperature increase rate divided by the time required to reheat the temperature difference necessary for reheating up to the reheating temperature after cooling.

以上のようにして製造した鋼管の引張特性を測定した。測定結果を表2に併せて示す。引張特性は、圧延垂直方向の全厚引張試験片を2本採取し、コーティング前後で引張試験を行い、引張強度および降伏比を測定し、その平均値で評価した。引張強度580MPa以上を本発明に必要な強度とし、降伏比85%以下を本発明に必要な降伏比とした。   The tensile properties of the steel pipe manufactured as described above were measured. The measurement results are also shown in Table 2. Tensile properties were evaluated by averaging two samples of two full thickness tensile test pieces in the vertical direction of rolling, performing tensile tests before and after coating, measuring tensile strength and yield ratio. The tensile strength of 580 MPa or more was determined as the strength required for the present invention, and the yield ratio of 85% or less was determined as the yield ratio required for the present invention.

母材靭性については、圧延垂直方向のフルサイズシャルピーVノッチ試験片を3本採取し、シャルピー試験を行い、−10℃での吸収エネルギーを測定し、その平均値を求めた。−10℃での吸収エネルギーが200J以上のものを良好とした。   For base metal toughness, three full-size Charpy V-notch test pieces in the vertical direction of rolling were sampled, Charpy test was performed, the absorbed energy at −10 ° C. was measured, and the average value was obtained. The absorption energy at −10 ° C. was determined to be 200 J or more.

溶接熱影響部(HAZ)靭性については、図3に示すように試験片を採取してシャルピー試験を行った。図3は鋼管のシーム溶接部の断面の概略図であるが、ノッチ9の部分が長さの比で、溶接金属:HAZ=1:1になるように、シーム溶接部の板厚中央部より、フルサイズシャルピーVノッチ試験片10を3本採取して−10℃でのシャルピー吸収エネルギーを測定し、その平均値を求めた。−10℃でのシャルピー吸収エネルギーが100J以上のものを良好とした。   For the weld heat affected zone (HAZ) toughness, a Charpy test was conducted by collecting test pieces as shown in FIG. FIG. 3 is a schematic view of a cross section of a seam welded portion of a steel pipe. From the center of the plate thickness of the seam welded portion, the notch 9 portion has a length ratio such that weld metal: HAZ = 1: 1. Three full-size Charpy V-notch test specimens 10 were collected, the Charpy absorbed energy at −10 ° C. was measured, and the average value was obtained. Those having Charpy absorbed energy at −10 ° C. of 100 J or more were considered good.

表2において、本発明例であるNo.1〜7はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度580MPa以上の高強度で、コーティング処理前の降伏比が80%以下で、コーティング処理後も降伏比85%以下の低降伏比であり、耐歪時効特性に優れ、母材ならびに溶接熱影響部の靭性は100J以上で良好であった。また、鋼管の組織はフェライト、ベイナイト、島状マルテンサイトの3相組織であり、島状マルテンサイトの面積分率は3〜20%の範囲内であった。なお、島状マルテンサイトの面積分率は、走査型電子顕微鏡(SEM)で観察したミクロ組織から画像処理により求めた。また、透過型電子顕微鏡観察、エネルギー分散型X線分光法による分析の結果、フェライト相中にTi、Nb、Vの中から選ばれる2種以上を含む粒径10nm未満の微細な複合炭化物の分散析出が観察された。   In Table 2, all of Nos. 1 to 7 which are examples of the present invention are within the scope of the present invention in terms of chemical composition and production method, have a high tensile strength of 580 MPa or higher, and a yield ratio before coating treatment of 80%. Below, even after the coating treatment, the yield ratio was a low yield ratio of 85% or less, the strain aging resistance was excellent, and the toughness of the base material and the weld heat affected zone was good at 100 J or more. The structure of the steel pipe was a three-phase structure of ferrite, bainite, and island martensite, and the area fraction of island martensite was in the range of 3 to 20%. In addition, the area fraction of island martensite was calculated | required by image processing from the microstructure observed with the scanning electron microscope (SEM). Further, as a result of observation by transmission electron microscope and analysis by energy dispersive X-ray spectroscopy, dispersion of fine composite carbide having a particle diameter of less than 10 nm containing two or more selected from Ti, Nb and V in the ferrite phase Precipitation was observed.

