JP6760254B2 - Electric resistance sewn steel pipe with excellent fatigue strength and its manufacturing method - Google Patents

Electric resistance sewn steel pipe with excellent fatigue strength and its manufacturing method Download PDF

Info

Publication number
JP6760254B2
JP6760254B2 JP2017250540A JP2017250540A JP6760254B2 JP 6760254 B2 JP6760254 B2 JP 6760254B2 JP 2017250540 A JP2017250540 A JP 2017250540A JP 2017250540 A JP2017250540 A JP 2017250540A JP 6760254 B2 JP6760254 B2 JP 6760254B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
strength
stress
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017250540A
Other languages
Japanese (ja)
Other versions
JP2019116658A (en
Inventor
貞末 照輝
照輝 貞末
恒久 半田
恒久 半田
池田 倫正
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017250540A priority Critical patent/JP6760254B2/en
Publication of JP2019116658A publication Critical patent/JP2019116658A/en
Application granted granted Critical
Publication of JP6760254B2 publication Critical patent/JP6760254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、油井管、ラインパイプ用として好適な電縫鋼管に係り、とくに繰返し荷重を受ける使途に好適な、疲労強度に優れた電縫鋼管およびその製造方法に関する。 The present invention relates to an electric resistance welded steel pipe suitable for oil well pipes and line pipes, and relates to an electric resistance welded steel pipe having excellent fatigue strength, which is particularly suitable for use under repeated load, and a method for manufacturing the same.

電縫鋼管は、継目無鋼管(シームレス鋼管)やUOE鋼管に比較して、安価であるという大きなメリットを有している。しかも、近年、電縫鋼管は、その製造技術や素材特性の向上により、性能が著しく向上し、油井管、ラインパイプ等向け素材として適用されるようになっている。油井管、ラインパイプ等向けとしては、まず、所定の強度を有し、さらに低温靭性、溶接性等に優れた電縫鋼管であることが、要求される。 The electro-sewn steel pipe has a great advantage that it is cheaper than the seamless steel pipe (seamless steel pipe) and the UOE steel pipe. Moreover, in recent years, electric resistance welded steel pipes have been remarkably improved in performance due to improvements in their manufacturing techniques and material characteristics, and have come to be applied as materials for oil country tubular goods, line pipes and the like. For oil country tubular goods, line pipes, etc., first, it is required to be an electrosewn steel pipe having a predetermined strength and further excellent in low temperature toughness, weldability and the like.

例えば、特許文献1には、「低温靭性、溶接性に優れた高強度電縫管用熱延鋼帯」が記載されている。特許文献1に記載された技術は、質量%で、C:0.005〜0.04%、Si:0.05〜0.3%、Mn:0.5〜2.0%、Al:0.001〜0.1%、Nb:0.001〜0.1%、V:0.001〜0.1%、Ti:0.001〜0.1%、P:0.03%以下、S:0.005%以下、N:0.006%以下を含み、かつCu:0.5%以下、Ni:0.5%以下、Mo:0.5%以下のうちから選んだ一種又は二種以上を含有する組成で、Pcmが0.17以下を満足し、かつ全組織中、主相であるベイニティックフェライトの占める割合が95vol%以上である高強度電縫管用熱延鋼帯である。特許文献1に記載された技術によれば、降伏強さ:560MPa以上の高強度で、試験温度:−10℃でのCTOD値が0.25mm以上となる母材および溶接部靭性を有し、ラインパイプ用鋼管や、油井管等向け素材として好適な電縫鋼管用熱延鋼帯となるとしている。 For example, Patent Document 1 describes "a hot-rolled steel strip for high-strength electric sewing pipes having excellent low-temperature toughness and weldability". The techniques described in Patent Document 1 are by mass%, C: 0.005 to 0.04%, Si: 0.05 to 0.3%, Mn: 0.5 to 2.0%, Al: 0.001 to 0.1%, Nb: 0.001 to 0.1%, V. : 0.001 to 0.1%, Ti: 0.001 to 0.1%, P: 0.03% or less, S: 0.005% or less, N: 0.006% or less, and Cu: 0.5% or less, Ni: 0.5% or less, Mo: 0.5% A composition containing one or more selected from the following, satisfying a Pcm of 0.17 or less, and a proportion of bainitic ferrite, which is the main phase, in the entire structure is 95 vol% or more. A hot-rolled steel strip for sewing pipes. According to the technique described in Patent Document 1, it has a high strength of yield strength: 560 MPa or more, a base material having a CTOD value of 0.25 mm or more at a test temperature of -10 ° C, and weld toughness, and a line. It is said that it will be a hot-rolled steel strip for welded steel pipes, which is suitable as a material for steel pipes for pipes and oil well pipes.

また、特許文献2には、「低温での衝撃エネルギー吸収特性と耐HAZ軟化特性に優れた高降伏比熱延鋼板」が記載されている。特許文献2に記載された技術は、質量%で、C:0.04〜0.09%、Si:0.4%以下、Mn:1.2〜2.0%、P:0.1%以下、S:0.02%以下、Al:1.0%以下、Nb:0.02〜0.09%、Ti:0.02〜0.07%、N:0.005%以下、を含有し、Mn+8Ti+12Nb:2.0〜2.6であり、残部がFeおよび不可避的不純物からなる成分組成を有し、パーライトの面積分率が5%以下、マルテンサイトおよび残留オーステナイトの合計面積分率が0.5%以下を含有し、残部がフェライトおよびベイナイトの1種または2種である金属組織からなり、フェライトおよびベイナイトの平均結晶粒径が10μm以下であり、TiおよびNbを含有する非整合析出した合金炭窒化物の平均粒子径が20nm以下であり、降伏比が0.85以上、最大引張強度が600MPa以上であり、−40℃におけるシャルピー衝撃エネルギー吸収が70J/cm2以上で、耐HAZ軟化特性に優れた高降伏比熱延鋼板である。 Further, Patent Document 2 describes "a high yield specific hot-rolled steel sheet having excellent low-temperature impact energy absorption characteristics and HAZ softening resistance". The techniques described in Patent Document 2 are by mass%, C: 0.04 to 0.09%, Si: 0.4% or less, Mn: 1.2 to 2.0%, P: 0.1% or less, S: 0.02% or less, Al: 1.0%. Below, Nb: 0.02 to 0.09%, Ti: 0.02 to 0.07%, N: 0.005% or less, Mn + 8Ti + 12Nb: 2.0 to 2.6, the balance has a component composition consisting of Fe and unavoidable impurities, and pearlite. The area fraction of pearlite is 5% or less, the total area fraction of martensite and retained austenite is 0.5% or less, and the balance consists of a metal structure of one or two types of ferrite and bainite, and the average of ferrite and bainite. The crystal grain size is 10 μm or less, the average particle size of unmatched precipitated alloy martensite containing Ti and Nb is 20 nm or less, the yield ratio is 0.85 or more, the maximum tensile strength is 600 MPa or more, and -40. A high yield specific heat-rolled steel sheet with excellent HAZ softening resistance and a charpy impact energy absorption of 70 J / cm 2 or more at ° C.

また、特許文献3には、「電縫溶接部の耐HIC性および低温靱性に優れた電縫鋼管」が記載されている。特許文献3に記載された技術は、質量%で、C:0.03〜0.59%、Si:0.10〜0.50%、Mn:0.40〜2.10%、Al:0.01〜0.35%を含有し、Si、MnをMn/Siが6.0〜9.0の範囲になるように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、引張強さTS:434MPa以上の強度を有する電縫鋼管であり、電縫溶接部に存在する円相当径8μm以上の介在物に含まれるSi、Mn、Al、Ca、Crの合計量が、地鉄を含む幅2mmの電縫溶接部全量に対する質量%で、16ppm以下であり、該電縫溶接部が優れた耐HIC特性と優れた低温靭性とを兼備する電縫鋼管である。 Further, Patent Document 3 describes "an electro-sewn steel pipe having excellent HIC resistance and low-temperature toughness of an electro-sewn welded portion". The technique described in Patent Document 3 contains C: 0.03 to 0.59%, Si: 0.10 to 0.50%, Mn: 0.40 to 2.10%, Al: 0.01 to 0.35% in mass%, and Si and Mn are Mn. It is an electrosewn steel pipe that contains / Si adjusted to be in the range of 6.0 to 9.0, has a composition consisting of the balance Fe and unavoidable impurities, and has a tensile strength of TS: 434 MPa or more. The total amount of Si, Mn, Al, Ca, and Cr contained in the inclusions with a circle equivalent diameter of 8 μm or more existing in the part is 16 ppm or less, which is the mass% of the total amount of the electric resistance welded part having a width of 2 mm including the base iron. , The electric resistance welded portion is an electric resistance steel pipe having excellent HIC resistance and excellent low temperature toughness.

また、特許文献4には、「溶接部品質の優れた電縫鋼管」が記載されている。特許文献4に記載された技術は、電縫鋼管の母材を構成する鋼板の成分組成が、質量%で、C:0.03〜0.15%、Si:0.1〜0.3%、Mn:0.5〜2.0%、Al:0.01〜0.06%、Ti:0.011〜0.023%、Ca:0.001〜0.005%、Ce及びLaの1種または2種の合計:0.001〜0.005%、P:0.03%以下、S:0.0015%以下、O:0.002%以下、N:0.005%以下を含有し、さらにNb:0.1%以下、V:0.1%以下、Mo:0.2%以下、及びB:0.002%以下の1種または2種以上を含有し、残部が鉄及び不可避的不純物であり、Ca、O、S、Ce、La、及びAlの含有量が、式
XCASO={Ca/O+Ca/S+0.285(Ce+La)/O+0.285(Ce+La)/S}×{Al/Ca}>78
を満し、電縫鋼管の溶接部における酸化物系介在物が、Ce及びLaの1種または2種を含有し、上記酸化物系介在物の長径/短径が2.5以下である、溶接部品質の優れた電縫鋼管である。特許文献4に記載された技術によれば、電縫溶接部の靭性低下が回避でき、油井管およびラインパイプに適した耐SSC性と低温靭性とを兼備した電縫鋼管を得ることができるとしている。
Further, Patent Document 4 describes "an electro-sewn steel pipe having excellent welded portion quality". In the technique described in Patent Document 4, the composition of the steel sheet constituting the base material of the electrosewn steel pipe is mass%, C: 0.03 to 0.15%, Si: 0.1 to 0.3%, Mn: 0.5 to 2.0%, Al: 0.01 to 0.06%, Ti: 0.011 to 0.023%, Ca: 0.001 to 0.005%, the total of one or two types of Ce and La: 0.001 to 0.005%, P: 0.03% or less, S: 0.0015% or less, Contains O: 0.002% or less, N: 0.005% or less, and further contains one or more of Nb: 0.1% or less, V: 0.1% or less, Mo: 0.2% or less, and B: 0.002% or less. , The balance is iron and unavoidable impurities, and the content of Ca, O, S, Ce, La, and Al is
XCASO = {Ca / O + Ca / S + 0.285 (Ce + La) / O + 0.285 (Ce + La) / S} × {Al / Ca} > 78
The welded portion in which the oxide-based inclusions in the welded portion of the electrosewn steel pipe contain one or two types of Ce and La, and the major axis / minor axis of the oxide-based inclusions is 2.5 or less. It is an electric resistance welded steel pipe with excellent quality. According to the technique described in Patent Document 4, it is possible to avoid a decrease in toughness of the electrosewn welded portion, and to obtain an electrosewn steel pipe having both SSC resistance and low temperature toughness suitable for oil country tubular goods and line pipes. There is.

また、特許文献5には、「低降伏比高強度電縫鋼管」が記載されている。特許文献5に記載された技術は、質量%で、C:0.05〜0.25%、Mn:0.2〜2.0%、Mo:0.05〜2.0%、V:0.1%超〜1.0%、Ti:0.002〜0.05%を含有し、Si:0.5%以下、Al:0.10%以下、P:0.025%以下、S:0.010%以下、N:0.01%以下に制限し、残部がFeおよび不可避的不純物からなり、次(式1)
Ceq=C+Mn/6+Ni/15+(Mo+V)/5 ……(式1)
によって求められるCeqが0.45以上であり、金属組織が焼戻しマルテンサイトからなる低降伏比高強度電縫鋼管である。特許文献5に記載された電縫鋼管は、造管後、焼入れ焼戻し処理を施されて、降伏強さ:800MPa以上の高強度と、90%以下の低降伏比と、を有し、低温靭性に優れた電縫鋼管である。特許文献5に記載された技術では、高い焼入れ性を有し、厚肉管でもマルテンサイト組織とすることができ、高強度、高靭性で、降伏比も低く、大径かつ厚肉の電縫鋼管とすることができるとしている。
Further, Patent Document 5 describes "low yield ratio high strength electric resistance welded steel pipe". The techniques described in Patent Document 5 are by mass%, C: 0.05 to 0.25%, Mn: 0.2 to 2.0%, Mo: 0.05 to 2.0%, V: more than 0.1% to 1.0%, Ti: 0.002 to 0.05%. Si: 0.5% or less, Al: 0.10% or less, P: 0.025% or less, S: 0.010% or less, N: 0.01% or less, and the balance consists of Fe and unavoidable impurities. 1)
Ceq = C + Mn / 6 + Ni / 15 + (Mo + V) / 5 …… (Equation 1)
It is a high-strength electro-sewn steel pipe with a low yield ratio and a metal structure composed of tempered martensite with a Ceq of 0.45 or more. The electrosewn steel pipe described in Patent Document 5 is subjected to quenching and tempering treatment after pipe formation, and has a yield strength of high strength of 800 MPa or more and a low yield ratio of 90% or less, and has low temperature toughness. It is an excellent electro-sewn steel pipe. The technique described in Patent Document 5 has high hardenability, can form a martensite structure even in a thick pipe, has high strength and high toughness, has a low yield ratio, and has a large diameter and a thick wall. It is said that it can be a steel pipe.

