JP2012241267A - High compressive strength steel pipe and method for producing the same - Google Patents

High compressive strength steel pipe and method for producing the same Download PDF

Info

Publication number
JP2012241267A
JP2012241267A JP2011115443A JP2011115443A JP2012241267A JP 2012241267 A JP2012241267 A JP 2012241267A JP 2011115443 A JP2011115443 A JP 2011115443A JP 2011115443 A JP2011115443 A JP 2011115443A JP 2012241267 A JP2012241267 A JP 2012241267A
Authority
JP
Japan
Prior art keywords
less
steel
steel pipe
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011115443A
Other languages
Japanese (ja)
Other versions
JP5782828B2 (en
Inventor
Nobuyuki Ishikawa
信行 石川
Hitoshi Sueyoshi
仁 末吉
Junji Shimamura
純二 嶋村
Masayuki Horie
正之 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011115443A priority Critical patent/JP5782828B2/en
Publication of JP2012241267A publication Critical patent/JP2012241267A/en
Application granted granted Critical
Publication of JP5782828B2 publication Critical patent/JP5782828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel pipe, in which the decrease in yield stress caused by the Bauschinger effect is inhibited by optimizing chemical components and metal structure of a steel sheet, and which has high compressive strength and superior weld HAZ toughness and shows an API-X80 grade or higher.SOLUTION: The steel pipe for a sour resistant line pipe of high compressive strength of a tensile strength of ≥630 MPa includes, by mass, C, Si, Mn, P, S, Al, 0.003-0.070% of Nb, 0.005-0.035% of Ti, and 0.01-0.5% of Mo, wherein C(%)-0.065Nb(%)-0.025Mo(%) is 0.025 to 0.060, C(%)+0.67Nb(%) is ≤0.10, and Pcm value is ≤0.20. The steel pipe is characterized in that in its metal structure, the total area fraction of bainite is ≥95%, fine precipitates containing Nb are precipitated in a dispersed state in bainite, and the area fraction of island martensite is ≤3%.

Description

本発明は、石油や天然ガス輸送用の耐サワー性能に優れたAPI−X80グレード以上の鋼管に関するものであり、特に、高い耐コラプス性能が要求される深海用ラインパイプやライザーまたはコンダクターケーシング等への使用に適した、高圧縮強度鋼管に関する。   The present invention relates to steel pipes of API-X80 grade or higher that have excellent sour resistance for oil and natural gas transportation, and particularly to deep sea line pipes, risers, conductor casings, and the like that require high collapse resistance. The present invention relates to a high compressive strength steel pipe suitable for use.

近年のエネルギー需要の増大に伴って、石油や天然ガスパイプラインの開発が盛んになっており、ガス田や油田の遠隔地化や輸送ルートの多様化のため、海洋を渡るパイプラインも数多く開発されている。海底パイプラインに使用されるラインパイプには水圧によるコラプス(圧潰)を防止するため、陸上パイプラインよりも管厚が厚いものが用いられ、また高い真円度が要求されるが、ラインパイプの材質としては外圧によって管周方向に生じる圧縮応力に対抗するため高い圧縮強度が必要となる。   With the increasing energy demand in recent years, oil and natural gas pipelines have been actively developed, and many pipelines across the ocean have been developed in order to remote gas fields and oil fields and diversify transportation routes. ing. Line pipes used in submarine pipelines are thicker than onshore pipelines to prevent collapse due to water pressure, and high roundness is required. As a material, high compressive strength is required to resist compressive stress generated in the pipe circumferential direction by external pressure.

一方、海底パイプラインに用いられる鋼管の強度グレードは一般的にAPI−X65グレードまでが広く用いられているが、パイプライン建設コストの削減の要請から、X70グレード以上の高強度鋼管の適用が広がっており、さらに高強度のX80グレード以上の高強度ラインパイプ用鋼管に対する要求か高まっている。   On the other hand, API-X65 grade is widely used as the strength grade of steel pipes used for submarine pipelines, but the application of high-strength steel pipes of X70 grade or higher has spread due to demands for reducing pipeline construction costs. In addition, the demand for high-strength steel pipes for high-strength line pipes of X80 grade or higher is increasing.

海底パイプラインの設計にはDNV規格(OS F−101)が適用される場合が多いが、本規格では外圧によるコラプス圧力を決定する因子として、パイプの管径D及び管厚t、真円度f、そして材料の引張降伏強度fyを用いてコラプス圧力が求められる。しかし、パイプのサイズと強度が同じであっても、パイプの製造方法によってコラプス圧力が変化することから、降伏強度には製造方法によって異なる係数(αfab)が掛けられることになる。この係数はシームレスパイプの場合は1.0すなわち引張降伏強度がそのまま適用できるが、UOEプロセスで製造されたパイプの場合は係数として0.85が与えられている。 The DNV standard (OS F-101) is often applied to the design of submarine pipelines. In this standard, pipe diameter D, pipe thickness t, and roundness are factors that determine the collapse pressure due to external pressure. The collapse pressure is determined using f 0 and the tensile yield strength fy of the material. However, even if the size and strength of the pipe are the same, the collapse pressure varies depending on the pipe manufacturing method, so the yield strength is multiplied by a different coefficient (αfab) depending on the manufacturing method. As for this coefficient, 1.0 for the seamless pipe, that is, the tensile yield strength can be applied as it is, but 0.85 is given as a coefficient for the pipe manufactured by the UOE process.

これは、UOEプロセスで製造されたパイプの圧縮強度が引張強度よりも低下するためであるが、UOE鋼管は造管の最終工程で拡管プロセスがあり管周方向に引張変形が与えられた後に圧縮を受けることになるため、バウシンガー効果によって降伏強度が低下することがその要因となっている。   This is because the compressive strength of the pipe manufactured by the UOE process is lower than the tensile strength. However, UOE steel pipe has a pipe expansion process at the final stage of pipe making and is compressed after tensile deformation is given in the pipe circumferential direction. As a result, the yield strength decreases due to the Bauschinger effect.

以上のことから、耐コラプス性能を高めるためには、パイプの圧縮強度を高めることが必要であるが、冷間成形で拡管プロセスを経て製造される鋼管の場合は、バウシンガー効果による強度低下が問題となっていた。   From the above, it is necessary to increase the compressive strength of the pipe in order to increase the anti-collapse performance, but in the case of a steel pipe manufactured through a tube expansion process by cold forming, the strength is reduced due to the Bauschinger effect. It was a problem.

UOE鋼管の耐コラプス性向上に関しては多くの検討がなされており、特許文献1には通電加熱で鋼管を加熱し拡管を行った後に一定時間以上温度を保持する方法が開示されている。この方法によれば、拡管によって導入された転位が回復し降伏強度が上昇するが、拡管後に5分以上通電加熱を続ける必要があるため、生産性が劣る。   Many studies have been made on improving the collapse resistance of UOE steel pipe, and Patent Document 1 discloses a method of maintaining a temperature for a certain time or more after heating and expanding a steel pipe by energization heating. According to this method, the dislocation introduced by the pipe expansion is recovered and the yield strength is increased, but the productivity is inferior because it is necessary to continue the electric heating for 5 minutes or more after the pipe expansion.

また、同様に拡管後に加熱を行いバウシンガー効果による降伏強度低下を回復させる方法として、特許文献2では鋼管外表面を内表面より高い温度に加熱することで、外面側の引張変形を受けた部分のバウシンガー効果を回復し内面側の圧縮の加工硬化を維持する方法が、また、特許文献3にはNb、Tiを添加した鋼の鋼板製造工程で熱間圧延後の加速冷却をAr温度以上から300℃以下まで行い、UOEプロセスで鋼管とした後に加熱を行う方法がそれぞれ提案されている。 Similarly, as a method of recovering the decrease in yield strength due to the Bauschinger effect by heating after tube expansion, in Patent Document 2, the outer surface of the steel tube is subjected to tensile deformation by heating to a temperature higher than the inner surface. The method of recovering the bausinger effect and maintaining the work hardening of compression on the inner surface side is disclosed in Patent Document 3 in which the accelerated cooling after hot rolling in the steel plate manufacturing process of steel added with Nb and Ti is performed at Ar 3 temperature. There have been proposed methods of performing heating from the above to 300 ° C. or less, and heating the steel pipe by the UOE process.

しかしながら、特許文献2の方法では鋼管の外表面と内表面の加熱温度と加熱時間を別々に管理することは実製造上、特に大量生産工程において品質を管理することは極めて困難であり、また、特許文献3の方法は鋼板製造における加速冷却停止温度を300℃以下の低い温度にする必要があるため、鋼板の歪が大きくなりUOEプロセスで鋼管とした場合の真円度が低下し、さらにはAr温度以上から加速冷却を行うために比較的高い温度で圧延を行う必要があり靱性が劣化するという問題があった。 However, in the method of Patent Document 2, it is extremely difficult to manage the heating temperature and the heating time of the outer surface and the inner surface of the steel pipe separately in actual production, particularly in the mass production process, The method of Patent Document 3 requires that the accelerated cooling stop temperature in steel plate production be a low temperature of 300 ° C. or lower, so that the distortion of the steel plate increases and the roundness in the case of using a steel pipe in the UOE process decreases. In order to perform accelerated cooling from the Ar 3 temperature or higher, it is necessary to perform rolling at a relatively high temperature, which causes a problem that the toughness deteriorates.

一方、拡管後に加熱を行わずに鋼管の成形方法によって圧縮強度を高める方法としては、特許文献4にO成型時の圧縮率をその後の拡管率よりも大きくする方法が開示されている。この方法によれば実質的に管周方向の引張予歪が無いためバウシンガー効果が発現されず高い圧縮強度が得られる。しかしながら、拡管率が低いと鋼管の真円度を維持することが困難となり鋼管の耐コラプス性能が劣化させることになりかねない。   On the other hand, as a method for increasing the compressive strength by a method of forming a steel pipe without heating after the pipe expansion, Patent Document 4 discloses a method in which the compression ratio during O-molding is made larger than the subsequent pipe expansion ratio. According to this method, since there is substantially no tensile pre-strain in the pipe circumferential direction, the Bauschinger effect is not exhibited and a high compressive strength is obtained. However, if the expansion ratio is low, it is difficult to maintain the roundness of the steel pipe, and the collapse resistance performance of the steel pipe may be deteriorated.