No.8〜10は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、強度、降伏比が不十分であった。No.11〜14は化学成分が本発明の範囲外であるので、十分な強度が得られないか、降伏比が高いか、HAZ靭性が劣っていた。   In Nos. 8 to 10, the chemical components were within the scope of the present invention, but the manufacturing method was outside the scope of the present invention, so the strength and yield ratio were insufficient. Nos. 11 to 14 had chemical components outside the scope of the present invention, so that sufficient strength was not obtained, yield ratio was high, or HAZ toughness was inferior.

本発明の製造方法を実施するための製造ラインの一例を示す概略図。Schematic which shows an example of the manufacturing line for enforcing the manufacturing method of this invention. 本発明の鋼管を走査型電子顕微鏡(SEM)で観察した写真。The photograph which observed the steel pipe of the present invention with the scanning electron microscope (SEM). 試験片の採取位置を示す、鋼管のシーム溶接部の断面の概略図。The schematic of the cross section of the seam weld part of a steel pipe which shows the sampling position of a test piece.

符号の説明Explanation of symbols

1 圧延ライン
2 鋼板
3 熱間圧延機
4 加速冷却装置
5 誘導加熱装置
6 ホットレベラー
7 鋼板
8 溶接金属
9 ノッチ
10 試験片
11 HAZ
F フェライト
B ベイナイト
MA 島状マルテンサイト
DESCRIPTION OF SYMBOLS 1 Rolling line 2 Steel plate 3 Hot rolling mill 4 Accelerated cooling device 5 Induction heating device 6 Hot leveler 7 Steel plate 8 Weld metal 9 Notch 10 Test piece 11 HAZ
F Ferrite B Bainite MA Island martensite

Claims (3)

質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:1.2〜2.5%、Al:0.08%以下を含有し、Ti:0.005〜0.04%、Nb:0.005〜0.07%、V:0.005〜0.1%の中から選ばれる少なくとも2種以上を含有し、残部が実質的にFeからなり、原子%でのC量とTi、Nb、Vの合計量との比であるC/(Ti+Nb+V)が1.2〜3であり、金属組織が実質的にフェライトとベイナイトと島状マルテンサイトとの3相組織であり、島状マルテンサイトの面積分率が3〜20%であることを特徴とする、耐歪時効特性に優れた低降伏比高強度高靭性鋼管。   In mass%, C: 0.03 to 0.1%, Si: 0.01 to 0.5%, Mn: 1.2 to 2.5%, Al: 0.08% or less, Ti: Contains at least two selected from 0.005 to 0.04%, Nb: 0.005 to 0.07%, V: 0.005 to 0.1%, with the balance being substantially Fe C / (Ti + Nb + V), which is a ratio of the amount of C in atomic% and the total amount of Ti, Nb, and V, is 1.2 to 3, and the metal structure is substantially ferrite, bainite, and island martensite. A low-yield-ratio, high-strength, high-toughness steel pipe excellent in strain aging resistance, characterized in that the area fraction of island martensite is 3 to 20%. さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Ca:0.0005〜0.003%、B:0.005%以下の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1に記載の耐歪時効特性に優れた低降伏比高強度高靭性鋼管。   Further, in mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Ca: 0.0005 to 0.003%, B: 0.005% or less The low yield ratio high strength high toughness steel pipe excellent in strain aging resistance according to claim 1, comprising one or more selected from the group consisting of: 請求項1または請求項2に記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar3温度以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で450〜650℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行い、金属組織が実質的にフェライトとベイナイトと島状マルテンサイトとの3相組織であり、島状マルテンサイトの面積分率が3〜20%である鋼板として、該鋼板を冷間にて管状に成形し、突き合わせ部を溶接して鋼管とすることを特徴とする、耐歪時効特性に優れた低降伏比高強度高靭性鋼管の製造方法。   The steel having the component composition according to claim 1 or 2 is heated to a temperature of 1000 to 1300 ° C, hot-rolled at a rolling end temperature of Ar3 temperature or higher, and then at a cooling rate of 5 ° C / s or higher. Accelerated cooling is performed to 450 to 650 ° C., and then immediately reheated to 550 to 750 ° C. at a heating rate of 0.5 ° C./s or more, so that the metal structure is substantially composed of ferrite, bainite, and island martensite. A steel plate having a three-phase structure and an island-like martensite area fraction of 3 to 20% is formed into a tubular shape by cold forming the steel plate, and the butt portion is welded to form a steel pipe. A method for producing a low yield ratio high strength high toughness steel pipe excellent in strain aging resistance.
JP2004225684A 2003-07-31 2004-08-02 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same Active JP4507747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225684A JP4507747B2 (en) 2003-07-31 2004-08-02 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003204995 2003-07-31
JP2004225684A JP4507747B2 (en) 2003-07-31 2004-08-02 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005060840A true JP2005060840A (en) 2005-03-10
JP4507747B2 JP4507747B2 (en) 2010-07-21

