JP4510680B2 - High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same - Google Patents
High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same Download PDFInfo
- Publication number
- JP4510680B2 JP4510680B2 JP2005105787A JP2005105787A JP4510680B2 JP 4510680 B2 JP4510680 B2 JP 4510680B2 JP 2005105787 A JP2005105787 A JP 2005105787A JP 2005105787 A JP2005105787 A JP 2005105787A JP 4510680 B2 JP4510680 B2 JP 4510680B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- less
- aging
- pipelines
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、天然ガスあるいは原油輸送用のAPI規格70〜100級のパイプラインとして好適なもので、防食を目的とした塗装処理後も地盤変動等によるパイプラインの変形許容度が大きい、変形特性に優れたパイプライン用鋼管およびその製造方法に関する。 The present invention is suitable as an API standard 70 to 100 grade pipeline for transporting natural gas or crude oil, and has a large deformation tolerance due to ground deformation after coating treatment for anticorrosion purposes. The present invention relates to an excellent steel pipe for pipelines and a method for manufacturing the same.
近年、原油あるいは天然ガスの長距離輸送方法としてパイプラインの重要性が高まっている。しかし、パイプラインが敷設される環境は年々多様化してきており、なかでも凍土地帯での季節による地盤変動、地震による地層変動、海底での海流などによるパイプラインの曲げ変形が敷設設計上無視できない問題となってきた。そのため、従来、耐内圧に優れるだけでなく、曲げ変形が生じても座屈等が生じがたい、変形性能に優れた高強度鋼管が要望されている。 In recent years, the importance of pipelines as a long-distance transportation method for crude oil or natural gas has increased. However, the environment in which pipelines are laid has been diversifying year by year, and in particular, pipeline deformation due to seasonal ground changes in the frozen land zone, strata changes due to earthquakes, ocean currents at the seabed, etc. cannot be ignored in laying design. It has become a problem. Therefore, there has been a demand for a high-strength steel pipe excellent in deformation performance that is not only excellent in internal pressure resistance but also difficult to buckle even if bending deformation occurs.
このような要求を満足する鋼管として、変形性能に優れた、引張強度に対する降伏強度の比が低い高強度鋼の製造方法が特許文献1に、加工硬化指数の大きな鋼管および製造方法が特許文献2に開示されている。また、特許文献3には、降伏比が低く、一様伸びが大きい鋼板及び鋼管が提案されている。また特許文献4には、引張試験において降伏強度と公称歪み1.5%時の応力との比が1.05以上の鋼管が提案されている。さらには、パイプラインは実際には鋼管同士を円周溶接するが、その場合溶接部に微小の欠陥が存在する場合があり、そこから破壊せずに常に鋼管から座屈変形できるよう長手方向と円周方向の降伏強度の比を適正化した鋼管および製造方法が特許文献5に開示されている。
As a steel pipe satisfying such requirements,
ところで、パイプライン用鋼管は敷設前に防食を目的とした塗装処理が行われるが、近年、フュージョンボンディングされる場合が増えている。この処理の場合、150℃〜300℃に鋼管が加熱される。非特許文献1に記載のように、冷間で成形された鋼管はこの加熱によって時効されるため、製造時と比較すると応力歪み曲線が大きく変化する。
By the way, although the steel pipe for pipelines is subjected to a coating treatment for anticorrosion before laying, in recent years, the number of cases where fusion bonding is performed is increasing. In the case of this treatment, the steel pipe is heated to 150 ° C to 300 ° C. As described in
鋼管となった状態での長手方向の応力歪み曲線は、冷間成形の影響でラウンドハウス型の形状であり、特許文献2に開示されているように応力歪み曲線をn乗硬化則で近似することが可能で、n値と鋼管の変形性能の間に相関がある。
The stress strain curve in the longitudinal direction in the state of the steel pipe has a round house shape due to the influence of cold forming, and approximates the stress strain curve with the n-th power hardening law as disclosed in
しかしながら、鋼管は150℃〜300℃に加熱されると、応力歪み曲線は大きく変化し、特に歪みが小さい領域で複雑となる。歪みが0.5%から5%の間の応力歪み曲線をn乗硬化則で近似することが出来ず、n値の評価は不可能である。また、成分、製法、加熱温度によっては明瞭な降伏伸びが出現する場合がある。さらには鋼管の長手方向と周方向では応力歪み曲線が異なるが、変形能の観点からこの違いを議論されたものはない。 However, when the steel pipe is heated to 150 ° C. to 300 ° C., the stress-strain curve changes greatly and becomes complicated especially in a region where the strain is small. A stress-strain curve with a strain between 0.5% and 5% cannot be approximated by the n-th power hardening rule, and the n value cannot be evaluated. Moreover, a clear yield elongation may appear depending on a component, a manufacturing method, and a heating temperature. Furthermore, although the stress-strain curve differs between the longitudinal direction and the circumferential direction of the steel pipe, there has been no discussion about this difference from the viewpoint of deformability.
上述したように、従来報告されているような鋼管製造ままでの機械的特性と変形性能の関係で、加熱後の鋼管の変形性能を予測することは困難であり、新たに加熱後の鋼管の変形性能に及ぼす機械的性質の影響を調査せざるを得ない状況に至った。 As described above, it is difficult to predict the deformation performance of the steel pipe after heating because of the relationship between the mechanical properties and the deformation performance as manufactured in the conventional steel pipe production. A situation has been reached in which the influence of mechanical properties on deformation performance has to be investigated.
そこで本発明者らは、150℃〜300℃の温度領域に加熱された場合のS−S曲線の形状変化を詳細に調査し、そのときの鋼管の変形性能の変化を明らかにしたうえで、塗装加熱によって変形特性を損なわないための具備すべき鋼管機械的特性を明らかにし、その鋼管製法について鋭意検討した。 Therefore, the present inventors investigated the shape change of the SS curve when heated to a temperature range of 150 ° C. to 300 ° C. in detail, and after clarifying the change in deformation performance of the steel pipe, We clarified the mechanical properties of the steel pipes that should be provided so that the deformation characteristics are not impaired by coating heating, and studied the steel pipe manufacturing method.
本発明は、パイプラインに好適な、API規格X70〜X100グレード相当の優れた強度を有するとともに、塗装処理などのときの加熱によって時効した後も十分な変形性能を有するパイプライン用高強度鋼管およびその製造方法を提供するものである。 The present invention is suitable for pipelines, and has high strength equivalent to API standards X70 to X100 grades, and has sufficient deformation performance even after aging by heating at the time of coating treatment, and the like, The manufacturing method is provided.
本発明は、高強度鋼管を用い塗装加熱処理したラインパイプの変形性能を確保するためには、加熱後によって変化する周方向および長手方向の歪み量が2%までの応力歪み曲線を制御することが効果的であり、そのための適正な化学成分と圧延条件によって得られた最適なミクロ組織を明らかにした知見に基づいてなされたものであり、その要旨は以下のとおりである。 In the present invention, in order to ensure the deformation performance of a line pipe that has been heat-treated using a high-strength steel pipe, the stress-strain curve in which the amount of strain in the circumferential direction and the longitudinal direction that changes after heating is up to 2% is controlled. Is based on the knowledge that clarifies the optimum microstructure obtained by appropriate chemical components and rolling conditions for the purpose, and the gist thereof is as follows.
