JP4276480B2 - Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance - Google Patents

Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance Download PDF

Info

Publication number
JP4276480B2
JP4276480B2 JP2003179865A JP2003179865A JP4276480B2 JP 4276480 B2 JP4276480 B2 JP 4276480B2 JP 2003179865 A JP2003179865 A JP 2003179865A JP 2003179865 A JP2003179865 A JP 2003179865A JP 4276480 B2 JP4276480 B2 JP 4276480B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
steel
strength
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003179865A
Other languages
Japanese (ja)
Other versions
JP2005015823A (en
Inventor
均 朝日
英司 津留
卓也 原
康浩 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003179865A priority Critical patent/JP4276480B2/en
Publication of JP2005015823A publication Critical patent/JP2005015823A/en
Application granted granted Critical
Publication of JP4276480B2 publication Critical patent/JP4276480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、天然ガス・原油輸送用ラインパイプとして好適な、地盤変動等によるパイプラインの変形許容度が大きい、変形性能に優れたパイプライン用鋼管及びその製造方法に関する。
【0002】
【従来の技術】
近年、原油・天然ガスの長距離輸送方法としてパイプラインの重要性がますます高まっている。しかし、パイプラインが敷設される環境が多様化し、例えば、凍土地帯での夏と冬との地盤変動、海底での海流、地震による地層変動等によるパイプラインの変位及び曲がりが問題となってきた。そのため、耐内圧性に優れるだけではなく、長手方向の変形が起きた場合にも座屈等が生じ難い、変形性能に優れた高強度鋼管が要望されている。
【0003】
このような要求を満足する鋼管として、変形性能に優れた、引張強度に対する降伏強度の比(降伏比という)が低い高強度鋼の製造方法が特許文献1に、加工硬化指数(n値という)の大きい鋼管及び製造方法が特許文献2に開示されている。また、特許文献3には、降伏比が低く、一様伸びが大きい鋼板及び鋼管が提案されている。
【0004】
しかし、実際のパイプラインの変形においては、鋼管同士を接合した円周溶接部、特に溶接熱影響部の軟化が問題であることが判明した。これは、鋼管同士を接合した円周溶接部の強度が鋼管の母材の長手方向の強度と比べて十分高くないと、パイプラインに曲げ変形等が加わった時に、鋼管同士の接合部の微小な溶接欠陥や溶接熱影響部の軟化部から破壊するためである。特に、高強度パイプライン用鋼管は、溶接熱影響部の軟化が比較的大きくかつ高靭性が得難い高強度溶接材料を必要とするため、例え鋼管自体の変形性能を向上させたとしても、許容変形量を高める効果が不十分であり、パイプラインの変形性能が損なわれるという問題があった。
【0005】
【特許文献1】
特公平6−15689号公報
【特許文献2】
特開平11−279700号公報
【特許文献3】
特願2002−106536号
【0006】
【発明が解決しようとする課題】
本発明は、パイプラインに好適な、API規格X80〜100級の優れた強度を有する変形性能に優れた高強度鋼管及びその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、高強度鋼管を用いたパイプラインの耐内圧性能を損なうことなく変形性能を向上させるためには、周方向の降伏強度よりも長手方向の降伏強度を低下させることが効果的であり、ミクロ組織をフェライトとマルテンサイト及び/又はベイナイトの複合組織として、加工硬化特性を向上させることが有効であるという知見に基づいてなされたのであり、その要旨は以下のとおりである。
【0008】
(1) 鋼管の長手方向の降伏強度YSLと周方向の降伏強度YSCとの比YSL/YSCが、百分率で70〜95%であり、ミクロ組織が面積率で30〜80%のフェライトと残部がマルテンサイト及び/又はベイナイトからなり、鋼管の周方向の降伏強度YSCが80ksi以上である変形性能に優れたパイプライン用高強度鋼管の製造方法であって、質量%で、
:0.03〜0.12%、 Si:0.8%以下、
Mn:0.8〜2.5%、 :0.03%以下、
:0.01%以下、 Nb:0.01〜0.1%、
Ti:0.005〜0.03%、 Al:0.1%以下、
:0.001〜0.008%
を含有し、
Ti−3.4N≧0
を満足し、更に、
Ni:1%以下、 Mo:0.6%以下、
Cr:1%以下、 Cu:1%以下、
:0.1%以下、 Ca:0.01%以下、
REM:0.02%以下、 Mg:0.006%以下
の1種又は2種以上を含有し、残部が鉄及び不可避的不純物からなる鋼片を950℃以上に加熱し、熱間圧延を行い、500℃以下まで空冷後、740〜850℃の温度に再加熱し、10℃/s以上で400℃以下まで冷却して15〜20mm厚の鋼板とし、該鋼板を筒状に成型し、突合せ部の端部同士を溶接したことを特徴とする変形性能に優れたパイプライン用高強度鋼管の製造方法。
【0011】
) 突合せ部の端部同士を溶接後、0.8〜3%拡管することを特徴とする()記載の変形性能に優れたパイプライン用高強度鋼管の製造方法。
【0012】
【発明の実施の形態】
代表的なラインパイプの規格であるAPI 5L規格では、例えばX80の規格最小降伏強度(SMYS)が80ksi(1ksi=6.89MPa)であり、周方向の強度はSMYS以上でなければ設計内圧に耐えられない。X100でのSMYSは100ksiである。一方、高強度鋼管を用いたパイプラインの変形能を確保するためには、鋼管同士の溶接部の強度を、鋼管長手方向の強度よりも高くすることが必要である。
【0013】
即ち、高強度鋼管を用いたパイプラインを実現するには、鋼管同士の溶接部の高強度化と高靭性化を同時に満足する溶接材料が必要になる。しかし、鋼管の高強度化に見合う性能を有する溶接材料の開発は困難である。そこで、新たな溶接材料の開発を必要とせず、溶接部の強度が現状のままであっても、パイプラインとしての性能を確保させる方法について検討を行った。
【0014】
鋼管の周方向は設計内圧に耐える強度が必要であるため、降伏強度がSMYS以上でなければならない。一方、鋼管長手方向は内圧による応力が周方向の半分であるため、降伏強度がSMYS以下であっても内圧によってバーストすることはない。なお、鋼管同士を溶接した場合、溶接金属及び溶接熱影響部の周方向の降伏強度が鋼管の周方向の降伏強度より若干低下しても、溶接部の周辺の母材によって拘束されているため、バーストすることはない。
【0015】
したがって、鋼管周方向の強度を高く、鋼管長手方向の強度を低くすれば、バーストの防止と変形性能の向上を両立したパイプラインを実現することが可能になる。そこで、本発明者は、強度異方性が大きい鋼管、即ち、鋼管長手方向の降伏強度の鋼管周方向の降伏強度に対する比が小さい鋼管の開発を指向し、検討を重ねた。
【0016】
その結果、このような鋼管を製造するためには、鋼板を鋼管に成形する際に導入される歪みの異方性を利用し、周方向を硬化させ、長手方向の強度上昇を抑制することが有効であることがわかった。即ち、鋼板を筒状に成形する際には、周方向の歪みが大きく、一方、長手方向の歪みは相対的に小さく、かつ、長手方向には圧縮歪みによるバウシンガー効果に起因する軟化が生じるため、円周方向の降伏強度が大幅に上昇し、長手方向の降伏強度が低くなる。特に、鋼管を拡管すると円周方向の降伏強度がより上昇するのに対し、長手方向では拡管時の長手方向歪みが圧縮であるためバウシンガー効果による降伏強度の低下がより顕著になった。
【0017】
また、このバウシンガー効果は、一様伸びが大きく、加工硬化指数が大きく、降伏比が小さい、加工硬化特性に優れた鋼板を用いることが極めて効果的であるという知見を得た。更に、鋼板の加工硬化特性を向上させるためには、鋼のミクロ組織を軟らかい相と硬い相の複相組織とすることが重要であり、特に、軟らかい相であるフェライトと、硬い相であるマルテンサイト、ベイナイト又はこれらの混合相との複相組織からなる鋼は、極めて降伏強度と引張強度の比が小さいことを見出した。
【0018】
更に、このような複相組織からなる加工硬化特性に優れた鋼管の製造条件について検討を行った。その結果、フェライトとベイナイト及び/又はマルテンサイトとの複相組織からなるミクロ組織を得るには、まず、鋼片をオーステナイト域、即ち、AC3点[℃]以上に加熱し、熱間圧延を行い、Ar1点[℃]以下まで空冷して軟らかいフェライト中にパーライトが分散した組織にする必要があることがわかった。
【0019】