Family

ID=34379954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225684A Active JP4507747B2 (en) 2003-07-31 2004-08-02 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4507747B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283147A (en) * 2005-04-01 2006-10-19 Nippon Steel Corp High strength steel pipe for pipe line having excellent deformation property after aging, and method for producing the same
JP2006299398A (en) * 2005-03-22 2006-11-02 Nippon Steel Corp Method for producing high strength steel sheet having not lower than 760 mpa tensile strength and excellent strain-aging characteristic and method for producing high strength steel tube using it
WO2007136019A1 (en) 2006-05-24 2007-11-29 Nippon Steel Corporation High-strength steel pipe with excellent unsusceptibility to strain aging for line piping, high-strength steel plate for line piping, and processes for producing these
EP2240618A1 (en) * 2007-12-04 2010-10-20 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
WO2011040624A1 (en) 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
WO2011040622A1 (en) 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
CN102321842A (en) * 2008-10-20 2012-01-18 株式会社神户制钢所 Plate Steel
WO2012133558A1 (en) 2011-03-30 2012-10-04 新日本製鐵株式会社 Electroseamed steel pipe and process for producing same
WO2013145771A1 (en) 2012-03-29 2013-10-03 Jfeスチール株式会社 Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
WO2013145770A1 (en) 2012-03-29 2013-10-03 Jfeスチール株式会社 Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP2014043627A (en) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal Polyolefin-coated uoe steel pipe and production method thereof
KR20160129056A (en) 2014-03-31 2016-11-08 제이에프이 스틸 가부시키가이샤 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
KR20160129875A (en) 2014-03-31 2016-11-09 제이에프이 스틸 가부시키가이샤 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP2017538583A (en) * 2014-10-16 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for the production of rough plates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174322A (en) * 1985-10-15 1987-07-31 Kobe Steel Ltd Manufacture of low yield ratio high tension steel plate superior in cold workability
JPH1030122A (en) * 1996-07-15 1998-02-03 Nkk Corp Production of hot rolled steel strip with high strength and high toughness
JP2002220634A (en) * 2001-01-29 2002-08-09 Sumitomo Metal Ind Ltd High tension steel superior in resistance to stress aging, and manufacturing method therefor
JP2004124114A (en) * 2002-09-30 2004-04-22 Nippon Steel Corp Non-water-cooled thin low yield ratio high tensile steel having excellent toughness, and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174322A (en) * 1985-10-15 1987-07-31 Kobe Steel Ltd Manufacture of low yield ratio high tension steel plate superior in cold workability
JPH1030122A (en) * 1996-07-15 1998-02-03 Nkk Corp Production of hot rolled steel strip with high strength and high toughness
JP2002220634A (en) * 2001-01-29 2002-08-09 Sumitomo Metal Ind Ltd High tension steel superior in resistance to stress aging, and manufacturing method therefor
JP2004124114A (en) * 2002-09-30 2004-04-22 Nippon Steel Corp Non-water-cooled thin low yield ratio high tensile steel having excellent toughness, and production method therefor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299398A (en) * 2005-03-22 2006-11-02 Nippon Steel Corp Method for producing high strength steel sheet having not lower than 760 mpa tensile strength and excellent strain-aging characteristic and method for producing high strength steel tube using it
JP4510680B2 (en) * 2005-04-01 2010-07-28 新日本製鐵株式会社 High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same
JP2006283147A (en) * 2005-04-01 2006-10-19 Nippon Steel Corp High strength steel pipe for pipe line having excellent deformation property after aging, and method for producing the same