(1)質量%で、
C :0.02%〜0.09%、
Si:0.001%〜0.8%、
Mn:0.5%〜2.5%、
P :0.02%以下、
S :0.005%以下、
Ti:0.005〜0.03%、
Nb:0.005〜0.1%、
Al:0.001%〜0.1%、
N :0.001%〜0.008%、
を含有し、かつ、2<(3.5Ti+8Nb)/(C+N)≦5.66の条件を満足し、さらに、
Ni:0.1%〜1.0%、
Cu:0.1%〜1.0%、
Mo:0.05%〜0.6%、
のうち、Ni及びCuの2種又は全部を含有し、(Ni+Cu)−Mo>0.5を満足する、残部が鉄および不可避的不純物からなる鋼板を冷間で筒状に成形し、端面同士をシーム溶接した鋼管であって、150℃〜300℃に加熱された後の円周方向の引張試験で上降伏点が引張強度より低くかつ管軸方向の引張試験で降伏比が0.93以下であることを特徴とする時効後の変形特性に優れたパイプライン用高強度鋼管。
(1) In mass%,
C: 0.02% to 0.09%,
Si: 0.001% to 0.8%,
Mn: 0.5% to 2.5%
P: 0.02% or less,
S: 0.005% or less,
Ti: 0.005 to 0.03%,
Nb: 0.005 to 0.1%,
Al: 0.001% to 0.1%,
N: 0.001% to 0.008%,
Containing, and, 2 <(3.5Ti + 8Nb) / (C + N) satisfies the condition of ≦ 5.66, further,
Ni: 0.1% to 1.0%
Cu: 0.1% to 1.0%,
Mo: 0.05% to 0.6%
Among them, a steel plate containing two or all of Ni and Cu and satisfying (Ni + Cu) -Mo> 0.5, the balance being iron and inevitable impurities, is cold-formed into a cylindrical shape, and the end faces Steel pipe welded with seam, the upper yield point is lower than the tensile strength in the circumferential tensile test after heating to 150 ° C to 300 ° C, and the yield ratio is 0.93 or less in the tensile test in the pipe axis direction A high-strength steel pipe for pipelines with excellent deformation characteristics after aging.
(2)150℃〜300℃に加熱された後の管軸方向の引張試験で降伏伸びが1%以下であることを特徴とする(1)に記載の時効後の変形特性に優れたパイプライン用高強度鋼管。 (2) A pipeline excellent in deformation characteristics after aging as described in (1), wherein the tensile elongation in the tube axis direction after heating to 150 ° C. to 300 ° C. is 1% or less. High strength steel pipe.
(3)150℃〜300℃に加熱された後の管軸方向の一様伸びが5%以上であることを特徴とする(1)もしくは(2)に記載の時効後の変形特性に優れたパイプライン用高強度鋼管。 (3) Excellent elongation characteristics after aging according to (1) or (2), wherein the uniform elongation in the tube axis direction after being heated to 150 ° C. to 300 ° C. is 5% or more High strength steel pipe for pipelines.
(4)前記鋼管の組織が、面積率で50%以下であり平均結晶粒径が10μm以下のフェライトと残部がマルテンサイト及び/またはベイナイトの混合組織であることを特徴とする(1)〜(3)のいずれかに記載の時効後の変形特性に優れたパイプライン用高強度鋼管。 (4) The structure of the steel pipe is a mixed structure of ferrite having an area ratio of 50% or less and an average crystal grain size of 10 μm or less and the balance martensite and / or bainite. 3) A high-strength steel pipe for pipelines having excellent deformation characteristics after aging according to any one of 3).
(5)質量%で、さらに、
Cr:1%以下、
V:0.1%以下、
REM:0.02%以下、
Mg:0.006%以下、
の1種または2種以上を含有することを特徴とする(1)〜(4)のいずれかに記載の時効後の変形特性に優れたパイプライン用高強度鋼管。
(5) In mass%,
Cr: 1% or less,
V: 0.1% or less ,
R EM: 0.02% or less,
Mg: 0.006% or less,
The high strength steel pipe for pipelines excellent in deformation characteristics after aging according to any one of (1) to (4), characterized by containing one or more of the above.
(6)(1)から(5)のいずれかに記載の成分からなる鋼片を1000℃以上に加熱後、900℃以上の温度で累積圧下量50%以上の粗圧延を行い、次いで仕上圧延を870℃以下で開始し、650℃以上で終了する仕上圧延を行い、600℃以上の温度領域から冷速5℃/s〜50℃/sで加速冷却を開始し、200℃〜600℃で冷却を停止し、引続き冷間で累積圧下量が1%〜5%の圧延を行って鋼板とし、次いで、100〜250℃に加熱し、その後鋼板を筒状に成形し、突き合わせ部を溶接して鋼管とした後、150℃〜300℃に加熱することを特徴とする時効後の変形特性に優れたパイプライン用高強度鋼管の製造方法。 (6) After heating the steel slab comprising the component according to any one of (1) to (5) to 1000 ° C or higher, rough rolling is performed at a temperature of 900 ° C or higher and a cumulative reduction amount of 50% or higher, and then finish rolling. Is started at 870 ° C. or lower and finishes at 650 ° C. or higher, and accelerated cooling is started at a cooling rate of 5 ° C./s to 50 ° C./s from a temperature range of 600 ° C. or higher, at 200 ° C. to 600 ° C. The cooling is stopped, and the steel sheet is then rolled with a cumulative reduction of 1% to 5% in the cold, then heated to 100 to 250 ° C., then the steel sheet is formed into a cylindrical shape, and the butt portion is welded. A method for producing a high-strength steel pipe for pipelines, which is excellent in deformation characteristics after aging, characterized by heating the steel pipe to 150 ° C to 300 ° C.
本発明により、パイプラインに好適な、API規格X70〜X100グレード相当の優れた強度を有するとともに、塗装処理などで加熱されることによって時効した後も、地盤変動などによる変形に対して座屈や破壊をしない十分な変形性能を有するパイプライン用高強度鋼管を提供可能となる。 According to the present invention, it has excellent strength equivalent to API standard X70 to X100 grade suitable for pipelines, and even after being aged by being heated by coating treatment, It is possible to provide a high-strength steel pipe for pipelines that has sufficient deformation performance without breaking.
本発明者らは、様々な条件で製造されたAPI規格X70〜X100級の鋼管について150℃〜300℃に加熱された後の周方向および長手方向の応力歪み曲線変化とそれに伴う鋼管の変形性能の変化について詳細に調査した。 The inventors of the present invention have made changes in the stress strain curves in the circumferential direction and the longitudinal direction of steel pipes of API standard X70 to X100 grade manufactured under various conditions after being heated to 150 ° C. to 300 ° C., and the deformation performance of the steel pipes associated therewith. We investigated in detail about the changes.