このフェライト相中にパーライト相が散在する熱延板をフェライト、オーステナイト二相域、即ちAC1点[℃]〜AC3点[℃]の範囲内に加熱すれば、元々パーライトであった部分からオーステナイト変態が開始するため、分散したオーステナイトを生成させることができる。この加熱後、Ms点[℃]以下まで急冷すればオーステナイトがマルテンサイト及び/又はベイナイトの低温変態生成物になるため、フェライトとベイナイト及び/又はマルテンサイトとの複相組織からなるミクロ組織が得られることがわかった。
【0020】
通常、高強度ラインパイプは圧延後、加速冷却されるが、この場合はベイニティクフェライトやベイナイトが生成し、パーライトが生成しない。パーライトが分散して存在しないと、二相域に加熱してもオーステナイトが分散して生成しないため、フェライト中にベイナイト及び/又はマルテンサイトが微細に分散せず、低温靭性が低下する。また、ベイニティックフェライトやベイナイトは空冷で生成したフェライト程は軟らかくない。従って、圧延後加速冷却すると、低温靭性、加工硬化特性が低下する。
【0021】
また、圧延板を二相域に加熱後、Ms点[℃]以下まで空冷するとオーステナイト相がパーライト組織に変態し、強度及び加工硬化特性を損なうため、加速冷却してオーステナイト相をマルテンサイトやベイナイトに変態させることが必要であることがわかった。
【0022】
以下、本発明について詳細に説明する。
【0023】
本発明において、鋼管の周方向の降伏強度は、試験片の扁平の影響を排除するためにASTM A370に準拠したリング・エクスパンション(Ring Expansion)試験によって測定する。また、鋼管の長手方向の降伏強度は、API 5Lに準拠した弧状全厚引張試験によって測定することができる。
【0024】
なお、鋼管の長手方向の引張強度は、API 5Lに準拠した弧状全厚引張試験によって降伏強度とともに求めることができ、鋼管の円周方向の引張強度は、API 5Lに準拠し、扁平した全厚引張試験片を用いて測定することができる。
【0025】
また、鋼管の周方向及び長手方向の引張試験は、平行部を扁平せず、掴み部を扁平した引張試験片を用いて、JIS Z 2241に準拠して行っても良い。周方向を長手とする引張試験片を採取する場合には、鋼管の形状によっては、肉厚方向に研削しても良い。平行部の研削量を可能な限り少なくした引張試験片を用いることが好ましい。
【0026】
鋼管長手方向の降伏強度の鋼管周方向の降伏強度に対する比が、百分率で95%を超えると、パイプラインにおいて鋼管同士を溶接した部位での変形特性を向上させる効果が不十分になる。一方、鋼管長手方向の降伏強度の鋼管周方向の降伏強度に対する比が70%よりも小さいと、パイプラインそのものの降伏強度が低下して変形量が大きくなり過ぎる。したがって、鋼管長手方向の降伏強度の鋼管周方向の降伏強度に対する比を、百分率で70〜95%の範囲とした。
【0027】
次に、本発明の鋼管の成分元素を限定した理由について説明する。
【0028】
Cは鋼の強度向上に極めて有効であり、目標とする強度を得るためには、最低0.03%以上の添加が必要である。しかし、C量が0.12%よりも多すぎると母材、HAZの低温靱性や現地溶接性の著しい劣化を招くので、その上限を0.12%とした。なお、一様伸び、加工硬化特性はC量が多い方が高くなり、低温靭性や溶接性はC量が少ない方が良好であり、要求特性の水準により、バランスを考慮してC量を0.03〜0.12%の範囲内に限定した。
【0029】
Siは脱酸や強度向上のために添加する元素であるが、0.8%よりも多く添加するとHAZ靱性、現地溶接性を著しく劣化させるので、上限を0.8%以下とした。鋼の脱酸はAlでもTiでも十分可能であり、Siは必ずしも添加する必要はないが、通常0.05%以上のSiが含まれる。
【0030】
Mnは本発明鋼の母相のミクロ組織をベイナイト主体の組織とし、優れた強度・低温靱性のバランスを確保する上で不可欠な元素であり、この効果を得るにはMn量の下限を0.8%以上にする必要がある。しかし、Mn量が2.5%よりも多すぎると、低温靭性が劣化するので上限を2.5%以下とした。
【0031】
P及びSは不純物元素であり、母材及びHAZの低温靱性をより一層向上させるためには、P及びSの含有量の上限をそれぞれの0.03%以下及び0.01%以下とすることが必要である。P量を0.03%以下に低減することにより、連続鋳造スラブの中心偏析を軽減させるとともに、粒界破壊を防止して低温靱性を向上させることができる。また、S量を0.01%以下に低減することにより、熱間圧延で延伸化するMnSの生成を抑制して延性及び靱性を向上させる効果が得られる。P及びSの含有量は、少ないほど好ましいが、特性とコストのバランスから、それぞれ0.001%以上及び0.0001%以上を下限とすることが好ましい。
【0032】
Nbは、0.01%以上の添加により、制御圧延時にオーステナイトの再結晶を抑制して組織を微細化するだけでなく、焼入れ性増大にも寄与し、鋼を強靱化する。しかし、Nb添加量が0.1%よりも多すぎると、HAZ靱性や現地溶接性に悪影響をもたらすので、その上限を0.1%以下とした。
【0033】
Ti添加は微細なTiNを形成し、スラブ再加熱時及びHAZのオーステナイト粒の粗大化を抑制してミクロ組織を微細化し、母材及びHAZの低温靱性を改善する。また、Al量が少ない時、例えばAl量が0.005%以下である場合、Tiは酸化物を形成し、HAZにおいて粒内フェライト生成核として作用し、HAZ組織を微細化する効果も有する。このようなTiNの効果を発現させるためには、0.005%以上のTi添加が必要である。しかし、Ti量が0.03%よりも多すぎると、TiNの粗大化やTiCによる析出硬化が生じ、低温靱性を劣化させるので、その上限を0.03%に限定した。
【0034】
Alは含有量が0.1%を超えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.1%以下とした。また、Alは、脱酸材として通常0.003%以上含まれ、組織の微細化にも効果を有する元素であるが、本発明においては、脱酸はTi及び/又はSiでも可能であり、Alは必ずしも添加する必要はない。
【0035】
NはTiNを形成しスラブ再加熱時及びHAZのオーステナイト粒の粗大化を抑制して母材、HAZの低温靱性を向上させる。このために必要な最小のN量は0.001%以上である。しかし、Nを0.008%超添加するとTiNの生成量が増加し、表面疵、靭性劣化等の弊害が生じるので、N量の上限を0.008%以下に抑える必要がある。
【0036】
また、鋼中に固溶Nが存在すると成形歪みによる時効により転位が固着され、引張試験において明瞭な降伏点と降伏点伸びがあらわれるようになり、変形性能が著しく低下する。従って、Tiの添加によって、固溶NをTiNとして固定するために、Ti−3.4N≧0を満足することが好ましい。
【0037】
更に、Ni、Mo、Cr、Cu、V、Ca、REM、Mgの1種又は2種以上を添加することが必要である。基本となる成分に、更にこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、強度及び靱性の一層の向上や製造可能な鋼材サイズの拡大を図るためである。以下、それぞれの成分の添加量の好ましい範囲について説明する。
【0038】
Niを添加する目的は、低炭素の本発明鋼の強度を低温靱性や現地溶接性を劣化させることなく向上させることであり、0.1%以上添加することが好ましい。Ni添加はMnやCr、Mo添加に比べて圧延組織中、特に連続鋳造鋼片の中心偏析帯中に、低温靱性に有害な硬化組織を形成することが少ない。しかし、添加量が1%よりも多すぎると、経済性だけでなく、HAZ靱性や現地溶接性を劣化させることがある。したがって、Ni添加量の上限を1%とすることが好ましい。また、Ni添加は連続鋳造時、熱間圧延時におけるCu割れの防止にも有効である。この場合、Cu量の1/3以上のNi量を添加することが好ましい。
【0039】
Moを添加する目的は、鋼の焼入れ性を向上させ、高強度を得ることである。また、MoはNbと共存して制御圧延時にオーステナイトの再結晶を抑制し、オーステナイト組織の微細化にも効果があり、0.05%以上添加することが好ましい。しかし、0.6%超の過剰なMo添加はHAZ靱性、現地溶接性を劣化させ、さらにフェライトを分散して生成させるのが困難になることがあるので、その上限を0.6%とすることが好ましい。
【0040】
Crは母材、溶接部の強度を増加させる元素であり、0.1%以上添加することが好ましい。しかし、Cr量が1.0%を超えるとHAZ靱性や現地溶接性を著しく劣化させることがある。このためCr量の上限は1.0%とすることが好ましい。
【0041】
Cuは母材、溶接部の強度を増加させる元素であり、0.1%以上の添加が好ましいが、Cu量が1.0%よりも多すぎるとHAZ靱性や現地溶接性を著しく劣化させることがある。このためCu量の上限は1.0%とすることが好ましい。
【0042】
VはNbとほぼ同様の効果を有するが、その効果はNbに比較して弱い。また、溶接部の軟化を抑制する効果も有する。V量の上限はHAZ靱性、現地溶接性の点から0.1%以下とすることが好ましい。V量の特に好ましい範囲は、0.03〜0.08%である。
【0043】
Ca及びREMは硫化物(MnS)の形態を制御し、低温靱性を向上させ、シャルピー試験の吸収エネルギーの増加させる元素であり、それぞれ、0.001%以上及び0.002%以上を添加することが好ましい。Ca量を0.01%超、REM量を0.02%超添加するとCaO−CaS又はREM−CaSが大量に生成して大型クラスター、大型介在物となり、鋼の清浄度を害するだけでなく、現地溶接性にも悪影響をおよぼすことがある。このためCa添加量の上限を0.01%以下に、REM添加量の上限を0.02%以下に制限することが好ましい。
【0044】