また、特許文献6には、「高強度中空スタビライザー用電縫鋼管」が記載されている。特許文献6に記載された技術は、質量%で、C:0.20〜0.38%、Si:0.10〜0.50%、Mn:0.30〜2.00%、Al:0.01〜0.10%、W:0.01〜1.50%、B:0.0005〜0.0050%を含みさらにTi、Nを、Ti:0.001〜0.04%、N:0.0010〜0.0100%の範囲で、かつ(1)式
N/14<Ti/47.9 ……(1)
を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有し、焼入れ処理後あるいは焼入れ焼戻処理後の強度−靭性バランスに優れる高強度中空スタビライザー用電縫鋼管であり、上記組成に加えてさらに、Cr、Moのうちから選ばれた1種または2種、Nb、Vのうちから選ばれた1種または2種、Cu、Niのうちから選ばれた1種または2種を含有してもよいとしている。特許文献6に記載された技術によれば、焼入れ焼戻し後の、肉厚方向の平均硬さが400HV以上の高強度で、シャルピー衝撃試験の破面遷移温度vTrsが−110℃以下の高靭性を有し、さらに機械的特性のばらつきが少ない自動車用スタビライザーを製造できるとしている。
Further, Patent Document 6 describes "electric pipe for high-strength hollow stabilizer". The techniques described in Patent Document 6 are by mass%, C: 0.20 to 0.38%, Si: 0.10 to 0.50%, Mn: 0.30 to 2.00%, Al: 0.01 to 0.10%, W: 0.01 to 1.50%, B. : Includes 0.0005 to 0.0050%, and further Ti and N in the range of Ti: 0.001 to 0.04% and N: 0.0010 to 0.0100%, and equation (1).
N / 14 <Ti / 47.9 …… (1)
A high-strength hollow stabilizer electrosewn steel tube having a composition of the balance Fe and unavoidable impurities, which is contained in a satisfactory manner and has an excellent strength-toughness balance after quenching or tempering and tempering. In addition to, one or two selected from Cr and Mo, one or two selected from Nb and V, and one or two selected from Cu and Ni. It is said that it may be contained. According to the technique described in Patent Document 6, after quenching and tempering, the average hardness in the wall thickness direction is 400 HV or more, and the fracture surface transition temperature vTrs of the Charpy impact test is -110 ° C or less. It is said that it is possible to manufacture a stabilizer for automobiles, which has less variation in mechanical characteristics.

また、特許文献7には、「低温衝撃特性に優れた自動車用高強度電縫鋼管」が記載されている。特許文献7に記載された技術は、質量%で、C:0.2〜0.4%、Si:0.05〜0.5%、Mn:0.5〜2.5%、P:0.025%以下、S:0.01%以下、Al:0.15%以下、Cu:2%以下、Cr:2%以下、Ti:0.2%以下、B:0.005%以下を含み、残部が鉄および不可避的不純物からなる組成を有し、引張強さが1750N/mm2以上、0.1%耐力が1320N/mm2以上、−40℃におけるシャルピー衝撃値が50J/cm2以上である鋼板により構成される自動車用高強度電縫鋼管である。特許文献7に記載された技術によれば、所定の化学成分を有する電縫鋼管を高周波焼入れし、ミクロ組織をマルテンサイト単相としたのち、低温焼戻し処理を施すことにより、上記した高強度を有し、さらに高荷重域まで局部座屈が起こらず、衝撃吸収特性に優れた高強度電縫鋼管が得られるとしている。 Further, Patent Document 7 describes "high-strength electric resistance welded steel pipe for automobiles having excellent low-temperature impact characteristics". The techniques described in Patent Document 7 are by mass%, C: 0.2 to 0.4%, Si: 0.05 to 0.5%, Mn: 0.5 to 2.5%, P: 0.025% or less, S: 0.01% or less, Al: 0.15. % Or less, Cu: 2% or less, Cr: 2% or less, Ti: 0.2% or less, B: 0.005% or less, the balance is composed of iron and unavoidable impurities, and the tensile strength is 1750 N / mm. It is a high-strength electric resistance steel pipe for automobiles composed of steel plates with a proof stress of 2 or more, 0.1% proof stress of 1320 N / mm 2 or more, and a Charpy impact value of 50 J / cm 2 or more at -40 ° C. According to the technique described in Patent Document 7, an induction-hardened steel pipe having a predetermined chemical component is induction-hardened to obtain a martensite single-phase microstructure, and then low-temperature tempering is performed to obtain the above-mentioned high strength. It is said that a high-strength electric resistance welded steel pipe with excellent shock absorption characteristics can be obtained without local buckling occurring even in a high load range.

また、特許文献8には、「高強度電縫鋼管」が記載されている。特許文献8に記載された技術は、質量%で、C:0.05〜0.20%、Si:0.5〜2.0%、Mn:1.0〜3.0%、P:0.1%以下、S:0.01%以下、Al:0.01〜0.1%、N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成と、フェライト相とマルテンサイト相からなる二相組織で、マルテンサイト相が体積率で20〜60%である組織とを有し、引張強さが1180MPa以上、管軸方向の伸びが10%以上、降伏比が90%未満である優れた加工性と、塗装焼付け処理後の強度増加量が100MPa以上で、かつ降伏比が90%以上となる衝撃吸収特性とを有し、電縫溶接部の内面ビード高さが−0.1〜0.1mmである高強度電縫鋼管である。特許文献8に記載された技術により製造された高強度電縫鋼管は、自動車衝撃吸収用部材、自動車骨格部材等に有効に適用できるとしている。 Further, Patent Document 8 describes "high-strength electric resistance welded steel pipe". The techniques described in Patent Document 8 are by mass%, C: 0.05 to 0.20%, Si: 0.5 to 2.0%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01. A structure containing ~ 0.1%, N: 0.005% or less, a composition consisting of the balance Fe and unavoidable impurities, and a two-phase structure consisting of a ferrite phase and a martensite phase, in which the martensite phase is 20 to 60% by volume. Excellent workability with tensile strength of 1180 MPa or more, elongation in the pipe axis direction of 10% or more, yield ratio of less than 90%, and strength increase after coating baking treatment of 100 MPa or more. It is a high-strength electric-sewn steel pipe having a shock absorbing property with a yield ratio of 90% or more and an inner bead height of -0.1 to 0.1 mm of the electric-sewn welded portion. It is said that the high-strength electric resistance welded steel pipe manufactured by the technique described in Patent Document 8 can be effectively applied to automobile shock absorbing members, automobile skeleton members and the like.

また、特許文献9には、「疲労特性に優れた電縫鋼管」が記載されている。特許文献9に記載された技術は、質量%で、C:0.35〜0.55%、Si:0.01〜1.0%、Mn:1.0〜3.0%、P:0.02%以下、S:0.01%以下、Al:0.005%以下、N:0.0050%以下、Cr:0.1〜0.5%含有し、残部Feおよび不可避的不純部物からなる組成を有し、パーライト、フェライトおよびベイナイトからなり、パーライトの面積率が85%以上、フェライトおよびベイナイトの面積率の合計を15%以下、旧オーステナイト粒径が25μm以下である電縫鋼管である。特許文献9に記載された技術では、主たる組織をパーライトとすることにより、疲労き裂がジグザグに伝播することで疲労き裂伝播抵抗が高くなり、疲労強度が向上するとしている。 Further, Patent Document 9 describes "an electro-sewn steel pipe having excellent fatigue characteristics". The techniques described in Patent Document 9 are by mass%, C: 0.35 to 0.55%, Si: 0.01 to 1.0%, Mn: 1.0 to 3.0%, P: 0.02% or less, S: 0.01% or less, Al: 0.005. % Or less, N: 0.0050% or less, Cr: 0.1 to 0.5%, has a composition consisting of the balance Fe and unavoidable impure parts, is composed of pearlite, ferrite and bainite, and has an area ratio of pearlite of 85% or more. An electrosewn steel pipe having a total area ratio of ferrite and bainite of 15% or less and an old austenite particle size of 25 μm or less. In the technique described in Patent Document 9, by using pearlite as the main structure, fatigue cracks propagate in a zigzag manner, which increases fatigue crack propagation resistance and improves fatigue strength.

特許第4341396号公報Japanese Patent No. 4341396 特許第5354130号公報Japanese Patent No. 5354130 特許第5516680号公報Japanese Patent No. 5516680 特許第5765497号公報Japanese Patent No. 5765497 特開2010−1566号公報Japanese Unexamined Patent Publication No. 2010-1566 特開2006−206999号公報Japanese Unexamined Patent Publication No. 2006-206999 特開2008−261049号公報Japanese Unexamined Patent Publication No. 2008-261049 特開2012−229457号公報Japanese Unexamined Patent Publication No. 2012-229457 特許第5892267号公報Japanese Patent No. 5892267

海底油田・ガス田から石油・天然ガス等を採取する際に用いられる油井管やラインパイプでは、繰り返し荷重により疲労を受ける場合があり、特に、例えば、海洋掘削リグにおけるライザーパイプにおけるように、潮流による管軸方向の応力変動による疲労破壊が懸念されるなど、油井管、ラインパイプ等の使途に適用される電縫鋼管では、優れた耐疲労特性を有することが要望されている。 Oil well pipes and line pipes used to extract oil, natural gas, etc. from offshore oil and gas fields may be subject to fatigue due to repeated loads, especially tidal currents, such as in riser pipes in offshore drilling rigs. There is a concern about fatigue failure due to stress fluctuations in the pipe axis direction due to the above, and it is required that the electrosewn steel pipe applied to the use of oil well pipes, line pipes, etc. have excellent fatigue resistance characteristics.

しかしながら、特許文献1、特許文献2、特許文献3、特許文献4に記載された各技術では、耐疲労特性についてまでの言及はなく、疲労強度に優れた電縫鋼管であるかどうかについては、不明のままである。 However, in each of the techniques described in Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4, there is no mention of fatigue resistance, and whether or not the pipe is an electrosewn steel pipe having excellent fatigue strength is not mentioned. It remains unknown.

また、特許文献5に記載された技術では、高い焼入れ性を有し、厚肉管でもマルテンサイト組織とすることができ、高強度、高靭性で、降伏比も低く、大径かつ厚肉の電縫鋼管とすることができるとしている。しかし、特許文献5には、耐疲労特性についてまでの言及はない。また、特許文献6に記載された技術で製造される電縫鋼管は、自動車用スタビライザー向けであり、たかだか肉厚5mm程度で、外径:25.4mmφ程度の小径電縫鋼管である。しかも、特許文献6には、強度、靭性についての記載があるだけで、耐疲労特性についてまでの言及はない。また、特許文献7に記載された技術で製造される電縫鋼管は、マルテンサイト単相組織で、引張強さが1750N/mm2以上で、0.1%耐力が1320N/mm2以上となる高強度を有しているが、自動車向けであり、しかも特許文献7には、肉厚:2mm程度、外径:31.8mmφと、薄肉小径電縫鋼管が例示されているにすぎない。さらに、特許文献7には、強度、靭性についての記載はあるが、耐疲労特性についての言及はない。 Further, the technique described in Patent Document 5 has high hardenability, can form a martensite structure even in a thick pipe, has high strength and high toughness, has a low yield ratio, and has a large diameter and a thick wall. It is said that it can be a harden steel pipe. However, Patent Document 5 does not mention fatigue resistance characteristics. Further, the electric resistance welded steel pipe manufactured by the technique described in Patent Document 6 is for a stabilizer for automobiles, and is a small diameter electric resistance welded steel pipe having a wall thickness of about 5 mm and an outer diameter of about 25.4 mmφ. Moreover, Patent Document 6 only describes strength and toughness, and does not mention fatigue resistance. Also, high-strength electric resistance welded steel pipe produced by the technique described in Patent Document 7, which in martensite single phase structure, a tensile strength of 1750 N / mm 2 or more, the 0.1% proof stress of 1320N / mm 2 or more However, it is intended for automobiles, and Patent Document 7 merely exemplifies a thin-walled small-diameter electric resistance pipe having a wall thickness of about 2 mm and an outer diameter of 31.8 mmφ. Further, Patent Document 7 describes strength and toughness, but does not mention fatigue resistance.

また、特許文献8に記載された技術で製造された電縫鋼管は、マルテンサイト相が体積率で20〜60%である、フェライト相とマルテンサイト相からなる二相組織で、引張強さが1180MPa以上を有する高強度電縫鋼管であり、主として自動車部材用のため、外径が高々48.6mmφ、肉厚が1.8mm程度の薄肉小径電縫鋼管が例示されているにすぎない。しかも、特許文献8には、耐疲労特性についての記載もない。また、特許文献9に記載された技術では、主たる組織をパーライトとすることにより、疲労強度を向上させているが、特許文献9に記載された技術では、自動車の中空ドライブシャフト用を目的としているため、高々、外径89mm、肉厚4.7mm程度の薄肉小径電縫鋼管についての記載があるだけで、特許文献9には、厚肉大径の電縫鋼管についてまでの記載はない。 Further, the electrosewn steel pipe manufactured by the technique described in Patent Document 8 has a two-phase structure composed of a ferrite phase and a martensite phase in which the martensite phase has a volume ratio of 20 to 60%, and the tensile strength is high. It is a high-strength electric-sewn steel pipe having 1180 MPa or more, and is mainly for automobile parts, so a thin-walled small-diameter electric-sewn steel pipe having an outer diameter of at most 48.6 mmφ and a wall thickness of about 1.8 mm is merely exemplified. Moreover, Patent Document 8 does not describe the fatigue resistance characteristics. Further, in the technique described in Patent Document 9, the fatigue strength is improved by using pearlite as the main structure, but the technique described in Patent Document 9 is intended for a hollow drive shaft of an automobile. Therefore, there is only a description of a thin-walled small-diameter electric-sewn steel pipe having an outer diameter of 89 mm and a wall-thickness of about 4.7 mm at most, and Patent Document 9 does not describe a thick-walled large-diameter electric-sewn steel pipe.

本発明は、かかる従来技術の問題に鑑み、油井管、ラインパイプ用として、とくに繰り返し荷重を受ける使途向けとして好適な、厚肉大径で、疲労強度に優れた電縫鋼管を提供することを目的とする。なお、ここでいう「疲労強度に優れた」とは、応力比:0.1での繰返し応力負荷試験(疲労試験)を実施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが、360MPa以上である場合をいうものとする。また、ここでいう「厚肉大径」電縫鋼管とは、肉厚(板厚):11.9mm以上好ましくは25.4mm以下、管外径:219.1mm以上である電縫鋼管をいうものとする。 In view of the problems of the prior art, the present invention provides an electro-sewn steel pipe having a thick wall and a large diameter and excellent fatigue strength, which is suitable for oil country tubular goods and line pipes, particularly for use under repeated load. The purpose. In addition, "excellent in fatigue strength" here means that the repeated yield strength obtained from the repeated stress strain curve obtained by performing the repeated stress load test (fatigue test) at a stress ratio of 0.1 is 360 MPa. The above is the case. Further, the "thick-walled large-diameter" power-sewn steel pipe here means a power-sewn steel pipe having a wall thickness (plate thickness) of 11.9 mm or more, preferably 25.4 mm or less, and a pipe outer diameter: 219.1 mm or more. ..

また、本発明が目的とする厚肉大径電縫鋼管は、上記した範囲の肉厚、管径を有し、JIS Z 2241の規定に準拠した引張試験で得られた肉厚中央位置で管軸方向で、静的降伏強さYS:360MPa以上好ましくは570MPa以下で、静的引張強さTS:520MPa以上好ましくは760MPa以下の強度特性と、JIS Z 2242に規定されるシャルピー衝撃試験で、試験温度:0℃における吸収エネルギーが27J以上である靭性と、を有する鋼管とする。 Further, the thick-walled large-diameter electrosewn steel pipe, which is the object of the present invention, has a wall thickness and pipe diameter in the above range, and is a pipe at the center position of the wall thickness obtained by a tensile test in accordance with the provisions of JIS Z 2241. In the axial direction, static yield strength YS: 360 MPa or more, preferably 570 MPa or less, static tensile strength TS: 520 MPa or more, preferably 760 MPa or less, and a Charpy impact test specified in JIS Z 2242. Temperature: A steel pipe having toughness with an absorbed energy of 27 J or more at 0 ° C.

本発明者らは、上記した目的を達成するために、上記した静的強度特性を有する電縫鋼管の疲労強度に及ぼす各種要因について、鋭意検討した。その結果、まず、上記した、静的降伏強さYS:360MPa以上、静的引張強さTS:520MPa以上となる強度特性を確保するためには、電縫鋼管の組織を、高強度が得やすくかつ靭性への悪影響が少ないベイナイトを面積率で30%以上含む、フェライトとベイナイトとからなる組織を主とする必要があることに思い至った。 In order to achieve the above-mentioned object, the present inventors have diligently studied various factors affecting the fatigue strength of the electric resistance sewn steel pipe having the above-mentioned static strength characteristics. As a result, first, in order to secure the above-mentioned strength characteristics such that the static yield strength YS: 360 MPa or more and the static tensile strength TS: 520 MPa or more, it is easy to obtain high strength in the structure of the bainite steel pipe. I realized that it is necessary to mainly use a structure consisting of ferrite and bainite, which contains bainite with an area ratio of 30% or more, which has little adverse effect on toughness.

そして、フェライトとベイナイトとからなる組織を主とする電縫鋼管の疲労強度に及ぼす各種要因について、鋭意検討した。その結果、まず、応力比:0.1での繰返し応力負荷試験(疲労試験)を実施して繰返し応力歪曲線を求め、得られた繰返し応力歪曲線から求めた繰返し降伏強さが、通常、鋼材の疲労強度として用いられる、JIS Z 2273 に規定される200万回疲労強度と、非常によい相関を示すことを新規に見出した。 Then, various factors affecting the fatigue strength of the electrosewn steel pipe mainly composed of ferrite and bainite were investigated diligently. As a result, first, a repeated stress load test (fatigue test) with a stress ratio of 0.1 was performed to obtain a repeated stress strain curve, and the repeated yield strength obtained from the obtained repeated stress strain curve is usually that of a steel material. It was newly found that it shows a very good correlation with the 2 million times fatigue strength specified in JIS Z 2273, which is used as the fatigue strength.

まず、本発明者らが行った実験結果について説明する。
種々の組成を有し、フェライト、フェライト+ベイナイト、フェライト+ベイナイト+パーライト、ベイナイト等、各種組織を有する熱延鋼板(鋼帯)(板厚:11.9〜25.4mm)を素材として、該素材に、冷間加工を施し、略円筒状のオープン管としたのち、該オープン管の幅方向端部同士を突き合わせて、押圧し、大電流の高周波抵抗溶接により電縫溶接して、外径:219.1〜508mmφの電縫鋼管とした。
First, the results of experiments conducted by the present inventors will be described.
Using a hot-rolled steel sheet (steel strip) (plate thickness: 11.9 to 25.4 mm) having various compositions and various structures such as ferrite, ferrite + bainite, ferrite + bainite + pearlite, bainite, etc., as the material, After being cold-worked to form a substantially cylindrical open pipe, the widthwise ends of the open pipe are butted against each other, pressed, and electrosewn by high-current high-frequency resistance welding to obtain an outer diameter of 219.1 to ~. A 508 mmφ electric resistance steel pipe was used.

得られた電縫鋼管から、図3に示す断面の、電縫部(シーム部)から時計周りに90°の位置の肉厚中央位置で、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取した。そして、試験片の中央部に塑性歪ゲージを貼付した疲労試験片に、図6に示す、応力比:0.1の正弦波の応力を負荷し、試験片に発生する歪を測定する、繰返し応力負荷試験(疲労試験)を実施した。なお、ここでいう応力比は、図6に示すように、σmin/σmaxである。なお、負荷する応力を、応力比:0.1の正弦波の応力としたのは、油井管やラインパイプに負荷される繰り返し荷重は、平均応力がプラス側にある場合が多いという理由からである。 From the obtained electro-sewn steel pipe, at the center position of the wall thickness at a position 90 ° clockwise from the electro-sewn portion (seam portion) in the cross section shown in FIG. 3, the longitudinal direction of the test piece is the pipe axis direction. The fatigue test piece shown in FIG. 5 was collected. Then, a sine wave stress with a stress ratio of 0.1 as shown in FIG. 6 is applied to the fatigue test piece to which a plastic strain gauge is attached to the center of the test piece, and the strain generated in the test piece is measured. Repeated stress load. A test (fatigue test) was conducted. The stress ratio referred to here is σmin / σmax, as shown in FIG. The stress to be applied is a sinusoidal stress with a stress ratio of 0.1 because the average stress of the repeated load applied to the oil well pipe or line pipe is often on the positive side.

この繰返し応力負荷試験では、応力比:0.1の正弦波の応力を負荷し、応力負荷に伴い試験片に発生する歪を測定し、応力と歪との関係を求める。同一条件で数サイクル(例えば10サイクル)行い、応力と歪との関係の頂点を求めたのち、応力比:0.1を一定としたままで、応力レベルを漸増(395〜622MPa)し、同様に、数サイクル(10サイクル)応力負荷して、応力と歪との関係の頂点を求める。このような応力レベルの漸増を繰り返して、それぞれ頂点をもとめ、得られた各頂点を結び、応力と歪との関係曲線を得る。 In this repetitive stress load test, a sine wave stress with a stress ratio of 0.1 is applied, the strain generated in the test piece due to the stress load is measured, and the relationship between the stress and the strain is obtained. After performing several cycles (for example, 10 cycles) under the same conditions to find the apex of the relationship between stress and strain, the stress level is gradually increased (395 to 622 MPa) while keeping the stress ratio: 0.1 constant, and similarly. Stress is applied for several cycles (10 cycles) to find the apex of the relationship between stress and strain. By repeating such gradual increase of the stress level, the vertices are obtained, and the obtained vertices are connected to obtain the relational curve between the stress and the strain.

その概要を図2に示す。図2では、各サイクルでの頂点を黒丸(●)で示す。得られた曲線を、繰返し応力歪曲線と称する。図2に示す繰返し応力歪曲線は、ラウンドハウス型曲線である。 The outline is shown in FIG. In FIG. 2, the vertices in each cycle are indicated by black circles (●). The obtained curve is referred to as a cyclic stress strain curve. The cyclic stress strain curve shown in FIG. 2 is a round house type curve.

このようにして得られた「繰返し応力歪曲線」から、「繰返し降伏強さ」を求めた。「繰返し応力歪曲線」が降伏点型曲線を呈する場合には、「繰返し降伏強さ」は上降伏点とし、「繰返し応力歪曲線」がラウンド型曲線を呈する場合には、「繰返し降伏強さ」はオフセット0.5%耐力σ0.5とした。 From the "repeated stress strain curve" obtained in this way, the "repeated yield strength" was obtained. When the "repetitive stress strain curve" exhibits a yield point type curve, the "repeated yield strength" is the upper yield point, and when the "repetitive stress strain curve" exhibits a round type curve, the "repeated yield strength" is used. Is an offset of 0.5% and a proof stress of σ 0.5 .

さらに、得られた電縫鋼管について同様に、電縫部(シーム部)から時計周りに90°の位置の肉厚中央位置で、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取し、JIS Z 2273 の規定に準拠して、応力比:0.1の繰返し応力負荷の条件で、負荷応力を変化させて、疲労試験を実施し、各負荷応力で破断までの繰返し負荷回数を求め、S-N曲線を得た。そして、2×106回で破断しない上限の負荷応力を疲労強度σmax(2×106回)とした。 Further, with respect to the obtained electric sewn steel pipe, similarly, at the center position of the wall thickness at a position 90 ° clockwise from the electric sewn part (seam part), the longitudinal direction of the test piece is the pipe axis direction, as shown in FIG. The fatigue test pieces shown are collected, and the fatigue test is performed by changing the load stress under the condition of repeated stress load with stress ratio of 0.1 in accordance with the provisions of JIS Z 2273, and each load stress is used until fracture. The number of repeated loads was calculated, and the SN curve was obtained. Then, the upper limit load stress that does not break at 2 × 10 6 times was set as the fatigue strength σmax (2 × 10 6 times).

得られた疲労強度σmax(2×106回)と繰返し降伏強さとの関係を図1に示す。
図1から、繰返し降伏強さは、電縫鋼管の疲労強度σmax(2×106回)と、鋼管組織に影響されることなく、非常によい相関関係を有していることを、新規に知見した。
The relationship between the obtained fatigue strength σmax (2 × 10 6 times) and the repeated yield strength is shown in FIG.
From FIG. 1, it is newly found that the repeated yield strength has a very good correlation with the fatigue strength σmax (2 × 10 6 times) of the electrosewn steel pipe without being affected by the steel pipe structure. I found out.

このようなことから、本発明者らは、上記した「繰返し降伏強さ」により、耐疲労特性を評価することが、多数の試験片を用いることなく、簡便に、当該電縫鋼管の疲労強度を精度高く推定できることに想到した。 For this reason, the present inventors can easily evaluate the fatigue resistance characteristics by the above-mentioned "repeated yield strength" without using a large number of test pieces, and easily the fatigue strength of the electric resistance welded steel pipe. I came up with the idea of being able to estimate with high accuracy.

さらに、本発明者らは、疲労強度の評価手段として上記した「繰返し降伏強さ」を用いて、各種電縫鋼管の疲労強度を推定し、造管ままの電縫鋼管に、焼戻温度:150〜350℃の低温焼戻処理を施すと、管軸方向の疲労強度が著しく向上することを見出した。 Furthermore, the present inventors estimated the fatigue strength of various electric resistance sewn steel pipes by using the above-mentioned "repeated yield strength" as a means for evaluating the fatigue strength, and applied the tempered steel pipe as it was made to the tempering temperature: It was found that the fatigue strength in the axial direction of the pipe was significantly improved when low-temperature tempering treatment at 150 to 350 ° C was performed.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.001〜0.50%、Si:0.001〜2.0%、Mn:0.001〜3.0%、P:0.05%以下、S:0.05%以下、Al:0.010〜0.060%を含み、残部Fe及び不可避的不純物からなる組成と、面積率で、フェライト:70%以下(0%を含まず)、ベイナイト:30〜50%を含み、かつフェライトとベイナイトとの合計が90%以上で、さらに10%以下(0%を含む)のパーライトまたはマルテンサイトとからなる組織と、を有し、さらに前記組織中には粒径500nm未満の微細炭化物が分散してなり、JIS Z 2241の規定に準拠した引張試験により得られた、肉厚中央位置で管軸方向の静的降伏強さが360MPa以上、静的引張強さが520MPa以上で、かつ、応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが360MPa以上であることを特徴とする疲労強度に優れた厚肉大径電縫鋼管。
(2)(1)において、前記組成に加えてさらに、質量%で、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有することを特徴とする厚肉大径電縫鋼管。
(3)熱延鋼帯を、素材として、該素材の幅方向に冷間で曲げ加工を施し、断面略円筒状のオープン管としたのち、該オープン管の幅方向端部同士を突き合わせ、押圧し、電縫溶接して、電縫鋼管とするに当り、前記熱延鋼帯を、質量%で、C:0.001〜0.50%、Si:0.001〜2.0%、Mn:0.001〜3.0%、P:0.05%以下、S:0.05%以下、Al:0.010〜0.060%を含み、残部Fe及び不可避的不純物からなる組成と、面積率で、フェライト:70%以下(0%を含まず)、ベイナイト:30〜50%を含み、かつフェライトとベイナイトとの合計が90%以上で、さらに10%以下(0%を含む)のパーライトまたはマルテンサイトとからなる組織と、を有する鋼帯とし、前記電縫鋼管に、焼戻温度:150〜350℃の低温焼戻処理を施し、JIS Z 2241の規定に準拠した引張試験により得られた、肉厚中央位置で管軸方向の静的降伏強さが360MPa以上、静的引張強さが520MPa以上で、かつ、応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが360MPa以上である電縫鋼管とすることを特徴とする疲労強度に優れた厚肉大径電縫鋼管の製造方法。
(4)(3)において、前記組成に加えてさらに、質量%で、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有することを特徴とする厚肉大径電縫鋼管の製造方法。
The present invention has been completed with further studies based on such findings. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.001 to 0.50%, Si: 0.001 to 2.0%, Mn: 0.001 to 3.0%, P: 0.05% or less, S: 0.05% or less, Al: 0.010 to 0.060%, and the balance Consists of Fe and unavoidable impurities, and in area ratio, ferrite: 70% or less (not including 0%), bainite: 30 to 50%, and the total of ferrite and bainite is 90% or more. It has a structure consisting of 10% or less (including 0%) of pearlite or maltensite, and fine carbides with a particle size of less than 500 nm are dispersed in the structure, and conforms to the provisions of JIS Z 2241. Obtained by applying a repeated stress load with a static yield strength of 360 MPa or more in the tube axis direction, a static tensile strength of 520 MPa or more, and a stress ratio of 0.1 at the center position of the wall thickness obtained by the above-mentioned tensile test. A thick-walled, large-diameter electric sewn steel pipe with excellent fatigue strength, characterized in that the repeated yield strength obtained from the obtained repeated stress strain curve is 360 MPa or more.
(2) In (1), in addition to the above composition, Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 in mass%. ~ 0.5%, V: 0.0001 ~ 0.5%, Ti: 0.0001 ~ 0.5%, B: 0.00001 ~ 0.1%, Ca: 0.00001 ~ 0.1%, REM: 0.00001 ~ 0.1% One or more selected from Thick-walled, large-diameter electric resistance pipes characterized by containing.
(3) The hot-rolled steel strip is cold-bent in the width direction of the material to form an open pipe having a substantially cylindrical cross section, and then the ends of the open pipe in the width direction are abutted and pressed. Then, when the hot-rolled steel strip is formed into an electric-sewn steel pipe by electric-stitching, the hot-rolled steel strip is subjected to C: 0.001 to 0.50%, Si: 0.001 to 2.0%, Mn: 0.001 to 3.0%, P: 0.05% or less, S: 0.05% or less, Al: 0.010 to 0.060%, composition consisting of balance Fe and unavoidable impurities, and area ratio, ferrite: 70% or less (excluding 0%), baynite: 30 A steel strip containing ~ 50%, a total of ferrite and baynite of 90% or more, and a structure composed of pearlite or maltensite of 10% or less (including 0%), and the electrosewn steel pipe. In addition, low-temperature tempering treatment with a tempering temperature of 150 to 350 ° C was performed, and the static yield strength in the pipe axis direction at the center position of the wall thickness obtained by a tensile test in accordance with JIS Z 2241 was 360 MPa or more. The electrosewn steel pipe has a static tensile strength of 520 MPa or more and a repeated yield strength of 360 MPa or more obtained from the repeated stress strain curve obtained by applying a repeated stress load with a stress ratio of 0.1. A method for manufacturing thick-walled, large-diameter electrosewn steel pipes with excellent fatigue strength.
(4) In (3), in addition to the above composition, Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 in mass%. ~ 0.5%, V: 0.0001 ~ 0.5%, Ti: 0.0001 ~ 0.5%, B: 0.00001 ~ 0.1%, Ca: 0.00001 ~ 0.1%, REM: 0.00001 ~ 0.1% One or more selected from A method for producing a thick-walled large-diameter electric resistance pipe, which is characterized by containing.

本発明によれば、特殊な工程を必要とせずに、また多量の合金元素を含有することなく、油井管、ラインパイプ等の使途に好適な、疲労強度に優れた厚肉大径電縫鋼管を製造でき、産業上格段の効果を奏する。本発明になる電縫鋼管は、高い疲労強度を有することから、油井管、ラインパイプ等の構造物の疲労破壊に対する安全裕度を拡大できるという効果もある。 According to the present invention, a thick-walled large-diameter electric resistance steel pipe having excellent fatigue strength, which is suitable for use in oil pipes, line pipes, etc., without requiring a special process and containing a large amount of alloying elements. Can be manufactured and has a remarkable effect on the industry. Since the electric resistance welded steel pipe according to the present invention has high fatigue strength, it also has an effect that the safety margin against fatigue failure of structures such as oil country tubular goods and line pipes can be expanded.

疲労強度σmax(2×106回)と繰返し降伏強さとの関係を示すグラフである。It is a graph which shows the relationship between the fatigue strength σmax (2 × 10 6 times) and the repeated yield strength. 繰返し応力歪曲線の一例を示すグラフである。It is a graph which shows an example of a repeated stress strain curve. 鋼管からの試験片採取位置の概略を示す説明図である。It is explanatory drawing which shows the outline of the test piece sampling position from a steel pipe. 実施例で使用した引張試験片の寸法形状を示す説明図である。It is explanatory drawing which shows the dimensional shape of the tensile test piece used in an Example. 実施例で使用した疲労試験片の概略形態を示す説明図である。It is explanatory drawing which shows the schematic form of the fatigue test piece used in an Example. 実施例で使用した負荷応力サイクルの一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the load stress cycle used in an Example.

本発明電縫鋼管は、静的降伏強さが360MPa以上、静的引張強さが520MPa以上の高強度を有し、疲労強度に優れた厚肉大径電縫鋼管である。 The electric resistance welded steel pipe of the present invention is a thick-walled large-diameter electric resistance pipe having a static yield strength of 360 MPa or more and a static tensile strength of 520 MPa or more and excellent fatigue strength.

本発明電縫鋼管は、質量%で、C:0.001〜0.50%、Si:0.001〜2.0%、Mn:0.001〜3.0%、P:0.05%以下、S:0.05%以下、Al:0.010〜0.060%を含み、残部Fe及び不可避的不純物からなる組成(基本組成)を有する。 The electrosewn steel pipe of the present invention has C: 0.001 to 0.50%, Si: 0.001 to 2.0%, Mn: 0.001 to 3.0%, P: 0.05% or less, S: 0.05% or less, Al: 0.010 to 0.060% in mass%. It has a composition (basic composition) consisting of the balance Fe and unavoidable impurities.

まず、本発明電縫鋼管の組成限定理由について、説明する。以下、組成における質量%は、単に%で記す。 First, the reason for limiting the composition of the electrosewn steel pipe of the present invention will be described. Hereinafter, the mass% in the composition is simply described as%.

C:0.001〜0.50%
Cは、電縫鋼管の強度増加に寄与する元素であり、所望の強度を確保するために、0.001%以上の含有を必要とする。一方、0.50%を超える含有は、延性、靭性や、溶接性を劣化させる。このため、Cは0.001〜0.50%の範囲に限定した。なお、好ましくは0.01〜0.30%である。
C: 0.001 to 0.50%
C is an element that contributes to the increase in the strength of the electrosewn steel pipe, and the content of C is required to be 0.001% or more in order to secure the desired strength. On the other hand, a content exceeding 0.50% deteriorates ductility, toughness and weldability. Therefore, C was limited to the range of 0.001 to 0.50%. It is preferably 0.01 to 0.30%.

Si:0.001〜2.0%
Siは、脱酸剤として作用するとともに、固溶して電縫鋼管の強度増加に寄与する元素であり、所望の強度を確保するためには、0.001%以上の含有を必要とする。一方、2.0%を超えて含有すると、溶接性、靭性を劣化させる。このため、Siは0.001〜2.0%の範囲に限定した。なお、0.01〜1.0%である。
Si: 0.001 to 2.0%
Si is an element that acts as an antacid and dissolves in a solid solution to contribute to an increase in the strength of electrosewn steel pipes, and requires a content of 0.001% or more in order to secure the desired strength. On the other hand, if it is contained in excess of 2.0%, weldability and toughness are deteriorated. Therefore, Si was limited to the range of 0.001 to 2.0%. It should be noted that it is 0.01 to 1.0%.

Mn:0.001〜3.0%
Mnは、焼入れ性増加を介して、電縫鋼管の強度増加および靭性向上に寄与する元素であり、所望の強度、靭性を確保するために、0.001%以上の含有を必要とする。一方、3.0%を超える含有は、溶接性、靭性の低下を招く。このため、Mnは0.001〜3.0%の範囲に限定した。なお、好ましくは0.01〜2.5%の範囲である。
Mn: 0.001 to 3.0%
Mn is an element that contributes to the increase in strength and toughness of electrosewn steel pipes through the increase in hardenability, and its content is required to be 0.001% or more in order to secure the desired strength and toughness. On the other hand, a content exceeding 3.0% causes deterioration of weldability and toughness. Therefore, Mn was limited to the range of 0.001 to 3.0%. It is preferably in the range of 0.01 to 2.5%.

P:0.05%以下
Pは、電縫鋼管の靭性を劣化させる元素であり、できるだけ低減することが望ましいが、0.05%以下であれば、許容できる。このため、Pは0.05%以下に限定した。なお、好ましくは0.03%以下である。
P: 0.05% or less
P is an element that deteriorates the toughness of electrosewn steel pipes, and it is desirable to reduce it as much as possible, but if it is 0.05% or less, it is acceptable. Therefore, P was limited to 0.05% or less. It is preferably 0.03% or less.

S:0.05%以下
Sは、鋼中では主として硫化物系介在物として存在し、多量の含有は鋼管の延性、靭性を低下させる元素であり、極力低減することが望ましいが、0.05%以下であれば許容できる。このようなことから、Sは0.05%以下に限定した。なお、好ましくは0.01%以下である。
S: 0.05% or less
S is mainly present as sulfide-based inclusions in steel, and a large amount of S is an element that lowers the ductility and toughness of steel pipes, and it is desirable to reduce it as much as possible, but 0.05% or less is acceptable. For this reason, S was limited to 0.05% or less. It is preferably 0.01% or less.

Al:0.010〜0.060%
Alは、脱酸剤として作用するとともに、窒化物AlNを形成して、結晶粒の微細化に寄与する元素である。このような効果を得るためには、Alは0.010%以上含有する必要があるが、0.060%を超えて多量に含有すると、延性、靭性の低下を招く。このため、Alは0.010〜0.060%の範囲に限定した。なお、好ましくは0.030〜0.060%である。
Al: 0.010 to 0.060%
Al is an element that acts as an antacid and forms nitride AlN, which contributes to the refinement of crystal grains. In order to obtain such an effect, Al needs to be contained in an amount of 0.010% or more, but if it is contained in a large amount exceeding 0.060%, the ductility and toughness are lowered. Therefore, Al was limited to the range of 0.010 to 0.060%. It is preferably 0.030 to 0.060%.

上記した成分が基本の成分であるが、本発明電縫鋼管では、この基本の組成に加えてさらに、強度、靭性や溶接性等の調整、耐候性の付与などを目的として、選択元素として、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有しても良い。 The above-mentioned components are the basic components, but in the electrosewn steel pipe of the present invention, in addition to this basic composition, as a selection element for the purpose of adjusting strength, toughness, weldability, etc., and imparting weather resistance. Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 to 0.5%, V: 0.0001 to 0.5%, Ti: 0.0001 to 0.5%, B It may contain one or more selected from: 0.00001 to 0.1%, Ca: 0.00001 to 0.1%, and REM: 0.00001 to 0.1%.

Cu、Ni、Cr、Mo、Nb、V、Ti、Bはいずれも、電縫鋼管の強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上を含有できる。 Cu, Ni, Cr, Mo, Nb, V, Ti, and B are all elements that contribute to increasing the strength of the electrosewn steel pipe, and can be selected and contained one or more as necessary.

Cu:0.001〜5.0%
Cuは、固溶してあるいは析出して、電縫鋼管の強度増加に寄与するとともに、耐候性をも向上させる元素であり、これらの効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える含有は、溶接性、靱性の低下を招くとともに、熱間圧延時の疵発生を招く。このようなことから、含有する場合は、Cuは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは、0.01〜2.5%である。
Cu: 0.001 to 5.0%
Cu is an element that dissolves or precipitates to contribute to increasing the strength of electrosewn steel pipes and also to improve weather resistance, and in order to obtain these effects, a content of 0.001% or more is required. To do. On the other hand, if the content exceeds 5.0%, the weldability and toughness are deteriorated, and defects are generated during hot rolling. For this reason, when it is contained, Cu is preferably limited to the range of 0.001 to 5.0%. More preferably, it is 0.01 to 2.5%.

Ni:0.001〜5.0%
Niは、電縫鋼管の強度増加に寄与するとともに、とくに低温靭性の向上、耐候性の付与、Cu起因の熱間脆性の改善に有効に寄与する元素である。このような効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える含有は、溶接性を低下させるうえ、製造コストの高騰を招く。このため、含有する場合には、Niは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは0.01〜5.0%である。
Ni: 0.001 to 5.0%
Ni is an element that contributes to increasing the strength of electrosewn steel pipes, and in particular, effectively improving low-temperature toughness, imparting weather resistance, and improving hot brittleness caused by Cu. In order to obtain such an effect, a content of 0.001% or more is required. On the other hand, if the content exceeds 5.0%, the weldability is lowered and the manufacturing cost is increased. Therefore, when it is contained, it is preferable to limit Ni to the range of 0.001 to 5.0%. It is more preferably 0.01 to 5.0%.

Cr:0.001〜5.0%
Crは、電縫鋼管の強度増加、耐候性の付与に有効に寄与する元素であり、このような効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える含有は、溶接性および靭性の低下を招く。このため、含有する場合には、Crは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは0.01〜2.5%である。
Cr: 0.001 to 5.0%
Cr is an element that effectively contributes to increasing the strength of electrosewn steel pipes and imparting weather resistance, and in order to obtain such effects, a content of 0.001% or more is required. On the other hand, a content exceeding 5.0% causes deterioration of weldability and toughness. Therefore, when it is contained, it is preferable to limit Cr to the range of 0.001 to 5.0%. It is more preferably 0.01 to 2.5%.

Mo:0.001〜5.0%
Moは、電縫鋼管の強度増加に有効に寄与する元素であり、このような効果を得るためには、0.001%以上の含有を必要とする。一方、5.0%を超える含有は、溶接性および靭性の低下を招く。このため、含有する場合には、Moは0.001〜5.0%の範囲に限定することが好ましい。なお、より好ましくは、0.01〜2.5%である。
Mo: 0.001 to 5.0%
Mo is an element that effectively contributes to increasing the strength of electrosewn steel pipes, and in order to obtain such an effect, a content of 0.001% or more is required. On the other hand, a content exceeding 5.0% causes deterioration of weldability and toughness. Therefore, when it is contained, Mo is preferably limited to the range of 0.001 to 5.0%. More preferably, it is 0.01 to 2.5%.

Nb:0.0001〜0.5%
Nbは、固溶しあるいは炭化物、窒化物等として析出して、電縫鋼管の強度増加に寄与するとともに、オーステナイト粒の再結晶を抑制し、熱間圧延を介して結晶粒の細粒化を図る作用を有する元素である。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.5%を超える多量の含有は、靭性の低下を招く。このため、含有する場合には、Nbは0.0001〜0.5%の範囲に限定することが好ましい。なお、より好ましくは、0.001〜0.25%である。
Nb: 0.0001-0.5%
Nb dissolves as a solid solution or precipitates as carbides, nitrides, etc., which contributes to an increase in the strength of electrosewn steel pipes, suppresses recrystallization of austenite grains, and refines the crystal grains through hot rolling. It is an element that has the effect of rolling. In order to obtain such an effect, a content of 0.0001% or more is required. On the other hand, a large amount of content exceeding 0.5% causes a decrease in toughness. Therefore, when it is contained, Nb is preferably limited to the range of 0.0001 to 0.5%. More preferably, it is 0.001 to 0.25%.

V:0.0001〜0.5%
Vは、Nbと同様に、炭化物等として析出して、電縫鋼管の強度増加に有効に寄与する元素である。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.5%を超える含有は、溶接性および靭性の低下を招く。このため、含有する場合には、Vは0.0001〜0.5%の範囲に限定することが好ましい。なお、より好ましくは、0.001〜0.25%である。
V: 0.0001-0.5%
Like Nb, V is an element that precipitates as carbides and the like and effectively contributes to increasing the strength of electrosewn steel pipes. In order to obtain such an effect, a content of 0.0001% or more is required. On the other hand, a content of more than 0.5% causes deterioration of weldability and toughness. Therefore, when it is contained, V is preferably limited to the range of 0.0001 to 0.5%. More preferably, it is 0.001 to 0.25%.

Ti:0.0001〜0.5%
Tiは、炭化物、窒化物等の析出物の析出を介して電縫鋼管の強度増加に寄与するとともに、溶接部靭性の向上に寄与する元素である。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.5%を超える含有は、製造コストの上昇を招く傾向にある。このため、含有する場合には、Tiは0.0001〜0.5%の範囲に限定することが好ましい。なお、より好ましくは、0.001〜0.25%である。
Ti: 0.0001-0.5%
Ti is an element that contributes to an increase in the strength of an electrosewn steel pipe and an improvement in the toughness of a welded portion through the precipitation of precipitates such as carbides and nitrides. In order to obtain such an effect, a content of 0.0001% or more is required. On the other hand, a content exceeding 0.5% tends to increase the manufacturing cost. Therefore, when it is contained, Ti is preferably limited to the range of 0.0001 to 0.5%. More preferably, it is 0.001 to 0.25%.

B:0.00001〜0.1%
Bは、焼入れ性向上を介して電縫鋼管の強度増加に寄与する元素である。このような効果を得るためには、0.00001%以上の含有を必要とする。一方、0.1%を超える多量の含有は、溶接性の低下を招く。このため、含有する場合には、Bは0.00001〜0.1%の範囲に限定することが好ましい。なお、より好ましくは、0.0001〜0.05%である。
B: 0.00001 to 0.1%
B is an element that contributes to increasing the strength of electrosewn steel pipes through improving hardenability. In order to obtain such an effect, a content of 0.00001% or more is required. On the other hand, a large amount of content exceeding 0.1% causes a decrease in weldability. Therefore, when it is contained, B is preferably limited to the range of 0.00001 to 0.1%. More preferably, it is 0.0001 to 0.05%.

また、Ca、REMはいずれも、介在物の形態制御を介して、電縫鋼管の延性向上、靱性向上に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。 Further, both Ca and REM are elements that contribute to the improvement of ductility and toughness of the electrosewn steel pipe through the morphological control of inclusions, and can be selected and contained one or two kinds as necessary.

Ca:0.00001〜0.1%
Caは、介在物の形態制御を介して、電縫鋼管の延性向上、靱性向上に寄与する元素である。このような効果を得るためには、0.00001%以上の含有を必要とする。一方、0.1%を超える含有は、靱性の低下を招く。このため、含有する場合は、Caは0.00001〜0.1%の範囲に限定することが好ましい。なお、より好ましくは0.0001〜0.05%である。
Ca: 0.00001-0.1%
Ca is an element that contributes to the improvement of ductility and toughness of electrosewn steel pipes through the morphological control of inclusions. In order to obtain such an effect, a content of 0.00001% or more is required. On the other hand, a content exceeding 0.1% causes a decrease in toughness. Therefore, when it is contained, Ca is preferably limited to the range of 0.00001 to 0.1%. It should be noted that it is more preferably 0.0001 to 0.05%.

REM:0.00001〜0.1%
REMは、Caと同様に、介在物の形態制御を介して、電縫鋼管の延性向上、靱性向上に寄与する元素である。このような効果を得るためには、0.00001%以上の含有を必要とする。一方、0.1%を超える含有は、靱性の低下を招く。このため、含有する場合は、REMは0.00001〜0.1%の範囲に限定することが好ましい。なお、より好ましくは0.001〜0.05%である。
REM: 0.00001 to 0.1%
Like Ca, REM is an element that contributes to the improvement of ductility and toughness of electrosewn steel pipes through the morphological control of inclusions. In order to obtain such an effect, a content of 0.00001% or more is required. On the other hand, a content exceeding 0.1% causes a decrease in toughness. Therefore, when it is contained, REM is preferably limited to the range of 0.00001 to 0.1%. It should be noted that it is more preferably 0.001 to 0.05%.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、N:0.006%以下、O:0.006%以下が許容できる。 The rest other than the above components are Fe and unavoidable impurities. As unavoidable impurities, N: 0.006% or less and O: 0.006% or less are acceptable.

本発明電縫鋼管は、上記した組成を有し、さらに面積率で、フェライト:70%以下(0%を含まず)、ベイナイト:30〜50%を含み、かつフェライトとベイナイトとの合計が90%以上で、さらに10%以下(0%を含む)のパーライトまたはマルテンサイトとからなる組織を有する。なお、この組織は、電縫鋼管の管軸方向に垂直な断面でシーム部から時計回りに90°の位置で、板厚中央位置で観察するものとする。 The electrosewn steel pipe of the present invention has the above-mentioned composition, and further contains ferrite: 70% or less (not including 0%), bainite: 30 to 50%, and the total of ferrite and bainite is 90. It has a tissue consisting of% or more and further 10% or less (including 0%) of pearlite or martensite. It should be noted that this structure shall be observed at a position 90 ° clockwise from the seam portion in a cross section perpendicular to the pipe axis direction of the electrosewn steel pipe and at the center position of the plate thickness.

フェライト+ベイナイト:面積率で合計90%以上
本発明電縫鋼管は、所望範囲の静的引張特性と、所望の靭性を確保するために、フェライトとベイナイトを主たる組織とする。本発明電縫鋼管は、組織全体に対する面積率で30%以上のベイナイトを必須含有する。ベイナイトが面積率で30%未満では、所望の静的降伏強さ:360MPa以上の高強度を確保できない。一方、ベイナイトが面積率で50%を超えると、所望の静的降伏強さの範囲を外れる。このようなことから、本発明電縫鋼管では、ベイナイトを面積率で、30%以上50%以下含む組織とする。また、フェライトが面積率で70%を超えると、残りすべてをベイナイトとしても、所望の静的引張特性の範囲を保持することができない。このようなことから、本発明電縫鋼管では、フェライトを面積率で、70%以下(0%は含まず)含む組織とする。
Ferrite + bainite: 90% or more in total in area ratio The electrosewn steel pipe of the present invention has ferrite and bainite as the main structures in order to secure the desired range of static tensile properties and desired toughness. The electrosewn steel pipe of the present invention essentially contains bainite having an area ratio of 30% or more with respect to the entire structure. If bainite has an area ratio of less than 30%, the desired static yield strength: 360 MPa or higher cannot be secured. On the other hand, when bainite exceeds 50% in area ratio, it is out of the range of desired static yield strength. For this reason, the electrosewn steel pipe of the present invention has a structure containing bainite in an area ratio of 30% or more and 50% or less. Further, if the area ratio of ferrite exceeds 70%, it is not possible to maintain the desired range of static tensile properties even if all the rest is bainite. Therefore, in the electric resistance welded steel pipe of the present invention, the structure contains ferrite in an area ratio of 70% or less (excluding 0%).

そして、本発明電縫鋼管では、フェライトとベイナイトとを、合計で、面積率で90%以上となる組織とする。フェライトとベイナイト以外の組織でパーライトが面積率で10%を超えて多量に含まれると、静的降伏強さが360MPaを下回る。また、フェライトとベイナイト以外の組織でマルテンサイトが面積率で10%を超えて多量に含まれると、静的降伏強さが好適範囲の上限570MPaを超えて高くなる。このため、本発明電縫鋼管では、フェライトとベイナイトとを、合計で、面積率で90%以上含む組織とし、フェライトとベイナイト以外の組織を10%以下(0%を含む)に限定した。なお、フェライトとベイナイト以外の組織としては、パーライトまたはマルテンサイトが例示できる。 Then, in the electrosewn steel pipe of the present invention, ferrite and bainite have a structure in which the total area ratio is 90% or more. When pearlite is contained in a large amount of more than 10% in area ratio in structures other than ferrite and bainite, the static yield strength is less than 360 MPa. In addition, when martensite is contained in a large amount exceeding 10% in area ratio in a structure other than ferrite and bainite, the static yield strength becomes higher than the upper limit of 570 MPa in the preferable range. Therefore, in the electrosewn steel pipe of the present invention, the total area ratio of ferrite and bainite is 90% or more, and the structure other than ferrite and bainite is limited to 10% or less (including 0%). Examples of structures other than ferrite and bainite include pearlite and martensite.

また、本発明電縫鋼管の上記した組織では、転位上に析出した微細な炭化物(析出物)が分散した状態を呈する。析出した炭化物(析出物)は、粒径500nm未満(10〜400nm程度)の大きさを有している。このような微細な炭化物(析出物)が分散した状態となることにより、疲労強度、静的降伏強さが向上する。このような微細な炭化物(析出物)の存在が認められない場合には、顕著な疲労強度の増加や、静的降伏強さの増加は望めない。 Further, in the above-mentioned structure of the electrosewn steel pipe of the present invention, fine carbides (precipitates) precipitated on the dislocations are dispersed. The precipitated carbide (precipitate) has a particle size of less than 500 nm (about 10 to 400 nm). Fatigue strength and static yield strength are improved by the state in which such fine carbides (precipitates) are dispersed. In the absence of the presence of such fine carbides (precipitates), a significant increase in fatigue strength and static yield strength cannot be expected.

なお、このような微細な炭化物(析出物)が分散した状態は、熱延鋼帯を素材として、素材の幅方向に冷間で曲げ加工し、略円筒状のオープン管に造管した際に導入された転位上に、低温焼戻処理により、炭化物等の析出物が析出したことによるものである。 In addition, such a state in which fine carbides (precipitates) are dispersed is when a hot-rolled steel strip is used as a material and coldly bent in the width direction of the material to form a substantially cylindrical open pipe. This is because precipitates such as carbides were deposited on the introduced dislocations by low-temperature tempering treatment.

上記した組成および組織を有する本発明電縫鋼管は、静的降伏強さ:360MPa以上好ましくは570MPa以下で、静的引張強さ:520MPa以上好ましくは760MPa以下の静的引張特性を有し、さらに、繰返し降伏強さ:360MPa以上である優れた疲労強度を有する厚肉大径電縫鋼管である。なお、引張特性は、管軸方向に垂直な断面でシーム部から時計回りに90°の位置で、肉厚中央で試験片長手方向が管軸方向となるように、JIS Z 2241の規定に準拠して試験片を採取し、引張試験を行って得られた値を用いるものとする。 The electrosewn steel pipe of the present invention having the above-mentioned composition and structure has a static yield strength of 360 MPa or more, preferably 570 MPa or less, a static tensile strength: 520 MPa or more, preferably 760 MPa or less, and further. , Repeated yield strength: A thick-walled large-diameter electric resistance pipe having excellent fatigue strength of 360 MPa or more. The tensile characteristics comply with JIS Z 2241 so that the cross section perpendicular to the pipe axis direction is 90 ° clockwise from the seam and the longitudinal direction of the test piece is the pipe axis direction at the center of the wall thickness. Then, the test piece shall be collected and the value obtained by conducting the tensile test shall be used.

また、本発明では、「疲労強度」を評価するための指標として、繰返し降伏強さを用いる。「繰返し降伏強さ」は、繰返し応力負荷試験を行って得られる繰返し応力歪曲線から、算出する。繰返し応力歪曲線は、次に示す手順で求めるものとする。 Further, in the present invention, the repeated yield strength is used as an index for evaluating the "fatigue strength". The "repeated yield strength" is calculated from the repetitive stress strain curve obtained by performing the repetitive stress load test. The repetitive stress strain curve shall be obtained by the following procedure.

まず、厚肉大径電縫鋼管の所定の位置(例えば、管軸方向に垂直な断面でシーム部から時計回りに90°の位置)から所定形状の疲労試験片(例えば、図5)を採取する。採取した疲労試験片の中央部に塑性歪ゲージを貼付する。そして、該疲労試験片に、応力比(=σmin/σmax):0.1の正弦波の応力を負荷し、試験片に発生する歪を測定する繰返し応力負荷試験(疲労試験)を実施する。 First, a fatigue test piece having a predetermined shape (for example, FIG. 5) is collected from a predetermined position of a thick-walled large-diameter electric resistance pipe (for example, a position 90 ° clockwise from the seam in a cross section perpendicular to the pipe axis direction). To do. Attach a plastic strain gauge to the center of the collected fatigue test piece. Then, a sine wave stress having a stress ratio (= σmin / σmax): 0.1 is applied to the fatigue test piece, and a repeated stress load test (fatigue test) is performed to measure the strain generated in the test piece.

繰返し応力負荷試験では、繰返し応力を、一定の応力比となるように、負荷する。油井管やラインパイプに負荷される繰り返し荷重は、平均応力がプラス側にある場合が多いため、本発明では、応力比:0.1の正弦波の応力を負荷することとした。 In the repetitive stress load test, the repetitive stress is loaded so as to have a constant stress ratio. Since the average stress is often on the positive side of the repetitive load applied to the oil country tubular goods and line pipes, in the present invention, a sinusoidal stress with a stress ratio of 0.1 is applied.

応力比:0.1(一定)の繰返し応力を1サイクル以上(例えば10サイクル)負荷し、同時に発生する歪を求め、該サイクルにおける繰返し応力と歪との関係の頂点を求める。ついで、繰返し応力を漸次増加し、応力比:0.1(一定)の条件のもとで、増加した繰返し応力を複数サイクル(10サイクル)負荷し、同時に発生する歪を求め、該複数サイクル(10サイクル)における応力と歪との関係の頂点を求める。このような繰返し応力と歪との関係の頂点を求める工程を、所定の複数回、繰返し行い、得られた複数の繰返し応力と歪との関係の頂点を繋ぎ合せて、繰返し応力歪曲線とする。 Stress ratio: A repetitive stress of 0.1 (constant) is applied for one cycle or more (for example, 10 cycles), strains generated at the same time are obtained, and the apex of the relationship between the repetitive stress and the strain in the cycle is obtained. Then, the cyclic stress is gradually increased, and under the condition of stress ratio: 0.1 (constant), the increased cyclic stress is applied for multiple cycles (10 cycles), and the strain generated at the same time is obtained, and the multiple cycles (10 cycles) are obtained. ), Find the apex of the relationship between stress and strain. The process of finding the vertices of the relationship between the repeated stress and the strain is repeated a predetermined number of times, and the obtained vertices of the relationship between the repeated stress and the strain are joined to form a repeated stress strain curve. ..

ついで、得られた繰返し応力歪曲線から繰返し降伏強さを求める。
得られた「繰返し応力歪曲線」が降伏点型曲線を呈する場合には、「繰返し降伏強さ」は上降伏点とし、「繰返し応力歪曲線」がラウンドハウス型曲線を呈する場合には、「繰返し降伏強さ」はオフセット0.5%耐力σ0.5とする。
Then, the repeated yield strength is obtained from the obtained repeated stress strain curve.
When the obtained "repetitive stress strain curve" exhibits a yield point type curve, the "repeated yield strength" is set as the upper yield point, and when the "repetitive stress strain curve" exhibits a roundhouse type curve, " The "repeated yield strength" is an offset of 0.5% and a proof stress of σ 0.5 .

図1に示すように、繰返し降伏強さと疲労強度σmax(2×106回)とは、非常によい相関関係を示している。本発明では、ラインパイプの健全性の観点から、繰返し降伏強さが360MPa以上あれば、疲労強度に優れた厚肉大径電縫鋼管であると言える。 As shown in FIG. 1, the repeated yield strength and the fatigue strength σmax (2 × 10 6 times) show a very good correlation. In the present invention, from the viewpoint of the soundness of the line pipe, if the repeated yield strength is 360 MPa or more, it can be said that the thick-walled large-diameter electric resistance steel pipe has excellent fatigue strength.

次に、本発明電縫鋼管の好ましい製造方法について、説明する。
まず、上記した組成の溶鋼を、転炉等の、常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法で鋳片とする。ついで、鋳片を、加熱炉に装入し、好ましくは加熱温度:1100〜1300℃に加熱する。加熱温度が1100℃未満では、加熱温度が低すぎて、熱間圧延荷重が高くなりすぎる。一方、1300℃を超えて高温となると、結晶粒が粗大化し、所望の微細な結晶粒を得ることができにくくなる。このため、鋳片の加熱温度は1100〜1300℃の範囲に限定することが好ましい。なお、鋳片の温度が高く所定量以上の熱量を保持している場合には、加熱することなく、熱間圧延を施すことが好ましい。なお、鋳片の加熱方法はこれに限定されないことは言うまでもない。また、鋳片を一旦冷却したのち、あるいは鋳片に熱間圧延を施して鋼片としたのち、再加熱を行う方法でもよいことは言うまでもない。
Next, a preferable manufacturing method of the electric resistance welded steel pipe of the present invention will be described.
First, the molten steel having the above composition is melted by a common melting method such as a converter, and slabs are obtained by a common casting method such as a continuous casting method. Then, the slab is placed in a heating furnace and preferably heated to a heating temperature of 1100-1300 ° C. If the heating temperature is less than 1100 ° C, the heating temperature is too low and the hot rolling load becomes too high. On the other hand, when the temperature is higher than 1300 ° C., the crystal grains become coarse and it becomes difficult to obtain desired fine crystal grains. Therefore, the heating temperature of the slab is preferably limited to the range of 1100 to 1300 ° C. When the temperature of the slab is high and the amount of heat is maintained at a predetermined amount or more, it is preferable to perform hot rolling without heating. Needless to say, the method for heating the slab is not limited to this. Needless to say, a method may be used in which the slab is once cooled, or the slab is hot-rolled to form a steel piece, and then reheated.

ついで、加熱された鋳片(または鋼片)に、熱間圧延を施し、所定板厚の熱延鋼帯とし、コイル状に巻き取ることが好ましい。熱間圧延は、圧延仕上温度:Ar3変態点以上、巻取温度:400℃以上とすることが好ましい。圧延仕上温度がAr3変態点未満では、(フェライト+オーステナイト)域での加工となり、加工フェライト粒が残存し、靱性を著しく低下させる。なお、Ar3変態点は、例えば、次式
Ar3(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
ここで、C、Mn、Cu、Cr、Ni、Mo:各元素の含有量(質量%)
で表わされる関係式を用いて、算出することができる。また、巻取温度が400℃未満となると、マルテンサイトが混入しやすくなり、所望の熱延鋼帯組織を得ることができない。なお、仕上圧延終了から巻取りまでの冷却は、所望量のベイナイトが生成するように、ベイナイト生成臨界冷却速度以上の、冷却速度:5℃/s以上の冷却とすることが好ましい。仕上圧延終了から巻取りまでの冷却速度が100℃/s以上と速すぎると、マルテンサイトが生成し、所望の熱延鋼帯組織を得ることができない。
Then, it is preferable that the heated slab (or steel slab) is hot-rolled to form a hot-rolled steel strip having a predetermined plate thickness and wound into a coil. For hot rolling, it is preferable that the rolling finish temperature: Ar3 transformation point or higher and the winding temperature: 400 ° C. or higher. If the rolling finish temperature is less than the Ar3 transformation point, processing is performed in the (ferrite + austenite) region, and processed ferrite grains remain, which significantly reduces toughness. The Ar3 transformation point is, for example, the following equation.
Ar3 (℃) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
Here, C, Mn, Cu, Cr, Ni, Mo: content of each element (mass%)
It can be calculated using the relational expression represented by. Further, when the winding temperature is less than 400 ° C., martensite is likely to be mixed, and a desired hot-rolled steel strip structure cannot be obtained. The cooling from the end of finish rolling to winding is preferably a cooling rate equal to or higher than the critical cooling rate for bainite formation and a cooling rate of 5 ° C./s or higher so that a desired amount of bainite is produced. If the cooling rate from the end of finish rolling to winding is as fast as 100 ° C./s or more, martensite is generated and the desired hot-rolled steel strip structure cannot be obtained.

なお、ここでいう「所望の熱延鋼帯組織」とは、面積率で、フェライト:70%以下(0%を含まず)、ベイナイト:30〜50%を含み、かつフェライトとベイナイトとの合計が90%以上で、さらに10%以下(0%を含む)のパーライトまたはマルテンサイトとからなる組織をいう。 The "desired hot-rolled steel strip structure" referred to here is the area ratio of ferrite: 70% or less (excluding 0%), bainite: 30 to 50%, and the total of ferrite and bainite. An organization consisting of 90% or more and 10% or less (including 0%) of pearlite or martensite.

熱延鋼帯を素材とし、ロール等で幅方向に冷間で曲げ加工を施し、略円筒状のオープン管に成形したのち、該オープン管の幅方向端部同士を突き合わせ、押圧し、電気抵抗溶接等で電縫溶接して、所定外径の電縫鋼管とする。なお、このような造管方法によれば、成形時に管軸方向に歪が導入される。このように歪が導入された電縫鋼管に低温焼戻処理(150〜350℃)を施すと、導入された歪と低温焼戻処理の組合せにより、転位上に微細な(大きさ(直径):500nm未満)炭化物等が析出し、組織中に分散する。この成形時に導入された歪に起因した時効硬化により、管軸方向の疲労強度が著しく向上する。 Using a hot-rolled steel strip as a material, it is cold-bent in the width direction with a roll or the like to form a substantially cylindrical open pipe, and then the widthwise ends of the open pipe are abutted against each other and pressed to perform electrical resistance. An electric resistance welded steel pipe having a predetermined outer diameter is obtained by electric sewing by welding or the like. According to such a pipe making method, strain is introduced in the pipe axial direction at the time of molding. When a low-temperature tempering treatment (150 to 350 ° C.) is applied to an electrosewn steel pipe into which strain has been introduced in this way, the combination of the introduced strain and the low-temperature tempering treatment causes fineness (size (diameter)) on the dislocations. : Less than 500 nm) Carbides etc. are precipitated and dispersed in the structure. Fatigue strength in the tube axis direction is remarkably improved by age hardening caused by the strain introduced during this molding.

焼戻温度が、150℃未満では、微細な炭化物の析出が不十分であり、一方、350℃を超えて高温となると、析出した炭化物が粗大となり、所望の歪時効硬化が確保できなくなり、所望の疲労強度の向上が達成できなくなる。また、静的降伏強さも低下する。なお、低温焼戻処理の保持時間は1s以上とすることが好ましい。電縫鋼管の低温焼戻処理は、常用の大型炉や誘導加熱設備などを用いて行うか、あるいは、海底敷設時のコーティング熱処理などで代用してもよい。 If the tempering temperature is less than 150 ° C, the precipitation of fine carbides is insufficient, while if the temperature is higher than 350 ° C, the precipitated carbides become coarse and the desired strain age hardening cannot be secured, which is desired. It becomes impossible to achieve the improvement of fatigue strength. Also, the static yield strength is reduced. The holding time of the low temperature tempering treatment is preferably 1 s or more. The low-temperature tempering treatment of the electrosewn steel pipe may be carried out by using a large-sized ordinary furnace, an induction heating facility, or the like, or may be substituted by a coating heat treatment at the time of laying the seabed.

以下、実施例に基づき、さらに本発明について説明する。 Hereinafter, the present invention will be further described based on Examples.

表1に示す組成の溶鋼を、常用の電気炉で溶製し、連続鋳造法で鋳片(肉厚:250mm)とした。ついで、これら鋳片を、表2に示す加熱温度の加熱炉に装入し、表2に示す条件で熱間圧延を施し、ついで、表2に示す条件で冷却を施して、表2に示す板厚の各種熱延鋼帯を得た。 The molten steel having the composition shown in Table 1 was melted in a regular electric furnace and made into a slab (wall thickness: 250 mm) by a continuous casting method. Then, these slabs are placed in a heating furnace having a heating temperature shown in Table 2, hot-rolled under the conditions shown in Table 2, and then cooled under the conditions shown in Table 2, and shown in Table 2. Various hot-rolled steel strips of various plate thicknesses were obtained.

得られた熱延鋼帯を素材とし、該素材の幅方向に冷間で曲げ加工を施し、略円筒状のオープン管に造管したのち、該オープン管の端部同士を突き合わせ、押圧して、突合せ部に高周波大電流を負荷し電縫溶接して、表3に示す寸法の電縫鋼管とした。 Using the obtained hot-rolled steel strip as a material, it is cold-bent in the width direction of the material to form a pipe in a substantially cylindrical open pipe, and then the ends of the open pipe are abutted against each other and pressed. , A high-frequency large current was applied to the butt portion and welded by electric stitching to obtain an electric resistance sewn steel pipe having the dimensions shown in Table 3.

ついで、得られた電縫鋼管に、表3に示す焼戻温度で、焼戻処理(低温焼戻処理)を施した。なお、一部の電縫鋼管には焼戻処理を施さなかった。 Then, the obtained electrosewn steel pipe was tempered (low temperature tempering) at the tempering temperature shown in Table 3. Some electric pipes were not tempered.

得られた電縫鋼管から試験片を採取し、組織観察、引張試験、衝撃試験、疲労試験を実施した。試験方法は、次のとおりとした。
(1)組織観察
焼戻処理済みの電縫鋼管から、図3に示す断面で、90°の位置で、肉厚1/2位置が組織観察面となるように、試験片を採取し、研磨、腐蝕(ナイタール液腐蝕)して組織を現出し、光学顕微鏡(倍率:400倍)または透過型電子顕微鏡(倍率:30000倍)を用いて、組織を観察し、撮像して、組織の同定および各相の面積率の測定、微細炭化物(粒径:500nm未満)の有無の観察を行った。
(2)引張試験
焼戻処理済みの電縫鋼管から、図3に示す断面で、90°の位置で肉厚1/2位置で、試験片長手方向が管軸方向となるように、 図4に示す引張試験片(平行部:6mmφ×30mm)を採取した。採取した引張試験片を用いて、JIS Z 2241の規定に準拠して、引張試験を実施し、静的降伏強さ、静的引張強さを求めた。なお、応力―歪曲線が、降伏点型を呈する場合には上降伏点を、ラウンドハウス型を呈する場合には歪が0.5%であるときのオフセット耐力σ0.5を、静的降伏強さとした。
(3)衝撃試験
焼戻処理済みの電縫鋼管から、図3に示す断面で、90°の位置で肉厚1/2位置で、試験片長手方向が管軸方向となるように、2mmVノッチシャルピー衝撃試験片3本を採取した。JIS Z 2242の規定に準拠して、衝撃試験片3本について、試験温度:0℃で、シャルピー衝撃試験を実施し、それぞれの吸収エネルギーを求め、3本の平均値を算出した。
(4)疲労試験
焼戻処理済みの電縫鋼管から、図3に示す断面で、90°の位置で肉厚1/2位置で、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取した。そして、採取した疲労試験片の中央部に塑性歪ゲージを貼付し、試験片に、図6に示す、応力比:0.1の正弦波の繰返し応力を複数サイクル(ここでは10サイクル)負荷し、同時に試験片に発生する歪を測定する繰返し応力負荷試験(疲労試験)を実施し、得られた応力と歪との関係の頂点を求めた。このような繰返し応力負荷試験を、負荷応力を増加させて、繰返し複数サイクル(10サイクル)実施し、応力と歪との関係の頂点(図2:黒丸)を求めた。得られた各頂点を結び、応力と歪との関係曲線(繰返し応力歪曲線)を得た。そして、得られた繰返し応力歪曲線から、繰返し降伏強さを求めた。なお、繰返し応力歪曲線が、降伏点型曲線を呈する場合には、繰返し降伏強さは上降伏点とし、繰返し応力歪曲線がラウンドハウス型曲線を呈する場合には、繰返し降伏強さは歪0.5%のときのオフセット耐力σ0.5とした。
A test piece was collected from the obtained electric resistance welded steel pipe, and a microstructure observation, a tensile test, an impact test, and a fatigue test were carried out. The test method was as follows.
(1) Structure observation From the tempered electric-sewn steel pipe, a test piece is collected and polished so that the structure observation surface is at the position of 90 ° in the cross section shown in FIG. , Corrosion (Nital liquid corrosion) to reveal the tissue, and observe and image the tissue using an optical microscope (magnification: 400x) or transmission electron microscope (magnification: 30000x) to identify the tissue and The area ratio of each phase was measured, and the presence or absence of fine carbide (particle size: less than 500 nm) was observed.
(2) Tensile test From the tempered steel pipe, in the cross section shown in FIG. 3, the wall thickness is 1/2 at the 90 ° position, and the longitudinal direction of the test piece is the pipe axis direction. The tensile test piece (parallel part: 6 mmφ × 30 mm) shown in the above was collected. Tensile tests were carried out using the collected tensile test pieces in accordance with the provisions of JIS Z 2241, and the static yield strength and static tensile strength were determined. When the stress-strain curve exhibits a yield point type, the upper yield point is defined as the static yield strength, and when the stress-strain curve exhibits a roundhouse type, the offset proof stress σ 0.5 when the strain is 0.5% is defined as the static yield strength.
(3) Impact test From the tempered steel pipe, 2 mm V notch so that the longitudinal direction of the test piece is the pipe axis direction at the position of 90 ° and the wall thickness of 1/2 in the cross section shown in FIG. Three Charpy impact test pieces were collected. In accordance with JIS Z 2242, the Charpy impact test was carried out on three impact test pieces at a test temperature of 0 ° C, the absorbed energy of each was calculated, and the average value of the three pieces was calculated.
(4) Fatigue test From the tempered steel pipe, the cross section shown in Fig. 3 is shown so that the wall thickness is 1/2 at the 90 ° position and the longitudinal direction of the test piece is the pipe axis direction. The fatigue test piece shown in 5 was collected. Then, a plastic strain gauge is attached to the center of the collected fatigue test piece, and the test piece is loaded with the repeating stress of a sine wave with a stress ratio of 0.1 as shown in FIG. 6 for multiple cycles (10 cycles in this case) at the same time. A repeated stress loading test (fatigue test) was carried out to measure the strain generated in the test piece, and the peak of the relationship between the obtained stress and strain was determined. Such a repeated stress load test was carried out repeatedly for a plurality of cycles (10 cycles) by increasing the load stress, and the apex of the relationship between the stress and the strain (Fig. 2: black circle) was obtained. The obtained vertices were connected to obtain a relational curve between stress and strain (repetitive stress-strain curve). Then, the repeated yield strength was obtained from the obtained repeated stress strain curve. When the repeated stress strain curve exhibits a yield point type curve, the repeated yield strength is set to the upper yield point, and when the repeated stress strain curve exhibits a round house type curve, the repeated yield strength is strain 0.5. The offset proof stress when% was σ 0.5 .

なお、参孝として、焼戻処理済みの電縫鋼管で同様に、図3に示す断面で、90°の位置で肉厚1/2位置から、試験片の長手方向が管軸方向となるように、図5に示す疲労試験片を採取した。そして、JIS Z 2273 の規定に準拠して、応力比:0.1の繰返し応力負荷の条件で、負荷応力(σmax)を変化して疲労試験を実施し、破断までの繰返し負荷回数を求め、S-N曲線とした。そして、2×106回で破断しない上限値をもとめ、疲労強度(σmax)(2×106回)とした。 In addition, as a filial piety, similarly for the tempered steel pipe, the longitudinal direction of the test piece should be the pipe axis direction from the position of 1/2 wall thickness at the position of 90 ° in the cross section shown in FIG. The fatigue test piece shown in FIG. 5 was collected. Then, in accordance with JIS Z 2273, a fatigue test is performed by changing the load stress (σmax) under the condition of repeated stress load with a stress ratio of 0.1, and the number of repeated loads until fracture is obtained. And said. Then, determine the upper limit value that does not break at 2 × 10 6 times, it was fatigue strength (.sigma.max) (2 × 10 6 times).

得られた結果を表3に示す。 The results obtained are shown in Table 3.

Figure 0006760254
Figure 0006760254

Figure 0006760254
Figure 0006760254

Figure 0006760254
Figure 0006760254

本発明例はいずれも、静的降伏強さが360MPa以上、570MPa以下の範囲にあり、静的引張強さも520MPa以上を有し、さらに吸収エネルギーvE0が27J以上と靭性に優れ、さらに繰返し降伏強さが360MPa以上と、疲労強度に優れた電縫鋼管となっている。なお、繰返し降伏強さは、疲労強度σmax(2×106回)に略等しい値となっており、繰返し降伏強さが、簡便に、当該電縫鋼管の疲労強度を精度高く推定できることがわかる。 In each of the examples of the present invention, the static yield strength is in the range of 360 MPa or more and 570 MPa or less, the static tensile strength is also 520 MPa or more, the absorbed energy vE 0 is 27 J or more, which is excellent in toughness, and repeated yielding. It is an electrosewn steel pipe with excellent fatigue strength with a strength of 360 MPa or more. The repeated yield strength is a value substantially equal to the fatigue strength σmax (2 × 10 6 times), and it can be seen that the repeated yield strength can easily estimate the fatigue strength of the electric resistance welded steel pipe with high accuracy. ..

一方、本発明範囲を外れる比較例は、繰返し降伏強さが360MPa未満で疲労強度が低下しているか、静的引張特性が本発明範囲を外れているか、靭性が低下しているか、しており、所望の各特性をすべて満足できていない。 On the other hand, in the comparative example outside the range of the present invention, the fatigue strength is reduced when the repeated yield strength is less than 360 MPa, the static tensile property is outside the range of the present invention, or the toughness is reduced. , Not all desired properties are satisfied.

電縫鋼管No.S13(比較例)は、C、Si、Mnの含有量が本発明範囲の下限を下回り、組織が、フェライト単相となり、静的降伏強さ、繰り返し降伏強さがともに360MPa未満、静的引張強さが520MPa未満となり、所望の引張特性、疲労強度を確保できていない。 In the electric sewn steel pipe No. S13 (comparative example), the contents of C, Si, and Mn are below the lower limit of the range of the present invention, the structure becomes a ferrite single phase, and both the static yield strength and the repeated yield strength are 360 MPa. Less than, the static tensile strength is less than 520 MPa, and the desired tensile characteristics and fatigue strength cannot be secured.

また、電縫鋼管No.S14は、C、Si、Mnの含有量が本発明範囲の上限を超え、組織がベイナイト単相となり、静的降伏強さが好適範囲の上限570MPaを超え、またシャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。 In addition, the content of C, Si, and Mn of the electrosewn steel pipe No. S14 exceeds the upper limit of the range of the present invention, the structure becomes bainite single phase, the static yield strength exceeds the upper limit of 570 MPa in the preferable range, and Charpy. The absorbed energy vE 0 is less than 27J, and the toughness is reduced.

また、電縫鋼管No.S15は、P、Sの含有量が本発明範囲の上限を超え、そのため、シャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。 Further, the content of P and S of the electric resistance welded steel pipe No. S15 exceeds the upper limit of the range of the present invention, and therefore, the Charpy absorption energy vE 0 is less than 27J, and the toughness is lowered.

また、電縫鋼管No.S16は、Cu、Niの含有量が本発明範囲の上限を超え、そのため、組織がベイナイト単相となり、静的降伏強さが本発明の好適範囲の上限570MPaを超え、また、シャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。 In addition, the content of Cu and Ni in the electrosewn steel pipe No. S16 exceeds the upper limit of the range of the present invention, so that the structure becomes bainite single phase and the static yield strength exceeds the upper limit of 570 MPa of the preferable range of the present invention. In addition, the charpy absorbed energy vE 0 is less than 27J, and the toughness is reduced.

また、電縫鋼管No.S17は、Cr、Mo、Nb、Vの含有量がそれぞれ本発明範囲の上限を超え、そのため、組織がベイナイト単相となり、静的降伏強さが本発明の好適範囲の上限570MPaを超え、またシャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。 In addition, the content of Cr, Mo, Nb, and V of the electrosewn steel pipe No. S17 exceeds the upper limit of the range of the present invention, respectively, so that the structure becomes bainite single phase and the static yield strength is the preferable range of the present invention. The upper limit of 570MPa is exceeded, and the Charpy absorbed energy vE 0 is below 27J, resulting in decreased toughness.

また、電縫鋼管No.S18は、Ti、B、Ca、REMの含有量がそれぞれ、本発明範囲の上限を超え、そのため、シャルピー吸収エネルギーvE0が27Jを下回り、靭性が低下している。 In addition, the contents of Ti, B, Ca, and REM of the electrosewn steel pipe No. S18 each exceeded the upper limit of the range of the present invention, and therefore, the Charpy absorption energy vE 0 was less than 27 J, and the toughness was lowered.

また、電縫鋼管No.S20は、低温焼戻処理を実施しておらず、そのため、静的降伏強さ、繰り返し降伏強さがともに360MPa未満、静的引張強さが520MPa未満となり、所望の引張特性、疲労強度を確保できていない。 In addition, the electrosewn steel pipe No. S20 has not been subjected to low temperature tempering treatment, so that both the static yield strength and the repeated yield strength are less than 360 MPa and the static tensile strength is less than 520 MPa, which is desired. Tensile characteristics and fatigue strength cannot be secured.

また、電縫鋼管No.S21は、低温焼戻処理の焼戻温度が本発明範囲の上限を超え、そのため静的引張強さが520MPa未満となり、所望の引張特性を確保できていない。 Further, in the electrosewn steel pipe No. S21, the tempering temperature of the low-temperature tempering treatment exceeds the upper limit of the range of the present invention, and therefore the static tensile strength is less than 520 MPa, and the desired tensile characteristics cannot be secured.

Claims (4)

質量%で、
C :0.001〜0.50%、 Si:0.001〜2.0%、
Mn:0.001〜3.0%、 P :0.05%以下、
S :0.05%以下、 Al:0.010〜0.060%
を含み、残部Fe及び不可避的不純物からなる組成と、
面積率で、フェライト:70%以下(0%を含まず)、ベイナイト:30〜50%を含み、かつフェライトとベイナイトとの合計が90%以上で、さらに10%以下(0%を含む)のパーライトまたはマルテンサイトとからなる組織と、を有し、さらに
前記組織中には粒径500nm未満の微細炭化物が分散してなり、
JIS Z 2241の規定に準拠した引張試験で得られた、肉厚中央位置で管軸方向の静的降伏強さが360MPa以上、静的引張強さが520MPa以上で、かつ、
応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが360MPa以上である
ことを特徴とする疲労強度に優れた厚肉大径電縫鋼管。
By mass%
C: 0.001 to 0.50%, Si: 0.001 to 2.0%,
Mn: 0.001 to 3.0%, P: 0.05% or less,
S: 0.05% or less, Al: 0.010 to 0.060%
Containing the balance Fe and unavoidable impurities,
In terms of area ratio, ferrite: 70% or less (excluding 0%), bainite: 30 to 50%, and the total of ferrite and bainite is 90% or more, and 10% or less (including 0%). It has a structure composed of pearlite or martensite, and fine carbides having a particle size of less than 500 nm are dispersed in the structure.
The static yield strength in the pipe axis direction is 360MPa or more, the static tensile strength is 520MPa or more, and the static tensile strength is 520MPa or more at the center position of the wall thickness, which is obtained by the tensile test in accordance with JIS Z 2241.
A thick-walled, large-diameter electric resistance pipe with excellent fatigue strength, characterized in that the repeated yield strength obtained from the repeated stress strain curve obtained by applying a repeated stress load of stress ratio: 0.1 is 360 MPa or more.
前記組成に加えてさらに、質量%で、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の厚肉大径電縫鋼管。 In addition to the above composition, in mass%, Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 to 0.5%, V: 0.0001 to It is characterized by containing one or more selected from 0.5%, Ti: 0.0001 to 0.5%, B: 0.00001 to 0.1%, Ca: 0.00001 to 0.1%, and REM: 0.00001 to 0.1%. The thick-walled large-diameter electric resistance pipe according to claim 1. 熱延鋼帯を、素材として、該素材の幅方向に冷間で曲げ加工を施し、断面略円筒状のオープン管としたのち、該オープン管の幅方向端部同士を突き合わせ、押圧し、電縫溶接して、電縫鋼管とするに当り、
前記熱延鋼帯を、質量%で、
C :0.001〜0.50%、 Si:0.001〜2.0%、
Mn:0.001〜3.0%、 P :0.05%以下、
S :0.05%以下、 Al:0.010〜0.060%
を含み、残部Fe及び不可避的不純物からなる組成と、面積率で、フェライト:70%以下(0%を含まず)、ベイナイト:30〜50%を含み、かつフェライトとベイナイトとの合計が90%以上で、さらに10%以下(0%を含む)のパーライトまたはマルテンサイトとからなる組織と、を有する鋼帯とし、
前記電縫鋼管に、焼戻温度:150〜350℃の低温焼戻処理を施し、前記組織中に粒径500nm未満の微細炭化物が分散してなり、
JIS Z 2241の規定に準拠した引張試験により得られた、肉厚中央位置で管軸方向の静的降伏強さが360MPa以上、静的引張強さが520MPa以上で、かつ、応力比:0.1の繰返し応力負荷を施して得られた繰返し応力歪曲線から求めた繰返し降伏強さが360MPa以上である電縫鋼管とすること
を特徴とする疲労強度に優れた厚肉大径電縫鋼管の製造方法。
The hot-rolled steel strip is cold-bent in the width direction of the material to form an open pipe having a substantially cylindrical cross section, and then the widthwise ends of the open pipe are abutted against each other and pressed to generate electricity. When sewing and welding to make an electric resistance steel pipe,
The hot-rolled steel strip by mass%
C: 0.001 to 0.50%, Si: 0.001 to 2.0%,
Mn: 0.001 to 3.0%, P: 0.05% or less,
S: 0.05% or less, Al: 0.010 to 0.060%
Containing, the composition consisting of the balance Fe and unavoidable impurities, and the area ratio, ferrite: 70% or less (not including 0%), bainite: 30 to 50%, and the total of ferrite and bainite is 90%. With the above, a steel strip having a structure consisting of pearlite or martensite of 10% or less (including 0%) is obtained.
The electrosewn steel pipe is subjected to a low-temperature tempering treatment having a tempering temperature of 150 to 350 ° C., and fine carbides having a particle size of less than 500 nm are dispersed in the structure.
Obtained by a tensile test in accordance with JIS Z 2241, the static yield strength in the pipe axis direction is 360 MPa or more, the static tensile strength is 520 MPa or more, and the stress ratio is 0.1 at the center position of the wall thickness. A method for manufacturing a thick-walled large-diameter electric-sewn steel pipe having excellent fatigue strength, which comprises an electric-sewn steel pipe having a repeated yield strength of 360 MPa or more obtained from a repeated-stress strain curve obtained by applying a repeated stress load. ..
前記組成に加えてさらに、質量%で、Cu:0.001〜5.0%、Ni:0.001〜5.0%、Cr:0.001〜5.0%、Mo:0.001〜5.0%、Nb:0.0001〜0.5%、V:0.0001〜0.5%、Ti:0.0001〜0.5%、B:0.00001〜0.1%、Ca:0.00001〜0.1%、REM:0.00001〜0.1%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項3に記載の厚肉大径電縫鋼管の製造方法。 In addition to the above composition, in mass%, Cu: 0.001 to 5.0%, Ni: 0.001 to 5.0%, Cr: 0.001 to 5.0%, Mo: 0.001 to 5.0%, Nb: 0.0001 to 0.5%, V: 0.0001 to It is characterized by containing one or more selected from 0.5%, Ti: 0.0001 to 0.5%, B: 0.00001 to 0.1%, Ca: 0.00001 to 0.1%, and REM: 0.00001 to 0.1%. The method for manufacturing a thick-walled large-diameter electric resistance pipe according to claim 3.
JP2017250540A 2017-12-27 2017-12-27 Electric resistance sewn steel pipe with excellent fatigue strength and its manufacturing method Active JP6760254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250540A JP6760254B2 (en) 2017-12-27 2017-12-27 Electric resistance sewn steel pipe with excellent fatigue strength and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250540A JP6760254B2 (en) 2017-12-27 2017-12-27 Electric resistance sewn steel pipe with excellent fatigue strength and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019116658A JP2019116658A (en) 2019-07-18
JP6760254B2 true JP6760254B2 (en) 2020-09-23

Family

ID=67304095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250540A Active JP6760254B2 (en) 2017-12-27 2017-12-27 Electric resistance sewn steel pipe with excellent fatigue strength and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6760254B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592497B (en) * 2019-09-18 2020-05-22 宁波市鄞州富春精密铸造有限公司 High-strength cast steel and preparation method thereof
CN110846565A (en) * 2019-09-30 2020-02-28 邯郸钢铁集团有限责任公司 Low-cost large-wall-thickness acid-resistant pipeline steel with stable structure and performance and production method thereof
CN114574764B (en) * 2022-03-04 2022-11-11 马鞍山钢铁股份有限公司 High-horsepower long-life corrosion-resistant steel for fracturing pump valve body, heat treatment method and production method thereof
CN114657472B (en) * 2022-04-02 2022-09-16 鞍钢股份有限公司 Marine ultrahigh-strength low-temperature steel with excellent fatigue performance and manufacturing method thereof
CN115491610A (en) * 2022-10-26 2022-12-20 本钢板材股份有限公司 Round steel for oil drilling and production bent pipe and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109949A (en) * 1998-10-06 2000-04-18 Nippon Steel Corp Electric resistance welded tube excellent in workability and its production
JP4089455B2 (en) * 2002-02-07 2008-05-28 Jfeスチール株式会社 High strength steel with excellent HIC resistance
JP4510680B2 (en) * 2005-04-01 2010-07-28 新日本製鐵株式会社 High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same
JP5293903B1 (en) * 2011-08-23 2013-09-18 新日鐵住金株式会社 Thick ERW Steel Pipe and Method for Manufacturing the Same
CN103710619B (en) * 2013-12-20 2015-11-18 鞍钢股份有限公司 Hot-rolled thick plate for K60-grade pipe fitting and production method thereof
CN105612267B (en) * 2013-12-20 2018-10-19 新日铁住金株式会社 Electric-resistance-welded steel pipe

Also Published As

Publication number Publication date
JP2019116658A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6773020B2 (en) Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method
JP6760254B2 (en) Electric resistance sewn steel pipe with excellent fatigue strength and its manufacturing method
KR101511615B1 (en) Method for manufacturing welded steel pipe for linepipe having high compressive strength and high fracture toughness
US8765269B2 (en) High strength steel pipe for low-temperature usage having excellent buckling resistance and toughness of welded heat affected zone and method for producing the same
CA2749409C (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
KR101511614B1 (en) Method for manufacturing welded steel pipe for linepipe having high compressive strength and excellent sour gas resistance
JP6773021B2 (en) Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method
JP5857400B2 (en) Welded steel pipe for high compressive strength line pipe and manufacturing method thereof
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
CA2980424C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
US11555233B2 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
RU2458996C1 (en) Method for obtaining plate steel and steel pipes for ultrahigh-strong pipeline
JP2010196164A (en) Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor
JP2012172256A (en) Low yield ratio high strength hot rolled steel sheet having excellent low temperature toughness and method for manufacturing the same
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP6128042B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
JP6241570B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the steel pipe
KR102002241B1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
WO2016157235A1 (en) High-strength steel, production method therefor, steel pipe, and production method therefor
JP4276480B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP6558252B2 (en) High strength ERW steel pipe for oil well
JP4336294B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation characteristics after aging
KR102648172B1 (en) Steel materials for line pipes and their manufacturing method, and line pipes and their manufacturing method
JP5020691B2 (en) Steel sheet for high-strength linepipe excellent in low-temperature toughness, high-strength linepipe, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6760254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250