まず、種々の化学成分を有する鋼片を異なる条件で圧延した鋼板を冷間で成形し、突き合わせ部をシーム溶接して鋼管(外径:610〜1320cm(24〜52インチ),肉厚:15.6〜20.6mm)とし、これら鋼管を150℃〜300℃の任意の温度に60秒加熱して引張試験および鋼管の曲げ変形特性を調査した。長手方向の引張試験片はJIS12号弧状引張試験片を、周方向の引張試験片は丸棒引張試験片を採取した。曲げ試験は外径の20倍の長さに切り出した鋼管を試験片とし、鋼管内に水圧で10気圧から20気圧の任意の内圧を負荷し4点曲げ(曲げ部分の長さ:外径の6倍)によって鋼管を曲げ変形し、鋼管の曲げ角度と負荷荷重を測定した。
First, a steel plate obtained by rolling steel pieces having various chemical components under different conditions is formed cold, and the butt portion is seam welded to obtain a steel pipe (outer diameter: 610 to 1320 cm (24 to 52 inches), wall thickness: 15 The steel pipe was heated to an arbitrary temperature of 150 ° C. to 300 ° C. for 60 seconds to investigate the tensile test and the bending deformation characteristics of the steel pipe. The tensile test piece in the longitudinal direction was a JIS No. 12 arc-shaped tensile test piece, and the tensile test piece in the circumferential direction was a round bar tensile test piece. In the bending test, a steel pipe cut to a length 20 times the outer diameter is used as a test piece, and an arbitrary internal pressure of 10 to 20 atmospheres is applied to the steel pipe as a water pressure to be bent at four points (the length of the bent portion: the
図1に示すように鋼管に負荷した荷重と曲げ角度の関係を示した図を作製し、変形特性として最大荷重時の曲げ角度(θ1)を採用した。 As shown in FIG. 1, a diagram showing the relationship between the load applied to the steel pipe and the bending angle was prepared, and the bending angle (θ1) at the maximum load was adopted as the deformation characteristic.
試験結果、最大荷重時の曲げ角度(θ1)は長手方向のY/Tと相関あるものの、周方向の上降伏点が引張強度より高い場合、鋼管長手方向のY/Tがどうであれ悪いことが明らかとなった。図2に長手方向の降伏比(Y/T)とθ1の関係を示す。周方向の上降伏点が引張強度より高い場合、Y/Tが変化してもθ1は3°以下ときわめて低い値であることが明らかとなった。一方、周方向の上降伏点が引張強度より低い場合、θ1はY/Tと相関を示し、Y/Tが0.93以下となるとθ1は4°以上の良好な値を示すことが明らかとなった。また長手方向の引張試験で降伏伸びが1%以下であると、同じY/Tでもより高いθ1が得られた。 Test results show that the bending angle at the maximum load (θ1) correlates with Y / T in the longitudinal direction, but if the upper yield point in the circumferential direction is higher than the tensile strength, the Y / T in the longitudinal direction of the steel pipe is bad. Became clear. FIG. 2 shows the relationship between the yield ratio (Y / T) in the longitudinal direction and θ1. When the upper yield point in the circumferential direction is higher than the tensile strength, it has become clear that even if Y / T changes, θ1 is an extremely low value of 3 ° or less. On the other hand, when the upper yield point in the circumferential direction is lower than the tensile strength, θ1 shows a correlation with Y / T, and when Y / T is 0.93 or less, it is clear that θ1 shows a good value of 4 ° or more. became. Further, when the yield elongation was 1% or less in the tensile test in the longitudinal direction, higher θ1 was obtained even with the same Y / T.
したがって、時効後の高強度ラインパイプの変形特性を確保するためには、周方向の上降伏点が引張強度より低いことが必須であり、さらに長手方向のY/Tが0.93以下に限定する。 Therefore, in order to ensure the deformation characteristics of the high-strength line pipe after aging, it is essential that the upper yield point in the circumferential direction is lower than the tensile strength, and the Y / T in the longitudinal direction is limited to 0.93 or less. To do.
また、長手方向の引張試験でY/Tが0.93でかつ降伏伸びが1%以下の場合、より高いθ1が得られたことから、長手方向の引っ張り特性で降伏伸びが1%以下に限定することは、さらなる変形能向上策として望ましい。 Further, when Y / T is 0.93 and the yield elongation is 1% or less in the tensile test in the longitudinal direction, a higher θ1 is obtained. Therefore, the tensile elongation in the longitudinal direction is limited to 1% or less. It is desirable to further improve the deformability.
またθ1は一様伸びと相関があることが明らかとなり、一様伸びが5%以下であるとθ1が急激に低下した。したがって、加熱後の鋼管長手方向の一様伸びは5%以上有する方が望ましい。 Moreover, it became clear that (theta) 1 had a correlation with uniform elongation, and (theta) 1 fell rapidly when uniform elongation was 5% or less. Therefore, it is desirable that the uniform elongation in the longitudinal direction of the steel pipe after heating is 5% or more.
次に、成分元素の限定理由を述べる。 Next, the reasons for limiting the component elements will be described.
C量は0.02〜0.09%に限定する。炭素は鋼の強度向上に極めて有効な元素である。目標とする強度を得るためには、最低0.02%は必要である。しかし、C量が0.09%よりも多いと母材および溶接熱影響部の低温靭性および現地溶接性の劣化を招くので、その上限を0.09%とした。 The amount of C is limited to 0.02 to 0.09%. Carbon is an extremely effective element for improving the strength of steel. In order to obtain the target strength, a minimum of 0.02% is necessary. However, if the amount of C is more than 0.09%, the low temperature toughness and on-site weldability of the base metal and the weld heat affected zone will be deteriorated, so the upper limit was made 0.09% .
Siは脱酸や強度向上のために添加する元素である。その効果を発揮するためには0.001%は必要である。しかし、0.8%より多く添加すると現地溶接性が著しく劣化するので、Si量の上限を0.8%とした。 Si is an element added for deoxidation and strength improvement. In order to exhibit the effect, 0.001% is necessary. However, if adding more than 0.8%, the local weldability deteriorates remarkably, so the upper limit of Si content was set to 0.8%.
Mnは強度と低温靭性のバランスを向上させるためには必須の元素であり、その下限は0.5%である。しかし、2.5%よりも多いと、中心偏析が顕著となり低温靭性が大幅に劣化するので上限を2.5%とした。 Mn is an essential element for improving the balance between strength and low temperature toughness, and its lower limit is 0.5%. However, if it exceeds 2.5%, the center segregation becomes prominent and the low temperature toughness is greatly deteriorated, so the upper limit was made 2.5%.
また、本発明では、不純物元素であるP及びS量をそれぞれ0.02%及び0.005%以下とする。この主たる理由は母材及び溶接熱影響部の低温靭性を向上させるためである。P量の低減は粒界破壊を防止して低温靭性を向上させる。一方S量の低減は熱間圧延で延伸化するMnSを低減して延靭性を向上させる効果がある。両元素とも少ないほど望ましいが、特性とコストのバランスから通常P及びSは、それぞれ0.001%以上および0.0001%以上を含有する。 In the present invention, the amounts of impurity elements P and S are 0.02% and 0.005% or less, respectively. The main reason for this is to improve the low temperature toughness of the base metal and the weld heat affected zone. Reduction of the P content prevents grain boundary fracture and improves low temperature toughness. On the other hand, the reduction of the amount of S has the effect of reducing the MnS stretched by hot rolling and improving the toughness. Although both elements are preferably as small as possible, P and S usually contain 0.001% or more and 0.0001% or more, respectively, from the balance between characteristics and cost.