また、超高強度ラインパイプでは、S量及びO量をそれぞれ0.001%以下及び0.002%以下に低減し、かつESSP=(Ca)〔1−124(O)〕/1.25Sを0.5≦ESSP≦10.0とすることが特に有効である。
【0045】
Mgは微細分散した酸化物を形成し、溶接熱影響部の粒粗大化を抑制して低温靭性を向上させるため、0.001%以上を添加することが好ましい。一方、Mg量が0.006%超では粗大酸化物を生成し逆に靭性を劣化させることがあるため、上限を0.006%以下とすることが好ましい。
【0046】
鋼の加工硬化特性を向上させるためには、そのミクロ組織を軟らかいフェライトと残部が硬いマルテンサイト及び/又はベイナイトとの複合組織とすることが好ましい。ミクロ組織において、フェライトの面積率が80%超では強度がやや低下し、30%未満では加工硬化特性やや低下する。したがって、ミクロ組織は、面積率で30〜80%のフェライトと残部がマルテンサイト及び/又はベイナイトからなることが好ましい。
【0047】
フェライトの面積率は、光学顕微鏡組織写真を用いて、5μm間隔のポイントカウント法で測定した平均値として求める。光学顕微鏡観察用の試料は、鋼管を周方向に切断して採取し、鏡面研磨及び腐食して作製することができる。腐食液は、例えばナイタールを用いれば良い。試料の肉厚中央部を光学顕微鏡にて、500倍で観察し、縦0.5mm、横0.5mmの領域を写真撮影する。
【0048】
また、フェライトが軟質であるほど加工硬化特性が向上するため、微小ビッカース硬度計を用いて、JIS Z 2244に準拠して測定したフェライト相のビッカース硬さが200Hv以下であることが好ましい。
【0049】
次に本発明の鋼管の製造方法について説明する。本発明の鋼管の製造方法は、鋼を溶製後、鋳造して鋼片とし、鋼片を加熱して熱間圧延し、冷却後、再加熱して冷却して鋼板とし、その鋼板を筒状に成形して端部同士を溶接する製造工程からなり、その後、拡管を行っても良い。
【0050】
熱間圧延を行う際の鋼片の加熱温度は、950℃以上とする。これは、本発明の成分からなる鋼のオーステナイト域の下限温度、即ちAC3点[℃]が950℃よりも低下することはなく、加熱温度を950℃以上にすれば鋼をオーステナイト域に加熱することができるためである。
【0051】
また、熱間圧延後、鋼をフェライト・パーライト変態させるために、フェライト変態の開始温度であるAr1点[℃]以下まで空冷で冷却する。本発明の成分のAr1点[℃]は、冷却速度によって変化するものの、500℃を超えることはないため、空冷を停止する温度の上限を500℃以下とした。
【0052】
このように、オーステナイト域に加熱し、熱間圧延後、フェライト域まで空冷することにより、軟らかいフェライト中にパーライトが分散した組織からなる熱延板が得られる。熱間圧延を行う際の鋼片の加熱温度の上限は規定しないが、通常、1300℃を超えることはない。熱間圧延の方法及び条件は特に規定しないが、ミクロ組織を微細化するためには制御圧延を行うことが好ましい。
【0053】
熱間圧延、空冷後、熱延板を740〜850℃の範囲に再加熱する。これは、本発明の成分からなる鋼の二相域、即ち、AC1点[℃]〜AC3点[℃]の範囲より狭い範囲である。この再加熱により、熱間圧延後の鋼板に生成しているパーライトは、オーステナイトに変態する。再加熱温度が740℃未満ではオーステナイト変態量が不十分で、鋼管のミクロ組織において、軟質のフェライト相の比率が多くなり、高強度が得られない。一方、再加熱温度が850℃を超えると鋼管のミクロ組織において、フェライト相が少なくなり、加工硬化特性が低下し、一様伸び、降伏比、加工硬化指数が小さくなる。
【0054】
熱延板を再加熱後、10℃/s以上の冷却速度で、400℃以下まで加速冷却する。これは、二相域からマルテンサイト変態温度以下までの冷却速度を制御することを意味し、再加熱時に生成したオーステナイト相がマルテンサイト及び/又はベイナイトに変態し、高強度、高加工硬化特性が得られる。なお、冷却速度は板厚中心での平均速度である。再加熱後、冷却速度が10℃/sよりも遅いと、再加熱時に生成したオーステナイト相がパーライトに変態し、高強度、高加工硬化特性が得られない。したがって、再加熱後の冷却速度の下限を10℃/s以上とした。再加熱後の冷却速度の上限は規定しないが、100℃/sを超えることは技術的に困難である。加速冷却の停止温度の上限を400℃以下としたのは、本発明の成分のMs点[℃]、即ち、マルテンサイト変態の開始温度が、具体的には400℃を超えることはないためである。
【0055】
なお、熱間圧延の加熱温度の下限AC3点[℃]、熱間圧延後の空冷の停止温度の上限Ar1点[℃]、再加熱後の加速冷却の停止温度の上限Ms点[℃]は、加熱時及び冷却時の線膨張係数の変化によって測定しても良い。冷却時の変態点であるAr1点[℃]、Ms点[℃]は冷却速度によって変化するため、実操業における空冷時及び加速冷却時の冷却速度を測定しておき、空冷時の冷却速度でAr1点[℃]を、加速冷却時の冷却速度でMs点[℃]を測定することが好ましい。
【0056】
このようにして製造された鋼板を筒状に成形し、端部同士を接合するが、鋼板を筒状に成形する方法は、UOE法、ベンディングロール法が適用でき、接合方法はアーク溶接、レーザー溶接等が使用可能である。
【0057】
鋼管を0.8%以上の拡管率で拡管すると、円周方向の降伏強度がより上昇し、長手方向の降伏強度が拡管時の長手方向の圧縮歪みに起因するバウシンガー効果により低下する。一方、3%を超えた拡管を行うと鋼管の延性を損なうことがあるため、拡管率は0.8〜3%とすることが好ましい。
【0058】
【実施例】
表1に示す化学成分の鋼を溶製し、連続鋳造した鋼片を850℃以上に加熱して熱間圧延を行い、表2に示す条件で、500℃以下まで冷却し、再加熱して、400℃以下まで加速冷却して鋼板とした。なお、表1のAr3点[℃]は、本発明の鋼板の冷却時におけるオーステナイト域の上限を示す温度であり、線膨張係数の変化から求めた実験値である。更にこれらの鋼板をUOE工程によって鋼管とした。鋼管を製造する際の溶接方法は、サブマージアーク溶接とした。なお、鋼管の外径は914.4mm、肉厚は16mmであった。
【0059】
鋼管の長手方向の降伏強度及び引張強度は、API 5Lに準拠した弧状全厚引張試験によって測定した。鋼管の周方向の降伏強度は、ASTM A370に準拠したリング・エクスパンション試験によって測定した。鋼管円周方向の引張強度は、API 5Lに準拠して、扁平した全厚引張試験片を用いて測定した。
【0060】
また、鋼管からミクロ組織観察用の試験片を採取し、研磨、腐食し、肉厚中央部を500倍で観察し、光学顕微鏡組織写真を撮影した。得られた5視野の光学顕微鏡組織写真を用いて、フェライトの面積率を縦0.5mm、横0.5mmの領域で5μm間隔のポイントカウント法で測定し、平均値として求めた。
【0061】
鋼管同士を突き合わせて、表2に示した規格降伏強度よりも15kis程度強度が高い溶接材料を使用し、円周溶接をサブマージアーク溶接した。実際のパイプラインの変形特性を評価するために、鋼管同士の円周溶接部を中央とし、溶接界面に2mm深さ、幅100mmの人工切欠きを加工した鋼管試験体を作製した。鋼管試験体の鋼管母材部の円周方向の8箇所に歪みゲージを貼付け、鋼管の端部を長手方向に引張り、人工切欠きから亀裂が進展を始めたときの歪みを鋼管引張破壊歪として測定し、変形特性を評価した。
【0062】
結果を表3に示す。表3において、YSL/YSCは、鋼管の長手方向の降伏強度YSLと周方向の降伏強度YSCとの比を百分率で表したものである。表3より、本発明例である製造No.1〜12は鋼管長手方向の降伏強度が規格最小降伏強度より低く、鋼管周方向の降伏強度に対する比が本発明の範囲内であり、鋼管引張りの破壊歪みが大きい。一方、比較例である製造No.13〜15は、鋼管の長手方向と周方向の降伏強度の比が本発明の範囲よりも大きく、鋼管引張りの破壊歪みが小さい。また、製造No.13は圧延後水冷されており、製造No.14は加熱温度が高いために鋼管長手方向の降伏強度が高い。さらに、製造No.15は固溶Nが存在するため降伏点が現れて降伏強度が高い。
【0063】
【表1】

Figure 0004276480
【0064】
【表2】
Figure 0004276480
【0065】
【表3】
Figure 0004276480
【0066】
【発明の効果】
本発明によれば、API規格X80〜100級の優れた強度を有し、パイプラインに使用できる変形性能に優れた高強度鋼管及びその製造方法の提供が可能になる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel pipe for a pipeline that is suitable as a line pipe for transporting natural gas and crude oil, has a large deformation tolerance of the pipeline due to ground fluctuation, etc., and has excellent deformation performance, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, pipelines have become increasingly important as long-distance transportation methods for crude oil and natural gas. However, the environment in which pipelines are laid has diversified, and for example, there have been problems with displacement and bending of the pipeline due to ground and summer changes in the frozen land zone, ocean currents at the bottom of the sea, and formation changes due to earthquakes. . Therefore, there is a demand for a high-strength steel pipe that is not only excellent in internal pressure resistance, but also is not easily buckled even when deformation in the longitudinal direction occurs, and has excellent deformation performance.
[0003]
As a steel pipe satisfying such requirements, Patent Document 1 discloses a manufacturing method of high strength steel excellent in deformation performance and having a low yield strength to tensile strength ratio (referred to as yield ratio). A steel pipe having a large length and a manufacturing method are disclosed in Patent Document 2. Patent Document 3 proposes a steel plate and a steel pipe having a low yield ratio and a large uniform elongation.
[0004]
However, in the actual pipeline deformation, it has been found that the problem is softening of the circumferential welded portion where the steel pipes are joined, particularly the weld heat affected zone. This is because when the strength of the circumferential welded joint between steel pipes is not sufficiently high compared to the strength in the longitudinal direction of the base material of the steel pipe, when bending deformation or the like is applied to the pipeline, This is to break down from a weld defect or a softened part of the weld heat affected zone. In particular, steel pipes for high-strength pipelines require a high-strength welding material with relatively large softening of the heat affected zone and difficult to obtain high toughness, so even if the deformation performance of the steel pipe itself is improved, allowable deformation There is a problem that the effect of increasing the amount is insufficient and the deformation performance of the pipeline is impaired.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 6-15689
[Patent Document 2]
JP 11-279700 A
[Patent Document 3]
Japanese Patent Application No. 2002-106536
[0006]
[Problems to be solved by the invention]
The present invention provides a high-strength steel pipe excellent in deformation performance having excellent strength of API standard X80 to 100 grade, suitable for pipelines, and a method for producing the same.
[0007]
[Means for Solving the Problems]
In order to improve deformation performance without impairing the internal pressure resistance performance of a pipeline using a high-strength steel pipe, it is effective to lower the yield strength in the longitudinal direction than the yield strength in the circumferential direction. The microstructure is made based on the knowledge that it is effective to improve the work hardening characteristics by using a composite structure of ferrite and martensite and / or bainite, and the gist thereof is as follows.
[0008]
(1) The ratio YSL / YSC between the yield strength YSL in the longitudinal direction of the steel pipe and the yield strength YSC in the circumferential direction is 70 to 95% as a percentage.High-strength steel pipes for pipelines with excellent deformation performance with a microstructure of 30-80% area ratio ferrite and the balance of martensite and / or bainite, and a steel pipe yield strength YSC of 80 ksi or more in the circumferential direction The method of manufacturing, wherein the mass%,
C : 0.03-0.12%, Si: 0.8% or less,
Mn: 0.8 to 2.5% P : 0.03% or less,
S : 0.01% or less Nb: 0.01 to 0.1%,
Ti: 0.005 to 0.03%, Al: 0.1% or less,
N : 0.001 to 0.008%
Containing
Ti-3.4N ≧ 0
Satisfied,
Ni: 1% or less, Mo: 0.6% or less,
Cr: 1% or less, Cu: 1% or less,
V : 0.1% or less, Ca: 0.01% or less,
REM: 0.02% or less, Mg: 0.006% or less
A steel piece containing one or more of the following, the balance being iron and inevitable impurities is heated to 950 ° C or higher, hot-rolled, air-cooled to 500 ° C or lower, and then at a temperature of 740 to 850 ° C. Deformation performance characterized by reheating, cooling to 10 ° C./s or more to 400 ° C. or less to form a steel plate having a thickness of 15 to 20 mm, forming the steel plate into a cylindrical shape, and welding the ends of the butt portions Excellent method for manufacturing high-strength steel pipes for pipelines.