WO2007136019A1 (en) 2006-05-24 2007-11-29 Nippon Steel Corporation High-strength steel pipe with excellent unsusceptibility to strain aging for line piping, high-strength steel plate for line piping, and processes for producing these
EP2240618A1 (en) * 2007-12-04 2010-10-20 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
US8647564B2 (en) 2007-12-04 2014-02-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing thereof
EP2240618A4 (en) * 2007-12-04 2011-12-28 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
CN102321842A (en) * 2008-10-20 2012-01-18 株式会社神户制钢所 Plate Steel
US8926766B2 (en) 2009-09-30 2015-01-06 Jfe Steel Corporation Low yield ratio, high strength and high uniform elongation steel plate and method for manufacturing the same
WO2011040622A1 (en) 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
WO2011040624A1 (en) 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
US8778096B2 (en) 2009-09-30 2014-07-15 Jfe Steel Corporation Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
WO2012133558A1 (en) 2011-03-30 2012-10-04 新日本製鐵株式会社 Electroseamed steel pipe and process for producing same
KR20140138932A (en) 2012-03-29 2014-12-04 제이에프이 스틸 가부시키가이샤 Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP2013227670A (en) * 2012-03-29 2013-11-07 Jfe Steel Corp Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
KR20140138933A (en) 2012-03-29 2014-12-04 제이에프이 스틸 가부시키가이샤 Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
WO2013145770A1 (en) 2012-03-29 2013-10-03 Jfeスチール株式会社 Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
WO2013145771A1 (en) 2012-03-29 2013-10-03 Jfeスチール株式会社 Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
US9657868B2 (en) 2012-03-29 2017-05-23 Jfe Steel Corporation High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method of manufacturing the same and high strength welded steel pipe made of the same
US10358708B2 (en) 2012-03-29 2019-07-23 Jfe Steel Corporation High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method of manufacturing the same and high strength welded steel pipe made of the same
JP2014043627A (en) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal Polyolefin-coated uoe steel pipe and production method thereof
KR20160129056A (en) 2014-03-31 2016-11-08 제이에프이 스틸 가부시키가이샤 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
KR20160129875A (en) 2014-03-31 2016-11-09 제이에프이 스틸 가부시키가이샤 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
US10344362B2 (en) 2014-03-31 2019-07-09 Jfe Steel Corporation Steel material for highly deformable line pipes having superior strain aging resistance and superior HIC resistance, method for manufacturing same, and welded steel pipe
US10465261B2 (en) 2014-03-31 2019-11-05 Jfe Steel Corporation Steel material for highly deformable line pipes having superior strain aging resistance and superior HIC resistance, method for manufacturing same, and welded steel pipe
JP2017538583A (en) * 2014-10-16 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for the production of rough plates

Also Published As

Publication number Publication date
JP4507747B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
KR101044161B1 (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP5516784B2 (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP4507747B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP4507746B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP4507745B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP4419695B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4412098B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP5867276B2 (en) ERW steel pipe
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5842577B2 (en) High toughness, low yield ratio, high strength steel with excellent strain aging resistance
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273825B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273824B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP3896915B2 (en) High strength steel plate with excellent HIC resistance and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250