Nbは制御圧延時にオーステナイトの再結晶を抑制して組織を微細化するだけでなく、焼き入れ性増大にも寄与し、鋼を強靭化する。この効果は、0.005%未満では小さいため下限とする。しかし、Nb量が0.1%よりも多いと、溶接熱影響部の靭性に悪影響を及ぼすので、その上限を0.1%とした。 Nb not only suppresses the recrystallization of austenite during controlled rolling and refines the structure, but also contributes to an increase in hardenability and strengthens the steel. Since this effect is small at less than 0.005%, the lower limit is set. However, if the Nb amount is more than 0.1%, the toughness of the weld heat affected zone is adversely affected, so the upper limit was made 0.1% .
Ti添加は微細なTiNを形成して、母材および溶接熱影響部の組織を微細化し、靭性向上に寄与する。この効果はNbとの複合添加で極めて顕著になる。この効果を十分に発現させるためには最低0.005%のTi添加が必要である。しかしTi添加量が0.03%より多いと、TiNの粗大化あるいはTiCによる析出硬化が生じ、かえって低温靭性の低下を招く。したがって、上限を0.03%に限定した。 Addition of Ti forms fine TiN, refines the structure of the base material and the weld heat affected zone, and contributes to improvement of toughness. This effect becomes very remarkable by the combined addition with Nb. In order to fully exhibit this effect, it is necessary to add at least 0.005% of Ti. However, if the amount of Ti added is more than 0.03%, TiN coarsening or precipitation hardening due to TiC occurs, resulting in a decrease in low temperature toughness. Therefore, the upper limit is limited to 0.03%.
Alは通常脱酸材として鋼に含まれる元素で、組織の微細化にも効果を有する。しかし、Al量が0.1%を超えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.1%とした。また、AlN析出として時効硬化に影響を及ぼす固溶Nを固定する役割も果たし、その効果として最低0.001%以上の添加が必要である。 Al is an element usually contained in steel as a deoxidizing material, and has an effect on refinement of the structure. However, if the Al content exceeds 0.1%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.1%. Moreover, it plays the role which fixes the solid solution N which influences age hardening as AlN precipitation, and the addition of 0.001% or more is required as the effect.
NはTiNを形成し、スラブ再加熱時及び溶接熱影響部のオーステナイト粒の粗大化を抑制して、母材および溶接熱影響部の低温靭性を向上させる。このために必要な最小量は0.001%以上である。しかし、Nを0.008%超添加すると、TiNの生成量が増加し、かえって低温靭性が低下する問題が生じるので、N量の上限を0.008%とした。 N forms TiN and suppresses the coarsening of the austenite grains in the slab reheating and in the weld heat affected zone, thereby improving the low temperature toughness of the base material and the weld heat affected zone. The minimum amount required for this is 0.001% or more. However, if N is added in excess of 0.008%, the amount of TiN produced increases, which causes a problem of low temperature toughness being lowered. Therefore, the upper limit of N content is set to 0.008%.
さらに本発明者らは周方向の上降伏点を引張強度より低くするために、C,N,Ti,Nbを適正に添加することが有効であることを知見した。150℃〜300℃に加熱されると、固溶状態のCおよびNbが転位上に移動するため転位が固着され降伏点は大きく上昇する。造管による歪みは周方向に入るため、長手方向に比べ特に周方向の降伏点は大きく上昇する。そのため、周方向の上降伏点を抑制するためには、固溶状態のCおよびNを出来るだけ低くする必要がある。そこで本発明者は、鋼鈑製造時にできるだけTiおよびNbによってCとNを析出させることとした。その結果、(3.5Ti+8Nb)/(C+N)が2以上のとき周方向の上降伏点は引張強度より低くなり、また8以上になる低温靭性の劣化が認められた。 Furthermore, the present inventors have found that it is effective to add C, N, Ti, and Nb appropriately in order to make the upper yield point in the circumferential direction lower than the tensile strength. When heated to 150 ° C. to 300 ° C., C and Nb in a solid solution move onto the dislocation, so that the dislocation is fixed and the yield point is greatly increased. Since the strain due to pipe making enters the circumferential direction, the yield point in the circumferential direction increases significantly compared to the longitudinal direction. Therefore, in order to suppress the upper yield point in the circumferential direction, it is necessary to make C and N in a solid solution state as low as possible. Therefore, the present inventor decided to precipitate C and N with Ti and Nb as much as possible during the manufacture of the steel sheet. As a result, when (3.5Ti + 8Nb) / (C + N) was 2 or more, the upper yield point in the circumferential direction was lower than the tensile strength, and deterioration in low temperature toughness of 8 or more was recognized.
したがって、Ti,Nb,C,Nの間に、2<(3.5Ti+8Nb)/(C+N)<8の条件を満たすことが必要である。なお、(3.5Ti+8Nb)/(C+N)の上限は、実施例に基づいて、5.66以下とする。 Therefore, it is necessary to satisfy the condition of 2 <(3.5Ti + 8Nb) / (C + N) <8 between Ti, Nb, C, and N. The upper limit of (3.5Ti + 8Nb) / (C + N) is 5.66 or less based on the example.
Niは低温靭性を劣化させることなく強度を向上させる元素であり、0.1%以上添加することが好ましい。しかし、添加量が1%を超えると、かえってHAZ靭性を低下させるので上限を1.0%とした。 Ni is an element that improves the strength without deteriorating the low-temperature toughness, and it is preferable to add 0.1% or more. However, if the addition amount exceeds 1%, the HAZ toughness is lowered, so the upper limit was made 1.0%.
Cuは母材、溶接熱影響部の強度を向上させる元素であり、0.1%以上の添加が好ましい。しかし、添加量が1.0%を超える現地溶接性が著しく低下させるので、上限を1.0%とした。 Cu is an element that improves the strength of the base material and the weld heat affected zone, and is preferably added in an amount of 0.1% or more. However, the on-site weldability exceeding 1.0% significantly decreases the weldability, so the upper limit was made 1.0%.
Moは焼き入れ性を向上させ、高強度化を達成できる元素である。また、Nbとの複合効果で制御圧延時のオーステナイトの再結晶を抑制し、オーステナイトの結晶粒の微細化にも効果があり、0.05%以上の添加が好ましい。しかし、0.6%以上を超えると、HAZ靭性の劣化を招くので、上限を0.6%とした。 Mo is an element that can improve the hardenability and achieve high strength. In addition, the combined effect with Nb suppresses recrystallization of austenite during controlled rolling, and is effective in refining austenite crystal grains. Addition of 0.05% or more is preferable. However, if it exceeds 0.6%, the HAZ toughness is deteriorated, so the upper limit was made 0.6%.
さらに本発明者らは、150℃〜300℃後の鋼管の長手方向の応力歪み曲線の変化に大きく影響を及ぼす元素として、Ni,Cu,Moであることを突き止めた。{(Ni+Cu)−Mo}が0.5より小さいときは、150℃〜300℃に加熱された後の長手方向のY/Tは0.93より大きくなり変形能が悪くなる。一方、{(Ni+Cu)−Mo}が0.5を超えると、長手方向のY/Tが0.93以下に確保できることがわかった。Ni,Cuのほとんどはフェライト粒内において固溶状態で存在しており、これら元素とFe原子の間には格子定数の違いによる応力場が生じ、そこが時効に寄与する固溶Cや固溶Nに集合する。この応力場は後の塑性変形挙動に大きな影響は及ぼさないので、この応力場に固溶元素が集合しても時効しない。一方、MoはCとクラスターの状態で転位上に集合する。クラスターとして集合したCは転位と相互作用し、時効に寄与する。このようにCu,Niは時効に寄与しない母相の応力場に固溶Cや固溶Nを集める作用として働き、転位上に集合しようする固溶Cや固溶Nの量を減らして時効抑制する。一方、Moはクラスターとして転位上に固溶Cを集合させる作用として働き、その結果、時効促進する。 Furthermore, the present inventors have found that Ni, Cu, and Mo are elements that greatly influence the change in the stress strain curve in the longitudinal direction of the steel pipe after 150 ° C. to 300 ° C. When {(Ni + Cu) -Mo} is smaller than 0.5, Y / T in the longitudinal direction after being heated to 150 ° C. to 300 ° C. is larger than 0.93, and the deformability is deteriorated. On the other hand, it was found that when {(Ni + Cu) -Mo} exceeds 0.5, Y / T in the longitudinal direction can be secured to 0.93 or less. Most of Ni and Cu exist in a solid solution state in ferrite grains, and a stress field is generated between these elements and Fe atoms due to a difference in lattice constant, which contributes to aging, such as solid solution C and solid solution. Set to N. Since this stress field does not have a great influence on the subsequent plastic deformation behavior, it does not age even if solid solution elements gather in this stress field. On the other hand, Mo collects on dislocations in the state of C and clusters. C assembled as a cluster interacts with dislocations and contributes to aging. Thus, Cu and Ni work as an action to collect solute C and solute N in the stress field of the parent phase that does not contribute to aging, and reduce the amount of solute C and solute N that will collect on dislocations to suppress aging. To do. On the other hand, Mo works as an action of collecting solid solution C on the dislocation as a cluster, and as a result, promotes aging.
Crは母材、溶接部の強度を増加させる元素であり、選択的に0.1%以上添加することが好ましい。しかし、Cr量が1%を超えると溶接熱影響部の靭性や現地溶接性を著しく劣化させることがある。このため上限を1.0%とすることが好ましい。 Cr is an element that increases the strength of the base material and the welded portion, and it is preferable to add 0.1% or more selectively. However, if the Cr content exceeds 1%, the toughness of the heat affected zone and the on-site weldability may be significantly degraded. For this reason, it is preferable to make an upper limit into 1.0%.
VはNbとほぼ同じ効果を有するが、その効果はNbと比較して弱い。また、溶接部の軟化を抑制する効果も合わせもつ。V量の上限は、溶接熱影響部の靭性の観点から0.1%とすることが好ましい。V量の好ましい範囲は、0.03〜0.08%である。 V has almost the same effect as Nb, but the effect is weaker than Nb. It also has the effect of suppressing softening of the weld. The upper limit of the V amount is preferably 0.1% from the viewpoint of the toughness of the weld heat affected zone. A preferable range of the V amount is 0.03 to 0.08%.
Ca及びREMは硫化物(MnS)の形態を制御し、低温靭性を向上させる。それぞれ0.001%以上および0.002%以上を添加することが好ましい。Ca量を0.01%超、REM量を0.02%超添加すると大型介在物の生成が顕著となり、鋼の清浄度を損なうだけでなく、現地溶接性を大幅に劣化させる。このため、C量の上限は0.01%、REM量の上限は0.02%とすることが好ましい。 Ca and REM control the form of sulfide (MnS) and improve low temperature toughness. It is preferable to add 0.001% or more and 0.002% or more, respectively. When the Ca content exceeds 0.01% and the REM content exceeds 0.02%, the formation of large inclusions becomes remarkable, not only detracting from the cleanliness of the steel, but also greatly deteriorates the field weldability. For this reason, it is preferable that the upper limit of the C amount is 0.01% and the upper limit of the REM amount is 0.02%.
Mgは微細分散した酸化物を形成し、溶接熱影響部の粒粗大化抑制で低温靭性を向上させる。その効果を発揮させるためには0.001%以上を添加させることが好ましい。一方、0.006%超では粗大酸化物を生成し逆に低温靭性が劣化するため、上限を0.006%とすることが好ましい。 Mg forms a finely dispersed oxide and improves low temperature toughness by suppressing grain coarsening in the weld heat affected zone. In order to exert the effect, it is preferable to add 0.001% or more. On the other hand, if it exceeds 0.006%, a coarse oxide is produced and the low-temperature toughness deteriorates conversely, so the upper limit is preferably made 0.006%.
鋼管の変形性能を向上させるためには、軟らかいフェライトと硬いマルテンサイト及び/またはベイナイトとの複合組織とすることが好ましい。フェライトの面積率が50%超となると目標とする強度に達しないため、上限を50%とする。好ましくは10%〜30%である。フェライトの結晶粒径が平均で15μm超となると、母材の低温靭性が著しく低下するので、その上限を15μmとする。好ましくは10μm以下である。 In order to improve the deformation performance of the steel pipe, it is preferable to have a composite structure of soft ferrite and hard martensite and / or bainite. If the area ratio of ferrite exceeds 50%, the target strength is not reached, so the upper limit is made 50%. Preferably, it is 10% to 30%. When the average crystal grain size of ferrite exceeds 15 μm, the low temperature toughness of the base material is significantly reduced, so the upper limit is made 15 μm. Preferably it is 10 micrometers or less.
一様伸びを5%以上にするためには、軟質であるフェライトを5%以上生成させることが必要である。一様伸びの上限はフェライト分率が50%以内であることから必然的に17%程度である。 In order to make the uniform elongation 5% or more, it is necessary to produce 5% or more of soft ferrite. The upper limit of the uniform elongation is inevitably about 17% because the ferrite fraction is within 50%.
フェライトの面積率は、光学顕微鏡組織写真を用いて、5μm間隔のポイントカウント法で測定した平均値である。結晶粒径は10μm間隔の切断法で測定した平均値である。光学顕微鏡観察用の試料は、鋼管を長手方向に切断して採取し、鏡面研磨及びナイタール腐食で作製する。試料の板厚の1/4,1/2の任意の位置を光学顕微鏡にて、500倍で観察し、写真撮影する。 The area ratio of ferrite is an average value measured by a point count method with an interval of 5 μm using an optical microscope structure photograph. The crystal grain size is an average value measured by a cutting method at intervals of 10 μm. A sample for observation with an optical microscope is obtained by cutting a steel pipe in the longitudinal direction and mirror polishing and nital corrosion. An arbitrary position of 1/4, 1/2 of the plate thickness of the sample is observed with an optical microscope at 500 times and photographed.
また、フェライトは軟質であるほど変形性能向上に良いため、微小ビッカース硬度計を用いて、JIS Z 2244に準拠して測定したフェライト相のビッカース硬さが170Hv以下であることが好ましい。 Further, since the softer the ferrite, the better the deformation performance, so the Vickers hardness of the ferrite phase measured in accordance with JIS Z 2244 using a micro Vickers hardness tester is preferably 170 Hv or less.
次に本発明の製造方法について説明する。
本発明の鋼管の製造方法は、鋼を溶製後、鋳造して鋼片とし、鋼片を加熱して熱間圧延後、冷却して鋼板とし、その鋼板を冷間で筒状に成形して端部同士を溶接して鋼管とし、その後200℃〜300℃に再加熱する製造工程からなる。
Next, the manufacturing method of this invention is demonstrated.
The method for producing a steel pipe of the present invention is as follows. After the steel is melted, it is cast into a steel slab, the steel slab is heated and hot-rolled, cooled to a steel plate, and the steel plate is cold-formed into a cylindrical shape. Then, the ends are welded together to form a steel pipe, and then the manufacturing process is reheated to 200 ° C to 300 ° C.
熱間圧延を行う際の鋼片の加熱温度は、1000℃以上とする。これは本発明の成分からなる鋼のAc3点が1000℃よりも低下することはなく、加熱温度を1000℃以上にすれば鋼をオーステナイト域に加熱することができるためである。再加熱は、Nbが固溶し、さらに結晶粒が粗大化しない1050℃〜1200℃が好ましい範囲である。 The heating temperature of the steel slab at the time of hot rolling is set to 1000 ° C. or higher. This is because the Ac 3 point of the steel comprising the components of the present invention does not drop below 1000 ° C., and the steel can be heated to the austenite region if the heating temperature is 1000 ° C. or higher. Reheating is preferably in the range of 1050 ° C. to 1200 ° C. in which Nb is dissolved and crystal grains are not coarsened.
再加熱後、900℃以上の温度域で粗圧延を行い、引き続き870℃以下で仕上げ圧延を行う。900℃以上で粗圧延を行うのは、オーステナイトが十分に再結晶できる温度域が900℃以上であり、再結晶により結晶粒を細粒化していくには累積圧下量で50%以上の圧延が必要である。仕上げ圧延の開始温度は十分な未再結晶温度で仕上げ圧延を行うため、870℃以下とする。仕上げ圧延の終了温度が700℃より低くなると、本発明の成分からなる鋼では、過度の圧延中で加工されたフェライトが生成し、鋼管の変形性能を損なうので、仕上げ圧延の終了温度を700℃以上とする。仕上げ圧延の累積圧下率は、粗圧延時の厚みと製品板厚の比で決まるが、低温靭性確保の観点から仕上げ圧延の累積圧下率は50%以上であることが好ましい。 After reheating, rough rolling is performed in a temperature range of 900 ° C. or higher, and finish rolling is subsequently performed at 870 ° C. or lower. The rough rolling is performed at 900 ° C. or higher because the temperature range in which austenite can be sufficiently recrystallized is 900 ° C. or higher. To reduce the crystal grains by recrystallization, the rolling reduction of 50% or more is required. is necessary. The starting temperature of finish rolling is 870 ° C. or lower in order to perform finish rolling at a sufficient non-recrystallization temperature. When the finish temperature of finish rolling is lower than 700 ° C., in the steel composed of the component of the present invention, ferrite processed in excessive rolling is generated and the deformation performance of the steel pipe is impaired, so the finish temperature of finish rolling is 700 ° C. That's it. The cumulative rolling reduction of finish rolling is determined by the ratio of the thickness at the time of rough rolling and the product sheet thickness, but from the viewpoint of securing low temperature toughness, the cumulative rolling reduction of finish rolling is preferably 50% or more.
仕上げ圧延後、600℃以上の温度領域から冷却を開始する。これは開始温度が600℃未満であると冷却開始までに面積率で50%以上のフェライトが生成するため、冷却開始を600℃以上とする。冷却停止温度は300℃〜550℃に限定する。200℃未満であると、鋼板の形状が不安定であったり、冷却過程で割れたりする問題が生じるので、停止温度の下限を200℃とした。停止温度の上限は目標強度を満たすためには、600℃以下にする必要があり、上限を600℃とした。 After finish rolling, cooling is started from a temperature range of 600 ° C. or higher. If the start temperature is less than 600 ° C., ferrite with an area ratio of 50% or more is generated before the start of cooling, so the start of cooling is set to 600 ° C. or more. The cooling stop temperature is limited to 300 ° C to 550 ° C. If it is lower than 200 ° C., there is a problem that the shape of the steel sheet is unstable or cracks in the cooling process, so the lower limit of the stop temperature is set to 200 ° C. In order to satisfy the target strength, the upper limit of the stop temperature needs to be 600 ° C. or less, and the upper limit is set to 600 ° C.
冷却速度は微細なフェライトを分散させて変形能と低温靭性のバランスを向上させるため、10〜50℃/sに限定する。10℃/s未満の場合、フェライト粒が粗大化し、低温靭性が確保できず、一方、50℃/sを超えるマルテンサイトあるいはベイナイトの硬さが過度に硬くなり、一様伸びを5%以上確保できず、また過度の時効を助長する。したがって、冷却速度は10〜50℃/sにすることが好ましい。 The cooling rate is limited to 10 to 50 ° C./s in order to disperse fine ferrite and improve the balance between deformability and low temperature toughness. If it is less than 10 ° C / s, the ferrite grains become coarse and low temperature toughness cannot be ensured. On the other hand, the hardness of martensite or bainite exceeding 50 ° C / s becomes excessively hard, ensuring a uniform elongation of 5% or more. It is not possible and promotes excessive aging. Therefore, the cooling rate is preferably 10 to 50 ° C./s.
さらに150℃〜300℃に加熱された後の鋼管の周方向の上降伏点が引張強度より超えないためには、鋼管とする前に軽圧下冷延と低温熱処理することが有効であることが明らかとなった。これは鋼管とする前に固溶状態のCおよびNを出来るだけ低くするのが目的である。鋼板段階の軽圧下で転位を導入し、その後の低温圧延で固溶状態のCおよびNを転位に固着させることで固溶状態のCおよびNを抑制する。その効果を発揮するためには軽圧下量を1%以上必要である。また5%以上の圧下量では、この段階で上降伏点が引張強度を超えるので、圧延量を1%〜5%に限定する。また、固溶状態のCおよびNを転位に固着させるためには、熱処理温度を100℃以上にする必要がある。250℃以上になると析出が顕著となり、低温靭性の劣化を招くので熱処理温度を100℃〜250℃に限定する。 Furthermore, in order for the upper yield point in the circumferential direction of the steel pipe after being heated to 150 ° C. to 300 ° C. not to exceed the tensile strength, it is effective to perform cold rolling and low-temperature heat treatment before forming the steel pipe. It became clear. The purpose of this is to make C and N in a solid solution as low as possible before making the steel pipe. Dislocations are introduced under light pressure at the steel plate stage, and C and N in the solid solution state are fixed to the dislocations by subsequent low temperature rolling to suppress C and N in the solid solution state. In order to exert the effect, a light reduction amount of 1% or more is necessary. Further, when the rolling amount is 5% or more, the upper yield point exceeds the tensile strength at this stage, so the rolling amount is limited to 1% to 5%. In order to fix C and N in a solid solution state to dislocations, the heat treatment temperature needs to be 100 ° C. or higher. Precipitation becomes prominent at 250 ° C. or higher, and low temperature toughness is deteriorated, so the heat treatment temperature is limited to 100 ° C. to 250 ° C.