[0011]
(2) After welding the end portions of the butt portion, the tube is expanded by 0.8 to 3% (1) The manufacturing method of the high strength steel pipe for pipelines excellent in the deformation | transformation performance of description.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the API 5L standard, which is a typical line pipe standard, for example, the standard minimum yield strength (SMYS) of X80 is 80 ksi (1 ksi = 6.89 MPa), and the strength in the circumferential direction can withstand the design internal pressure unless it is greater than SMYS. I can't. The SMYS at X100 is 100 ksi. On the other hand, in order to ensure the deformability of a pipeline using a high-strength steel pipe, it is necessary to make the strength of the welded portion between the steel pipes higher than the strength in the longitudinal direction of the steel pipe.
[0013]
That is, in order to realize a pipeline using high-strength steel pipes, a welding material that satisfies both high strength and high toughness of the welded portion between the steel pipes is required. However, it is difficult to develop a welding material having performance suitable for increasing the strength of steel pipes. Therefore, we studied a method to ensure the performance as a pipeline even if the strength of the welded part remains the same without developing new welding materials.
[0014]
Since the circumferential direction of the steel pipe needs to be strong enough to withstand the design internal pressure, the yield strength must be SMYS or higher. On the other hand, since the stress due to the internal pressure is half of the circumferential direction in the longitudinal direction of the steel pipe, even if the yield strength is SMYS or less, it does not burst due to the internal pressure. In addition, when steel pipes are welded together, even if the yield strength in the circumferential direction of the weld metal and weld heat affected zone is slightly lower than the yield strength in the circumferential direction of the steel pipe, it is constrained by the base metal around the welded portion. , Never burst.
[0015]
Therefore, if the strength in the circumferential direction of the steel pipe is increased and the strength in the longitudinal direction of the steel pipe is decreased, it is possible to realize a pipeline that achieves both prevention of burst and improvement of deformation performance. Therefore, the present inventor directed the development of a steel pipe having a large strength anisotropy, that is, a steel pipe having a small ratio of the yield strength in the longitudinal direction of the steel pipe to the yield strength in the circumferential direction of the steel pipe.
[0016]
As a result, in order to manufacture such a steel pipe, the anisotropy of strain introduced when the steel sheet is formed into the steel pipe is utilized, the circumferential direction is cured, and the increase in the strength in the longitudinal direction is suppressed. It turned out to be effective. That is, when the steel sheet is formed into a cylindrical shape, the circumferential strain is large, while the longitudinal strain is relatively small, and the longitudinal direction is softened due to the Bausinger effect due to compressive strain. Therefore, the yield strength in the circumferential direction is significantly increased, and the yield strength in the longitudinal direction is reduced. In particular, when the steel pipe is expanded, the yield strength in the circumferential direction is further increased. On the other hand, in the longitudinal direction, since the longitudinal strain at the time of the expansion is compression, the decrease in the yield strength due to the Bauschinger effect becomes more remarkable.
[0017]
In addition, the Bausinger effect has been found to be extremely effective in using a steel sheet having a large uniform elongation, a large work hardening index, a low yield ratio, and excellent work hardening characteristics. Furthermore, in order to improve the work hardening characteristics of the steel sheet, it is important to make the microstructure of the steel a multiphase structure of a soft phase and a hard phase, and in particular, ferrite which is a soft phase and martens which is a hard phase. It has been found that a steel having a multiphase structure with sites, bainite or a mixed phase thereof has a very small ratio of yield strength to tensile strength.
[0018]
Furthermore, the manufacturing conditions of the steel pipe which was excellent in the work hardening characteristic which consists of such a multiphase structure were examined. As a result, in order to obtain a microstructure composed of a multiphase structure of ferrite and bainite and / or martensite, first, the steel slab is made into an austenite region, that is, AC3Heat to point [° C] or higher, perform hot rolling,r1It was found that it was necessary to cool to a point [° C.] or lower to obtain a structure in which pearlite was dispersed in soft ferrite.
[0019]
The hot-rolled sheet in which the pearlite phase is interspersed in the ferrite phase is converted into a ferrite and austenite two-phase region, namelyC1Point [° C] to AC3When heated within the range of the point [° C.], the austenite transformation starts from the part that was originally pearlite, so that dispersed austenite can be generated. After this heating, if abruptly cooled to below the Ms point [° C.], austenite becomes a low temperature transformation product of martensite and / or bainite, so that a microstructure comprising a multiphase structure of ferrite and bainite and / or martensite is obtained. I found out that
[0020]
Usually, a high-strength line pipe is accelerated and cooled after rolling. In this case, bainitic ferrite and bainite are generated, and pearlite is not generated. When pearlite is not dispersed and present, austenite is not dispersed and formed even when heated in a two-phase region, so that bainite and / or martensite are not finely dispersed in the ferrite, and low temperature toughness is reduced. Bainitic ferrite and bainite are not as soft as ferrite produced by air cooling. Accordingly, when accelerated cooling is performed after rolling, low temperature toughness and work hardening characteristics are degraded.
[0021]
In addition, when the rolled sheet is heated to a two-phase region and then air-cooled to an Ms point [° C.] or lower, the austenite phase is transformed into a pearlite structure, and the strength and work-hardening properties are impaired. Therefore, accelerated cooling is performed to convert the austenite phase into martensite or bainite. It was found necessary to be transformed into
[0022]
Hereinafter, the present invention will be described in detail.
[0023]
In the present invention, the yield strength in the circumferential direction of the steel pipe is measured by a ring expansion test in accordance with ASTM A370 in order to eliminate the influence of the flatness of the test piece. Moreover, the yield strength in the longitudinal direction of the steel pipe can be measured by an arc-shaped full thickness tensile test based on API 5L.
[0024]
The tensile strength in the longitudinal direction of the steel pipe can be obtained together with the yield strength by an arc-shaped full thickness tensile test in accordance with API 5L. The tensile strength in the circumferential direction of the steel pipe is in accordance with API 5L and flattened full thickness. It can be measured using a tensile specimen.
[0025]
Moreover, you may perform the tensile test of the circumferential direction and longitudinal direction of a steel pipe based on JISZ2241 using the tensile test piece which did not flatten a parallel part and flattened the grip part. When collecting a tensile test piece having the circumferential direction as the longitudinal direction, depending on the shape of the steel pipe, it may be ground in the thickness direction. It is preferable to use a tensile test piece in which the amount of grinding of the parallel part is reduced as much as possible.
[0026]
If the ratio of the yield strength in the longitudinal direction of the steel pipe to the yield strength in the circumferential direction of the steel pipe exceeds 95%, the effect of improving the deformation characteristics at the site where the steel pipes are welded together in the pipeline becomes insufficient. On the other hand, when the ratio of the yield strength in the longitudinal direction of the steel pipe to the yield strength in the circumferential direction of the steel pipe is less than 70%, the yield strength of the pipeline itself is lowered and the deformation amount becomes too large. Therefore, the ratio of the yield strength in the longitudinal direction of the steel pipe to the yield strength in the circumferential direction of the steel pipe is set in the range of 70 to 95% as a percentage.
[0027]
Next, the reason why the constituent elements of the steel pipe of the present invention are limited will be described.
[0028]
C is extremely effective for improving the strength of the steel, and in order to obtain the target strength, it is necessary to add at least 0.03% or more. However, if the amount of C is more than 0.12%, the base material, HAZ low temperature toughness and on-site weldability are significantly deteriorated, so the upper limit was made 0.12%. In addition, uniform elongation and work hardening characteristics are higher when the amount of C is larger, and low temperature toughness and weldability are better when the amount of C is smaller. It was limited within the range of 0.03 to 0.12%.
[0029]
Si is an element added for deoxidation and strength improvement, but if added more than 0.8%, the HAZ toughness and on-site weldability are remarkably deteriorated, so the upper limit was made 0.8% or less. Steel can be sufficiently deoxidized with either Al or Ti, and Si is not necessarily added, but usually contains 0.05% or more of Si.