また、特許文献5には、圧縮強度の低いシーム溶接部近傍と溶接部から180°の位置の直径が鋼管の最大径となるようにすることで耐コラプス性能を高める方法が開示されている。しかし、実際のパイプラインの敷設時においてコラプスが問題になるのは海底に到達したパイプが曲げ変形を受ける部分(サグベンド部)であり、鋼管のシーム溶接部の位置とは無関係に円周溶接され海底に敷設されるため、シーム溶接部が長径になるようにしても実際上は何ら効果を発揮しない。   Further, Patent Document 5 discloses a method for improving the anti-collapse performance by making the diameter near the seam welded portion having a low compressive strength and the diameter at a position 180 ° from the welded portion the maximum diameter of the steel pipe. However, when actual pipelines are laid, collapse is a problem where the pipe that reaches the seabed undergoes bending deformation (sag bend), and is welded circumferentially regardless of the position of the seam weld on the steel pipe. Since it is laid on the seabed, there is no practical effect even if the seam weld has a long diameter.

さらに、特許文献6には加速冷却後に再加熱を行い鋼板表層部の硬質第2相分率を低減することによりバウシンガー効果による降伏応力低下が小さい鋼板が提案されている。   Further, Patent Document 6 proposes a steel plate in which the yield stress reduction due to the Bauschinger effect is small by performing reheating after accelerated cooling to reduce the hard second phase fraction of the steel plate surface layer portion.

また、特許文献7には加速冷却後の再加熱処理において鋼板中心部の温度上昇を抑制しつつ鋼板表層部を加熱する、板厚が30mm以上の高強度耐サワーラインパイプ用鋼板の製造方法が提案されている。これによれば、DWTT(Drop Weight Tear Test:落重引裂試験)性能の低下を抑制しつつ鋼板表層部の硬質第2相分率が低減されるため、鋼板表層部の硬度が低減し材質バラツキの小さな鋼板が得られるだけでなく、硬質第2相低減によるバウシンガー効果の低下も期待される。   Patent Document 7 discloses a method for manufacturing a steel sheet for a high-strength sour line pipe having a thickness of 30 mm or more, in which the surface layer of the steel sheet is heated while suppressing the temperature rise at the center of the steel sheet in the reheating treatment after accelerated cooling. Proposed. According to this, since the hard second phase fraction of the steel plate surface layer portion is reduced while suppressing a drop in DWTT (Drop Weight Tear Test) performance, the hardness of the steel plate surface layer portion is reduced and the material variation is reduced. In addition to obtaining a small steel plate, it is expected that the Bausinger effect will be reduced by reducing the hard second phase.

しかし、特許文献6及び7に記載の技術はX70グレード以上の強度を安定的に得ることは困難であり、またバウシンガー効果は結晶粒径や固溶炭素量等、様々な組織因子の影響を受けるため、単に硬質第2相の低減のみでは圧縮強度の高い鋼管は得られない。   However, it is difficult for the techniques described in Patent Documents 6 and 7 to stably obtain a strength of X70 grade or higher, and the Bausinger effect is affected by various tissue factors such as crystal grain size and solute carbon content. Therefore, a steel pipe with high compressive strength cannot be obtained simply by reducing the hard second phase.

特開平9−49025号公報JP 9-49025 A 特開2003−342639号公報JP 2003-342639 A 特開2004−35925号公報JP 2004-35925 A 特開2002−102931号公報JP 2002-102931 A 特開2003−340519号公報JP 2003-340519 A 特開2008−56962号公報JP 2008-56962 A 特開2009−52137号公報JP 2009-52137 A

本発明は上記事情に鑑みなされたもので、API−X80グレード以上の海底パイプラインやライザーまたはコンダクターケーシング等へ適用するために必要な高強度と優れた靱性を有する鋼管であり、鋼管成形での特殊な成形条件や、造管後の熱処理を必要とせず、鋼板の化学成分と金属組織を最適化することでバウシンガー効果による降伏応力低下を抑制し、圧縮強度が高い鋼管を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a steel pipe having high strength and excellent toughness required for application to API-X80 grade or higher submarine pipelines, risers or conductor casings. It does not require special forming conditions or heat treatment after pipe making, and optimizes the chemical composition and metal structure of the steel sheet to suppress yield stress reduction due to the Bauschinger effect and provide a steel pipe with high compressive strength. Objective.

本発明者らは、はじめにバウシンガー効果抑制による圧縮強度向上と、強度靱性及び耐サワー性能とを両立させるために種々の実験を試みた結果、以下の知見を得るに至った。   The present inventors first tried various experiments in order to achieve both compression strength improvement by suppressing the Bauschinger effect, strength toughness, and sour resistance performance, and as a result, the following knowledge was obtained.

なお、本発明では、圧縮強度は圧縮降伏強度を意味し、圧縮降伏強度が530MPa以上であれば圧縮強度が良好であるとする。さらに好ましくは570MPa以上である。   In the present invention, the compressive strength means the compressive yield strength, and if the compressive yield strength is 530 MPa or more, the compressive strength is good. More preferably, it is 570 MPa or more.

(1)バウシンガー効果による強度低下は異相界面や硬質第2相での転位集積による逆応力の発生が原因であり、その防止には、第一に転位の集積場所となる島状マルテンサイト(MA)等の硬質相を低減することが最も効果的である。   (1) The strength reduction due to the Bauschinger effect is caused by the occurrence of reverse stress due to dislocation accumulation at the heterogeneous interface or the hard second phase. To prevent this, first of all, island martensite (the location of dislocation accumulation) It is most effective to reduce the hard phase such as MA).

(2)しかし、API−X80グレード以上の高強度鋼材は合金成分が多く、非常に焼入れ性が高いため、鋼板製造時の加速冷却によりMAを生成しやすい。これは、加速冷却後のベイナイト変態時に未変態オーステナイトへの炭素の濃化が起き、炭素が濃化した領域がMAに変態するためである。このようなMA生成を抑制するためには、加速冷却後に炭化物として析出させることで未変態オーステナイトへの炭素の濃化を抑制することが効果的である。   (2) However, high-strength steel materials of API-X80 grade or higher have many alloy components and have very high hardenability, so that MA is easily generated by accelerated cooling at the time of steel plate production. This is because concentration of carbon to untransformed austenite occurs at the time of bainite transformation after accelerated cooling, and the region enriched with carbon transforms to MA. In order to suppress such MA formation, it is effective to suppress the concentration of carbon to untransformed austenite by precipitation as a carbide after accelerated cooling.

(3)上記のような炭化物の析出は強度上昇のためにも効果的であるが、炭化物生成元素である、NbとMoを複合添加することでNbとMoからなる非常に微細な複合炭化物の生成が得られるため高強度が確保でき、さらに、上述の通り、MAの低減によってバウシンガー効果による圧縮強度の低下を抑制することが可能となる。   (3) The precipitation of carbides as described above is effective for increasing the strength, but by adding Nb and Mo, which are carbide forming elements, a very fine composite carbide composed of Nb and Mo. Since generation is obtained, high strength can be ensured, and further, as described above, reduction in compression strength due to the Bauschinger effect can be suppressed by reducing MA.

(4)鋼材のC量とNb等の炭化物形成元素の添加量を適正化し、固溶C量を十分に確保することで、転位と固溶Cの相互作用が促進され、荷重反転時の転位の移動を阻害し逆応力による強度低下が抑制される。しかし、過剰な固溶C量はMA生成を促進し、バウシンガー効果による圧縮強度低下の原因となる。そのため、固溶C量を極めて厳格に管理する必要があり、鋼材に添加するCと炭化物形成元素との関係を一定範囲に厳しく限定することで、固溶Cによる効果を有効に活用しMA生成の抑制が可能となる。   (4) By optimizing the amount of C in steel and the amount of carbide-forming elements such as Nb and securing a sufficient amount of solute C, the interaction between dislocation and solute C is promoted. This prevents the movement of the steel and prevents a decrease in strength due to reverse stress. However, an excessive amount of solute C promotes the formation of MA and causes a decrease in compressive strength due to the Bauschinger effect. For this reason, it is necessary to control the amount of dissolved C very strictly. By strictly limiting the relationship between C added to the steel material and carbide forming elements to a certain range, the effect of the dissolved C can be effectively utilized to generate MA. Can be suppressed.

本発明は、上記の知見に基づきなされたもので、
第一の発明は、質量%で、C:0.03〜0.08%、Si:0.01〜0.30%、Mn:1.2〜2.0%、P:0.020%以下、S:0.0030%以下、Al:0.01〜0.08%、Nb:0.003〜0.070%、Ti:0.005〜0.035%、Mo:0.01〜0.5%、N:0.0020〜0.0060%を含有し、
C(%)−0.065Nb(%)−0.025Mo(%)が0.025〜0.060で、
C(%)+0.67Nb(%)が0.10以下であり、
下記(1)式で表されるPcm値が0.20以下であり、残部がFe及び不可避的不純物からなる鋼管であり、
金属組織がベイナイトの面積分率が95%以上で、ベイナイト中にNbを含有する微細析出物が分散析出し、島状マルテンサイト(MA)の面積分率が3%以下であることを特徴とする、引張強度630MPa以上の高圧縮強度鋼管。
Pcm=C(%)+Si(%)/30+Mn(%)/20+Cu(%)/20+Ni(%)/60+Cr(%)/20+Mo(%)/15+V(%)/10+5B(%)・・・(1)
ただし、各元素は含有量(質量%)であり、含有しない元素は0とする。
The present invention has been made based on the above findings,
1st invention is the mass%, C: 0.03-0.08%, Si: 0.01-0.30%, Mn: 1.2-2.0%, P: 0.020% or less , S: 0.0030% or less, Al: 0.01-0.08%, Nb: 0.003-0.070%, Ti: 0.005-0.035%, Mo: 0.01-0. 5%, N: 0.0020 to 0.0060%,
C (%)-0.065Nb (%)-0.025Mo (%) is 0.025-0.060,
C (%) + 0.67Nb (%) is 0.10 or less,
The Pcm value represented by the following formula (1) is 0.20 or less, and the balance is a steel pipe composed of Fe and inevitable impurities,
The metal structure has an area fraction of bainite of 95% or more, fine precipitates containing Nb are dispersed in bainite, and the area fraction of island martensite (MA) is 3% or less. A high compressive strength steel pipe having a tensile strength of 630 MPa or more.
Pcm = C (%) + Si (%) / 30 + Mn (%) / 20 + Cu (%) / 20 + Ni (%) / 60 + Cr (%) / 20 + Mo (%) / 15 + V (%) / 10 + 5B (%) (1) )
However, each element is content (mass%), and the element which does not contain is set to 0.

第二の発明は、さらに、質量%で、Cu:0.5%以下、Ni:1.0%以下、Cr:1.0%以下、V:0.07%以下、Ca:0.0005〜0.0035%の中から選ばれる1種以上を含有し、
C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)が0.025〜0.060であることを特徴とする第一の発明に記載の高圧縮強度鋼管。
ただし、各元素は含有量(質量%)であり、含有しない元素は0とする。
The second invention further includes, in mass%, Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.0% or less, V: 0.07% or less, Ca: 0.0005- Containing one or more selected from 0.0035%,
C (%)-0.065Nb (%)-0.025 Mo (%)-0.057 V (%) is 0.025-0.060, The high compressive strength as described in 1st invention characterized by the above-mentioned Steel pipe.
However, each element is content (mass%), and the element which does not contain is set to 0.

第三の発明は、鋼スラブを、1000〜1200℃に加熱し、未再結晶温度域の圧下率が60%以上、圧延終了温度がAr〜(Ar+70℃)の熱間圧延を行い、引き続き、(Ar−30℃)以上の温度から10℃/秒以上の冷却速度で、鋼板を300〜600℃まで冷却を行い、引き続いて前記鋼板を550〜700℃に再加熱を行うことにより鋼板を製造し、その後、前記鋼板を冷間にて成形し鋼管形状とし、突き合せ部を溶接し、次いで、拡管率を0.4%〜1.2%とする拡管を行うことを特徴とする、第一又は第二の発明に記載の高圧縮強度鋼管の製造方法。 The third invention, the steel slab was heated to 1000 to 1200 ° C., pre-recrystallization temperature region rolling reduction of 60% or more, the finish rolling temperature is subjected to hot rolling of Ar 3 ~ (Ar 3 + 70 ℃) , subsequently, in (Ar 3 -30 ℃) temperatures above the 10 ° C. / sec or more cooling rate, cooling the steel sheet to 300 to 600 ° C., by performing the reheating the steel sheet to 550 to 700 ° C. subsequently A steel sheet is manufactured by the following, and then the steel sheet is formed in a cold shape to form a steel pipe shape, the butt portion is welded, and then the pipe expansion ratio is 0.4% to 1.2%. A method for producing a high compressive strength steel pipe according to the first or second invention.

本発明によれば、海底パイプラインやライザーまたはコンダクターケーシング等へ適用するために必要な高強度でかつ高圧縮強度の鋼管が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the high strength and high compressive strength steel pipe required in order to apply to a submarine pipeline, a riser, a conductor casing, etc. is obtained.

本発明を実施するための形態を、以下説明する。
まず、本発明の各構成要件の限定理由について説明する。
The form for implementing this invention is demonstrated below.
First, the reason for limitation of each component requirement of this invention is demonstrated.

1.化学成分について
はじめに、本発明の高強度高靱性鋼板が含有する化学成分の限定理由を説明する。なお、成分%表記は全て質量%を意味する。
1. About a chemical component, the reason for limitation of the chemical component which the high intensity | strength high toughness steel plate of this invention contains is demonstrated first. In addition, all the component% description means the mass%.

C:0.03〜0.08%
Cは、加速冷却によって製造される鋼板の強度を高めるために最も有効な元素である。しかし、0.03%未満では十分な強度を確保できない。一方、0.08%を超えるとMAが生成し圧縮強度が低下するだけでなく、溶接熱影響部靱性(以下、HAZ靭性とも称する)を劣化させる。従って、C量を0.03〜0.08%の範囲内とする。
C: 0.03-0.08%
C is the most effective element for increasing the strength of the steel sheet produced by accelerated cooling. However, if it is less than 0.03%, sufficient strength cannot be secured. On the other hand, if it exceeds 0.08%, MA is generated and the compressive strength is lowered, and the weld heat affected zone toughness (hereinafter also referred to as HAZ toughness) is deteriorated. Therefore, the C content is set in the range of 0.03 to 0.08%.

Si:0.01〜0.30%
Siは脱酸のために添加される元素であり、この効果は0.01%以上で発揮されるが、0.3%を超えると靱性や溶接性を劣化させ、さらに、MAの生成が促進されるため圧縮強度が低下する。従ってSi量は0.01〜0.30%の範囲とする。
Si: 0.01-0.30%
Si is an element added for deoxidation, and this effect is exhibited at 0.01% or more, but if it exceeds 0.3%, the toughness and weldability are deteriorated, and further, the formation of MA is promoted. Therefore, the compressive strength is reduced. Accordingly, the Si content is in the range of 0.01 to 0.30%.

Mn:1.2〜2.0%
Mnは鋼の強度及び靱性の向上のため添加するが、1.2%未満ではその効果が十分ではなく、2.0%を超えると溶接性が劣化する。従って、Mn量は1.2〜2.0%の範囲とする。
Mn: 1.2 to 2.0%
Mn is added to improve the strength and toughness of the steel, but if it is less than 1.2%, the effect is not sufficient, and if it exceeds 2.0%, the weldability deteriorates. Therefore, the Mn content is in the range of 1.2 to 2.0%.

P:0.020%以下
Pは不可避的不純物元素であり、鋼材の強度には大きな影響を及ぼさないが、HAZ靱性を劣化させる元素であるため、P量を0.020%以下とする。好ましくは、0.015%以下とする。
P: 0.020% or less P is an unavoidable impurity element and does not have a great influence on the strength of the steel material, but is an element that deteriorates the HAZ toughness, so the P content is 0.020% or less. Preferably, it is 0.015% or less.

S:0.0030%以下
Sは不可避的不純物元素であり、鋼中においては一般にMnS系の介在物となり、靱性の劣化、特にシャルピー吸収エネルギーの低下を招くため、S量を0.0030%以下とする。より高い性能が要求される場合は、S量をさらに低下することが有効であり、好ましくは0.0020%以下とする。
S: 0.0030% or less S is an unavoidable impurity element, and generally becomes an MnS-based inclusion in steel, leading to deterioration of toughness, particularly a decrease in Charpy absorbed energy, so the amount of S is 0.0030% or less. And When higher performance is required, it is effective to further reduce the amount of S, preferably 0.0020% or less.

Al:0.01〜0.08%
Alは脱酸剤として添加されるが、この効果は0.01%以上で発揮されるが、0.08%を超えると清浄度の低下により延性を劣化させる。従って、Al量は0.01〜0.08%とする。
Al: 0.01 to 0.08%
Al is added as a deoxidizer, and this effect is exhibited at 0.01% or more. However, if it exceeds 0.08%, ductility is deteriorated due to a decrease in cleanliness. Therefore, the Al amount is set to 0.01 to 0.08%.

Nb:0.003〜0.070%
Nbは本発明において重要な元素である。Nbは、NbCとして析出し強度上昇に極めて有効な元素であり、また、圧延時の粒成長を抑制し、微細粒化により靱性も向上させる。しかし、Nb量が0.003%未満ではその効果が小さく、0.070%を超えて含有しても析出強化に必要なスラブ加熱時の固溶Nb量は増加せず強度上昇が飽和する。また、HAZ靱性に悪影響を及ぼす元素でもあることから、Nb量は0.003〜0.070%の範囲とする。より厳しいHAZ靱性が必要とされる場合は、0.03〜0.05%とすることが望ましい。
Nb: 0.003 to 0.070%
Nb is an important element in the present invention. Nb is an element that precipitates as NbC and is extremely effective for increasing the strength, suppresses grain growth during rolling, and improves toughness through fine graining. However, if the Nb content is less than 0.003%, the effect is small. Even if the Nb content exceeds 0.070%, the solid solution Nb content during slab heating required for precipitation strengthening does not increase, and the strength increase is saturated. Moreover, since it is also an element which has a bad influence on HAZ toughness, Nb amount shall be 0.003-0.070% of range. When more severe HAZ toughness is required, 0.03 to 0.05% is desirable.

Ti:0.005〜0.035%
Tiは本発明において重要な元素である。Tiは、Nb、V、Moと共に微細な複合炭化物を形成するが、一定量以上の含有によってNbCを主体とした複合炭化物がさらに微細化され、強度上昇に大きく寄与する。しかし、0.005%未満ではその効果が十分でなく、一方、0.035%を超えて含有するとHAZ靱性が劣化する。析出強化を十分に活用し、且つHAZ靱性劣化を抑制するという観点から、Ti量は0.005〜0.035%とする。
Ti: 0.005-0.035%
Ti is an important element in the present invention. Ti forms a fine composite carbide together with Nb, V, and Mo, but the composite carbide mainly composed of NbC is further refined by containing a certain amount or more, and greatly contributes to an increase in strength. However, if the content is less than 0.005%, the effect is not sufficient. On the other hand, if the content exceeds 0.035%, the HAZ toughness deteriorates. From the viewpoint of fully utilizing precipitation strengthening and suppressing HAZ toughness deterioration, the Ti amount is set to 0.005 to 0.035%.

Mo:0.01〜0.5%
Moは、NbやTiと同様に複合炭化物を生成し、析出強化による強度上昇に極めて有効な元素であり、0.01%以上の添加でその効果が得られる。しかし、0.5%を超えて添加すると溶接部のHAZ靱性が劣化する。従って、Moの含有量は0.01〜0.5%とする。
Mo: 0.01 to 0.5%
Mo, like Nb and Ti, produces a composite carbide and is an extremely effective element for increasing the strength by precipitation strengthening, and its effect can be obtained by adding 0.01% or more. However, if added over 0.5%, the HAZ toughness of the weld zone deteriorates. Therefore, the Mo content is set to 0.01 to 0.5%.

N:0.0020〜0.0060%
Nは鋼中に不純物として含有されるがCと同様に鋼中に固溶元素として存在すると歪時効を促進し、バウシンガー効果による圧縮強度低下の防止に寄与する。しかし、0.0020%未満ではその効果が小さく、また、0.0060%を超えて含有すると、靱性が劣化する。よって、N量は0.0020〜0.0060%の範囲とする。
N: 0.0020 to 0.0060%
N is contained as an impurity in the steel, but if it exists as a solid solution element in the steel as in C, it promotes strain aging and contributes to the prevention of a decrease in compressive strength due to the Bauschinger effect. However, if it is less than 0.0020%, the effect is small, and if it exceeds 0.0060%, the toughness deteriorates. Therefore, the N amount is in the range of 0.0020 to 0.0060%.

C(%)−0.065Nb(%)−0.025Mo(%):0.025〜0.060
本要件は本発明で最も重要な構成要件である。本式で各元素記号は、含有量(質量%)である。本発明では、固溶Cと転位との相互作用により逆応力発生を抑制することで、バウシンガー効果を低減し、鋼管の圧縮強度を上昇させるため、鋼中の有効な固溶C量を確保することが重要となる。一般に、鋼中のCは、セメンタイトやMAとして析出するほか、Nb、Mo等の炭化物形成元素と結合し炭化物として析出し、固溶C量が減少する。このとき、C含有量に対してNb及びMo含有量が多すぎるとNb、Mo炭化物の析出量が多くなるため、十分な固溶C量が得られない。
C (%)-0.065 Nb (%)-0.025 Mo (%): 0.025-0.060
This requirement is the most important component in the present invention. In this formula, each element symbol is a content (% by mass). In the present invention, by suppressing the occurrence of reverse stress by the interaction between the solid solution C and the dislocation, the Bausinger effect is reduced and the compressive strength of the steel pipe is increased, so that an effective amount of solid solution C in the steel is ensured. It is important to do. In general, C in steel precipitates as cementite or MA, and also combines with carbide-forming elements such as Nb and Mo to precipitate as carbide, so that the amount of dissolved C decreases. At this time, if there is too much Nb and Mo content with respect to C content, since the precipitation amount of Nb and Mo carbide will increase, sufficient solute C amount cannot be obtained.

そのためには、C(%)−0.065Nb(%)−0.025Mo(%)が0.025以上必要である。また、固溶C量が多すぎると、MAが生成し圧縮強度の低下を起こすため、C(%)−0.065Nb(%)−0.025Mo(%)の上限は0.060とする必要がある。   For that purpose, C (%)-0.065Nb (%)-0.025Mo (%) needs to be 0.025 or more. Further, if the amount of dissolved C is too large, MA is generated and the compressive strength is lowered, so the upper limit of C (%)-0.065Nb (%)-0.025Mo (%) needs to be 0.060. There is.

C(%)+0.67Nb(%):0.10以下
本要件は炭化物の析出強化によって十分な強度を得るために必要である。十分な量の炭化物の析出を得るためには、鋼板圧延前のスラブ加熱段階で十分な量の固溶Nbを得る必要があるが、CとNbの量に応じてNbCの溶解温度が変化するため、C、Nb添加量が多い場合はNbCの溶解温度が上昇し十分なNb固溶量が得られない。一般的なスラブ加熱温度の範囲では、C(%)+0.67Nb(%)が0.10を超えると、NbCの溶解温度が高くなり、固溶Nb量の不足による強度不足を生じるため、本発明においては、C(%)+0.67Nb(%)を0.10以下に規定する。スラブ加熱温度のバラツキを考慮して、十分な量の固溶Nbをより確実に得るためには、C(%)+0.67Nb(%)を0.08以下とすることが好ましい。
C (%) + 0.67 Nb (%): 0.10 or less This requirement is necessary for obtaining sufficient strength by precipitation strengthening of carbides. In order to obtain a sufficient amount of carbide precipitation, it is necessary to obtain a sufficient amount of solid solution Nb in the slab heating stage before rolling the steel sheet, but the melting temperature of NbC varies depending on the amounts of C and Nb. For this reason, when the amount of C and Nb added is large, the melting temperature of NbC increases and a sufficient amount of Nb solid solution cannot be obtained. In the general slab heating temperature range, if C (%) + 0.67Nb (%) exceeds 0.10, the melting temperature of NbC increases, resulting in insufficient strength due to insufficient amount of solid solution Nb. In the present invention, C (%) + 0.67 Nb (%) is specified to be 0.10 or less. In consideration of variations in the slab heating temperature, it is preferable to set C (%) + 0.67Nb (%) to 0.08 or less in order to obtain a sufficient amount of solid solution Nb more reliably.

本発明では上記の化学成分の他に、以下の元素を選択的元素として含有させることができる。   In the present invention, in addition to the above chemical components, the following elements can be contained as selective elements.

Cu:0.5%以下
Cuは、靱性の改善と強度の上昇に有効な元素であるが、0.5%を超えて含有すると溶接部のHAZ靱性が劣化する。従って、Cuを含有する場合はその含有量を0.5%以下とすることが好ましい。
Cu: 0.5% or less Cu is an element effective for improving toughness and increasing strength, but if contained over 0.5%, the HAZ toughness of the welded portion deteriorates. Therefore, when it contains Cu, it is preferable to make the content into 0.5% or less.

Ni:1.0%以下
Niは、靱性の改善と強度の上昇に有効な元素であるが、1.0%を超えて含有すると溶接部のHAZ靱性が劣化する。従って、Niを含有する場合はその含有量を1.0%以下とすることが好ましい。
Ni: 1.0% or less Ni is an element effective for improving toughness and increasing strength, but if it exceeds 1.0%, the HAZ toughness of the welded portion deteriorates. Therefore, when it contains Ni, it is preferable to make the content into 1.0% or less.

Cr:1.0%以下
Crは、焼き入れ性を高めることで強度の上昇に有効な元素であるが、1.0%を超えて含有すると溶接部のHAZ靱性を劣化させる。従って、Crを含有する場合はその含有量を1.0%以下とすることが好ましい。
Cr: 1.0% or less Cr is an element effective for increasing the strength by increasing the hardenability. However, if it exceeds 1.0%, the HAZ toughness of the welded portion is deteriorated. Therefore, when it contains Cr, it is preferable to make the content into 1.0% or less.

V:0.07%以下
Vは、NbやTiと同様に複合炭化物を生成し、析出強化による強度上昇に極めて有効な元素であるが、0.07%を超えて含有すると溶接部のHAZ靱性が劣化する。従って、Vを含有する場合はその含有量を0.07%以下とすることが好ましい。また、溶接部の会合部HAZ等、複数サイクルの熱履歴を受ける部分では、VCとして析出しHAZ部を硬化させ著しい靱性劣化を生じるため、DNV規格などの厳しいHAZ靱性要求がある場合は、Vの含有量を0.04%未満にすることがより好ましい。
V: 0.07% or less V is a very effective element for generating a composite carbide as in Nb and Ti and increasing the strength by precipitation strengthening. However, if it exceeds 0.07%, the HAZ toughness of the welded portion Deteriorates. Therefore, when it contains V, it is preferable to make the content into 0.07% or less. In addition, in a portion that receives a thermal history of multiple cycles such as a meeting part HAZ of a welded part, since it precipitates as VC and hardens the HAZ part to cause remarkable toughness deterioration, More preferably, the content of is less than 0.04%.

Ca:0.0005〜0.0035%
Caは硫化物系介在物の形態を制御し、延性を改善するために有効な元素であるが、0.0005%未満ではその効果がなく、0.0035%を超えて含有しても効果が飽和し、むしろ清浄度の低下により靱性を劣化させる。従って、Caを含有する場合は、Ca量は0.0005〜0.0035%の範囲とすることが好ましい。
C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%):0.025〜0.060
本発明の選択的元素であるVは、Nbと同様に炭化物を形成する元素であり、これらの元素も十分な固溶C量が得られる範囲で添加することが好ましい。しかし、C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)で表される関係式の値が0.025未満では固溶C量が不足するため、C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)を0.025〜0.060とすることが好ましい。
ただし、各元素は含有量(質量%)であり、含有しない元素は0とする。
Ca: 0.0005 to 0.0035%
Ca is an element effective for controlling the form of sulfide inclusions and improving ductility. However, if it is less than 0.0005%, there is no effect, and even if it exceeds 0.0035%, it is effective. Saturates, but rather deteriorates toughness due to reduced cleanliness. Therefore, when it contains Ca, it is preferable to make Ca amount into the range of 0.0005 to 0.0035%.
C (%)-0.065 Nb (%)-0.025 Mo (%)-0.057 V (%): 0.025 to 0.060
V, which is a selective element of the present invention, is an element that forms a carbide similarly to Nb, and these elements are also preferably added within a range where a sufficient amount of solute C can be obtained. However, if the value of the relational expression represented by C (%) − 0.065Nb (%) − 0.025Mo (%) − 0.057V (%) is less than 0.025, the amount of dissolved C is insufficient. It is preferable to set C (%)-0.065Nb (%)-0.025Mo (%)-0.057V (%) to 0.025 to 0.060.
However, each element is content (mass%), and the element which does not contain is set to 0.

下式(1)で表されるPcm値が0.20以下
Pcm=C(%)+Si(%)/30+Mn(%)/20+Cu(%)/20+Ni(%)/60+Cr(%)/20+Mo(%)/15+V(%)/10+5B(%)・・・(1)
ただし、各元素は含有量(質量%)であり、添加しない元素は0とする。
ここで定義されるPcm値は、溶接性を代表する指標であり、Pcm値が高いほど溶接HAZ靱性が劣化する。特にAPI−X80グレード以上の高強度鋼では、その影響が顕著となるため、Pcm値を厳しく制限する必要がある。しかし、Pcm値が0.20以下であれば、良好な溶接HAZ部の靱性が確保できるため、その上限を0.20とする。さらに厳しいHAZ靱性要求がある場合は、その上限を0.18にすることが望ましい。
Pcm value represented by the following formula (1) is 0.20 or less Pcm = C (%) + Si (%) / 30 + Mn (%) / 20 + Cu (%) / 20 + Ni (%) / 60 + Cr (%) / 20 + Mo (% ) / 15 + V (%) / 10 + 5B (%) (1)
However, each element is a content (% by mass), and an element not added is 0.
The Pcm value defined here is an index representing weldability, and the higher the Pcm value, the worse the welded HAZ toughness. Especially in high strength steels of API-X80 grade or higher, the effect becomes significant, so the Pcm value must be strictly limited. However, if the Pcm value is 0.20 or less, good toughness of the welded HAZ part can be secured, so the upper limit is made 0.20. If there is a more stringent HAZ toughness requirement, the upper limit is desirably set to 0.18.

なお、本発明の鋼の残部はFe及び不可避的不純物であるが、上記以外の元素及び不可避的不純物については、本発明の効果を損なわない限り含有することができる。   The balance of the steel of the present invention is Fe and inevitable impurities, but elements other than the above and inevitable impurities can be contained unless the effects of the present invention are impaired.

2.金属組織について
本発明における金属組織の限定理由を以下に示す。
2. About metal structure The reason for limitation of the metal structure in the present invention is shown below.

ベイナイト面積分率:95%以上
バウシンガー効果を抑制し高い圧縮強度を得るためには、軟質なフェライト相や硬質な第2相のない均一な組織とし、変形時の組織内部で生じる局所的な転位の集積を抑制することが必要である。そのため、ベイナイト主体の組織とする。その効果を得るためにはベイナイトの面積分率が95%以上必要である。
Bainite area fraction: 95% or more In order to suppress the Bausinger effect and obtain a high compressive strength, a uniform structure without a soft ferrite phase or a hard second phase is used, and a local structure generated inside the structure at the time of deformation. It is necessary to suppress the accumulation of dislocations. Therefore, it is a bainite-based structure. In order to obtain the effect, the area fraction of bainite needs to be 95% or more.

なお、後述のように、熱間圧延に引き続く加速冷却の後、直ちに再加熱することにより、Nbを含有する微細析出物がベイナイト中に分散析出していることが、本発明の金属組織の特徴である。このNbを含有する微細析出物の粒径は、十分な析出強化量を確保するために、10nm以下であることが好ましい。   As will be described later, after accelerated cooling subsequent to hot rolling, immediately after reheating, fine precipitates containing Nb are dispersed and precipitated in bainite. It is. The particle size of the fine precipitate containing Nb is preferably 10 nm or less in order to ensure a sufficient precipitation strengthening amount.

島状マルテンサイト(MA)の面積分率:3%以下
島状マルテンサイト(MA)は非常に硬質な相であり、変形時に局所的な転位の集積を促進し、バウシンガー効果により圧縮強度の低下を招くため、その面積分率を厳しく制限する必要がある。しかし、MAの面積分率が3%以下ではその影響が小さく圧縮強度の低下も生じないため、島状マルテンサイト(MA)の面積分率を3%以下に規定する。
Island-like martensite (MA) area fraction: 3% or less Island-like martensite (MA) is a very hard phase, which promotes the accumulation of local dislocations during deformation and has a compressive strength due to the Bauschinger effect. In order to reduce, it is necessary to restrict | limit the area fraction severely. However, when the area fraction of MA is 3% or less, the influence is small and the compressive strength does not decrease. Therefore, the area fraction of island-like martensite (MA) is specified to 3% or less.

本発明では、上記の金属組織的な特徴を有することで、バウシンガー効果による圧縮強度の低下が抑制され、高い圧縮強度が達成されるが、より大きな効果を得るためにはMAのサイズは微細であることが望ましい。MAの平均粒径が小さいほど、局所的な歪みが集中することなく分散されるため、歪み集中量も少なくなりバウシンガー効果の発生がさらに抑制される。そのためには、MAの平均粒子径を1μm以下とすることが好ましい。   In the present invention, by having the above-described metallographic features, a decrease in compressive strength due to the Bauschinger effect is suppressed and a high compressive strength is achieved, but in order to obtain a greater effect, the size of the MA is fine. It is desirable that As the average particle size of MA is smaller, the local strain is dispersed without concentrating, so that the amount of strain concentration is reduced and the occurrence of the Bausinger effect is further suppressed. For that purpose, it is preferable that the average particle diameter of MA is 1 μm or less.

また、熱間圧延後の加速冷却で生成するベイナイト相は、特に鋼板表層部では、冷却停止温度が低下し、MAを含む組織となるが、ベイナイトの粒径が小さい場合はMAも微細となり、その後の再加熱でセメンタイトに分解されやすくなるため、ベイナイトの粒径は5μm以下にすることが好ましい。   In addition, the bainite phase generated by accelerated cooling after hot rolling, particularly in the steel sheet surface layer portion, has a cooling stop temperature lowering and becomes a structure containing MA, but when the grain size of bainite is small, MA becomes fine, Since it becomes easy to decompose into cementite by subsequent reheating, the particle size of bainite is preferably 5 μm or less.

上記以外の金属組織として、フェライト、セメンタイトやマルテンサイトなどの組織も含まれる場合があるが、それらの組織の合計が面積分率で5%未満であれば、特にバウシンガー特性やその他の性能に影響を与えない。よって、ベイナイト及びMA以外の組織の面積分率の合計を5%未満とすることが好ましい。   Metal structures other than the above may include structures such as ferrite, cementite, and martensite. If the total of these structures is less than 5% in terms of area fraction, it is particularly effective for bauschinger characteristics and other performances. Does not affect. Therefore, it is preferable that the total area fraction of the structures other than bainite and MA is less than 5%.

一般に、加速冷却を適用して製造された鋼板の金属組織は、鋼板の板厚方向で異なり均一でない場合がある。外圧を受ける鋼管のコラプスは、周長の小さな鋼管内面側の塑性変形が先に生じることで起こるため、圧縮強度としては鋼管の内面側の特性が重要となり、一般に圧縮試験片は鋼管の内面側より採取する。よって、上記の金属組織は鋼管内面側の組織を規定するものであり、鋼管の性能を代表する位置として、内面側の板厚1/4の位置の組織とする。   Generally, the metal structure of a steel plate manufactured by applying accelerated cooling is different in the plate thickness direction of the steel plate and may not be uniform. The collapse of a steel pipe that is subjected to external pressure occurs because the plastic deformation of the inner surface of the steel pipe with a small circumference first occurs, so the characteristics of the inner surface of the steel pipe are important for compressive strength. Collect from. Therefore, the above-mentioned metal structure defines the structure on the inner surface side of the steel pipe, and the structure representing the performance of the steel pipe is the structure at the position of the plate thickness ¼ on the inner surface side.

3.製造条件について
本発明の第3発明は、上述した化学成分を含有する鋼スラブを、加熱し熱間圧延を行った後、加速冷却を施し、引き続いて誘導加熱による焼戻しを行う製造方法である。以下に、鋼板の製造条件の限定理由について説明する。
3. Manufacturing conditions The third invention of the present invention is a manufacturing method in which the steel slab containing the above-described chemical components is heated and hot-rolled, subjected to accelerated cooling, and subsequently tempered by induction heating. Below, the reason for limitation of the manufacturing conditions of a steel plate is demonstrated.

本発明において、製造条件における温度はいずれも鋼板平均温度とする。鋼板平均温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の平均温度が求められる。なお、鋼板平均温度は、空冷程度の遅い冷却速度の場合は、鋼板表面と鋼板中心部の温度差がほとんど無いため、鋼板表面温度を鋼板平均温度とすることができる。しかし、加速冷却や誘導加熱による再加熱直後など、急冷または急速加熱される場合は、鋼板表面と鋼板中心で温度差を生じる。このような場合は、冷却停止後または加熱後の空冷によって鋼板内部の温度差がほとんど無くなるため、そのときの鋼板表面温度としてもよい。   In the present invention, the temperatures in the production conditions are all steel plate average temperatures. The average steel plate temperature is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the average temperature of a steel plate is calculated | required by calculating the temperature distribution of a plate | board thickness direction using the difference method. In addition, in the case of a slow cooling rate such as air cooling, the steel plate average temperature has almost no temperature difference between the steel plate surface and the steel plate center portion, so that the steel plate surface temperature can be set as the steel plate average temperature. However, in the case of rapid cooling or rapid heating, such as immediately after reheating by accelerated cooling or induction heating, a temperature difference occurs between the steel sheet surface and the steel sheet center. In such a case, since the temperature difference inside the steel sheet is almost eliminated by cooling after cooling is stopped or after heating, the steel sheet surface temperature at that time may be used.

鋼スラブ加熱温度:1000〜1200℃
鋼スラブ加熱温度は、1000℃未満ではNbCの固溶が不十分でその後の析出による強化が得られず、1200℃を超えると、靱性やDWTT特性が劣化する。従って、スラブ加熱温度は1000〜1200℃の範囲とする。さらに優れたDWTT性能が要求される場合は、スラブ加熱温度の上限を1150℃にすることが望ましい。
Steel slab heating temperature: 1000-1200 ° C
If the steel slab heating temperature is less than 1000 ° C., the solid solution of NbC is insufficient, and strengthening by subsequent precipitation cannot be obtained, and if it exceeds 1200 ° C., the toughness and DWTT characteristics deteriorate. Therefore, the slab heating temperature is in the range of 1000 to 1200 ° C. When further superior DWTT performance is required, the upper limit of the slab heating temperature is desirably 1150 ° C.

未再結晶域の圧下率:60%以上
バウシンガー効果を低減するための微細なベイナイト組織と高い母材靱性を得るためには、熱間圧延工程において未再結晶温度以下で十分な圧下を行う必要がある。しかし、圧下率が60%未満では効果が不十分であるため、未再結晶域で圧下率を60%以上とする。好ましくは70%以上とする。なお、圧下率は複数の圧延パスで圧延を行う場合はその累積の圧下率とする。また、未再結晶温度はNb、Ti等の合金元素によって変化するが、本発明のNb及びTi添加量では、未再結晶温度域の上限温度を950℃とすればよい。
Reduction ratio of non-recrystallized region: 60% or more In order to obtain a fine bainite structure and high base metal toughness for reducing the Bausinger effect, sufficient reduction is performed at a temperature not higher than the non-recrystallization temperature in the hot rolling process. There is a need. However, since the effect is insufficient when the rolling reduction is less than 60%, the rolling reduction is set to 60% or more in the non-recrystallized region. Preferably it is 70% or more. Note that the rolling reduction is the cumulative rolling reduction when rolling is performed in a plurality of rolling passes. Further, although the non-recrystallization temperature varies depending on the alloying elements such as Nb and Ti, the upper limit temperature of the non-recrystallization temperature region may be set to 950 ° C. with the addition amount of Nb and Ti of the present invention.

圧延終了温度:Ar 〜(Ar +70℃)
バウシンガー効果による強度低下を抑制するためには、金属組織をベイナイト主体の組織としフェライトなどの軟質な組織の生成を抑制する必要がある。そのため、熱間圧延は、フェライト生成温度であるAr温度以上とすることが必要である。また、より微細なベイナイト組織を得るためには圧延終了温度は低いほど良く、圧延終了温度が高すぎるとベイナイト粒径が大きくなりすぎる。そのため、圧延終了温度の上限を(Ar+70℃)とする。
Rolling end temperature: Ar 3 to (Ar 3 + 70 ° C.)
In order to suppress the strength reduction due to the Bauschinger effect, it is necessary to make the metal structure a bainite-based structure and suppress the formation of soft structures such as ferrite. For this reason, the hot rolling needs to be performed at an Ar 3 temperature or higher, which is a ferrite formation temperature. Moreover, in order to obtain a finer bainite structure, the lower the end temperature of rolling, the better. When the end temperature of rolling is too high, the bainite grain size becomes too large. For this reason, the upper limit of the rolling end temperature is (Ar 3 + 70 ° C.).

なお、Ar温度は鋼の合金成分によって変化するため、それぞれの鋼で実験によって変態温度を測定して求めてもよいが、成分から下式(2)で求めることもできる。
Ar(℃)=910−310C(%)−80Mn(%)−20Cu(%)−15Cr(%)−55Ni(%)−80Mo(%)・・・(2)
ここで、各元素は含有量(質量%)であり、添加しない元素は0とする。
Incidentally, Ar 3 temperature is a function of the alloy components of the steel, may be determined by measuring the transformation temperature by experiment for each steel, but can also be calculated by the following equation from the component (2).
Ar 3 (° C.) = 910-310C (%)-80Mn (%)-20Cu (%)-15Cr (%)-55Ni (%)-80Mo (%) (2)
Here, each element is content (mass%), and the element which is not added is set to 0.

熱間圧延に引き続いて加速冷却を行う。加速冷却の条件は以下の通りである。   Following the hot rolling, accelerated cooling is performed. The conditions for accelerated cooling are as follows.

冷却開始温度:(Ar −30℃)以上
熱間圧延後の加速冷却によって金属組織をベイナイト主体の組織とするが、冷却開始温度がフェライト生成温度であるAr温度を下回ると、フェライトとベイナイトの混合組織となり、バウシンガー効果による強度低下が大きく圧縮強度が低下する。
Cooling start temperature: (Ar 3 −30 ° C.) or more The metal structure is made to be a bainite-based structure by accelerated cooling after hot rolling. When the cooling start temperature is lower than the Ar 3 temperature, which is the ferrite formation temperature, ferrite and bainite Thus, the strength is greatly reduced by the Bauschinger effect and the compressive strength is reduced.

しかし、加速冷却方法を採用する場合には、加速冷却開始温度が(Ar−30℃)以上であれば、フェライト面積分率が低くバウシンガー効果による強度低下も小さい。よって、冷却開始温度を(Ar−30℃)以上とする。 However, when the accelerated cooling method is employed, if the accelerated cooling start temperature is (Ar 3 −30 ° C.) or higher, the ferrite area fraction is low and the strength reduction due to the Bauschinger effect is small. Therefore, the cooling start temperature is set to (Ar 3 −30 ° C.) or higher.

冷却速度:10℃/秒以上
冷却速度を10℃/秒以上で行なう加速冷却方法は、高強度で高靱性の鋼板を得るために不可欠なプロセスであり、高い冷却速度で冷却することで変態強化による強度上昇効果が得られる。しかし、冷却速度が10℃/秒未満では十分な強度が得られないだけでなく、Cの拡散が生じるため未変態オーステナイトへCの濃化が起こり、MAの生成量が多くなる。前述のようにMA等の硬質第2相によってバウシンガー効果が促進されるため、圧縮強度の低下を招く。しかし、冷却速度が10℃/秒以上であれば冷却中のCの拡散が少なく、MAの生成も抑制される。よって加速冷却時の冷却速度の下限を10℃/秒とする。
Cooling rate: 10 ° C / second or more The accelerated cooling method, which is performed at a cooling rate of 10 ° C / second or more, is an indispensable process for obtaining a high-strength and high-toughness steel sheet. The strength increase effect by is obtained. However, if the cooling rate is less than 10 ° C./second, not only a sufficient strength cannot be obtained, but also C diffusion occurs, so that C is concentrated to untransformed austenite, and the amount of MA produced increases. As described above, the Bausinger effect is promoted by the hard second phase such as MA, which causes a decrease in compressive strength. However, if the cooling rate is 10 ° C./second or more, the diffusion of C during cooling is small, and the production of MA is also suppressed. Therefore, the lower limit of the cooling rate during accelerated cooling is set to 10 ° C./second.

冷却停止温度:300〜600℃
圧延終了後の加速冷却で、鋼板の平均温度が300〜600℃まで冷却することにより、ベイナイト相を生成させることが可能となる。冷却停止温度が300℃未満では、島状マルテンサイト(MA)が過剰に生成するために圧縮強度や耐HIC性が劣化する。一方、冷却停止温度が600℃を超えると、パーライトが生成して同様に圧縮強度や耐HIC性が劣化するとともに、ベイナイト変態による変態強化の効果が十分ではなく強度が低下する。再加熱時のフェライト変態の駆動力を大きくし、フェライト変態時の析出物による析出強化の効果を十分に得るという観点から、冷却停止温度は400〜600℃とすることがより好ましい。
Cooling stop temperature: 300-600 ° C
By accelerating cooling after the end of rolling, the average temperature of the steel sheet is cooled to 300 to 600 ° C., whereby a bainite phase can be generated. When the cooling stop temperature is less than 300 ° C., the island-shaped martensite (MA) is excessively generated, so that the compressive strength and the HIC resistance deteriorate. On the other hand, when the cooling stop temperature exceeds 600 ° C., pearlite is generated, the compression strength and the HIC resistance are similarly deteriorated, and the effect of transformation strengthening by bainite transformation is not sufficient and the strength is lowered. The cooling stop temperature is more preferably 400 to 600 ° C. from the viewpoint of increasing the driving force of the ferrite transformation at the time of reheating and sufficiently obtaining the effect of precipitation strengthening by precipitates at the time of ferrite transformation.

上述した加速冷却後、冷却停止温度以上であって且つ550〜700℃の温度まで再加熱を行う。このプロセスは本発明における重要な製造条件である。以下の、その製造条件の限定理由を述べる。   After the accelerated cooling described above, reheating is performed to a temperature equal to or higher than the cooling stop temperature and to a temperature of 550 to 700 ° C. This process is an important manufacturing condition in the present invention. The reasons for limiting the manufacturing conditions will be described below.

再加熱時の鋼板の温度:550〜700℃
上述した加速冷却後、冷却停止温度以上であって、かつ550〜700℃の温度まで再加熱を行う。この温度は鋼板の平均温度である。このプロセスは本発明における重要な製造条件である。
Temperature of steel plate during reheating: 550 to 700 ° C
After the accelerated cooling described above, reheating is performed to a temperature equal to or higher than the cooling stop temperature and to a temperature of 550 to 700 ° C. This temperature is the average temperature of the steel sheet. This process is an important manufacturing condition in the present invention.

ベイナイト相に微細析出物が分散した組織を得るためには、加速冷却後、直ちに冷却停止温度以上であって且つ550〜700℃の温度まで再加熱することが必要である。   In order to obtain a structure in which fine precipitates are dispersed in the bainite phase, it is necessary to reheat to a temperature of 550 to 700 ° C. immediately after the accelerated cooling and above the cooling stop temperature.

Nbを含む複合炭化物の析出強化を最大限活用するためには、最も析出しやすい温度範囲として、再加熱温度を600〜680℃にすることが好ましい。また、この再加熱の際には、冷却停止温度よりも50℃以上高い温度に昇温することが好ましい。   In order to make maximum use of precipitation strengthening of the composite carbide containing Nb, the reheating temperature is preferably set to 600 to 680 ° C. as a temperature range in which precipitation is most likely to occur. In this reheating, it is preferable to raise the temperature to 50 ° C. or higher than the cooling stop temperature.

再加熱の手段は特に限定しないが、熱間圧延及び加速冷却装置と同一のライン上に設置された誘導加熱装置を利用することで、生産性を落とすことなく急速な加熱が可能である。また、再加熱開始温度がベイナイト変態停止温度以上に保つことが可能なら、ガス燃焼炉などのオフラインの熱処理設備を利用することも可能である。   The means for reheating is not particularly limited, but rapid heating is possible without reducing productivity by using an induction heating apparatus installed on the same line as the hot rolling and accelerated cooling apparatus. Further, if the reheating start temperature can be maintained at the bainite transformation stop temperature or higher, an off-line heat treatment facility such as a gas combustion furnace can be used.

また、再加熱時の昇温速度は、0.5℃/sec未満では、目的の再加熱温度に達するまでに長時間を要するため、析出物の粗大化により十分な強度を得ることができないだけでなく、製造効率が悪化する。また、靱性の劣化を抑制するためには、昇温中での析出物の粗大化を抑制して微細かつ均一に分散析出させることが有効であり、この観点からは昇温速度は3℃/sec以上とすることが好ましい。また、再加熱後の冷却は、特に限定されるものではなく、例えば放冷とすることができる。   In addition, if the heating rate at the time of reheating is less than 0.5 ° C./sec, it takes a long time to reach the target reheating temperature, so that sufficient strength cannot be obtained due to coarsening of precipitates. In addition, the production efficiency deteriorates. In order to suppress the deterioration of toughness, it is effective to finely and uniformly disperse precipitates by suppressing the coarsening of precipitates during the temperature rise. From this viewpoint, the rate of temperature rise is 3 ° C / It is preferable to set it as sec or more. Moreover, the cooling after reheating is not specifically limited, For example, it can be allowed to cool.

本発明は上述の方法によって製造された鋼板を用いて鋼管となすが、鋼管の成形方法は、UOEプロセスやプレスベンド等の冷間成形によって鋼管形状に成形する。その後、溶接を行なうが、このときの溶接方法は十分な継手強度及び継手靱性が得られる方法ならいずれの方法でもよいが、優れた溶接品質と製造能率の点からサブマージアーク溶接を用いることが好ましい。突き合せ部の溶接を行った後に、溶接残留応力の除去と鋼管真円度の向上のため、拡管を行う。このときの拡管率は、所定の鋼管真円度が得られ、残留応力が除去される条件として0.4%以上が必要である。また、拡管率が高すぎるとバウシンガー効果による圧縮強度の低下が大きくなるため、その上限を1.2%とする。   The present invention forms a steel pipe by using the steel plate manufactured by the above-described method. The steel pipe is formed into a steel pipe shape by cold forming such as UOE process or press bend. Thereafter, welding is performed. Any welding method may be used as long as sufficient joint strength and joint toughness can be obtained, but it is preferable to use submerged arc welding in terms of excellent welding quality and production efficiency. . After welding the butt, pipe expansion is performed to remove residual welding stress and improve the roundness of the steel pipe. The expansion ratio at this time needs to be 0.4% or more as a condition for obtaining a predetermined roundness of the steel pipe and removing the residual stress. Moreover, since the fall of the compressive strength by a Bauschinger effect will become large when a pipe expansion rate is too high, the upper limit shall be 1.2%.

本発明の鋼管は、API−X80グレード以上の高強度の鋼管への適用を目的としており、引張強度は630MPa以上に規定する。これは、引張強度が630MPa未満の比較的強度が低い鋼管なら、本発明のような析出強化を適用しなくても、溶接部のHAZ靱性を劣化するほどの合金元素の添加なしで、十分な強度が得られるためである。本発明において、溶接部のHAZ靱性は、−10℃での吸収エネルギーが70J以上であることが好ましく、さらに好ましくは100J以上である。   The steel pipe of the present invention is intended for application to high-strength steel pipes of API-X80 grade or higher, and the tensile strength is specified to be 630 MPa or higher. This is because a steel pipe having a relatively low tensile strength with a tensile strength of less than 630 MPa is sufficient without the addition of an alloying element that deteriorates the HAZ toughness of the welded portion without applying precipitation strengthening as in the present invention. This is because strength can be obtained. In the present invention, the HAZ toughness of the welded portion preferably has an absorbed energy at −10 ° C. of 70 J or more, more preferably 100 J or more.

表1に示す化学成分の鋼(鋼種A〜I)を連続鋳造法によりスラブとし、これを用いて板厚20mmの厚鋼板(No.1〜15)を製造した。表2に鋼板製造条件、鋼管の金属組織及び機械的性質等を示す。鋼板製造時の再加熱処理は、加速冷却設備と同一ライン上に設置した誘導加熱炉を用いて再加熱を行った。再加熱時の鋼板平均温度は加熱後の表層温度と中心温度がほぼ等しくなった時点での鋼板表面温度とした。これらの鋼板を用いて、UOEプロセスにより外径610mmの鋼管を製造した。   Steel of chemical composition (steel types A to I) shown in Table 1 was made into a slab by a continuous casting method, and a thick steel plate (No. 1 to 15) having a plate thickness of 20 mm was produced using this. Table 2 shows steel plate manufacturing conditions, metal structure and mechanical properties of the steel pipe. The reheating process at the time of steel plate manufacture performed reheating using the induction heating furnace installed on the same line as the accelerated cooling equipment. The steel plate average temperature at the time of reheating was the surface temperature of the steel plate at the time when the surface temperature after heating and the center temperature became substantially equal. Using these steel plates, steel pipes with an outer diameter of 610 mm were manufactured by the UOE process.

Figure 2012241267
Figure 2012241267

Figure 2012241267
Figure 2012241267

以上のようにして製造した鋼管の引張特性は、管周方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。圧縮試験は鋼管の鋼管内面側の位置より管周方向に直径20mm、長さ60mmの試験片を採取し、圧縮試験を行い圧縮の降伏強度を測定した。また、HAZ靱性の評価は、鋼管のシーム溶接部の溶接熱影響部から管周方向より採取したシャルピー試験片により−10℃での吸収エネルギーを求めた。金属組織は鋼管の内面側の板厚1/4の位置からサンプルを採取し、研磨後ナイタールによるエッチングを行い光学顕微鏡で観察を行った。そして、200倍で撮影した写真3〜5枚を用いて画像解析によりベイナイト面積分率を求めた。MAの観察は、ナイタールエッチング後に電解エッチング(2段エッチング)を行い、その後走査電子顕微鏡(SEM)による観察を行った。そして、1000倍で撮影した写真から画像解析によってMAの面積分率を求めた。   As for the tensile characteristics of the steel pipe manufactured as described above, a tensile test was performed using a full thickness test piece in the pipe circumferential direction as a tensile test piece, and the tensile strength was measured. In the compression test, a test piece having a diameter of 20 mm and a length of 60 mm was taken in the pipe circumferential direction from a position on the inner surface of the steel pipe, and the compression test was performed to measure the yield strength of compression. For evaluation of HAZ toughness, the absorbed energy at −10 ° C. was obtained by a Charpy test piece taken from the welded heat affected zone of the seam welded portion of the steel pipe from the pipe circumferential direction. For the metal structure, a sample was taken from the position of the plate thickness ¼ on the inner surface side of the steel pipe, and after polishing, etched with nital and observed with an optical microscope. And the bainite area fraction was calculated | required by image analysis using the 3-5 photograph image | photographed by 200 time. For the observation of MA, electrolytic etching (two-stage etching) was performed after nital etching, followed by observation with a scanning electron microscope (SEM). And the area fraction of MA was calculated | required by image analysis from the photograph image | photographed 1000 times.

表2において、本発明例であるNo.1〜6はいずれも、化学成分及び製造方法及びミクロ組織が本発明の範囲内であり、圧縮降伏強度が530MPa以上の高圧縮強度であり、引張強度及びHAZ靱性も良好であった。   In Table 2, No. 1 as an example of the present invention. In all of Nos. 1 to 6, the chemical composition, production method and microstructure were within the scope of the present invention, the compressive yield strength was high compressive strength of 530 MPa or more, and the tensile strength and HAZ toughness were also good.

一方、No.7〜10は、化学成分が本発明の範囲内であるが、製造方法が本発明の範囲外であるため、引張強度または圧縮強度が劣っている。No.11〜15は化学成分が本発明外であるため引張強度、圧縮強度またはHAZ靱性が不足している。   On the other hand, no. 7-10, although a chemical component is in the range of this invention, since a manufacturing method is outside the range of this invention, tensile strength or compressive strength is inferior. No. Nos. 11 to 15 are insufficient in tensile strength, compressive strength, or HAZ toughness because the chemical components are outside the scope of the present invention.

本発明によれば、API−X80グレード以上の高強度で、高い圧縮強度を有した鋼管が得られるので、高い耐コラプス性能が要求される深海用ラインパイプ、ライザーまたはコンダクターケーシング等へ適用することができる。   According to the present invention, a steel pipe having a high compressive strength and high strength equal to or higher than API-X80 grade can be obtained, so that it can be applied to a deep sea line pipe, a riser, a conductor casing, or the like that requires high collapse resistance. Can do.

Claims (3)

質量%で、C:0.03〜0.08%、Si:0.01〜0.30%、Mn:1.2〜2.0%、P:0.020%以下、S:0.0030%以下、Al:0.01〜0.08%、Nb:0.003〜0.070%、Ti:0.005〜0.035%、Mo:0.01〜0.5%、N:0.0020〜0.0060%を含有し、
C(%)−0.065Nb(%)−0.025Mo(%)が0.025〜0.060で、
C(%)+0.67Nb(%)が0.10以下であり、
下記(1)式で表されるPcm値が0.20以下であり、残部がFe及び不可避的不純物からなる鋼管であり、
金属組織がベイナイトの面積分率が95%以上で、ベイナイト中にNbを含有する微細析出物が分散析出し、島状マルテンサイト(MA)の面積分率が3%以下であることを特徴とする、引張強度630MPa以上の高圧縮強度鋼管。
Pcm=C(%)+Si(%)/30+Mn(%)/20+Cu(%)/20+Ni(%)/60+Cr(%)/20+Mo(%)/15+V(%)/10+5B(%)・・・(1)
ただし、各元素は含有量(質量%)であり、含有しない元素は0とする。
In mass%, C: 0.03 to 0.08%, Si: 0.01 to 0.30%, Mn: 1.2 to 2.0%, P: 0.020% or less, S: 0.0030 % Or less, Al: 0.01 to 0.08%, Nb: 0.003 to 0.070%, Ti: 0.005 to 0.035%, Mo: 0.01 to 0.5%, N: 0 0020 to 0.0060%,
C (%)-0.065Nb (%)-0.025Mo (%) is 0.025-0.060,
C (%) + 0.67Nb (%) is 0.10 or less,
The Pcm value represented by the following formula (1) is 0.20 or less, and the balance is a steel pipe composed of Fe and inevitable impurities,
The metal structure has an area fraction of bainite of 95% or more, fine precipitates containing Nb are dispersed in bainite, and the area fraction of island martensite (MA) is 3% or less. A high compressive strength steel pipe having a tensile strength of 630 MPa or more.
Pcm = C (%) + Si (%) / 30 + Mn (%) / 20 + Cu (%) / 20 + Ni (%) / 60 + Cr (%) / 20 + Mo (%) / 15 + V (%) / 10 + 5B (%) (1) )
However, each element is content (mass%), and the element which does not contain is set to 0.
さらに、質量%で、Cu:0.5%以下、Ni:1.0%以下、Cr:1.0%以下、V:0.07%以下、Ca:0.0005〜0.0035%の中から選ばれる1種以上を含有し、
C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)が0.025〜0.060であることを特徴とする請求項1に記載の高圧縮強度鋼管。
ただし、各元素は含有量(質量%)であり、含有しない元素は0とする。
Further, in mass%, Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.0% or less, V: 0.07% or less, Ca: 0.0005 to 0.0035% Containing one or more selected from
The high compression strength steel pipe according to claim 1, wherein C (%)-0.065Nb (%)-0.025Mo (%)-0.057V (%) is 0.025-0.060. .
However, each element is content (mass%), and the element which does not contain is set to 0.
鋼スラブを、1000〜1200℃に加熱し、未再結晶温度域の圧下率が60%以上、圧延終了温度がAr〜(Ar+70℃)の熱間圧延を行い、引き続き、(Ar−30℃)以上の温度から10℃/秒以上の冷却速度で、鋼板を300〜600℃まで冷却を行い、引き続いて前記鋼板を550〜700℃に再加熱を行うことにより鋼板を製造し、その後、前記鋼板を冷間にて成形し鋼管形状とし、突き合せ部を溶接し、次いで、拡管率を0.4%〜1.2%とする拡管を行うことを特徴とする、請求項1又は2に記載の高圧縮強度鋼管の製造方法。 The steel slab was heated to 1000 to 1200 ° C., and hot rolling was performed at a rolling reduction temperature in the non-recrystallization temperature range of 60% or more and a rolling end temperature of Ar 3 to (Ar 3 + 70 ° C.), followed by (Ar 3 The steel plate is cooled to 300 to 600 ° C. at a cooling rate of 10 ° C./second or more from a temperature of −30 ° C. or higher, and then the steel plate is reheated to 550 to 700 ° C. to produce a steel plate, Thereafter, the steel sheet is formed in a cold shape to form a steel pipe shape, the butt portion is welded, and then, the pipe expansion is performed at a pipe expansion ratio of 0.4% to 1.2%. Or the manufacturing method of the high compressive strength steel pipe of 2.
JP2011115443A 2011-05-24 2011-05-24 High compressive strength steel pipe and manufacturing method thereof Active JP5782828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115443A JP5782828B2 (en) 2011-05-24 2011-05-24 High compressive strength steel pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115443A JP5782828B2 (en) 2011-05-24 2011-05-24 High compressive strength steel pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012241267A true JP2012241267A (en) 2012-12-10
JP5782828B2 JP5782828B2 (en) 2015-09-24

Family

ID=47463299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115443A Active JP5782828B2 (en) 2011-05-24 2011-05-24 High compressive strength steel pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5782828B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218707A (en) * 2013-05-09 2014-11-20 Jfeスチール株式会社 Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
EP2980249A4 (en) * 2013-03-29 2016-03-09 Jfe Steel Corp Steel plate for thick steel pipe, method for manufacturing same, and high strength thick steel pipe
KR20170128574A (en) * 2015-03-26 2017-11-22 제이에프이 스틸 가부시키가이샤 Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
EP3279352A4 (en) * 2015-03-31 2018-02-07 JFE Steel Corporation High strength/high toughness steel sheet and method for producing same
JP2019104955A (en) * 2017-12-11 2019-06-27 日本製鉄株式会社 Carbon steel slab and manufacturing method of the same
WO2019151046A1 (en) * 2018-01-30 2019-08-08 Jfeスチール株式会社 Steel material for line pipes, production method for same, and production method for line pipe
WO2019151045A1 (en) * 2018-01-30 2019-08-08 Jfeスチール株式会社 Steel material for line pipes, production method for same, and production method for line pipe
CN111748737A (en) * 2020-06-28 2020-10-09 武汉钢铁有限公司 Easily-welded ultrahigh-strength steel with cold crack sensitivity coefficient less than or equal to 0.25 and production method thereof
WO2021109439A1 (en) * 2019-12-07 2021-06-10 江阴兴澄特种钢铁有限公司 Hic-resistant and large deformation-resistant pipeline steel and preparation method therefor
RU2793945C1 (en) * 2019-12-07 2023-04-10 Цзянинь Синчэн Спешал Стил Воркс Ко., Лтд Pipeline steel with both hic resistance and high deformation resistance and method for its manufacturing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196164A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor
JP2010235986A (en) * 2009-03-30 2010-10-21 Jfe Steel Corp High-strength steel sheet excellent in pwht-resistant characteristics and uniformly stretching characteristics, and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196164A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor
JP2010235986A (en) * 2009-03-30 2010-10-21 Jfe Steel Corp High-strength steel sheet excellent in pwht-resistant characteristics and uniformly stretching characteristics, and manufacturing method therefor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980249A4 (en) * 2013-03-29 2016-03-09 Jfe Steel Corp Steel plate for thick steel pipe, method for manufacturing same, and high strength thick steel pipe
US10240226B2 (en) 2013-03-29 2019-03-26 Jfe Steel Corporation Steel plate for thick-walled steel pipe, method for manufacturing the same, and thick-walled high-strength steel pipe
JP2014218707A (en) * 2013-05-09 2014-11-20 Jfeスチール株式会社 Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
KR20170128574A (en) * 2015-03-26 2017-11-22 제이에프이 스틸 가부시키가이샤 Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
US10767250B2 (en) 2015-03-26 2020-09-08 Jfe Steel Corporation Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
KR102032105B1 (en) * 2015-03-26 2019-10-15 제이에프이 스틸 가부시키가이샤 Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
EP3279352A4 (en) * 2015-03-31 2018-02-07 JFE Steel Corporation High strength/high toughness steel sheet and method for producing same
US10640841B2 (en) 2015-03-31 2020-05-05 Jfe Steel Corporation High-strength, high-toughness steel plate and method for producing the same
JP2019104955A (en) * 2017-12-11 2019-06-27 日本製鉄株式会社 Carbon steel slab and manufacturing method of the same
JP7027858B2 (en) 2017-12-11 2022-03-02 日本製鉄株式会社 Manufacturing method of carbon steel slabs and carbon steel slabs
JPWO2019151046A1 (en) * 2018-01-30 2020-02-06 Jfeスチール株式会社 Steel material for line pipe, method for manufacturing the same, and method for manufacturing line pipe
JPWO2019151045A1 (en) * 2018-01-30 2020-02-06 Jfeスチール株式会社 Steel material for line pipe, method for manufacturing the same, and method for manufacturing line pipe
WO2019151045A1 (en) * 2018-01-30 2019-08-08 Jfeスチール株式会社 Steel material for line pipes, production method for same, and production method for line pipe
RU2747774C1 (en) * 2018-01-30 2021-05-13 ДжФЕ СТИЛ КОРПОРЕЙШН Steel material for main pipes, method for its production and method for manufacturing the main pipe
RU2749085C1 (en) * 2018-01-30 2021-06-03 ДжФЕ СТИЛ КОРПОРЕЙШН Steel material for main pipes, method of its production and method for manufacturing main pipes
WO2019151046A1 (en) * 2018-01-30 2019-08-08 Jfeスチール株式会社 Steel material for line pipes, production method for same, and production method for line pipe
US11401568B2 (en) 2018-01-30 2022-08-02 Jfe Steel Corporation Steel material for line pipes, method for producing the same, and method for producing line pipe
WO2021109439A1 (en) * 2019-12-07 2021-06-10 江阴兴澄特种钢铁有限公司 Hic-resistant and large deformation-resistant pipeline steel and preparation method therefor
RU2793945C1 (en) * 2019-12-07 2023-04-10 Цзянинь Синчэн Спешал Стил Воркс Ко., Лтд Pipeline steel with both hic resistance and high deformation resistance and method for its manufacturing
CN111748737A (en) * 2020-06-28 2020-10-09 武汉钢铁有限公司 Easily-welded ultrahigh-strength steel with cold crack sensitivity coefficient less than or equal to 0.25 and production method thereof
CN111748737B (en) * 2020-06-28 2021-10-22 武汉钢铁有限公司 Easily-welded ultrahigh-strength steel with cold crack sensitivity coefficient less than or equal to 0.25 and production method thereof

Also Published As

Publication number Publication date
JP5782828B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5561120B2 (en) Welded steel pipe for high compressive strength and high toughness line pipe and manufacturing method thereof
JP5561119B2 (en) Welded steel pipe for high compressive strength sour line pipe and manufacturing method thereof
JP5857400B2 (en) Welded steel pipe for high compressive strength line pipe and manufacturing method thereof
JP5782828B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP5782827B2 (en) High compressive strength steel pipe for sour line pipe and manufacturing method thereof
JP5900303B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
CA2980424C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
WO2016157857A1 (en) High-strength steel, production method therefor, steel pipe, and production method for steel pipe
JP5786351B2 (en) Steel pipe for line pipes with excellent anti-collapse performance
JP5381234B2 (en) Manufacturing method of line pipe with high compressive strength
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP6635231B2 (en) Steel material for line pipe, method for manufacturing the same, and method for manufacturing line pipe
JP2009084598A (en) Method for manufacturing steel sheet superior in deformability and low-temperature toughness for ultrahigh-strength line pipe, and method for manufacturing steel pipe for ultrahigh-strength line pipe
JP5782830B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP6819835B1 (en) Steel materials for line pipes and their manufacturing methods and line pipes and their manufacturing methods
JP6635232B2 (en) Steel material for line pipe, method for manufacturing the same, and method for manufacturing line pipe
JP5782829B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP5020691B2 (en) Steel sheet for high-strength linepipe excellent in low-temperature toughness, high-strength linepipe, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5782828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250