このように製造した鋼板を、そのままUOEプロセスあるいは電縫プロセス、ベンドプロセスで鋼管とする。鋼管をその後、150℃〜300℃に加熱する。この加熱は、防食を主目的とした塗装処理の前あるいは途中で加熱する。また、鋼管の残留応力の除去など他の目的で鋼管を加熱するのは無論問題ない。150℃以下では目的とする効果が十分に発揮できないので、下限を150℃とする。300℃超になると析出現象が顕著に認められ、より一層の時効が発生するため、鋼管の加熱の上限は300℃にする必要がある。加熱保持時間はその加熱の目的によって異なり特に規定しない。 The steel plate thus manufactured is used as a steel pipe as it is by the UOE process, the electric sewing process, or the bend process. The steel tube is then heated to 150-300 ° C. This heating is performed before or during the coating process mainly for anticorrosion. Of course, there is no problem heating the steel pipe for other purposes such as removal of residual stress in the steel pipe. Since the target effect cannot be sufficiently exhibited at 150 ° C. or lower, the lower limit is set to 150 ° C. When the temperature exceeds 300 ° C., the precipitation phenomenon is noticeable and further aging occurs, so the upper limit of heating of the steel pipe needs to be 300 ° C. The heating holding time varies depending on the purpose of heating and is not particularly defined.
表1に示す化学成分の鋼を溶製し、連続鋳造した鋼片を表2に示す条件で圧延を行い鋼片とした。さらにこれら鋼板をUOE工程、ERW工程およびベンド管工程によって鋼管とした。なお、鋼管の外径は762mm、肉厚は16mmであった。鋼管の加熱は高周波誘導加熱装置を用いて加熱速度は10℃/s、最高加熱温度は160〜300℃(保持時間60秒)、冷却は放冷とした。 Steel pieces having chemical components shown in Table 1 were melted, and continuously cast steel pieces were rolled under the conditions shown in Table 2 to obtain steel pieces. Furthermore, these steel plates were made into steel pipes by the UOE process, ERW process and bend pipe process. The steel pipe had an outer diameter of 762 mm and a wall thickness of 16 mm. The steel pipe was heated using a high-frequency induction heating device, the heating rate was 10 ° C./s, the maximum heating temperature was 160 to 300 ° C. (holding time 60 seconds), and the cooling was allowed to cool.
鋼管の長手方向の機械的性質は、API 5Lに準拠した弧状全厚引張試験片、周方向の機械的性質はAPI 5Lに準拠した丸棒引張試験片によって測定した。 The mechanical properties in the longitudinal direction of the steel pipe were measured by an arc-shaped full thickness tensile test piece according to API 5L, and the mechanical properties in the circumferential direction were measured by a round bar tensile test piece according to API 5L.
また、鋼管からミクロ組織観察用の試験片を採取し、研磨、腐食し、肉厚の1/4,1/2,3/4のそれぞれの部位を500倍で観察し、光学顕微鏡組織写真を撮影した。得られた15視野の光学顕微鏡組織写真を用いて、フェライトの面積率を5μm間隔のポイントカウント法で、フェライトの粒径を15μm間隔の切断法にて、それぞれ測定して平均値として求めた。 In addition, specimens for microstructural observation were collected from steel pipes, polished and corroded, and each 1/4, 1/2, and 3/4 of the thickness was observed at 500 times, and an optical micrograph was taken. I took a picture. Using the obtained 15-view optical microscopic microstructure photographs, the area ratio of ferrite was measured by a point counting method at intervals of 5 μm, and the particle size of ferrite was measured by a cutting method at intervals of 15 μm, and obtained as an average value.
鋼管変形能は、鋼管内に内圧を負荷し4点曲げ試験で評価した。12mの長さに切り出した鋼管を試験片とし、鋼管内にArガスで10気圧から20気圧の任意の内圧を負荷し4点曲げ(曲げスパン長さ:6m)によって鋼管を曲げ変形させ、鋼管の曲げ角度と負荷荷重を測定した。図1に示すように鋼管に負荷した荷重と曲げ角度の関係を示した図を作製し、変形特性として最大荷重時の曲げ角度(θ1)を採用した。 The steel pipe deformability was evaluated by a 4-point bending test with internal pressure applied to the steel pipe. A steel pipe cut to a length of 12 m is used as a test piece, and an arbitrary internal pressure of 10 to 20 atmospheres is loaded with Ar gas into the steel pipe, and the steel pipe is bent and deformed by four-point bending (bending span length: 6 m). The bending angle and the applied load were measured. As shown in FIG. 1, a diagram showing the relationship between the load applied to the steel pipe and the bending angle was prepared, and the bending angle (θ1) at the maximum load was adopted as the deformation characteristic.
結果を表3に示す。本発明例である製造No.1〜3、5〜9、11〜15、17、18の鋼管は、加熱後の周方向の上降伏点が引張強度より低くかつ長手方向のY/Tは0.93以下であり、鋼管の変形性能の指標であるθ1は4°以上と良好な結果を得た。一方、比較例である製造No.19および21は、周方向の上降伏点が引張強度が高いためθ1は1°以下と変形能は悪かった。製造No20は、周方向の上降伏点が引張強度より高いのに加え、長手方向のY/Tおよび一様伸びが本発明の範囲外であるため、θ1が著しく低い。No.22およびNo.24は、周方向の上降伏点が引張強度より高いのに加え、長手方向のY/Tが本発明の範囲外であるばかりでなく、フェライト分率が本発明外であるため、強度が目標に達しておらず、また鋼管変形性能も低いNo.23は、周方向の上降伏点が引張強度より高いのに加え、冷却終了温度が本発明の範囲外であるためフェライト粒径が大きい。
The results are shown in Table 3. Production No. which is an example of the present invention. The
Claims (6)
C :0.02%〜0.09%、
Si:0.001%〜0.8%、
Mn:0.5%〜2.5%、
P :0.02%以下、
S :0.005%以下、
Ti:0.005〜0.03%、
Nb:0.005〜0.1%、
Al:0.001%〜0.1%、
N :0.001%〜0.008%、
を含有し、かつ2<(3.5Ti+8Nb)/(C+N)≦5.66の条件を満足し、さらに、
Ni:0.1%〜1.0%、
Cu:0.1%〜1.0%、
Mo:0.05%〜0.6%、
のうち、Ni及びCuの2種又は全部を含有し、(Ni+Cu)−Mo>0.5を満足する、残部が鉄および不可避的不純物からなる鋼板を冷間で筒状に成形し、端面同士をシーム溶接した鋼管であって、150℃〜300℃に加熱された後の円周方向の引張試験で上降伏点が引張強度より低く、かつ、管軸方向の引張試験で降伏比が0.93以下であることを特徴とする時効後の変形特性に優れたパイプライン用高強度鋼管。 % By mass
C: 0.02% to 0.09%,
Si: 0.001% to 0.8%,
Mn: 0.5% to 2.5%
P: 0.02% or less,
S: 0.005% or less,
Ti: 0.005 to 0.03%,
Nb: 0.005 to 0.1%,
Al: 0.001% to 0.1%,
N: 0.001% to 0.008%,
And satisfying the condition of 2 <(3.5Ti + 8Nb) / (C + N) ≦ 5.66 ,
Ni: 0.1% to 1.0%
Cu: 0.1% to 1.0%,
Mo: 0.05% to 0.6%
Among them, a steel plate containing two or all of Ni and Cu and satisfying (Ni + Cu) -Mo> 0.5, the balance being iron and inevitable impurities, is cold-formed into a cylindrical shape, and the end faces A steel pipe welded with seam, the upper yield point is lower than the tensile strength in the circumferential tensile test after heating to 150 ° C to 300 ° C, and the yield ratio is 0.93 or less in the tensile test in the pipe axis direction A high-strength steel pipe for pipelines with excellent deformation characteristics after aging.