[0030]
Mn is a bainite-based microstructure of the matrix of the steel of the present invention, and is an indispensable element for ensuring an excellent balance between strength and low-temperature toughness. It should be 8% or more. However, if the amount of Mn is more than 2.5%, the low temperature toughness deteriorates, so the upper limit was made 2.5% or less.
[0031]
P and S are impurity elements, and in order to further improve the low temperature toughness of the base material and the HAZ, the upper limit of the content of P and S should be 0.03% or less and 0.01% or less, respectively. is required. By reducing the amount of P to 0.03% or less, it is possible to reduce the center segregation of the continuously cast slab, to prevent grain boundary fracture, and to improve the low temperature toughness. Moreover, the effect which improves ductility and toughness by suppressing the production | generation of MnS extended | stretched by hot rolling by reducing S amount to 0.01% or less is acquired. The smaller the P and S contents, the better. However, from the balance between characteristics and cost, it is preferable that the lower limit is 0.001% or more and 0.0001% or more, respectively.
[0032]
When Nb is added in an amount of 0.01% or more, it not only suppresses austenite recrystallization during controlled rolling and refines the structure, but also contributes to an increase in hardenability and strengthens the steel. However, if the amount of Nb added is more than 0.1%, the HAZ toughness and field weldability are adversely affected, so the upper limit was made 0.1% or less.
[0033]
Addition of Ti forms fine TiN, suppresses coarsening of austenite grains during reheating of the slab and HAZ, refines the microstructure, and improves the low temperature toughness of the base material and HAZ. Further, when the amount of Al is small, for example, when the amount of Al is 0.005% or less, Ti forms an oxide, acts as an intragranular ferrite formation nucleus in HAZ, and has an effect of refining the HAZ structure. In order to express such an effect of TiN, 0.005% or more of Ti should be added. However, if the amount of Ti is more than 0.03%, TiN coarsening and precipitation hardening due to TiC occur, and the low temperature toughness is deteriorated, so the upper limit was limited to 0.03%.
[0034]
If the Al content exceeds 0.1%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.1% or less. In addition, Al is an element that is usually contained by 0.003% or more as a deoxidizing material and has an effect on the refinement of the structure, but in the present invention, deoxidation is possible with Ti and / or Si, Al need not necessarily be added.
[0035]
N forms TiN and suppresses coarsening of the austenite grains of HAZ during reheating of the slab and improves the low temperature toughness of the base material and HAZ. The minimum N amount necessary for this is 0.001% or more. However, if N is added in excess of 0.008%, the amount of TiN generated increases, and adverse effects such as surface defects and toughness deterioration occur. Therefore, it is necessary to keep the upper limit of N amount to 0.008% or less.
[0036]
Further, when solid solution N is present in the steel, dislocations are fixed by aging due to forming strain, and a clear yield point and yield point elongation appear in a tensile test, and the deformation performance is remarkably lowered. Therefore, in order to fix solid solution N as TiN by addition of Ti, it is preferable to satisfy Ti-3.4N ≧ 0.
[0037]
Furthermore, it is necessary to add one or more of Ni, Mo, Cr, Cu, V, Ca, REM, and Mg. The main purpose of adding these elements to the basic components is to further improve the strength and toughness and enlarge the size of the steel material that can be manufactured without impairing the excellent characteristics of the steel of the present invention. Hereinafter, the preferable range of the addition amount of each component will be described.
[0038]
The purpose of adding Ni is to improve the strength of the low-carbon steel of the present invention without deteriorating the low-temperature toughness and on-site weldability, and it is preferable to add 0.1% or more. Compared with the addition of Mn, Cr, or Mo, the addition of Ni rarely forms a hardened structure that is harmful to low-temperature toughness in the rolled structure, particularly in the central segregation zone of the continuous cast steel slab. However, when the addition amount is more than 1%, not only economic efficiency but also HAZ toughness and on-site weldability may be deteriorated. Therefore, the upper limit of the Ni addition amount is preferably 1%. Ni addition is also effective for preventing Cu cracking during continuous casting and hot rolling. In this case, it is preferable to add a Ni amount that is 1/3 or more of the Cu amount.
[0039]
The purpose of adding Mo is to improve the hardenability of the steel and to obtain high strength. Further, Mo coexists with Nb, suppresses recrystallization of austenite at the time of controlled rolling, has an effect on refining the austenite structure, and 0.05% or more is preferably added. However, excessive Mo addition exceeding 0.6% deteriorates the HAZ toughness and on-site weldability, and it may be difficult to disperse and generate ferrite, so the upper limit is made 0.6%. It is preferable.
[0040]
Cr is an element that increases the strength of the base metal and the welded portion, and is preferably added in an amount of 0.1% or more. However, if the Cr content exceeds 1.0%, the HAZ toughness and on-site weldability may be significantly degraded. For this reason, it is preferable that the upper limit of Cr amount be 1.0%.
[0041]
Cu is an element that increases the strength of the base metal and the welded portion, and is preferably added in an amount of 0.1% or more. However, if the amount of Cu is more than 1.0%, the HAZ toughness and on-site weldability are significantly deteriorated. There is. For this reason, it is preferable that the upper limit of Cu amount be 1.0%.
[0042]
V has almost the same effect as Nb, but the effect is weaker than Nb. Moreover, it has the effect which suppresses softening of a welding part. The upper limit of the V amount is preferably 0.1% or less from the viewpoints of HAZ toughness and field weldability. A particularly preferable range of the V amount is 0.03 to 0.08%.
[0043]
Ca and REM are elements that control the form of sulfide (MnS), improve low-temperature toughness, and increase the absorbed energy of the Charpy test. Add 0.001% or more and 0.002% or more, respectively. Is preferred. When Ca content exceeds 0.01% and REM content exceeds 0.02%, a large amount of CaO-CaS or REM-CaS is generated, resulting in large clusters and large inclusions, not only detracting from the cleanliness of the steel, It may also adversely affect on-site weldability. For this reason, it is preferable to limit the upper limit of the Ca addition amount to 0.01% or less and the upper limit of the REM addition amount to 0.02% or less.
[0044]
In the ultra-high-strength line pipe, the S content and the O content are reduced to 0.001% or less and 0.002% or less, respectively, and ESSP = (Ca) [1-124 (O)] / 1.25S is set. It is particularly effective to satisfy 0.5 ≦ ESSP ≦ 10.0.
[0045]
Mg is preferably added in an amount of 0.001% or more in order to form a finely dispersed oxide and suppress the coarsening of the weld heat affected zone to improve the low temperature toughness. On the other hand, if the amount of Mg exceeds 0.006%, a coarse oxide may be generated and the toughness may be deteriorated conversely, so the upper limit is preferably made 0.006% or less.
[0046]
In order to improve the work hardening characteristics of steel, the microstructure is preferably a composite structure of soft ferrite and hard martensite and / or bainite in the balance. In the microstructure, when the area ratio of ferrite exceeds 80%, the strength is slightly decreased, and when it is less than 30%, the work hardening characteristics are slightly decreased. Therefore, it is preferable that the microstructure is composed of ferrite with an area ratio of 30 to 80% and the balance of martensite and / or bainite.
[0047]
The area ratio of the ferrite is obtained as an average value measured by a point count method at intervals of 5 μm using an optical microscope structure photograph. A sample for optical microscope observation can be prepared by cutting a steel pipe in the circumferential direction, mirror polishing and corroding. For example, nital may be used as the corrosive liquid. The central part of the thickness of the sample is observed with an optical microscope at a magnification of 500 times, and an area of 0.5 mm length and 0.5 mm width is photographed.
[0048]
In addition, since the work hardening characteristic is improved as the ferrite is softer, it is preferable that the Vickers hardness of the ferrite phase measured according to JIS Z 2244 using a micro Vickers hardness tester is 200 Hv or less.
[0049]
Next, the manufacturing method of the steel pipe of this invention is demonstrated. The method for manufacturing a steel pipe of the present invention is as follows: after steel is melted, cast into a steel slab, the steel slab is heated and hot rolled, cooled, reheated and cooled to obtain a steel plate, and the steel plate is tubed It consists of the manufacturing process which shape | molds in a shape and welds edge parts, and you may perform a pipe expansion after that.
[0050]
  The heating temperature of the steel slab during hot rolling is 950 ° C. or higher. this is,BookThe lower limit temperature of the austenite region of the steel comprising the components of the invention, namely AC3This is because the point [° C.] does not drop below 950 ° C., and the steel can be heated to the austenite region if the heating temperature is 950 ° C. or higher.
[0051]
  In addition, in order to transform the steel into ferrite-pearlite after hot rolling, A is the start temperature of ferrite transformation.r1Cool to air below the point [℃]. BookInventive ingredient Ar1Although the point [° C.] varies depending on the cooling rate, it does not exceed 500 ° C., so the upper limit of the temperature at which air cooling is stopped is set to 500 ° C. or less.
[0052]
Thus, a hot-rolled sheet having a structure in which pearlite is dispersed in soft ferrite is obtained by heating to the austenite region, hot rolling, and air cooling to the ferrite region. Although the upper limit of the heating temperature of the steel slab at the time of hot rolling is not specified, it usually does not exceed 1300 ° C. Although the method and conditions for hot rolling are not particularly defined, controlled rolling is preferably performed in order to refine the microstructure.
[0053]
  After hot rolling and air cooling, the hot-rolled sheet is reheated to a range of 740 to 850 ° C. this is,BookA two-phase region of steel comprising the components of the invention, namely AC1Point [° C] to AC3The range is narrower than the range of the point [° C.]. By this reheating, the pearlite generated in the hot-rolled steel sheet is transformed into austenite. When the reheating temperature is less than 740 ° C., the amount of austenite transformation is insufficient, the ratio of the soft ferrite phase increases in the microstructure of the steel pipe, and high strength cannot be obtained. On the other hand, when the reheating temperature exceeds 850 ° C., the ferrite phase is reduced in the microstructure of the steel pipe, the work hardening characteristics are lowered, and the uniform elongation, the yield ratio, and the work hardening index are reduced.
[0054]
  After reheating the hot-rolled sheet, it is accelerated and cooled to 400 ° C. or lower at a cooling rate of 10 ° C./s or higher. This means that the cooling rate from the two-phase region to the martensite transformation temperature or lower is controlled, and the austenite phase generated during reheating is transformed into martensite and / or bainite, resulting in high strength and high work hardening characteristics. can get. The cooling rate is an average rate at the center of the plate thickness. If the cooling rate is slower than 10 ° C./s after reheating, the austenite phase generated during reheating is transformed into pearlite, and high strength and high work hardening characteristics cannot be obtained. Therefore, the lower limit of the cooling rate after reheating is set to 10 ° C./s or more. Although the upper limit of the cooling rate after reheating is not specified, it is technically difficult to exceed 100 ° C./s. The reason why the upper limit of the stop temperature of accelerated cooling is 400 ° C or less,BookThis is because the Ms point [° C.] of the component of the invention, that is, the start temperature of the martensitic transformation does not specifically exceed 400 ° C.
[0055]
In addition, the lower limit A of the heating temperature of hot rollingC3Point [° C], upper limit A of air cooling stop temperature after hot rollingr1The point [° C.] and the upper limit Ms point [° C.] of the accelerated cooling stop temperature after reheating may be measured by the change in the linear expansion coefficient during heating and cooling. A which is the transformation point during coolingr1Since the point [° C.] and the Ms point [° C.] vary depending on the cooling rate, the cooling rate at the time of air cooling and accelerated cooling in actual operation is measured, and the cooling rate at the time of air cooling is Ar1It is preferable to measure the point [° C.] at the cooling rate at the time of accelerated cooling.
[0056]
The steel plate thus manufactured is formed into a cylindrical shape and the ends are joined to each other. The method for forming the steel plate into a cylindrical shape can be applied by the UOE method and the bending roll method, and the joining method is arc welding, laser. Welding or the like can be used.
[0057]
When the steel pipe is expanded at a tube expansion ratio of 0.8% or more, the yield strength in the circumferential direction is further increased, and the yield strength in the longitudinal direction is lowered due to the Bauschinger effect due to the compressive strain in the longitudinal direction during the expansion. On the other hand, if the pipe expansion exceeds 3%, the ductility of the steel pipe may be impaired, so the pipe expansion ratio is preferably 0.8 to 3%.
[0058]
【Example】
The steel of the chemical composition shown in Table 1 is melted, and the continuously cast steel slab is heated to 850 ° C. or higher and hot rolled, cooled to 500 ° C. or lower under the conditions shown in Table 2, and reheated. , Accelerated cooling to 400 ° C. or lower to obtain a steel plate. In Table 1, Ar3The point [° C.] is a temperature indicating the upper limit of the austenite region during cooling of the steel sheet of the present invention, and is an experimental value obtained from a change in the linear expansion coefficient. Furthermore, these steel plates were made into steel pipes by the UOE process. The welding method for manufacturing the steel pipe was submerged arc welding. The outer diameter of the steel pipe was 914.4 mm and the wall thickness was 16 mm.
[0059]
The yield strength and tensile strength in the longitudinal direction of the steel pipe were measured by an arc-shaped full thickness tensile test according to API 5L. The yield strength in the circumferential direction of the steel pipe was measured by a ring expansion test in accordance with ASTM A370. The tensile strength in the circumferential direction of the steel pipe was measured using a flat full thickness tensile test piece in accordance with API 5L.
[0060]
Further, a specimen for microstructural observation was taken from the steel pipe, polished and corroded, the central portion of the thickness was observed at 500 times, and an optical microscopic structural photograph was taken. Using the obtained optical microscope microstructure photograph of 5 fields of view, the area ratio of ferrite was measured by a point count method at intervals of 5 μm in an area of 0.5 mm in length and 0.5 mm in width, and obtained as an average value.
[0061]
The steel pipes were butted together, and a welding material having a strength about 15 kiss higher than the standard yield strength shown in Table 2 was used, and circumferential welding was submerged arc welding. In order to evaluate the deformation characteristics of an actual pipeline, a steel pipe test body was fabricated in which an artificial notch having a depth of 2 mm and a width of 100 mm was processed at the weld interface with the circumferential welded portion between the steel pipes as the center. Strain gauges are affixed to 8 locations in the circumferential direction of the steel pipe base material of the steel pipe test specimen, the end of the steel pipe is pulled in the longitudinal direction, and the strain when the crack starts to propagate from the artificial notch is defined as the steel pipe tensile fracture strain. Measured and evaluated deformation characteristics.
[0062]
The results are shown in Table 3. In Table 3, YSL/ YSCIs the yield strength YS in the longitudinal direction of the steel pipeLYield strength YS in the circumferential directionCThe ratio is expressed as a percentage. From Table 3, production No. which is an example of the present invention. Nos. 1 to 12 show that the yield strength in the longitudinal direction of the steel pipe is lower than the standard minimum yield strength, the ratio to the yield strength in the circumferential direction of the steel pipe is within the range of the present invention, and the fracture strain of the steel pipe tension is large. On the other hand, production No. which is a comparative example. In Nos. 13 to 15, the ratio of the yield strength in the longitudinal direction and the circumferential direction of the steel pipe is larger than the range of the present invention, and the fracture strain of the steel pipe tension is small. In addition, production No. No. 13 is water-cooled after rolling. No. 14 has a high yield strength in the longitudinal direction of the steel pipe because the heating temperature is high. Furthermore, production No. No. 15 has high yield strength because of the presence of solute N, yielding a yield point.
[0063]
[Table 1]
Figure 0004276480
[0064]
[Table 2]
Figure 0004276480
[0065]
[Table 3]
Figure 0004276480
[0066]
【The invention's effect】
According to the present invention, it is possible to provide a high-strength steel pipe having excellent strength of API standard X80 to 100 grade and excellent deformation performance that can be used in a pipeline and a method for producing the same.

Claims (2)

鋼管の長手方向の降伏強度YSLと周方向の降伏強度YSCとの比YSL/YSCが、百分率で70〜95%であり、ミクロ組織が面積率で30〜80%のフェライトと残部がマルテンサイト及び/又はベイナイトからなり、鋼管の周方向の降伏強度YSCが80ksi以上である変形性能に優れたパイプライン用高強度鋼管の製造方法であって、質量%で、
:0.03〜0.12%、
Si:0.8%以下、
Mn:0.8〜2.5%、
:0.03%以下、
:0.01%以下、
Nb:0.01〜0.1%、
Ti:0.005〜0.03%、
Al:0.1%以下、
:0.001〜0.008%
を含有し、
Ti−3.4N≧0
を満足し、更に、
Ni:1%以下、
Mo:0.6%以下、
Cr:1%以下、
Cu:1%以下、
:0.1%以下、
Ca:0.01%以下、
REM:0.02%以下、
Mg:0.006%以下
の1種又は2種以上を含有し、残部が鉄及び不可避的不純物からなる鋼片を950℃以上に加熱し、熱間圧延を行い、500℃以下まで空冷後、740〜850℃の温度に再加熱し、10℃/s以上で400℃以下まで冷却して15〜20mm厚の鋼板とし、該鋼板を筒状に成型し、突合せ部の端部同士を溶接したことを特徴とする変形性能に優れたパイプライン用高強度鋼管の製造方法。
The ratio YSL / YSC the longitudinal yield strength YSL and the circumferential direction of the yield strength YSC of steel pipe, Ri 70% to 95% der in percentage, 30% to 80% of ferrite and the balance martensite microstructure at an area ratio And / or a bainite manufacturing method of a high-strength steel pipe for pipelines, which has excellent deformation performance with a yield strength YSC in the circumferential direction of the steel pipe of 80 ksi or more,
C : 0.03-0.12%,
Si: 0.8% or less,
Mn: 0.8 to 2.5%
P : 0.03% or less,
S : 0.01% or less
Nb: 0.01 to 0.1%,
Ti: 0.005 to 0.03%,
Al: 0.1% or less,
N : 0.001 to 0.008%
Containing
Ti-3.4N ≧ 0
Satisfied,
Ni: 1% or less,
Mo: 0.6% or less,
Cr: 1% or less,
Cu: 1% or less,
V : 0.1% or less,
Ca: 0.01% or less,
REM: 0.02% or less,
Mg: 0.006% or less One type or two or more types of steel, with the balance being iron and inevitable impurities, the steel slab is heated to 950 ° C or higher, hot-rolled, and 500 ° C or lower After air cooling to 740 to 850 ° C., reheat to 10 ° C./s or more and 400 ° C. or less to form a steel plate having a thickness of 15 to 20 mm, shape the steel plate into a cylindrical shape, and end of the butt portion A method for producing a high-strength steel pipe for pipelines, which is excellent in deformation performance, characterized by welding together.
突合せ部の端部同士を溶接後、0.8〜3%拡管することを特徴とする請求項記載の変形性能に優れたパイプライン用高強度鋼管の製造方法。After welding the ends of the butted portion, the method of producing a high strength steel pipe for pipelines having superior strain capacity according to claim 1, characterized in that the pipe expansion 0.8 to 3%.
JP2003179865A 2003-06-24 2003-06-24 Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance Expired - Fee Related JP4276480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179865A JP4276480B2 (en) 2003-06-24 2003-06-24 Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179865A JP4276480B2 (en) 2003-06-24 2003-06-24 Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance

Publications (2)

Publication Number Publication Date
JP2005015823A JP2005015823A (en) 2005-01-20
JP4276480B2 true JP4276480B2 (en) 2009-06-10

Family

ID=34181078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179865A Expired - Fee Related JP4276480B2 (en) 2003-06-24 2003-06-24 Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance

Country Status (1)

Country Link
JP (1) JP4276480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803327A (en) * 2016-05-13 2016-07-27 江阴兴澄特种钢铁有限公司 Economic HIC-resistant X90 pipeline steel plate and manufacturing method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439545C (en) * 2006-03-27 2008-12-03 宝山钢铁股份有限公司 800 MPa level thick steel plate with high toughness and low yield ratio and its making process
AU2008320179B2 (en) * 2007-10-30 2011-10-13 Nippon Steel Corporation Steel pipe with excellent expandability and method for producing the same
JP2009228099A (en) * 2008-03-25 2009-10-08 Sumitomo Metal Ind Ltd Uoe steel pipe for line pipe, and method for manufacturing the same
JP5348383B2 (en) * 2008-09-30 2013-11-20 Jfeスチール株式会社 High toughness welded steel pipe with excellent crushing strength and manufacturing method thereof
JP5353760B2 (en) * 2010-02-26 2013-11-27 Jfeスチール株式会社 ERW steel pipe excellent in deformation characteristics and manufacturing method thereof
EP2690188B1 (en) * 2011-03-24 2019-01-23 Nippon Steel & Sumitomo Metal Corporation Austenite system alloy pipe and manufacturing method thereof
JP5316721B2 (en) 2011-03-30 2013-10-16 新日鐵住金株式会社 ERW steel pipe in which yield ratio is prevented from increasing after coating is heated, and method for manufacturing the same
JP5500324B1 (en) 2012-08-31 2014-05-21 新日鐵住金株式会社 Duplex stainless steel pipe and manufacturing method thereof
CN104532155B (en) * 2014-12-19 2017-02-22 山东钢铁股份有限公司 X90 level heterogeneous structure pipeline steel for longitudinal welded pipe
CN110004364B (en) * 2019-04-15 2021-05-28 邯郸钢铁集团有限责任公司 Large loading stress sulfide corrosion resistant X52MS hot-rolled plate coil and manufacturing method thereof
CN112981226B (en) * 2019-12-18 2022-12-27 武汉科技大学 Large-wall-thickness X70-grade acid-resistant pipeline steel and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803327A (en) * 2016-05-13 2016-07-27 江阴兴澄特种钢铁有限公司 Economic HIC-resistant X90 pipeline steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005015823A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
KR101511615B1 (en) Method for manufacturing welded steel pipe for linepipe having high compressive strength and high fracture toughness
JP4671959B2 (en) Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them
JP5857400B2 (en) Welded steel pipe for high compressive strength line pipe and manufacturing method thereof
CA2731908C (en) Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method for producing same
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP3869747B2 (en) High-strength steel plate, high-strength steel pipe and manufacturing method excellent in deformation performance
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP4833835B2 (en) Steel pipe with small expression of bauschinger effect and manufacturing method thereof
WO2011065582A1 (en) Welded steel pipe for linepipe with superior compressive strength and excellent sour resistance, and process for producing same
JP4072009B2 (en) Manufacturing method of UOE steel pipe with high crushing strength
JP6773020B2 (en) Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method
JPH1136042A (en) High tensile strength steel excellent in arrestability and weldability and its production
JP2012241267A (en) High compressive strength steel pipe and method for producing the same
JP4276480B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
CN111655873B (en) Steel material for line pipe, method for producing same, and method for producing line pipe
JP4336294B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation characteristics after aging
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
CN111655872B (en) Steel material for line pipe, method for producing same, and method for producing line pipe
JP5020691B2 (en) Steel sheet for high-strength linepipe excellent in low-temperature toughness, high-strength linepipe, and production method thereof
KR102648172B1 (en) Steel materials for line pipes and their manufacturing method, and line pipes and their manufacturing method
JP7473770B2 (en) High ductility steel plate for steel pipes having excellent toughness in welded heat affected zone and manufacturing method thereof, and structural steel pipes having excellent toughness in welded heat affected zone and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R151 Written notification of patent or utility model registration

Ref document number: 4276480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees