JP5786351B2 - Steel pipe for line pipes with excellent anti-collapse performance - Google Patents

Steel pipe for line pipes with excellent anti-collapse performance Download PDF

Info

Publication number
JP5786351B2
JP5786351B2 JP2011029265A JP2011029265A JP5786351B2 JP 5786351 B2 JP5786351 B2 JP 5786351B2 JP 2011029265 A JP2011029265 A JP 2011029265A JP 2011029265 A JP2011029265 A JP 2011029265A JP 5786351 B2 JP5786351 B2 JP 5786351B2
Authority
JP
Japan
Prior art keywords
pipe
steel pipe
less
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011029265A
Other languages
Japanese (ja)
Other versions
JP2012167329A (en
Inventor
石川 信行
信行 石川
信久 鈴木
信久 鈴木
彰彦 谷澤
彰彦 谷澤
正之 堀江
正之 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011029265A priority Critical patent/JP5786351B2/en
Publication of JP2012167329A publication Critical patent/JP2012167329A/en
Application granted granted Critical
Publication of JP5786351B2 publication Critical patent/JP5786351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、石油や天然ガス輸送用の耐サワー性能に優れたラインパイプ用鋼管に関するものであり、特に、高い耐コラプス性能が要求される厚肉の深海用ラインパイプへの使用に適した耐コラプス性能の優れたラインパイプ用鋼管に関する。   The present invention relates to a steel pipe for a line pipe excellent in sour resistance for oil and natural gas transportation, and is particularly suitable for use in a thick-walled deep-sea line pipe that requires high collapse resistance. The present invention relates to a steel pipe for line pipes with excellent collapse performance.

近年のエネルギー需要の増大に伴って、石油や天然ガスパイプラインの開発が盛んになっており、ガス田や油田の遠隔地化や輸送ルートの多様化のため、海洋を渡るパイプラインも数多く開発されている。海底パイプラインに使用されるラインパイプには水圧によるコラプス(圧潰)を防止するため、陸上パイプラインよりも管厚が厚いものが用いられ、また高い真円度が要求されるが、ラインパイプの材質としては外圧によって管周方向に生じる圧縮応力に対抗するため高い圧縮強度が必要となる。   As energy demand has increased in recent years, oil and natural gas pipelines have been actively developed, and many pipelines across the ocean have been developed for the remote location of gas and oil fields and the diversification of transportation routes. ing. Line pipes used in submarine pipelines are thicker than onshore pipelines to prevent collapse due to water pressure, and high roundness is required. As a material, high compressive strength is required to resist compressive stress generated in the pipe circumferential direction by external pressure.

海底パイプラインの設計にはDNV規格(OS F−101)が適用される場合が多いが、本規格では外圧によるコラプス圧力を決定する因子として、パイプの管径D及び管厚t、真円度、そして材料の引張降伏強度fyを用いてコラプス圧力が求められる。しかし、パイプのサイズと強度が同じであっても、パイプの製造方法によってコラプス圧力が変化することから、降伏強度には製造方法によって異なる係数(αfab)が掛けられることになる。この係数はシームレスパイプの場合は1.0すなわち引張降伏強度がそのまま適用できるが、UOEプロセスで製造されたパイプの場合は係数として0.85が与えられている。これは、パイプの圧縮強度が引張強度よりも低下するためである。この現象が生ずるのは、UOE鋼管製造過程では造管の最終工程で拡管プロセスがあり、このプロセスで管周方向に引張変形が与えられた後に圧縮を受けるためである。 The DNV standard (OS F-101) is often applied to the design of submarine pipelines. In this standard, pipe diameter D, pipe thickness t, and roundness are factors that determine the collapse pressure due to external pressure. The collapse pressure is obtained using the tensile yield strength fy of the material. However, even if the size and strength of the pipe are the same, the collapse pressure varies depending on the pipe manufacturing method, so the yield strength is multiplied by a different coefficient (α fab ) depending on the manufacturing method. As for this coefficient, 1.0 for the seamless pipe, that is, the tensile yield strength can be applied as it is, but 0.85 is given as a coefficient for the pipe manufactured by the UOE process. This is because the compressive strength of the pipe is lower than the tensile strength. This phenomenon occurs because in the UOE steel pipe manufacturing process, there is a pipe expansion process at the final stage of pipe making, and after this process is subjected to tensile deformation in the pipe circumferential direction, compression is applied.

すなわち、バウシンガー効果によって降伏強度が低下するのである。よって、耐コラプス性能を高めるためには、パイプの圧縮強度を高めることが必要であるが、冷間成形で拡管プロセスを経て製造される鋼管の場合は、バウシンガー効果による強度低下の問題が解決されていない。   That is, the yield strength is reduced by the Bausinger effect. Therefore, it is necessary to increase the compressive strength of the pipe in order to improve the anti-collapse performance, but in the case of a steel pipe manufactured through a pipe expansion process by cold forming, the problem of strength reduction due to the Bausinger effect is solved. It has not been.

UOE鋼管の耐コラプス性向上に関しては多くの検討がなされており、例えば特許文献1には通電加熱で鋼管を加熱し、拡管を行った後に一定時間以上温度を保持する方法が開示されている。この方法は、拡管によって導入された転位が回復し降伏強度が上昇するが、拡管後に5分以上通電加熱を続ける必要があり、生産性は劣るという問題がある。   Many studies have been made on improving the collapse resistance of UOE steel pipes. For example, Patent Document 1 discloses a method in which a steel pipe is heated by energization heating and the temperature is maintained for a predetermined time or longer after pipe expansion. Although this method recovers the dislocations introduced by the pipe expansion and increases the yield strength, it is necessary to continue the electric heating for 5 minutes or more after the pipe expansion, and there is a problem that the productivity is inferior.

また、同様に拡管後に加熱を行いバウシンガー効果による降伏強度低下を回復させる方法として、特許文献2では鋼管外表面を内表面より高い温度に加熱することで、外面側の引張変形を受けた部分のバウシンガー効果を回復し内面側の圧縮の加工硬化を維持する方法が、また、特許文献3にはNb、Tiを添加した鋼の鋼板製造工程で熱間圧延後の加速冷却をAr温度以上から300℃以下まで行い、UOEプロセスで鋼管とした後に加熱を行う方法が提案されている。 Similarly, as a method of recovering the decrease in yield strength due to the Bauschinger effect by heating after tube expansion, in Patent Document 2, the outer surface of the steel tube is subjected to tensile deformation by heating to a temperature higher than the inner surface. The method of recovering the bausinger effect and maintaining the work hardening of compression on the inner surface side is disclosed in Patent Document 3 in which the accelerated cooling after hot rolling in the steel plate manufacturing process of steel added with Nb and Ti is performed at Ar 3 temperature. There has been proposed a method in which heating is performed after the above process is performed up to 300 ° C. and formed into a steel pipe by the UOE process.

しかしながら、特許文献2の方法では鋼管の外表面と内表面の加熱温度と加熱時間を別々に管理することは実製造上、特に大量生産において品質を管理することは極めて困難である。また、特許文献3の方法は鋼板製造における加速冷却停止温度を300℃以下の低い温度にする必要があるため、鋼板の歪が大きくなり、UOEプロセスで鋼管とした場合の真円度が低下し、さらにはAr温度以上から加速冷却を行うために比較的高い温度で圧延を行う必要があり、靱性が劣化するという問題があった。 However, in the method of Patent Document 2, it is extremely difficult to manage the heating temperature and the heating time of the outer surface and the inner surface of the steel pipe separately in terms of actual manufacturing, particularly in mass production. Moreover, since the method of patent document 3 needs to make the accelerated cooling stop temperature in steel plate manufacture into the low temperature of 300 degrees C or less, the distortion of a steel plate becomes large and the roundness at the time of using a steel pipe by a UOE process falls. Furthermore, in order to perform accelerated cooling from the Ar 3 temperature or higher, it is necessary to perform rolling at a relatively high temperature, which causes a problem that the toughness deteriorates.

一方、拡管後に加熱を行わずに鋼管の成形方法によって圧縮強度を高める方法としては、特許文献4に、O成型時の圧縮率をその後の拡管率よりも大きくする方法が開示されている。この方法によれば、実質的に管周方向の引張予歪が無いためバウシンガー効果が発現されず高い圧縮強度が得られる。しかしながら、拡管率が低いと鋼管の真円度を維持することが困難となり、鋼管の耐コラプス性能を劣化させることになりかねない。   On the other hand, as a method for increasing the compressive strength by a steel pipe forming method without performing heating after the pipe expansion, Patent Document 4 discloses a method in which the compression ratio during O-molding is made larger than the subsequent pipe expansion ratio. According to this method, since there is substantially no tensile pre-strain in the pipe circumferential direction, the Bauschinger effect is not expressed and a high compressive strength is obtained. However, when the pipe expansion rate is low, it becomes difficult to maintain the roundness of the steel pipe, and the collapse resistance performance of the steel pipe may be deteriorated.

また、特許文献5には、圧縮強度の低いシーム溶接部近傍と溶接部から180°の位置の直径が鋼管の最大径となるようにすることで耐コラプス性能を高める方法が開示されている。しかし、実際のパイプラインの敷設時においてコラプスが問題になるのは海底に到達したパイプが曲げ変形を受ける部分(サグベンド部)であり、鋼管のシーム溶接部の位置とは無関係に円周溶接され海底に敷設されるため、シーム溶接部が長径になるようにしても実際上は何ら効果を発揮しない。   Further, Patent Document 5 discloses a method for improving the anti-collapse performance by making the diameter near the seam welded portion having a low compressive strength and the diameter at a position 180 ° from the welded portion the maximum diameter of the steel pipe. However, when actual pipelines are laid, collapse is a problem where the pipe that reaches the seabed undergoes bending deformation (sag bend), and is welded circumferentially regardless of the position of the seam weld on the steel pipe. Since it is laid on the seabed, there is no practical effect even if the seam weld has a long diameter.

さらに、特許文献6には加速冷却後に再加熱を行い鋼板表層部の硬質第2相分率を低減することによりバウシンガー効果による降伏応力低下が小さい鋼板が提案されている。   Further, Patent Document 6 proposes a steel plate in which the yield stress reduction due to the Bauschinger effect is small by performing reheating after accelerated cooling to reduce the hard second phase fraction of the steel plate surface layer portion.

特開平9−49025号公報JP 9-49025 A 特開2003−34639号公報JP 2003-34639 A 特開2004−35925号公報JP 2004-35925 A 特開2002−102931号公報JP 2002-102931 A 特開2003−340519号公報JP 2003-340519 A 特開2008−56962号公報JP 2008-56962 A

特許文献6に記載された技術のような金属組織の制御によって、鋼管の圧縮強度が改善され、耐コラプス性能向上に対して一定の効果は得られるが、パイプラインの敷設条件によっては圧縮強度の改善だけでは十分にコラプスを防止することはできない。   By controlling the metal structure as in the technique described in Patent Document 6, the compressive strength of the steel pipe is improved, and a certain effect is obtained for improving the collapse resistance performance. However, depending on the laying conditions of the pipeline, the compressive strength Improvement alone is not enough to prevent collapse.

海底パイプラインの敷設では、海底に到達したパイプが曲げモーメントを受けるため、DNV規格では鋼管が塑性変形しない歪範囲、すなわち曲げ歪が0.5%以内で敷設するように決められている。しかしながら、急激な海流の変化や風の影響などによって敷設船の位置を一定に保つことが困難になり、過大な曲げモーメントを受ける危険性がある。このような大きな曲げ変形を受ける場合パイプのコラプス圧力が大幅に低下し、たとえ熱処理により高い圧縮応力を有していてもコラプス圧力の低下は避けられない。   In laying a submarine pipeline, the pipe that reaches the seabed receives a bending moment. Therefore, according to the DNV standard, it is determined that a steel pipe is laid within a strain range in which plastic deformation does not occur, that is, a bending strain is within 0.5%. However, it is difficult to keep the position of the laying ship constant due to a sudden change in ocean current or the influence of wind, and there is a risk of receiving an excessive bending moment. When subjected to such a large bending deformation, the collapse pressure of the pipe is greatly reduced, and even if it has a high compressive stress due to heat treatment, a decrease in the collapse pressure is inevitable.

本発明は、上記事情に鑑み、なされたもので、厚肉の海底パイプラインへ適用するために必要な優れた耐コラプス性能を有するラインパイプ用鋼管、特に敷設時に大きな曲げ変形を受けても、高い耐コラプス性能が維持されるラインパイプ用鋼管を提供することを目的とする。   The present invention was made in view of the above circumstances, and has a steel pipe for line pipes having excellent anti-collapse performance necessary for application to a thick-walled submarine pipeline, especially when subjected to large bending deformation at the time of laying, An object of the present invention is to provide a steel pipe for a line pipe that maintains a high resistance to collapse.

本発明者らは、曲げ変形を受ける鋼管の外圧によるコラプス挙動を解明するために、種々の実験及び解析を試みた結果、以下の知見を得るに至った。   In order to elucidate the collapse behavior due to the external pressure of a steel pipe subjected to bending deformation, the present inventors tried various experiments and analyzes, and as a result, obtained the following knowledge.

ア)海底管のコラプス防止のためには、DNV規格(OS F−101)にも示されているとおり、ファブリケーションファクター(αfab)の向上、すなわち鋼管の管周方向の圧縮強度が高いことが基本であり、引張試験での降伏強度に対する圧縮試験での降伏強度の比を一定値以上とすることが不可欠である。 A) In order to prevent the collapse of the submarine pipe, as shown in the DNV standard (OS F-101), the improvement of the fabrication factor (α fab ), that is, the compressive strength in the pipe circumferential direction of the steel pipe is high. It is essential that the ratio of the yield strength in the compression test to the yield strength in the tensile test be a certain value or more.

イ)上記のような鋼管であっても、曲げ変形によって断面形状が扁平になるため、外圧によってコラプスを生じやすくなる。このような鋼管の扁平は、鋼管の管軸方向の引張特性を改善することで防止可能であり、具体的には、管軸方向引張試験での降伏強度と引張強度の比、すなわち管軸方向の降伏比を一定値以上とすることが効果的である。図1に種々の引張特性を有する鋼管の曲げモーメントによる扁平率の変化を示す。   B) Even in the case of the steel pipe as described above, the cross-sectional shape becomes flat due to bending deformation, and therefore, collapse is likely to occur due to external pressure. Such flattening of the steel pipe can be prevented by improving the tensile characteristics in the pipe axis direction of the steel pipe. Specifically, the ratio between the yield strength and the tensile strength in the pipe axis direction tensile test, that is, the pipe axis direction. It is effective to make the yield ratio of a certain value or more. FIG. 1 shows changes in flatness ratio due to bending moments of steel pipes having various tensile properties.

図1は、外径762mm、管厚34.6mmの鋼管の曲げ変形解析をFEMで行った結果であり、管長8mの両端に曲げモーメントを付与したときの鋼管中央部断面の扁平率(扁平部外径の(長径−短径)/初期外径)を求めた。ここで、管軸方向の降伏比(YR)、すなわち、管軸方向引張試験での引張強度に対する降伏強度の比が85%の場合と92%の場合とを示す。また、図中C−TSは、管周方向引張強度を意味する。   FIG. 1 shows the result of FEM analysis of bending deformation of a steel pipe having an outer diameter of 762 mm and a pipe thickness of 34.6 mm. The flatness (flat part of the cross section of the steel pipe when a bending moment is applied to both ends of the pipe length of 8 m. The outer diameter (major axis-minor axis) / initial outer diameter) was determined. Here, the yield ratio (YR) in the tube axis direction, that is, the ratio of the yield strength to the tensile strength in the tube axis direction tensile test is 85% and 92%. Moreover, C-TS in a figure means the pipe circumferential direction tensile strength.

管軸方向の降伏比(管軸方向引張試験での降伏強度と引張強度との比)が大きい鋼管のほうが扁平率が小さくなることが明らかである。ここで言う扁平率は、DNV OS−F101に規定されている真円度と同じ意味であり、扁平率が大きいほどコラプス圧力が低下することになる。すなわち、海底へのレイイングなどの曲げ変形を受ける場合は、管軸方向の降伏比が大きいほどパイプの扁平率が小さくなり、コラプス圧力が大きくなると言える。   It is clear that the steel pipe with a higher yield ratio in the tube axis direction (ratio between the yield strength and the tensile strength in the tube axis direction tensile test) has a smaller flatness. The flatness referred to here has the same meaning as the roundness defined in DNV OS-F101, and the collapse pressure decreases as the flatness increases. That is, when subjected to bending deformation such as laying on the sea floor, it can be said that as the yield ratio in the tube axis direction increases, the flatness of the pipe decreases and the collapse pressure increases.

ウ)管軸方向の降伏比が高くても、管軸方向引張での降伏強度が低いと曲げ変形による鋼管の扁平化が早期に起こってしまうため、管軸方向引張の降伏強度は管周方向引張の降伏強度に比べ一定の割合以上に高くなければならない。   C) Even if the yield ratio in the tube axis direction is high, if the yield strength in the tube axis direction tension is low, the steel pipe will be flattened due to bending deformation at an early stage. It must be higher than a certain percentage compared to the tensile yield strength.

本発明は、上記の知見に基づきなされたもので、第一の発明は、ラインパイプ用鋼管において、管軸方向引張試験での降伏強度及び引張強度をそれぞれL−YS(T)及びL−TS(T)、管周方向引張試験での降伏強度をC−YS(T)、管周方向圧縮試験での降伏強度C−YS(C)としたときに、L−YS(T)/L−TS(T)が0.9以上、L−YS(T)/C−YS(T)が0.95以上、C−YS(C)/C−YS(T)が0.9以上であることを特徴とする、耐コラプス性能の優れたラインパイプ用鋼管。
ここで、(C)および(T)はそれぞれ圧縮方向の試験の値および引張方向の試験の値であることを意味している。
The present invention has been made on the basis of the above findings, and the first invention relates to the yield strength and tensile strength in the pipe axial direction tensile test in the steel pipe for line pipe, respectively, L-YS (T) and L-TS. (T), when the yield strength in the pipe circumferential direction tensile test is C-YS (T) and the yield strength in the pipe circumferential direction compression test is C-YS (C), L-YS (T) / L- TS (T) is 0.9 or more, L-YS (T) / C-YS (T) is 0.95 or more, and C-YS (C) / C-YS (T) is 0.9 or more. This is a steel pipe for line pipes with excellent anti-collapse performance.
Here, (C) and (T) mean a test value in the compression direction and a test value in the tensile direction, respectively.

第二の発明は、前記ラインパイプ用鋼管において、化学成分が質量%で、C:0.03〜0.1%、Si:0.5%以下、Mn:1.0〜2.0%、P:0.015%以下、S:0.003%以下、Al:0.08%以下、Nb:0.005〜0.05%、Ti:0.005〜0.03%を含有し、さらにCu:0.5%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下、Ca:0.0005〜0.0035%の中から選ばれる1種以上を含有し、残部がFe及び不可避的不純物からなり、金属組織はベイナイト組織が面積分率で80%以上であることを特徴とする、上記第一の発明に記載の耐コラプス性能の優れたラインパイプ用鋼管、である。   The second invention is the steel pipe for line pipes, wherein the chemical component is mass%, C: 0.03 to 0.1%, Si: 0.5% or less, Mn: 1.0 to 2.0%, P: 0.015% or less, S: 0.003% or less, Al: 0.08% or less, Nb: 0.005-0.05%, Ti: 0.005-0.03%, Cu: 0.5% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, V: 0.1% or less, Ca: 0.0005 to 0.0035% 1 or more selected from the group consisting of Fe and inevitable impurities, and the metal structure has a bainite structure of 80% or more in area fraction. It is a steel pipe for line pipes, with excellent collapse resistance performance.

本発明の第一発明によれば、海底パイプラインの敷設に過大な曲げ変形を受けるような場合でも、優れた耐コラプス性能を有するラインパイプ用鋼管が得られる。また、第二発明によれば、さらに鋼管の強度及び靭性、並びに溶接部の靭性を向上させることができる。   According to the first invention of the present invention, a steel pipe for a line pipe having excellent collapse resistance can be obtained even when it is subjected to excessive bending deformation when laying a submarine pipeline. Further, according to the second invention, the strength and toughness of the steel pipe and the toughness of the welded portion can be further improved.

曲げモーメントと扁平率の関係を示す図である。It is a figure which shows the relationship between a bending moment and flatness.

以下に本発明の各構成要件の限定理由について説明する。   The reasons for limiting the respective constituent requirements of the present invention will be described below.

1.鋼管の機械的特性について
本発明の最大の特徴は、従来の海底管のコラプス防止策として一切考慮されていなかった鋼管の管軸方向の特性を制御することで、DNV規格などで規定されている応力範囲を超える過大な曲げが加わってもコラプスを生じにくくすることである。そのためには、管軸方向引張試験での降伏強度及び引張強度をそれぞれL−YS(T)及びL−TS(T)、管周方向引張試験での降伏強度をC−YS(T)、管周方向圧縮試験での降伏強度C−YS(C)としたときに、以下のような特性が必要である。
1. Regarding the mechanical characteristics of steel pipes The greatest feature of the present invention is defined by the DNV standard, etc., by controlling the characteristics of the steel pipe in the axial direction, which was not considered at all as a countermeasure for preventing the collapse of conventional submarine pipes. Even if an excessive bending exceeding the stress range is applied, collapse is less likely to occur. For that purpose, the yield strength and tensile strength in the pipe axial direction tensile test are L-YS (T) and L-TS (T), respectively, the yield strength in the pipe circumferential direction tensile test is C-YS (T), and the pipe The following characteristics are required when the yield strength C-YS (C) in the circumferential compression test is used.

L−YS(T)/L−TS(T):0.9以上
この関係式は、鋼管の管軸方向引張試験での降伏強度[L−YS(T)]と引張強度[L−TS(T)]との比であり、以下の説明で「管軸方向引張の降伏比」とも略することもある。管軸方向引張の降伏比が0.9未満では鋼管が曲げ変形を受けた場合の断面の扁平が大きくなり、コラプスを生じやすくなる。しかし、管軸方向引張の降伏比は0.9以上であれば、このような扁平が十分に抑制されるため、管軸方向引張での降伏比を0.9以上に規定する。好ましくは、0.92以上である。
L-YS (T) / L-TS (T): 0.9 or more This relational expression indicates that the yield strength [L-YS (T)] and the tensile strength [L-TS ( T)] and may be abbreviated as “yield ratio of tensile in the tube axis direction” in the following description. When the yield ratio of the tensile in the tube axis direction is less than 0.9, the flatness of the cross section when the steel pipe is subjected to bending deformation becomes large, and collapse easily occurs. However, if the yield ratio of the tensile in the tube axis direction is 0.9 or more, such flattening is sufficiently suppressed. Therefore, the yield ratio in the tensile in the tube axis direction is specified to be 0.9 or more. Preferably, it is 0.92 or more.

L−YS(T)/C−YS(T):0.95以上
この関係式は、鋼管の管軸方向引張試験での降伏強度[L−YS(T)]と管周方向引張試験の降伏強度[C−YS(T)]との比であり、以下の説明で「管軸方向の降伏強度と管周方向の降伏強度の比」とも略することもある。曲げ変形による鋼管の扁平は、管軸方向の降伏比のみで決まるのではなく、管周方向と管軸方向の引張特性のバランスによって大きく影響をうける。管周方向引張での降伏応力に対して管軸方向引張の降伏応力が低すぎると、曲げモーメントを受けた場合のパイプの変形量が大きくなり扁平量も大きくなるため、コラプス性能が低下する。しかし、管軸方向の降伏強度と管周方向の降伏強度の比が0.95以上であれば問題ないため、管軸方向引張での降伏強度と管周方向引張での降伏強度の比を0.95以上に規定する。好ましくは、0.97以上である。
L-YS (T) / C-YS (T): 0.95 or more This relational expression is the yield strength [L-YS (T)] in the pipe axial direction tensile test and the yield in the pipe circumferential direction tensile test. It is a ratio to the strength [C-YS (T)], and may be abbreviated as “ratio of the yield strength in the tube axis direction and the yield strength in the tube circumferential direction” in the following description. The flatness of the steel pipe due to bending deformation is not only determined by the yield ratio in the pipe axis direction, but is greatly influenced by the balance between the tensile properties in the pipe circumferential direction and the pipe axis direction. If the yield stress in the pipe axial direction tension is too low relative to the yield stress in the pipe circumferential tension, the amount of deformation of the pipe and the flattening amount when the bending moment is applied increase, and the collapse performance deteriorates. However, there is no problem if the ratio between the yield strength in the tube axis direction and the yield strength in the tube circumferential direction is 0.95 or more. Therefore, the ratio of the yield strength in the tube axis direction tension to the yield strength in the tube direction tension is 0. .95 or more. Preferably, it is 0.97 or more.

C−YS(C)/C−YS(T):0.9以上
この関係式は、管周方向圧縮試験での降伏強度[C−YS(C)]と鋼管の管周方向引張試験での降伏強度[C−YS(T)]との比であり、以下の説明で「管周方向圧縮での降伏強度と管周方向引張での降伏強度の比」とも略することもある。本関係式は、DNVで規定されているファブリケーションファクターと同様の意味であり、コラプス防止の基本的な対策として、管周方向圧縮での降伏強度を管周方向引張での降伏強度に対して一定値以上に高める必要があることを意味している。この値が0.9より小さい場合は、圧縮強度が低いため、コラプスを防止するために鋼管の管厚を厚くする必要がありパイプラインの施工コストが上昇する。しかし、0.9以上であれば、一般的なUOEプロセスによる鋼管よりも高い圧縮強度が得られ、管厚を高めなくとも高い耐コラプス性能が得られる。よって、管周方向圧縮での降伏強度と管周方向引張での降伏強度の比を0.9以上に規定する。好ましくは、0.92以上である。
C-YS (C) / C-YS (T): 0.9 or more This relational expression is the yield strength [C-YS (C)] in the pipe circumferential direction compression test and the pipe circumferential direction tensile test of the steel pipe. It is a ratio to the yield strength [C-YS (T)], and may be abbreviated as “ratio of the yield strength in pipe circumferential compression and the yield strength in pipe circumferential tension” in the following description. This relational expression has the same meaning as the fabrication factor defined by DNV. As a basic measure for preventing collapse, the yield strength in pipe circumferential direction compression is the same as the yield strength in pipe circumferential tension. It means that it needs to be raised above a certain value. When this value is smaller than 0.9, the compressive strength is low, so that it is necessary to increase the thickness of the steel pipe in order to prevent collapse, which increases the construction cost of the pipeline. However, if it is 0.9 or more, a higher compressive strength can be obtained than a steel pipe made by a general UOE process, and a high collapse resistance performance can be obtained without increasing the pipe thickness. Therefore, the ratio of the yield strength in the pipe circumferential direction compression and the yield strength in the pipe circumferential direction tension is specified to be 0.9 or more. Preferably, it is 0.92 or more.

また、本発明は、海底パイプラインの敷設を対象にし、特に管厚は20mm以上の鋼管においてその効果が発揮されるので、管厚が20mm以上の鋼管に適用することが好ましいが、この範囲の板厚には限られない。   In addition, the present invention is intended for laying a submarine pipeline, and the effect is exhibited particularly in a steel pipe having a pipe thickness of 20 mm or more. Therefore, it is preferably applied to a steel pipe having a pipe thickness of 20 mm or more. It is not limited to the plate thickness.

本発明は、上述の鋼管の管軸方向と管周方向の特性を制御することで高い耐コラプス性能が得られるが、海底パイプラインに適用する鋼管として好ましい強度、靱性、または溶接施工性等の性能向上を図るため、材料の化学成分及び金属組織を以下のように規定する。   In the present invention, high collapse resistance can be obtained by controlling the characteristics of the above-mentioned steel pipe in the axial direction and the pipe circumferential direction, but the strength, toughness, welding workability, etc. preferable as a steel pipe applied to a submarine pipeline can be obtained. In order to improve performance, the chemical composition and metal structure of the material are defined as follows.

2.化学成分について
はじめに本発明の化学成分の限定理由を説明する。なお、成分%は全て質量%を意味する。
2. Regarding Chemical Components First, the reasons for limiting the chemical components of the present invention will be described. In addition, all component% means the mass%.

C:0.03〜0.1%
Cは、加速冷却によって製造される鋼板の強度を高めるために最も有効な元素である。しかし、0.03%未満では十分な強度を確保できず、0.1%を超えると靭性を劣化させるだけでなく、MA(島状マルテンサイト)の生成が促進されるため、圧縮強度の低下をも招く。したがって、C量を0.03〜0.1%の範囲内とする。より高い靱性と圧縮強度を得るためには、好ましくは、0.03〜0.08%の範囲内とする。
C: 0.03-0.1%
C is the most effective element for increasing the strength of the steel sheet produced by accelerated cooling. However, if it is less than 0.03%, sufficient strength cannot be secured, and if it exceeds 0.1%, not only the toughness is degraded, but also the formation of MA (island martensite) is promoted, so the compression strength decreases. Also invite. Therefore, the C content is set within a range of 0.03 to 0.1%. In order to obtain higher toughness and compressive strength, the content is preferably in the range of 0.03 to 0.08%.

Si:0.5%以下
Siは脱酸のために含有するが、0.5%を越えると靭性や溶接性を劣化させ、またMAの生成も促進される。したがってSi量は0.5%以下の範囲とする。
Si: 0.5% or less Si is contained for deoxidation, but if it exceeds 0.5%, the toughness and weldability are deteriorated and the formation of MA is also promoted. Accordingly, the Si amount is set to a range of 0.5% or less.

Mn:1.0〜2.0%
Mnは鋼の強度および靭性の向上のため含有するが、1.0%未満ではその効果が十分ではなく、2.0%を超えると溶接性と耐HIC性能が劣化する。したがって、Mn量は1.0〜2.0%の範囲とする。
Mn: 1.0-2.0%
Mn is contained for improving the strength and toughness of the steel, but if it is less than 1.0%, its effect is not sufficient, and if it exceeds 2.0%, the weldability and the HIC resistance are deteriorated. Therefore, the Mn content is in the range of 1.0 to 2.0%.

P:0.015%以下
Pは不可避不純物元素であり、鋼材の靱性を劣化させる。特に、溶接熱影響部の硬さを上昇させるため、溶接熱影響部の靱性を顕著に劣化させる。したがって、P量を0.015%以下とする。好ましくは、0.008%以下とする。
P: 0.015% or less P is an inevitable impurity element and degrades the toughness of the steel material. In particular, since the hardness of the weld heat affected zone is increased, the toughness of the weld heat affected zone is significantly deteriorated. Therefore, the P content is 0.015% or less. Preferably, it is 0.008% or less.

S:0.003%以下
Sは、鋼中においてはMnS系の介在物となり、衝撃破壊時のボイド発生起点として作用するため、シャルピー衝撃試験での吸収エネルギー低下の原因となる。したがって、S量を0.003%以下とする。より高い吸収エネルギーが要求される場合は、S量をさらに低下することが有効であり、好ましくは0.0015%以下とする。
S: 0.003% or less S is an MnS-based inclusion in the steel and acts as a void generation starting point at the time of impact fracture, which causes a decrease in absorbed energy in the Charpy impact test. Therefore, the S content is 0.003% or less. When higher absorbed energy is required, it is effective to further reduce the amount of S, preferably 0.0015% or less.

Al:0.08%以下
Alは脱酸剤として含有するが、0.08%を超えると清浄度の低下により延性を劣化させる。したがって、Al量は0.08%以下とする。
Al: 0.08% or less Al is contained as a deoxidizer, but if it exceeds 0.08%, ductility is deteriorated due to a decrease in cleanliness. Therefore, the Al content is 0.08% or less.

Nb:0.005〜0.05%
Nbは、圧延時の粒成長を抑制し、微細粒化により靭性を向上させる。しかし、Nb量が0.005%未満ではその効果がなく、0.05%を超えると溶接熱影響部の靱性低下を招く。したがって、Nb量は0.005〜0.05%の範囲とする。
Nb: 0.005 to 0.05%
Nb suppresses grain growth during rolling, and improves toughness by making fine grains. However, when the Nb content is less than 0.005%, the effect is not obtained, and when it exceeds 0.05%, the toughness of the weld heat affected zone is lowered. Therefore, the Nb content is in the range of 0.005 to 0.05%.

Ti:0.005〜0.03%
Tiは、TiNを形成してスラブ加熱時の結晶粒成長を抑制するだけでなく、溶接熱影響部の結晶粒成長を抑制し、母材及び溶接熱影響部の組織を微細化するにより靭性を向上させる。しかし、Ti量が0.005%未満ではその効果がなく、0.03%を超えると靭性を劣化させる。したがって、Ti量は0.005〜0.03%の範囲とする。
Ti: 0.005 to 0.03%
Ti not only suppresses crystal grain growth during slab heating by forming TiN, but also suppresses crystal grain growth in the weld heat affected zone, and refines the microstructure of the base material and the weld heat affected zone to improve toughness. Improve. However, if the amount of Ti is less than 0.005%, the effect is not obtained, and if it exceeds 0.03%, the toughness is deteriorated. Therefore, the Ti content is in the range of 0.005 to 0.03%.

本発明では上記の化学成分の他に、鋼板の強度、靱性又は溶接部の特性をさらに向上させる場合、以下に示すCu、Ni、Cr、Mo、V、Caの1種以上を選択的に含有させることが好ましい。   In the present invention, in addition to the above chemical components, when further improving the strength, toughness or welded portion properties of the steel sheet, one or more of Cu, Ni, Cr, Mo, V, and Ca shown below are selectively contained. It is preferable to make it.

Cu:0.5%以下
Cuは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上含有することが好ましいが、0.5%を超えて含有すると溶接熱影響部の靱性が劣化する。したがって、Cuを含有する場合は0.5%以下とすることが好ましい。
Cu: 0.5% or less Cu is an element effective for improving toughness and increasing strength. To obtain this effect, 0.05% or more is preferable, but more than 0.5% is contained. Then, the toughness of the weld heat affected zone deteriorates. Therefore, when it contains Cu, it is preferable to set it as 0.5% or less.

Ni:1.0%以下
Niは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上含有することが好ましいが、1.0%を超えて含有すると溶接熱影響部の靱性が劣化する。したがって、Niを含有する場合は1.0%以下とすることが好ましい。
Ni: 1.0% or less Ni is an element effective for improving toughness and increasing strength. To obtain this effect, 0.05% or more is preferable, but more than 1.0% is contained. Then, the toughness of the weld heat affected zone deteriorates. Therefore, when it contains Ni, it is preferable to set it as 1.0% or less.

Cr:0.5%以下
Crは、焼き入れ性を高めることで強度の上昇に有効な元素であり、この効果を得るには0.05%以上含有することが好ましいが、0.5%を超えて含有すると溶接熱影響部の靱性を劣化させる場合がある。したがって、Crを含有する場合は0.5%以下とすることが好ましい。
Cr: 0.5% or less Cr is an element effective for increasing the strength by enhancing the hardenability. To obtain this effect, it is preferable to contain 0.05% or more, but 0.5% If contained in excess, the toughness of the weld heat affected zone may be deteriorated. Therefore, when it contains Cr, it is preferable to set it as 0.5% or less.

Mo:0.5%以下
Moは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上含有することが好ましいが、0.5%を超えて含有すると溶接熱影響部の靱性が劣化する。したがって、Moを含有する場合は0.5%以下とすることが好ましい。
Mo: 0.5% or less Mo is an element effective for improving toughness and increasing strength. To obtain this effect, 0.05% or more is preferable, but more than 0.5% is contained. Then, the toughness of the weld heat affected zone deteriorates. Therefore, when it contains Mo, it is preferable to set it as 0.5% or less.

V:0.1%以下
Vは靭性を劣化させずに強度を上昇させる元素であり、この効果を得るには0.01%以上含有することが好ましいが、0.1%を超えて含有すると溶接熱影響部の靱性低下を招くため、Vを含有する場合は、0.1%以下とすることが好ましい。
V: 0.1% or less V is an element that increases the strength without deteriorating toughness. To obtain this effect, it is preferably contained in an amount of 0.01% or more. In order to reduce the toughness of the weld heat affected zone, when V is contained, the content is preferably 0.1% or less.

Ca:0.0005〜0.0035%
Caは硫化物系介在物の形態を制御し、延性を改善するために有効な元素であるが、0.0005%未満ではその効果がなく、0.0035%を超えて添加しても効果が飽和し、むしろ清浄度の低下により靱性を劣化させる。したがって、Caを含有する場合には、0.0005〜0.0035%の範囲とすることが好ましい。
本発明においては鋼管の強度は特に規定しないが、海底管用の厚肉鋼管においてAPIグレードX65程度以上の高強度を得るためには、下式(1)で示されるCeq値が0.28以上であることが好ましい。ここで、各元素記号は含有量(質量%)を意味し、含有しない場合は0とする。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(1)
なお、本発明の鋼の残部はFeおよび不可避的不純物である。上記以外の元素及び不可避的不純物については、本発明の効果を損なわない限り含有することができる。
Ca: 0.0005 to 0.0035%
Ca is an element effective for controlling the form of sulfide inclusions and improving ductility, but if it is less than 0.0005%, there is no effect, and even if added over 0.0035%, it is effective. Saturates, but rather deteriorates toughness due to reduced cleanliness. Therefore, when it contains Ca, it is preferable to set it as 0.0005 to 0.0035% of range.
In the present invention, the strength of the steel pipe is not particularly specified, but in order to obtain a high strength of about API grade X65 or higher in a thick steel pipe for a submarine pipe, the Ceq value represented by the following formula (1) is 0.28 or higher. Preferably there is. Here, each element symbol means content (mass%), and is 0 when not contained.
Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (1)
The balance of the steel of the present invention is Fe and unavoidable impurities. Elements other than the above and unavoidable impurities can be contained as long as the effects of the present invention are not impaired.

3.金属組織について
本発明における金属組織の限定理由を以下に示す。
3. About metal structure The reason for limitation of the metal structure in the present invention is shown below.

ベイナイト分率:80%以上
バウシンガー効果を抑制し高い圧縮強度を得るためには軟質なフェライト相や硬質な第2相の少ない組織とし、変形時の組織内部で生じる局所的な転位の集積を抑制することが必要である。そのため、ベイナイト主体の組織とすることが好ましい。その効果を得るためにはベイナイトの面積分率が80%以上必要である。さらに、高い圧縮強度が必要な場合はベイナイト面積分率を90%以上とすることが望ましい。
Bainite fraction: 80% or more In order to suppress the Bausinger effect and obtain a high compressive strength, the structure should have a soft ferrite phase and a hard second phase, and the accumulation of local dislocations generated inside the structure during deformation It is necessary to suppress. Therefore, a bainite-based structure is preferable. In order to obtain the effect, the area fraction of bainite needs to be 80% or more. Furthermore, when high compressive strength is required, the bainite area fraction is desirably 90% or more.

本発明の鋼管は、金属組織として上記の特徴を有することで高い圧縮強度が得られるが、上記以外の、セメンタイト、パーライト、マルテンサイト等の組織は、それらの分率の合計が5%以下であれば何ら悪影響を及ぼさないため、含有することができる。   The steel pipe of the present invention has a high compressive strength by having the above characteristics as a metal structure, but other than the above, structures such as cementite, pearlite, martensite, etc. have a total of 5% or less of their fractions. If there is no adverse effect, it can be contained.

なお、島状マルテンサイト(MA)は非常に硬質な相であり、変形時に局所的な転位の集積を促進し、バウシンガー効果により圧縮強度の低下を招くため、その分率を厳しく制限する必要がある。しかし、MAの分率が3%以下ではその影響が小さく圧縮強度の低下も生じないため、島状マルテンサイト(MA)の分率は3%以下であることが好ましい。MAの分率は、ナイタールエッチング後に電解エッチング(2段エッチング)を行い、その後走査型電子顕微鏡(SEM)による観察を行い、面積分率を求めることができる。   It should be noted that island martensite (MA) is a very hard phase, promotes the accumulation of local dislocations during deformation, and causes a reduction in compressive strength due to the Bauschinger effect. There is. However, when the MA fraction is 3% or less, the influence is small and the compressive strength does not decrease. Therefore, the island-like martensite (MA) fraction is preferably 3% or less. The MA fraction can be determined by performing electrolytic etching (two-stage etching) after nital etching and then observing with a scanning electron microscope (SEM).

一般に加速冷却を適用して製造された鋼板の金属組織は、鋼板の板厚方向で異なる場合がある。外圧を受ける鋼管のコラプスは周長の小さな鋼管内面側の塑性変形が先に生じることで起こるため、圧縮強度としては鋼管の内面側の特性が重要となり、一般に圧縮試験片は鋼管の内面側より採取する。よって、上記の金属組織は鋼管内面側の組織を規定するものであり、鋼管の性能を代表する位置として、内面側の板厚1/4の位置の組織とする。   Generally, the metal structure of a steel sheet manufactured by applying accelerated cooling may differ in the thickness direction of the steel sheet. Since the collapse of a steel pipe subject to external pressure occurs because the plastic deformation on the inner surface of the steel pipe with a small circumference first occurs, the characteristics of the inner surface of the steel pipe are important for compressive strength. Collect. Therefore, the above-mentioned metal structure defines the structure on the inner surface side of the steel pipe, and the structure representing the performance of the steel pipe is the structure at the position of the plate thickness 1/4 on the inner surface side.

本発明の鋼管は、上述の管軸方向及び管周方向の特性が得られれば優れた耐コラプス性能が発揮されるため、鋼管の製造方法は特に規定しない。しかし、適切な管軸方向及び管周方向の特性を有し、かつ、海底パイプラインへの適用に適した強度・靱性及びその他の性能と優れた真円度を得るためには、UOEプロセスやプレスベンドプロセスにより製造した鋼管が適しており、さらに鋼管の素材である鋼板の製造工程では、制御圧延と加速冷却などを適用したTMCPプロセスにより鋼管の素材である鋼板を製造することが好ましい。以下に、鋼管の素材である鋼板及び鋼管の好ましい製造条件について説明する。   Since the steel pipe of the present invention exhibits excellent anti-collapse performance as long as the above-described characteristics in the pipe axis direction and the pipe circumferential direction are obtained, the steel pipe manufacturing method is not particularly defined. However, in order to obtain appropriate pipe axial and pipe circumferential characteristics and strength / toughness and other performance suitable for application to submarine pipelines and excellent roundness, A steel pipe manufactured by a press bend process is suitable. Further, in a manufacturing process of a steel plate that is a material of the steel pipe, it is preferable to manufacture a steel plate that is a material of the steel pipe by a TMCP process to which controlled rolling and accelerated cooling are applied. Below, the preferable manufacturing conditions of the steel plate and steel pipe which are the raw materials of a steel pipe are demonstrated.

本発明の鋼管の素材である鋼板は、上述した化学成分を含有する鋼スラブを、加熱し熱間圧延を行った後、加速冷却を施す、あるいは加速冷却に引き続いて誘導加熱による焼戻しを行うことにより製造することが好ましい。以下に、鋼板の製造条件の好適条件について説明する。なお、以下の温度は特に記載しない限り鋼板の板厚方向の平均温度を表す。板厚方向の平均温度は、板厚、表面温度および冷却条件などから、シミュレーション計算などにより求められる。たとえば、差分法を用い、板厚方向の温度分布を計算することにより、板厚方向の平均温度を求めることができる。   The steel plate as the material of the steel pipe of the present invention is to heat-roll and hot-roll the steel slab containing the chemical components described above, and then perform accelerated cooling, or perform tempering by induction heating following accelerated cooling. It is preferable to manufacture by. Below, the suitable conditions of the manufacturing conditions of a steel plate are demonstrated. In addition, the following temperature represents the average temperature of the steel plate thickness direction unless otherwise indicated. The average temperature in the plate thickness direction is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the average temperature in the plate thickness direction can be obtained by calculating the temperature distribution in the plate thickness direction using the difference method.

スラブ加熱温度:1000〜1200℃
スラブ加熱温度は、1000℃未満では十分な強度が得られず、1200℃を超えると、靱性やDWTT特性が劣化する。したがって、スラブ加熱温度1000〜1200℃の範囲とすることが好ましい。さらに優れたDWTT特性が要求される場合は、スラブ加熱温度の上限を1100℃にすることがさらに望ましい。
Slab heating temperature: 1000-1200 ° C
If the slab heating temperature is less than 1000 ° C., sufficient strength cannot be obtained, and if it exceeds 1200 ° C., toughness and DWTT characteristics deteriorate. Therefore, it is preferable to set it as the range of slab heating temperature 1000-1200 degreeC. When more excellent DWTT characteristics are required, it is more desirable to set the upper limit of the slab heating temperature to 1100 ° C.

未再結晶温度域の圧下率:60%以上
微細ベイナイト組織と高い母材靱性を得るためには、熱間圧延工程において未再結晶温度域で十分な圧下を行うことが好ましい。しかし、この温度域での圧下率が60%未満では効果が不十分であるため、未再結晶温度域で圧下率を60%以上とすることが好ましい。なお、圧下率は複数の圧延パスで圧延を行う場合はその累積の圧下率とする。また、未再結晶温度域はNb、Ti等の合金元素によって変化するが、本発明のNb及びTi添加量では、未再結晶温度域の上限温度を950℃とみなしてよい。
Reduction ratio in non-recrystallization temperature range: 60% or more In order to obtain a fine bainite structure and high base metal toughness, it is preferable to perform sufficient reduction in the non-recrystallization temperature range in the hot rolling process. However, since the effect is insufficient when the rolling reduction in this temperature range is less than 60%, it is preferable to set the rolling reduction to 60% or more in the non-recrystallization temperature range. Note that the rolling reduction is the cumulative rolling reduction when rolling is performed in a plurality of rolling passes. Moreover, although the non-recrystallization temperature region varies depending on the alloying elements such as Nb and Ti, the upper limit temperature of the non-recrystallization temperature region may be regarded as 950 ° C. with the addition amount of Nb and Ti of the present invention.

圧延終了温度:Ar 以上
金属組織をベイナイト分率が80%以上の組織とするためには、フェライト生成温度であるAr温度以上で圧延を終了し、直ちに鋼板を冷却することが好ましい。また、フェライトが生成した後に圧延されると、金属組織が鋼板の長手方向に伸長した組織となり、鋼管となったときの管軸方向の降伏比が低下する。よって、圧延終了温度はAr温度以上とすることが好ましい。
Rolling end temperature: In order to make the metal structure of Ar 3 or higher a structure having a bainite fraction of 80% or higher, it is preferable to finish rolling at Ar 3 temperature or higher, which is a ferrite formation temperature, and immediately cool the steel sheet. Moreover, if it rolls after producing | generating a ferrite, it will become a structure | tissue where the metal structure was extended | stretched in the longitudinal direction of the steel plate, and the yield ratio of a pipe-axis direction when it becomes a steel pipe will fall. Therefore, the rolling end temperature is preferably set to Ar 3 temperature or higher.

なお、Ar温度は鋼の合金成分によって変化するため、それぞれの鋼で実験によって変態温度を測定して求めてもよいが、化学成分から下式(2)で求めることもできる。
Ar(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo ・・・(2)
ここで、各元素記号は含有量(質量%)を意味し、含有しない場合は0とする。
熱間圧延に引き続いて加速冷却を行うことが好ましい。加速冷却の好ましい条件は以下の通りである。
Incidentally, Ar 3 temperature is a function of the alloy components of the steel, it may be determined by measuring the transformation temperature by experiment for each steel, but can also be calculated by the following equation (2) from the chemical components.
Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (2)
Here, each element symbol means content (mass%), and is 0 when not contained.
It is preferable to perform accelerated cooling subsequent to hot rolling. Preferred conditions for accelerated cooling are as follows.

冷却速度:10℃/秒以上
冷却速度は、高強度で高靱性の鋼板を特に得るために制御することが好ましく、高い冷却速度で冷却することで変態強化による強度上昇と組織の微細化による高靱性が得られる。しかし、冷却速度が10℃/秒未満では十分な強度、靱性が得られない。よって加速冷却時の冷却速度を10℃/秒以上とすることが好ましい。
Cooling rate: 10 ° C./second or more The cooling rate is preferably controlled in order to obtain a high-strength and high-toughness steel sheet in particular. By cooling at a high cooling rate, the strength is increased by transformation strengthening and the structure is refined. Toughness is obtained. However, when the cooling rate is less than 10 ° C./second, sufficient strength and toughness cannot be obtained. Therefore, the cooling rate during accelerated cooling is preferably 10 ° C./second or more.

加速冷却停止温度:500℃以下
加速冷却により微細ベイナイト組織を得るためには、ベイナイト変態が十分に進行する温度域まで冷却する必要がある。冷却停止温度が500℃を超える場合は、ベイナイト変態が不十分で、十分な強度が得られないだけでなく、その後の空冷過程でセメンタイトやMA等の硬質な第2相が生成し、靱性が劣化する。よって、冷却停止温度は500℃以下が好ましい。また、厚肉材でさらに高い強度及び靱性を得るためには400℃以下にすることがより好ましい。
Accelerated cooling stop temperature: 500 ° C. or less In order to obtain a fine bainite structure by accelerated cooling, it is necessary to cool to a temperature range where the bainite transformation sufficiently proceeds. When the cooling stop temperature exceeds 500 ° C., not only the bainite transformation is insufficient and sufficient strength cannot be obtained, but a hard second phase such as cementite and MA is generated in the subsequent air cooling process, and the toughness is increased. to degrade. Therefore, the cooling stop temperature is preferably 500 ° C. or lower. Moreover, in order to obtain higher strength and toughness with a thick material, it is more preferable to set the temperature to 400 ° C. or lower.

加速冷却後の鋼板は、そのままUOEプロセスやプレスベンドプロセスによる鋼管製造に供することができるが、本発明の管軸方向と管周方向の特性を十分に満足するためには、加速冷却後に熱処理を施すことが好ましい。このときの鋼板表層部の加熱温度は、450〜700℃とすることが好ましい。これは、加速冷却時のベイナイト変態によって多量に導入された転位を回復し、さらに鋼中に固溶している炭素との相互作用を活用することで、降伏強度を向上し、かつ、鋼管とした後の管軸方向と管周方向の降伏強度の差を小さくできるためである。   The steel sheet after accelerated cooling can be used for steel pipe production by the UOE process or press bend process as it is. However, in order to fully satisfy the characteristics of the pipe axis direction and the pipe circumferential direction of the present invention, heat treatment is performed after accelerated cooling. It is preferable to apply. The heating temperature of the steel sheet surface layer at this time is preferably 450 to 700 ° C. This improves the yield strength by recovering the dislocations introduced in large quantities by the bainite transformation during accelerated cooling, and further utilizing the interaction with carbon dissolved in the steel. This is because the difference in yield strength between the tube axis direction and the tube circumferential direction after the process can be reduced.

さらに、熱処理によって加速冷却時に生成するセメンタイトやMA等の硬質第2相が分解され、母材靱性が向上し、また、鋼板のバウシンガー効果が小さくなるため、鋼管での高い圧縮強度が得られる。熱処理温度が450℃より低い温度ではこのような効果が得られず、700℃を超えると鋼板の強度が低下するため、熱処理温度は450〜700℃とすることが好ましい。   In addition, hard second phases such as cementite and MA generated during accelerated cooling are decomposed by heat treatment, the base material toughness is improved, and the Bausinger effect of the steel sheet is reduced, so that a high compressive strength in the steel pipe is obtained. . Such an effect cannot be obtained at a heat treatment temperature lower than 450 ° C., and when the temperature exceeds 700 ° C., the strength of the steel sheet is lowered. Therefore, the heat treatment temperature is preferably 450 to 700 ° C.

このような熱処理は、鋼板の加速冷却終了後にガス燃焼炉などのオフラインの熱処理炉で行っても良い。また、鋼板の製造能率を高めるため、鋼板の圧延・冷却ラインと同一のラインに設置した、誘導加熱型のオンライン加熱設備を用いても良い。   Such heat treatment may be performed in an off-line heat treatment furnace such as a gas combustion furnace after the accelerated cooling of the steel sheet. Moreover, in order to improve the manufacturing efficiency of a steel plate, you may use the induction heating type online heating equipment installed in the same line as the rolling and cooling line of a steel plate.

本発明は上述の方法によって製造された鋼板を素材として鋼管に成形加工し製造するが、鋼管の成形方法は、UOEプロセスやプレスベンド等の冷間成形によって鋼管形状に成形する方法が挙げられる。その後、シーム溶接する。このシーム溶接工程の溶接方法は十分な継手強度及び継手靱性が得られる方法ならいずれの方法でもよいが、優れた溶接品質と製造能率の点からサブマージアーク溶接を用いることが好ましい。突き合せ部の溶接を行った後に、溶接残留応力の除去と鋼管真円度の向上を目的として、拡管を行う。この拡管率は、所定の鋼管真円度が得られ、残留応力が除去される条件として0.4%以上が好ましい。   In the present invention, the steel plate manufactured by the above-described method is formed into a steel pipe by using the steel plate as a raw material, and the method of forming the steel pipe includes a method of forming into a steel pipe shape by cold forming such as UOE process or press bend. Then, seam welding is performed. Any method can be used as the welding method in the seam welding process as long as sufficient joint strength and joint toughness can be obtained, but it is preferable to use submerged arc welding from the viewpoint of excellent welding quality and production efficiency. After welding the butt portion, pipe expansion is performed for the purpose of removing welding residual stress and improving the roundness of the steel pipe. This pipe expansion rate is preferably 0.4% or more as a condition for obtaining a predetermined roundness of the steel pipe and removing the residual stress.

また、拡管率が高すぎるとバウシンガー効果による管軸方向引張試験での降伏強度が低下するため、その上限を1.0%とすることが好ましい。より好ましくは、拡管率の上限を0.8%とする。   Further, if the tube expansion rate is too high, the yield strength in the tube axis direction tensile test due to the Bauschinger effect decreases, so the upper limit is preferably made 1.0%. More preferably, the upper limit of the pipe expansion rate is 0.8%.

表1に示す化学成分の鋼(鋼種A〜D)を連続鋳造法によりスラブとし、これを用いて板厚30mmの鋼板(No.1〜6)を製造した。鋼板製造条件を表2に示す。鋼板製造時の再加熱処理は、加速冷却設備と同一ライン上に設置した誘導加熱炉を用いて熱処理を行った。熱処理温度は鋼板平均温度とするが、誘導加熱では加熱直後に鋼板表層と中心部とで温度差を生じるため、誘導加熱に表層温度と中心温度がほぼ等しくなった時点での鋼板温度とした。これらの鋼板を用いて、UOEプロセスにより種々の外径の鋼管を製造した。鋼管製造時の拡管率も表2に示す。   Steels (steel types A to D) having chemical components shown in Table 1 were made into slabs by a continuous casting method, and steel plates (Nos. 1 to 6) having a plate thickness of 30 mm were manufactured using the slabs. The steel sheet production conditions are shown in Table 2. The reheating process at the time of steel plate manufacture performed heat processing using the induction heating furnace installed on the same line as the accelerated cooling equipment. The heat treatment temperature is the average temperature of the steel plate, but in induction heating, a temperature difference occurs between the steel plate surface layer and the central portion immediately after heating, and therefore the steel plate temperature at the time when the surface layer temperature and the center temperature are almost equal to each other in induction heating. Using these steel plates, steel pipes having various outer diameters were produced by the UOE process. Table 2 also shows the tube expansion ratio when manufacturing the steel pipe.

Figure 0005786351
Figure 0005786351

Figure 0005786351
Figure 0005786351

以上のようにして製造した鋼管の引張特性は、管軸方向は全厚の矩形試験片、管周方向は鋼管内面側より採取した平行部径10mmの丸棒引張試験片により、降伏強度及び引張強度を測定した。圧縮試験は鋼管の鋼管内面側の位置より管周方向に直径20mm、長さ60mmの試験片を採取し、圧縮試験を行い圧縮の降伏強度を測定した。金属組織は鋼管の内面側の板厚1/4の位置からサンプルを採取し、研磨後ナイタールによるエッチングを行い光学顕微鏡で観察を行った。そして、200倍で撮影した写真3〜5枚を用いて画像解析装置を用いてベイナイトの面積分率を求めた。   The tensile properties of the steel pipes manufactured as described above were as follows: the yield strength and tensile strength were determined by using a rectangular test piece with a full thickness in the pipe axis direction and a round bar tensile test piece with a parallel part diameter of 10 mm taken from the inner surface of the pipe in the pipe circumferential direction. The strength was measured. In the compression test, a test piece having a diameter of 20 mm and a length of 60 mm was taken in the pipe circumferential direction from a position on the inner surface of the steel pipe, and the compression test was performed to measure the yield strength of compression. For the metal structure, a sample was taken from the position of the plate thickness ¼ on the inner surface side of the steel pipe, and after polishing, etched with nital and observed with an optical microscope. And the area fraction of bainite was calculated | required using the image analysis apparatus using the 3-5 photograph image | photographed by 200 time.

鋼管の金属組織を表2に、機械的特性を表3に示す。これらの鋼管に曲げモーメントを負荷した場合の、鋼管の変形挙動をFEMによって解析し、曲げモーメントが11.5MN・mのときの鋼管の扁平率を求めた。また、このように曲げが加わり扁平している鋼管のコラプス圧力を、DNV規格(OS F−101)に基づいて求めた。ただし、鋼管周方向の圧縮降伏強度は、引張試験での降伏強度にファブリケーションファクターを掛けた値ではなく、実際の圧縮試験で得られた圧縮降伏強度を用いた。鋼管の扁平率とコラプス圧力を表3に示した。   Table 2 shows the metal structure of the steel pipe, and Table 3 shows the mechanical properties. The deformation behavior of the steel pipe when a bending moment was applied to these steel pipes was analyzed by FEM, and the flatness of the steel pipe when the bending moment was 11.5 MN · m was obtained. Further, the collapse pressure of the steel pipe flattened by bending as described above was determined based on the DNV standard (OS F-101). However, the compressive yield strength in the circumferential direction of the steel pipe was not the value obtained by multiplying the yield strength in the tensile test by the fabrication factor, but the compressive yield strength obtained in the actual compressive test. Table 3 shows the flatness and collapse pressure of the steel pipe.

Figure 0005786351
Figure 0005786351

本発明例であるNo.1〜4はいずれも、機械的特性が本発明範囲であり、圧縮強度が高く、曲げ変形時の扁平率が小さい。その結果、高いコラプス圧力が得られている。
一方、No.5及び6は、機械的特性が本発明の範囲外であるため、圧縮強度が低くさらに曲げ変形時の扁平率も高いため、コラプス圧力が低い。
No. which is an example of the present invention. 1 to 4 all have mechanical properties within the scope of the present invention, high compressive strength, and low flatness during bending deformation. As a result, a high collapse pressure is obtained.
On the other hand, no. Nos. 5 and 6 have a low collapse pressure because the mechanical properties are outside the scope of the present invention, and the compressive strength is low and the flatness during bending deformation is also high.

本発明によれば、圧縮強度が高くパイプライン敷設時の曲げ変形による扁平が抑制される鋼管が得られるため、高い耐コラプス性能が要求される深海用ラインパイプへ適用することができる。   According to the present invention, it is possible to obtain a steel pipe that has a high compressive strength and is suppressed from being flattened by bending deformation when laying a pipeline. Therefore, it can be applied to a deep sea line pipe that requires high collapse resistance.

Claims (2)

ラインパイプ用鋼管において、
質量%で、C:0.03〜0.1%、Si:0.5%以下、Mn:1.0〜2.0%、P:0.015%以下、S:0.003%以下、Al:0.08%以下、Nb:0.005〜0.05%、Ti:0.005〜0.03%を含有し、さらに、Cu:0.5%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下、Ca:0.0005〜0.0035%の中から選ばれる1種以上を含有し、残部がFe及び不可避的不純物からなる化学成分を有し、
管軸方向引張試験での降伏強度及び引張強度をそれぞれL−YS(T)及びL−TS(T)、管周方向引張試験での降伏強度をC−YS(T)、管周方向圧縮試験での降伏強度C−YS(C)としたときに、L−YS(T)/L−TS(T)が0.9以上、L−YS(T)/C−YS(T)が0.95以上、C−YS(C)/C−YS(T)が0.9以上であることを特徴とする、耐コラプス性能の優れたラインパイプ用鋼管。
In steel pipes for line pipes,
In mass%, C: 0.03-0.1%, Si: 0.5% or less, Mn: 1.0-2.0%, P: 0.015% or less, S: 0.003% or less, Al: 0.08% or less, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.03%, Cu: 0.5% or less, Ni: 1.0% or less , Cr: 0.5% or less, Mo: 0.5% or less, V: 0.1% or less, Ca: 0.0005% to 0.0035%, and the balance is Fe And having a chemical component consisting of inevitable impurities,
L-YS (T) and L-TS (T) are the yield strength and tensile strength in the pipe axial direction tensile test, C-YS (T) are the yield strength in the pipe circumferential direction tensile test, and pipe circumferential direction compression test L-YS (T) / L-TS (T) is 0.9 or more and L-YS (T) / C-YS (T) is 0. 95 or more and C-YS (C) / C-YS (T) is 0.9 or more, The steel pipe for line pipes excellent in the collapse-proof performance characterized by the above-mentioned.
前記ラインパイプ用鋼管において、金属組織はベイナイト組織が面積分率で80%以上であることを特徴とする請求項1に記載の耐コラプス性能の優れたラインパイプ用鋼管。   The steel pipe for a line pipe according to claim 1, wherein the metal pipe has a bainite structure having an area fraction of 80% or more.
JP2011029265A 2011-02-15 2011-02-15 Steel pipe for line pipes with excellent anti-collapse performance Active JP5786351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029265A JP5786351B2 (en) 2011-02-15 2011-02-15 Steel pipe for line pipes with excellent anti-collapse performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029265A JP5786351B2 (en) 2011-02-15 2011-02-15 Steel pipe for line pipes with excellent anti-collapse performance

Publications (2)

Publication Number Publication Date
JP2012167329A JP2012167329A (en) 2012-09-06
JP5786351B2 true JP5786351B2 (en) 2015-09-30

Family

ID=46971748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029265A Active JP5786351B2 (en) 2011-02-15 2011-02-15 Steel pipe for line pipes with excellent anti-collapse performance

Country Status (1)

Country Link
JP (1) JP5786351B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773460B2 (en) * 2018-04-09 2023-10-03 Nippon Steel Corporation Steel pipe and method for producing steel pipe
KR102648172B1 (en) * 2019-03-28 2024-03-14 제이에프이 스틸 가부시키가이샤 Steel materials for line pipes and their manufacturing method, and line pipes and their manufacturing method
CN111286666B (en) * 2020-02-19 2021-06-22 包头钢铁(集团)有限责任公司 Cleanliness control method for IF deep drawing steel
CN115151353A (en) * 2020-02-26 2022-10-04 杰富意钢铁株式会社 Seamless pipe and method for manufacturing the same
CN115584431A (en) * 2021-07-05 2023-01-10 中国石油天然气集团有限公司 High-performance anti-collapse casing pipe for shale gas well and machining method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869747B2 (en) * 2002-04-09 2007-01-17 新日本製鐵株式会社 High-strength steel plate, high-strength steel pipe and manufacturing method excellent in deformation performance
JP4510680B2 (en) * 2005-04-01 2010-07-28 新日本製鐵株式会社 High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same
JP4824143B2 (en) * 2009-10-08 2011-11-30 新日本製鐵株式会社 High strength steel pipe, steel plate for high strength steel pipe, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012167329A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5561120B2 (en) Welded steel pipe for high compressive strength and high toughness line pipe and manufacturing method thereof
JP5561119B2 (en) Welded steel pipe for high compressive strength sour line pipe and manufacturing method thereof
JP5857400B2 (en) Welded steel pipe for high compressive strength line pipe and manufacturing method thereof
JP6226062B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP5782827B2 (en) High compressive strength steel pipe for sour line pipe and manufacturing method thereof
JP5782828B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP5803270B2 (en) High strength sour line pipe excellent in crush resistance and manufacturing method thereof
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP5786351B2 (en) Steel pipe for line pipes with excellent anti-collapse performance
JP5381234B2 (en) Manufacturing method of line pipe with high compressive strength
JP6635231B2 (en) Steel material for line pipe, method for manufacturing the same, and method for manufacturing line pipe
JP2009228099A (en) Uoe steel pipe for line pipe, and method for manufacturing the same
JP5782830B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP5782829B2 (en) High compressive strength steel pipe and manufacturing method thereof
CN111655872B (en) Steel material for line pipe, method for producing same, and method for producing line pipe
JP6819835B1 (en) Steel materials for line pipes and their manufacturing methods and line pipes and their manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5786351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250