Cr:1%以下、
V:0.1%以下、
REM:0.02%以下、
Mg:0.006%以下、
の1種または2種以上を含有することを特徴とする請求項1から4のいずれかに記載の時効後の変形特性に優れたパイプライン用高強度鋼管。 In mass%,
Cr: 1% or less,
V: 0.1% or less ,
R EM: 0.02% or less,
Mg: 0.006% or less,
The high strength steel pipe for pipelines excellent in deformation characteristics after aging according to any one of claims 1 to 4, characterized by containing one or more of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005105787A JP4510680B2 (en) | 2005-04-01 | 2005-04-01 | High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005105787A JP4510680B2 (en) | 2005-04-01 | 2005-04-01 | High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006283147A JP2006283147A (en) | 2006-10-19 |
JP4510680B2 true JP4510680B2 (en) | 2010-07-28 |
Family
ID=37405353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005105787A Expired - Fee Related JP4510680B2 (en) | 2005-04-01 | 2005-04-01 | High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4510680B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009228099A (en) * | 2008-03-25 | 2009-10-08 | Sumitomo Metal Ind Ltd | Uoe steel pipe for line pipe, and method for manufacturing the same |
JP5245921B2 (en) * | 2009-03-05 | 2013-07-24 | 新日鐵住金株式会社 | Manufacturing method of steel for line pipe |
BRPI1012964A2 (en) | 2009-06-11 | 2018-01-16 | Nippon Steel Corp | high strength steel pipe and production method thereof |
CN102549186B (en) * | 2009-10-08 | 2014-08-27 | 新日铁住金株式会社 | High-strength steel pipe, steel plate for high-strength steel pipe, and processes for producing these |
JP5786351B2 (en) * | 2011-02-15 | 2015-09-30 | Jfeスチール株式会社 | Steel pipe for line pipes with excellent anti-collapse performance |
JP5835625B2 (en) * | 2012-08-28 | 2015-12-24 | 新日鐵住金株式会社 | Polyolefin-coated UOE steel pipe and manufacturing method thereof |
JP5644982B1 (en) * | 2013-12-20 | 2014-12-24 | 新日鐵住金株式会社 | ERW welded steel pipe |
CN104313470A (en) * | 2014-11-06 | 2015-01-28 | 内蒙古包钢钢联股份有限公司 | Seamless steel tube for rare-earth-containing L485QO submerged pipeline and production method of seamless steel tube |
CN104532138A (en) * | 2015-01-06 | 2015-04-22 | 内蒙古包钢钢联股份有限公司 | Seamless steel tube containing rare earth for L360NO subsea pipeline and production method thereof |
JP6256652B2 (en) * | 2015-03-26 | 2018-01-10 | Jfeスチール株式会社 | Thick steel plate for structural pipe, method for manufacturing thick steel plate for structural pipe, and structural pipe |
JP6760254B2 (en) * | 2017-12-27 | 2020-09-23 | Jfeスチール株式会社 | Electric resistance sewn steel pipe with excellent fatigue strength and its manufacturing method |
CN111705262B (en) * | 2020-06-17 | 2021-10-01 | 武汉钢铁有限公司 | Magnesium-containing X65 pipeline steel with excellent acid resistance and production method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004131799A (en) * | 2002-10-10 | 2004-04-30 | Nippon Steel Corp | High strength steel pipe excellent in deformability, low-temperature toughness and haz toughness, and its manufacturing method |
JP2005060840A (en) * | 2003-07-31 | 2005-03-10 | Jfe Steel Kk | Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor |
JP2005060839A (en) * | 2003-07-31 | 2005-03-10 | Jfe Steel Kk | Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor |
JP2005060838A (en) * | 2003-07-31 | 2005-03-10 | Jfe Steel Kk | Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor |
-
2005
- 2005-04-01 JP JP2005105787A patent/JP4510680B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004131799A (en) * | 2002-10-10 | 2004-04-30 | Nippon Steel Corp | High strength steel pipe excellent in deformability, low-temperature toughness and haz toughness, and its manufacturing method |
JP2005060840A (en) * | 2003-07-31 | 2005-03-10 | Jfe Steel Kk | Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor |
JP2005060839A (en) * | 2003-07-31 | 2005-03-10 | Jfe Steel Kk | Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor |
JP2005060838A (en) * | 2003-07-31 | 2005-03-10 | Jfe Steel Kk | Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2006283147A (en) | 2006-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4510680B2 (en) | High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same | |
JP5857400B2 (en) | Welded steel pipe for high compressive strength line pipe and manufacturing method thereof | |
JP5776398B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
JP5561119B2 (en) | Welded steel pipe for high compressive strength sour line pipe and manufacturing method thereof | |
KR101603461B1 (en) | High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet | |
JP5499733B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP5679114B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
WO2013011791A1 (en) | Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same | |
WO2011040624A1 (en) | Steel plate with low yield ratio, high strength, and high toughness and process for producing same | |
JP2003293089A (en) | High strength steel sheet having excellent deformability, high strength steel pipe and production method thereof | |
KR20110110278A (en) | Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor | |
JP5481976B2 (en) | High strength hot rolled steel sheet for high strength welded steel pipe and method for producing the same | |
WO2012002566A1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
JP5742123B2 (en) | High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same | |
JP5391542B2 (en) | High strength steel excellent in deformation performance and tensile strength exceeding 750 MPa and method for producing the same | |
JP2015190026A (en) | Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor | |
JP2010196161A (en) | Method for manufacturing heavy gauge high tensile strength hot rolled steel sheet with excellent hic resistance | |
JP2010196160A (en) | Heavy gauge high tensile strength hot rolled steel sheet with excellent hic resistance, and manufacturing method therefor | |
JP6519024B2 (en) | Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness | |
WO2016157235A1 (en) | High-strength steel, production method therefor, steel pipe, and production method therefor | |
JP4276480B2 (en) | Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance | |
JP4336294B2 (en) | Manufacturing method of high strength steel pipe for pipelines with excellent deformation characteristics after aging | |
KR20220098786A (en) | steel plate and steel pipe | |
JP2009084598A (en) | Method for manufacturing steel sheet superior in deformability and low-temperature toughness for ultrahigh-strength line pipe, and method for manufacturing steel pipe for ultrahigh-strength line pipe | |
JP5927927B2 (en) | High-strength hot-rolled steel sheet for line pipes with excellent on-site weldability and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100420 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100430 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4510680 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |