JP4811166B2 - Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa - Google Patents

Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa Download PDF

Info

Publication number
JP4811166B2
JP4811166B2 JP2006200516A JP2006200516A JP4811166B2 JP 4811166 B2 JP4811166 B2 JP 4811166B2 JP 2006200516 A JP2006200516 A JP 2006200516A JP 2006200516 A JP2006200516 A JP 2006200516A JP 4811166 B2 JP4811166 B2 JP 4811166B2
Authority
JP
Japan
Prior art keywords
temperature
welding
steel
strength
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006200516A
Other languages
Japanese (ja)
Other versions
JP2008023569A (en
Inventor
純二 嶋村
信行 石川
光浩 岡津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006200516A priority Critical patent/JP4811166B2/en
Publication of JP2008023569A publication Critical patent/JP2008023569A/en
Application granted granted Critical
Publication of JP4811166B2 publication Critical patent/JP4811166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は,引張強度800MPaを超える超高強度溶接鋼管の製造方法に関し、特に母材、溶接熱影響部(HAZ)および縦シーム溶接部の溶接金属の靭性や耐切断割れ性、および低温割れ感受性に優れ、天然ガスや原油の輸送用として好適なものに関する。   The present invention relates to a method for manufacturing an ultra-high strength welded steel pipe having a tensile strength exceeding 800 MPa, and in particular, toughness, cut cracking resistance, and low temperature cracking susceptibility of base metal, weld heat affected zone (HAZ) and longitudinal seam welded portion. The present invention relates to a material suitable for transportation of natural gas and crude oil.

近年,天然ガスや原油の輸送用として使用されるラインパイプは,高圧化による輸送効率の向上、薄肉化による現地溶接施工能率の向上、および地球環境保全など種々の課題を解決しなければならない。   In recent years, line pipes used for transportation of natural gas and crude oil have to solve various problems such as improvement of transportation efficiency by increasing pressure, improvement of on-site welding efficiency by thinning, and preservation of the global environment.

高圧化による輸送効率の向上には、鋼板の高強度化が有効で、薄肉化による現地溶接施工能率の向上のため、低温割れ感受性に優れたAPI規格でX100グレードのラインパイプが既に実用化し,引張強度900MPaを超えるX120グレードも試作されている。   In order to improve transport efficiency by increasing the pressure, it is effective to increase the strength of the steel sheet. To improve the efficiency of on-site welding by reducing the wall thickness, X100 grade line pipes have already been put into practical use under the API standard with excellent cold cracking susceptibility. An X120 grade with a tensile strength exceeding 900 MPa has also been prototyped.

高強度ラインパイプ用溶接鋼管およびその素材となる高強度厚鋼板の製造方法に関しては,例えば特許文献1に,熱間圧延後2段冷却を行い,2段目の冷却停止温度を300℃以下とすることで,高強度化を達成する技術が開示されている。   Regarding the method for producing a welded steel pipe for high-strength line pipes and a high-strength thick steel plate as the material, for example, in Patent Document 1, two-stage cooling is performed after hot rolling, and the second stage cooling stop temperature is set to 300 ° C. or less. Thus, a technique for achieving high strength is disclosed.

特許文献2に,高価な合金元素添加量を削減しつつ,高強度・高靱性を得るための加速冷却および焼戻し条件に関する技術が開示されている。特許文献3に,母材については特許文献2と同様に合金元素添加量を削減し,さらに縦シーム溶接部の溶接金属において高強度・高靱性を得るための成分設計に関する技術が開示されている。
特開2003−293089号公報 特開2002―173710号公報 特開2000―355729号公報
Patent Document 2 discloses a technique relating to accelerated cooling and tempering conditions for obtaining high strength and high toughness while reducing the amount of expensive alloy element addition. Patent Document 3 discloses a technology related to the component design for reducing the amount of alloying elements added to the base metal as in Patent Document 2 and obtaining high strength and high toughness in the weld metal of the longitudinal seam weld. .
JP 2003-293089 A JP 2002-173710 A JP 2000-355729 A

しかしながら、上述した特許文献1〜3に記載されたラインパイプやラインパイプ用鋼は、縦シーム溶接を大入熱サブマージアーク溶接で行うと、板厚によっては縦シーム溶接部でHAZ部が大きく軟化し、実管を用いた水圧試験で強度の低いHAZ部で破壊することが懸念されるため、溶接入熱を低下させなければならず、生産性が低下する。   However, in the line pipes and line pipe steels described in Patent Documents 1 to 3 described above, when vertical seam welding is performed by high heat input submerged arc welding, the HAZ portion is greatly softened at the vertical seam weld depending on the plate thickness. However, since there is a concern that the HAZ part having a low strength is broken in a water pressure test using a real pipe, the welding heat input must be lowered, and the productivity is lowered.

HAZ軟化による継手強度不足を補うため、縦シーム溶接部の溶接金属を高強度化することが有効であるが、溶接金属中の合金元素量を増加させ、低温割れ等の溶接金属欠陥が発生しやすくなり,手直し等溶接作業性を著しく悪化させるようになる。   In order to compensate for the lack of joint strength due to HAZ softening, it is effective to increase the strength of the weld metal in the longitudinal seam weld. However, the amount of alloy elements in the weld metal is increased, and weld metal defects such as cold cracking occur. It becomes easier and the welding workability such as reworking is remarkably deteriorated.

また、母材中の合金元素量を増やすと,パイプ同士を接合する、入熱の小さい多層溶接による円周溶接部においてHAZ硬さが増大し,特に初層溶接部で低温割れ感受性が増大するため、開先の予熱管理などが必要となり、現地施工性が低下する。   In addition, increasing the amount of alloying elements in the base metal increases the HAZ hardness at the circumferential weld by multi-layer welding with low heat input that joins the pipes, and particularly increases the sensitivity to cold cracking at the first layer weld. For this reason, it is necessary to manage the preheating of the groove and the workability at the site is reduced.

更に熱間圧延後の冷却停止温度を低くして,ミクロ組織を低温変態組織とすることで高強度を達成した場合,冷却ままの鋼板を必要なサイズにせん断加工で切断する際,鋼中に残存する拡散性水素が原因で板面に平行な割れ(以下、切断割れ)が発生する。   Furthermore, when high strength is achieved by lowering the cooling stop temperature after hot rolling and changing the microstructure to a low temperature transformation structure, when the steel sheet as cooled is cut into the required size by shearing, Due to the remaining diffusible hydrogen, cracks parallel to the plate surface (hereinafter referred to as cut cracks) occur.

一方,加速冷却後に焼戻し処理などの熱処理を行った場合,鋼中の水素は十分拡散させられるので,切断割れは抑制できるものの,熱処理過程でミクロ組織中にセメンタイトが析出・粗大化して靱性が低下し,特に脆性亀裂伝播停止特性の評価を行うDWTT(Drop Weight Tear Test)特性が劣化する。   On the other hand, when heat treatment such as tempering is performed after accelerated cooling, hydrogen in the steel is sufficiently diffused, so that cut cracks can be suppressed, but cementite precipitates and coarsens in the microstructure during the heat treatment process, reducing toughness. In particular, the DWTT (Drop Weight Tear Test) characteristic for evaluating the brittle crack propagation stop characteristic deteriorates.

そこで、本発明は,引張強度800MPa以上において、上記課題を解決したラインパイプ用鋼を用いたラインパイプ用溶接鋼管の製造方法を提供することを目的とする。   Then, this invention aims at providing the manufacturing method of the welded steel pipe for line pipes using the steel for line pipes which solved the said subject in tensile strength 800MPa or more.

本発明者等は上記課題を解決するため、母材特性と縦シーム溶接法について、下記の項目について鋭意検討を行った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on the following items with respect to the base material characteristics and the longitudinal seam welding method.

1)レーザー・アークハイブリッド溶接法の縦シーム溶接への適用:従来の大入熱サブマージアーク溶接による溶接効率を維持しつつ,溶接部の冷却速度を向上させて、HAZおよび溶接金属の強度を上昇させる溶接条件。   1) Application of laser-arc hybrid welding to longitudinal seam welding: Maintaining the welding efficiency of conventional high heat input submerged arc welding while improving the cooling rate of the weld zone and increasing the strength of HAZ and weld metal Let welding conditions.

2)引張強度800MPa以上で優れた変形性能、DWTT特性、耐切断割れ性、および低温割れ感受性を備えた鋼板の製造プロセス。   2) A manufacturing process of a steel sheet having excellent deformation performance, DWTT characteristics, cut cracking resistance, and low temperature cracking sensitivity at a tensile strength of 800 MPa or more.

3)縦シーム溶接時の溶接割れを抑制し,かつ高冷却速度において溶接金属強度・靱性を達成する溶接金属成分。   3) A weld metal component that suppresses weld cracking during longitudinal seam welding and achieves weld metal strength and toughness at a high cooling rate.

本発明は上記検討の結果得られた知見を基になされたもので、すなわち、本発明は、
1.ミクロ組織がフェライトと焼戻しマルテンサイトと下部ベイナイトの混合組織で、鋼中のCa,O,Sから求まるACRが0〜2を満足する、引張強度800MPa以上でYR85%以下かつ一様伸び5%以上のの鋼板を冷間加工で管状に成形した後,突合せ部を、COガスシールドを用いたレーザーとAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法によって溶接することを特徴とする超高強度溶接鋼管の製造方法。
但し、ACR=(Ca−(0.18+130×Ca)×O)/(1.25×S)で、Ca,O、Sは鋼中含有量(%)を示す。
2.前記突合せ部の内外面を前記ハイブリッド溶接で溶接することを特徴とする1記載の超高強度溶接鋼管の製造方法。
3.前記突合せ部の内面を前記ハイブリッド溶接で溶接し、外面をサブマージアーク溶接で溶接することを特徴とする1記載の超高強度溶接鋼管の製造方法。
4.前記鋼板が、
質量%で、
C:0.04〜0.12%
Si:0.01〜0.5%
Mn:1.80〜2.50%
Al:0.01〜0.08%
P≦0.010%,S≦0.002%
Cu:0.01〜0.8%
Ni:0.1〜1.0%
Cr:0.01〜0.8%
Mo:0.01〜0.8%
Nb:0.01〜0.08%
V:0.01〜0.10%
Ti:0.005〜0.025%
Ca:0.0005〜0.01%
N:0.001〜0.006%
PcmB≦0.22
残部Feおよび不可避的不純物からなる鋼を,
1000〜1200℃に加熱した後,熱間圧延を開始し,圧延終了温度をAr変態点以上,Ar+100℃以下の温度域となるよう圧延を行い,次いで,Ar−50℃以上,Ar変態点以下の温度域から,(1)式を満足するマルテンサイト生成臨界冷却速度Vcrm以上の冷却速度でマルテンサイト変態開始温度Ms以下、300℃以上の温度域の冷却停止温度まで冷却した後,冷却停止温度±50℃以内に60s〜300sの間保持し,その後室温まで空冷することによって得られる鋼板で、
前記突合せ部の溶接金属の化学成分が
質量%で,
C:0.05〜0.09%
Si:0.1〜0.4%
Mn:1.0〜2.0%
Al:≦0.015%
Cu:≦0.5%
Ni:≦3.0%
Cr:≦1.0%
Mo:≦1.0%
V:≦0.1%
Ti:0.003〜0.10%
B:≦0.0030%
O:≦0.03%
N:≦0.008%
PcmW≦0.2
残部Feおよび不可避的不純物
であることを特徴とする1乃至3の何れか一つに記載の超高強度溶接鋼管の製造方法。
The present invention has been made on the basis of the knowledge obtained as a result of the above studies, that is, the present invention
1. The microstructure is a mixed structure of ferrite, tempered martensite, and lower bainite, and ACR obtained from Ca, O, S in the steel satisfies 0-2, tensile strength of 800 MPa or more, YR 85% or less, and uniform elongation 5% or more after the steel sheet was formed into a tubular by cold working, welding the butted portions, the hybrid welding in combination with gas shielded arc welding using a laser and Ar-CO 2 gas shielded with CO 2 gas shielded A method for producing an ultra-high strength welded steel pipe.
However, ACR = (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S), and Ca, O, and S indicate the content (%) in steel.
2. 2. The method for producing an ultra high strength welded steel pipe according to 1, wherein the inner and outer surfaces of the butt portion are welded by the hybrid welding.
3. 2. The method of manufacturing an ultra high strength welded steel pipe according to 1, wherein an inner surface of the butt portion is welded by the hybrid welding and an outer surface is welded by submerged arc welding.
4). The steel plate is
% By mass
C: 0.04 to 0.12%
Si: 0.01 to 0.5%
Mn: 1.80 to 2.50%
Al: 0.01 to 0.08%
P ≦ 0.010%, S ≦ 0.002%
Cu: 0.01 to 0.8%
Ni: 0.1 to 1.0%
Cr: 0.01 to 0.8%
Mo: 0.01 to 0.8%
Nb: 0.01 to 0.08%
V: 0.01-0.10%
Ti: 0.005-0.025%
Ca: 0.0005 to 0.01%
N: 0.001 to 0.006%
PcmB ≦ 0.22
Steel consisting of the balance Fe and inevitable impurities,
After heating to 1000 to 1200 ° C., hot rolling is started, rolling is performed so that the rolling end temperature is in the temperature range of Ar 3 transformation point or higher and Ar 3 + 100 ° C. or lower, and then Ar 3 −50 ° C. or higher, Cooled from the temperature range below the Ar 3 transformation point to the cooling stop temperature in the temperature range above the martensite transformation start temperature Ms and above 300 ° C. at a cooling rate above the martensite formation critical cooling rate Vcrm satisfying the equation (1). Thereafter, a steel plate obtained by holding for 60 s to 300 s within a cooling stop temperature ± 50 ° C. and then air cooling to room temperature,
The chemical composition of the weld metal at the butt is mass%,
C: 0.05-0.09%
Si: 0.1 to 0.4%
Mn: 1.0-2.0%
Al: ≦ 0.015%
Cu: ≦ 0.5%
Ni: ≦ 3.0%
Cr: ≦ 1.0%
Mo: ≦ 1.0%
V: ≦ 0.1%
Ti: 0.003-0.10%
B: ≦ 0.0030%
O: ≦ 0.03%
N: ≦ 0.008%
PcmW ≦ 0.2
The method for producing an ultra-high strength welded steel pipe according to any one of 1 to 3, wherein the balance is Fe and inevitable impurities.

但し、PcmB=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B
PcmW=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60×B−12×N−4×O
ACR=(Ca−(0.18+130×Ca)×O)/(1.25×S)
Ms=517−300C−11Si−33Mn−22Cr−17Ni−11Mo
で、各元素は含有量(%)を示す。
logVcrm=2.94−0.75×(β−1) (1)
ここで、β(%)=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+Mo
5.更に前記鋼板が、冷却停止温度±50℃以内に60s〜300sの間保持後、直ちに該温度から450℃以上、Ac変態点以下の温度域へ1℃/s以上の昇温速度で急速加熱し、焼戻しを行って得られることを特徴とする4記載の超高強度溶接鋼管の製造方法。
However, PcmB = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B
PcmW = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 × B-12 × N-4 × O
ACR = (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S)
Ms = 517-300C-11Si-33Mn-22Cr-17Ni-11Mo
And each element shows content (%).
logVcrm = 2.94−0.75 × (β−1) (1)
Here, β (%) = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + Mo
5. Furthermore, after the steel sheet is held for 60 s to 300 s within the cooling stop temperature ± 50 ° C., it is rapidly heated from the temperature to a temperature range of 450 ° C. or higher and below the Ac 1 transformation point at a rate of 1 ° C./s or higher. The method for producing an ultra-high strength welded steel pipe according to 4, wherein the method is obtained by tempering.

本発明によれば、安全性に優れ、天然ガスや原油の輸送用として好適な、引張強度800MPa以上の超高強度溶接鋼管の製造が可能で産業上極めて有用である。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to produce an ultra-high strength welded steel pipe having a tensile strength of 800 MPa or more, which is excellent in safety and suitable for transportation of natural gas and crude oil, and is extremely useful industrially.

本発明は、ミクロ組織がフェライトと焼戻しマルテンサイトと下部ベイナイトの混合組織で、鋼中のCa、O、Sから求まるACRが0〜2を満足する、引張強度800MPa以上でYR85%以下かつ一様伸び5%以上の鋼板を冷間加工で管状に成形した後,COガスシールドを用いたレーザーとAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法によって突合わせ部の溶接を行い溶接鋼管とすることを特徴とする。 In the present invention, the microstructure is a mixed structure of ferrite, tempered martensite, and lower bainite, and the ACR obtained from Ca, O, and S in the steel satisfies 0 to 2, the tensile strength is 800 MPa or more, and YR is 85% or less and uniform. after a 5% elongation or more steel sheets were molded into a tubular by cold working, butt portion by a hybrid welding method in combination with gas shielded arc welding using a laser and Ar-CO 2 gas shielded with CO 2 gas shielded This is characterized in that a welded steel pipe is obtained.

YRは、公称歪0.5%における降伏強度を引張強度で除した値に100を掛けて%表示した値である。   YR is a value expressed in% by multiplying the value obtained by dividing the yield strength at a nominal strain of 0.5% by the tensile strength by 100.

図4は、COガスシールドを用いたレーザー溶接とAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法を説明する模式図で、ハイブリッド溶接5は、溶接方向に、レーザトーチ6がガスアーク溶接トーチ7に先行して配置される。 Figure 4 is a schematic view illustrating a hybrid welding method in combination with gas shielded arc welding using laser welding and Ar-CO 2 gas shielded with CO 2 gas shielded, hybrid welding 5, the welding direction, A laser torch 6 is arranged ahead of the gas arc welding torch 7.

レーザトーチ6とガスアーク溶接トーチ7は、それぞれの溶接による溶融池8が一つに合体される1プール溶接としてビード9を形成するように配置する。その結果、従来のサブマージアーク溶接並の溶接速度で鋼板突き合わせ部の溶接を行うことが可能であり,さらに溶接部の冷却速度が著しく向上する。   The laser torch 6 and the gas arc welding torch 7 are arranged so as to form a bead 9 as one pool welding in which the weld pools 8 formed by the respective weldings are combined into one. As a result, it is possible to weld the steel plate butt portion at a welding speed comparable to that of conventional submerged arc welding, and the cooling rate of the welded portion is significantly improved.

先行するレーザートーチ6により狭い領域に高密度の入熱を与えることで鋼板を容易に溶解させ,その後のガスアーク溶接の入熱レベルでも十分に溶接金属を溶着させられるからであると考えられる。   This is probably because the steel plate can be easily melted by applying high-density heat input to a narrow region by the preceding laser torch 6, and the weld metal can be sufficiently deposited even at the heat input level of the subsequent gas arc welding.

同一の板厚の母材を当該ハイブリッド溶接とサブマージアーク溶接で溶接する際の溶接入熱は、当該ハイブリッド溶接によるものは、サブマージアーク溶接の約1/2となる。   The welding heat input when welding the base metal of the same thickness by the hybrid welding and the submerged arc welding is about ½ of the submerged arc welding by the hybrid welding.

従って、管厚が厚く,レーザー・アークハイブリッド溶接1層では貫通溶接できない場合,パイプの内外面それぞれ1層ずつレーザー・アークハイブリッド溶接を行っても継手強度の低下は小さい。また,外面側を従来のSAW溶接による1層溶接を行っても同様に内面側のHAZ部で十分な強度が確保され,母材と同等以上の継手強度を満足することができる。   Therefore, when the pipe thickness is thick and penetration welding is not possible with one layer of laser / arc hybrid welding, even if laser / arc hybrid welding is performed on each of the inner and outer surfaces of the pipe, the decrease in joint strength is small. Moreover, even if one-layer welding is performed on the outer surface side by conventional SAW welding, a sufficient strength is ensured in the HAZ portion on the inner surface side, and a joint strength equal to or higher than that of the base material can be satisfied.

図5に本発明に係る超高強度溶接鋼管の製造方法での縦シーム溶接方法を模式的に示す。(a)は板厚が薄い場合を示し、レーザー・アークハイブリッド溶接9の外面側一層溶接、(b)は板厚がより厚い場合を示し、レーザー・アークハイブリッド溶接9の内外面側一層溶接、(c)は更に厚い場合を示し、内面側をレーザー・アークハイブリッド溶接9、外面側をサブマージアーク溶接10とする。   FIG. 5 schematically shows a longitudinal seam welding method in the method for producing an ultra high strength welded steel pipe according to the present invention. (A) shows the case where the plate thickness is thin, outer surface side single layer welding of the laser / arc hybrid welding 9, (b) shows the case where the plate thickness is thicker, and inner / outer surface side single layer welding of the laser / arc hybrid welding 9, (C) shows a thicker case, where the inner surface side is laser / arc hybrid welding 9 and the outer surface side is submerged arc welding 10.

尚、レーザ溶接のシールドガスとしてCOガスを用いることでブローホールの発生を著しく抑制し,ガスアーク溶接のシールドガスをArとCOの混合ガスとすることで溶接金属中の酸素量を低く抑えることができる。 Note that the use of CO 2 gas as the laser welding shield gas significantly suppresses the generation of blowholes, and the gas arc welding shield gas is a mixed gas of Ar and CO 2 to keep the amount of oxygen in the weld metal low. be able to.

次に,本発明における,ミクロ組織がフェライトと焼戻しマルテンサイトと下部ベイナイトの混合組織で、鋼中のCa、O、Sから求まるACRが0〜2を満足する、引張強度800MPa以上YR85%以下かつ一様伸び5%以上の鋼板について説明する。   Next, in the present invention, the microstructure is a mixed structure of ferrite, tempered martensite, and lower bainite, and the ACR obtained from Ca, O, and S in the steel satisfies 0 to 2, the tensile strength is 800 MPa or more and YR is 85% or less and A steel sheet having a uniform elongation of 5% or more will be described.

ミクロ組織は引張強度800MPa以上を確保し、YR85%以下かつ一様伸び5%以上の優れた変形性能、DWTT特性を得るため、強度と靭性と変形性能に優れるフェライトと焼戻しマルテンサイトと下部ベイナイトの混合組織とする。また、鋼組成におけるACRを0〜2とする。   The microstructure ensures a tensile strength of 800 MPa or more, YR 85% or less and uniform elongation of 5% or more, and to obtain excellent deformation performance and DWTT characteristics. Ferrite, tempered martensite and lower bainite are excellent in strength, toughness and deformation performance. A mixed tissue is used. Moreover, ACR in steel composition shall be 0-2.

ACRは(Ca−(0.18+130×Ca)×O)/(1.25×S)で定義され、MnSに関するパラメータであり、0以上、2以下の範囲とした場合,CaSを生成させて,靭性に有害で、拡散性水素のトラップサイトとなるMnSを低減させ、耐切断割れ性、および低温割れ感受性に優れた鋼板とすることが可能となる。尚、Ca、O、Sは鋼中含有量(%)を示す。   ACR is defined by (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S), and is a parameter related to MnS. When the range is from 0 to 2, CaS is generated, MnS that is harmful to toughness and serves as a trapping site for diffusible hydrogen can be reduced, and a steel sheet having excellent cut cracking resistance and low-temperature cracking sensitivity can be obtained. In addition, Ca, O, and S show content (%) in steel.

本発明鋼板として好適な成分限定理由を説明する。説明において%は質量%とする。   The reason for limiting the components suitable for the steel sheet of the present invention will be described. In the description,% is mass%.

C:0.04〜0.12%
Cは低温変態組織においては過飽和固溶することで強度上昇に寄与し,また後述するようにNb,Vの炭化物を形成することでHAZの軟化抵抗をもたらす。これらの効果を得るためには0.04%以上の添加が必要であるが,0.12%を超えて添加すると,パイプの円周溶接部の硬度上昇が著しくなり,低温割れが発生しやすくなるため,上限を0.12%とした。
C: 0.04 to 0.12%
C contributes to an increase in strength by being supersaturated in a low-temperature transformation structure, and brings about softening resistance of HAZ by forming Nb and V carbides as described later. In order to obtain these effects, 0.04% or more of addition is necessary. However, if added over 0.12%, the hardness of the circumferential welded portion of the pipe increases significantly, and low temperature cracking is likely to occur. Therefore, the upper limit was made 0.12%.

Si:0.01〜0.5%
Siは変態組織によらず固溶強化するため,母材,HAZの強度上昇に有効である。しかし,0.5%を超えて添加すると靱性が著しく低下するため上限を0.5%とした。
Si: 0.01 to 0.5%
Since Si strengthens the solid solution regardless of the transformation structure, it is effective in increasing the strength of the base material and HAZ. However, if added over 0.5%, the toughness is significantly reduced, so the upper limit was made 0.5%.

Mn:1.8〜2.5%
Mnは焼入性向上元素として作用する。特にHAZにおいて高強度を達成するための低温変態組織を得るために1.8%以上の添加が必要であるが,連続鋳造プロセスでは中心偏析部の濃度上昇が著しく,2.5%を超える添加を行うと,偏析部での遅れ破壊の原因となるため,上限を2.5%とした。
P:≦0.010%
S:≦0.002%
P,Sはいずれも鋼中に不可避不純物として存在する。特に中心偏析部での偏析が著しい元素であり,母材の偏析部起因の靱性低下を抑制するために,それぞれ上限を0.010%,0.002%とした。
Mn: 1.8 to 2.5%
Mn acts as a hardenability improving element. In particular, in order to obtain a low temperature transformation structure to achieve high strength in HAZ, addition of 1.8% or more is necessary. However, in the continuous casting process, the concentration in the central segregation part is remarkably increased, and the addition exceeds 2.5%. This causes delayed fracture at the segregation part, so the upper limit was set to 2.5%.
P: ≦ 0.010%
S: ≦ 0.002%
Both P and S are present as inevitable impurities in the steel. In particular, the segregation at the center segregation portion is an element, and the upper limit is set to 0.010% and 0.002%, respectively, in order to suppress the decrease in toughness due to the segregation portion of the base material.

Al:0.01〜0.08%
Alは脱酸元素として作用する。0.01%以上の添加で十分な脱酸効果が得られるが,0.08%を超えて添加すると鋼中の清浄度が低下し,靱性劣化の原因となるため,上限を0.08%とした。
Al: 0.01 to 0.08%
Al acts as a deoxidizing element. Sufficient deoxidation effect can be obtained with addition of 0.01% or more, but if added over 0.08%, the cleanliness in the steel is lowered and the toughness is deteriorated, so the upper limit is 0.08%. It was.

Cu:0.01〜0.8%,Cr:0.01〜0.8%,Mo:0.01〜0.8%
Cu,Cr,Moはいずれも焼入性向上元素として作用するが,0.01%以下ではその効果が得られない。これらは多量のMn添加の代替のため使用することで,同じように低温変態組織を得て母材・HAZの高強度化に寄与するが,高価な元素であり,かつそれぞれ0.8%以上添加しても高強度化の効果は飽和するため,上限を0.8%とした。
Cu: 0.01-0.8%, Cr: 0.01-0.8%, Mo: 0.01-0.8%
Cu, Cr, and Mo all act as hardenability improving elements, but the effect cannot be obtained at 0.01% or less. These are used for replacement of a large amount of Mn, and similarly contribute to increase the strength of the base material and HAZ by obtaining a low-temperature transformation structure, but they are expensive elements and each is 0.8% or more. Even if added, the effect of increasing the strength is saturated, so the upper limit was made 0.8%.

Ni:0.1〜1.0%
Niもまた,焼入性向上元素として作用するほか,添加しても靱性劣化を起こさないため,有用な元素である.この効果を得るために,0.1%以上の添加が必要であるが,高価な元素であるため,上限を1.0%とした。
Ni: 0.1 to 1.0%
Ni is also a useful element because it acts as a hardenability improving element and does not cause toughness deterioration when added. In order to obtain this effect, addition of 0.1% or more is necessary. However, since it is an expensive element, the upper limit was made 1.0%.

Nb:0.01〜0.08%
Nbは炭化物を形成することで,特に2回以上の熱サイクルを受ける溶接熱影響部(以下、HAZ)の焼戻し軟化を防止して,必要なHAZ強度を得るために必要な元素である。
Nb: 0.01 to 0.08%
Nb is an element necessary for obtaining a required HAZ strength by forming carbides and preventing temper softening of a weld heat-affected zone (hereinafter referred to as HAZ) that is subjected to two or more thermal cycles.

また,熱間圧延時のオーステナイト未再結晶領域を拡大する効果もあり,特に950℃まで未再結晶領域とするためには0.01%以上の添加が必要である。一方,0.08%を超えて添加すると,HAZの靱性を著しく損ねることから上限を0.08%とする。   In addition, there is an effect of expanding the austenite non-recrystallized region during hot rolling, and in order to make the non-recrystallized region up to 950 ° C., addition of 0.01% or more is necessary. On the other hand, if added over 0.08%, the toughness of the HAZ is remarkably impaired, so the upper limit is made 0.08%.

V:0.01〜0.1%
VはNbとの複合添加により,多重溶接熱サイクル時に析出硬化し,HAZ軟化防止に寄与するが,0.1%を超えて添加すると析出硬化が著しくHAZ靱性の劣化につながるため、上限を0.1%とする。
V: 0.01 to 0.1%
V is precipitated and hardened during multiple welding thermal cycles due to the combined addition with Nb and contributes to the prevention of HAZ softening, but if added over 0.1%, precipitation hardening significantly reduces the HAZ toughness, so the upper limit is 0. .1%.

Ti:0.005〜0.025%
Tiは窒化物を形成し,鋼中の固溶N量低減に有効であるほか,析出したTiNがピンニング効果でオーステナイト粒の粗大化抑制防止をすることで,母材,HAZの靱性向上に寄与する。必要なピンニング効果を得るためには0.005%以上の添加が必要であるが,0.025%を超えて添加すると炭化物を形成するようになり,その析出硬化で靱性が著しく劣化するため,上限を0.025%とした。
Ti: 0.005-0.025%
Ti forms nitrides and is effective in reducing the amount of solute N in the steel. Precipitated TiN prevents the austenite grains from becoming coarse by the pinning effect, contributing to improved toughness of the base metal and HAZ. To do. Addition of 0.005% or more is necessary to obtain the required pinning effect, but if added over 0.025%, carbides are formed, and the toughness deteriorates significantly due to precipitation hardening. The upper limit was 0.025%.

Ca:0.0005〜0.01%
Caは鋼中の硫化物の形態制御に有効な元素であり,添加することで靱性に有害なMnSの生成を抑制するが0.0005%未満ではその効果が得られない。しかし,0.01%を超えて添加すると,CaO−CaSのクラスターを形成し,かえって靱性を劣化させるので,上限を0.01%とした。
Ca: 0.0005 to 0.01%
Ca is an element effective for controlling the form of sulfides in steel, and when added, the formation of MnS harmful to toughness is suppressed, but if it is less than 0.0005%, the effect cannot be obtained. However, if added over 0.01%, a CaO-CaS cluster is formed and the toughness is deteriorated, so the upper limit was made 0.01%.

N:0.001〜0.006%
Nは通常鋼中の不可避不純物として存在するが,前述の通りTi添加を行うことで,オーステナイト粗大化を抑制するTiNを形成する。有効なピンニング効果を得るためには0.001%以上鋼中に存在することが必要であるが,0.006%を超える場合,溶接部,特に溶融線近傍で1450℃以上に加熱されたHAZでTiNが分解した場合,固溶Nの悪影響が著しいため,上限を0.006%とした。
N: 0.001 to 0.006%
N is usually present as an inevitable impurity in steel, but TiN that suppresses austenite coarsening is formed by adding Ti as described above. In order to obtain an effective pinning effect, 0.001% or more must be present in the steel. However, if it exceeds 0.006%, HAZ heated to 1450 ° C or higher near the weld, particularly in the vicinity of the melting line. When TiN decomposes at, the upper limit was made 0.006% because the solute N had a bad influence.

PcmB≦0.22
PcmBは溶接割れ感受性組成として,HAZ部の低温割れ防止のための予熱温度と相関し、PcmB=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×Bで定義される。
PcmB ≦ 0.22
PcmB correlates with the preheating temperature for preventing cold cracking in the HAZ part as a weld cracking susceptibility composition and is defined as PcmB = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B.

図1は,種々の化学組成を有する鋼を,種々の予熱温度を与えた後行った低温割れ試験によって得られたHAZ部の低温割れ阻止予熱条件をPcmB値で整理したものである。   FIG. 1 is a summary of PCMB values of cold cracking prevention preheating conditions of the HAZ part obtained by cold cracking tests conducted after giving various preheating temperatures to steels having various chemical compositions.

パイプ同士の円周溶接時の初層溶接において,パイプ予熱温度を75℃まで許容する場合のHAZ割れ防止にはPcmB値を0.22以下とする必要があるため,上限を0.22とした。   In the first layer welding during circumferential welding of pipes, the PcmB value must be 0.22 or less to prevent HAZ cracking when the pipe preheating temperature is allowed to 75 ° C, so the upper limit was set to 0.22. .

なお,パイプライン敷設現場での作業性を考えると,パイプ予熱温度が低い方が望ましく,この観点からPcmBの好適範囲は0.20以下となる。   In consideration of workability at the pipeline laying site, it is desirable that the pipe preheating temperature is low. From this viewpoint, the preferable range of PcmB is 0.20 or less.

次に,素材鋼板の製造方法の限定理由について説明する.
[製造条件]
上記した組成を有する溶鋼を、転炉、電気炉等の通常の溶製手段で溶製し、連続鋳造法または造塊-分塊法等の通常の鋳造法でスラブ等の鋼素材とすることが好ましい。
Next, the reasons for limiting the manufacturing method of the steel sheet will be explained.
[Production conditions]
The molten steel having the above composition is melted by a normal melting means such as a converter or an electric furnace, and is made into a steel material such as a slab by a normal casting method such as a continuous casting method or an ingot-bundling method. Is preferred.

鋼の製鋼方法については特に限定しないが,経済性の観点から,転炉法による製鋼プロセスと,連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。尚、溶製方法、鋳造法については上記した方法に限定されるものではない。   There are no particular restrictions on the steel making method, but from the economical point of view, it is desirable to perform the steel making process by the converter method and the slab casting by the continuous casting process. The melting method and the casting method are not limited to the methods described above.

1.スラブ加熱ー圧延条件
鋼素材は、オーステナイト単相組織となる温度に加熱される。鋼素材の加熱温度は、鋼素材をオーステナイト化するため、好ましくは1000〜1200℃とする。鋼素材の加熱温度が1000℃未満では、熱間変形抵抗が高すぎて1回あたりの圧下率を高く採れず、生産性が低下する。
1. Slab heating-rolling conditions The steel material is heated to a temperature at which it becomes an austenite single phase structure. The heating temperature of the steel material is preferably 1000 to 1200 ° C. in order to austenite the steel material. When the heating temperature of the steel material is less than 1000 ° C., the hot deformation resistance is too high, and the rolling reduction per time cannot be taken high, and the productivity is lowered.

また、V、Nb等の析出物形成元素を含有する場合には,これら元素が十分にオーステナイト中に固溶せず,これら元素の効果を十分に発揮することが困難となる。一方,加熱温度が1200℃を超えると、結晶粒が粗大化するとともに,スケールロス量の増加や炉の改修頻度の増加を招く。このため,鋼素材の加熱温度は1000〜1200℃の範囲に限定した。   Further, when a precipitate-forming element such as V or Nb is contained, these elements are not sufficiently dissolved in austenite, and it is difficult to sufficiently exhibit the effects of these elements. On the other hand, when the heating temperature exceeds 1200 ° C., the crystal grains become coarse, and the amount of scale loss and the frequency of furnace repairs increase. For this reason, the heating temperature of the steel material was limited to a range of 1000 to 1200 ° C.

加熱された鋼素材は,圧延終了温度をAr変態点以上、Ar+100℃以下の温度域とする熱間圧延を施す。 The heated steel material is subjected to hot rolling at a rolling end temperature of not less than Ar 3 transformation point and not more than Ar 3 + 100 ° C.

2.熱処理
圧延終了後,Ar−50℃以上Ar変態点以下の温度域から、Ms点以下300℃以上の温度域まで、マルテンサイト生成臨界冷却速度Vcrm以上の冷却速度で冷却し、冷却停止温度±50℃以内に60s〜300sの間保持後、室温まで空冷する。
2. Heat treatment
After the end of rolling, cooling is performed at a cooling rate of not less than the Martensite critical cooling rate Vcrm from the temperature range of Ar 3 −50 ° C. to the Ar 3 transformation point to a temperature range of 300 ° C. or less below the Ms point. After holding for 60 s to 300 s within 50 ° C., cool to room temperature.

焼入れの開始温度が,Ar−50℃未満では、焼入れ冷却開始時の組織においてフェライトが著しく増加するため,焼入れ処理を施しても所望のミクロ組織が得られず,所望の高強度・高靭性を確保することができない。 Starting temperature of quenching is less than Ar 3 -50 ° C., since ferrite is increased significantly in the Quenching starting tissue, be subjected to a hardening process can not be obtained the desired microstructure, the desired high strength and high toughness Can not be secured.

また,焼入れの開始温度が,Ar変態点より高くなると,初析フェライトが得られず,YR85%以下かつ一様伸び5%以上を満足する変形性能が得られない。このため,冷却開始温度をAr−50℃以上Ar変態点以下の範囲に限定する。 If the quenching start temperature is higher than the Ar 3 transformation point, pro-eutectoid ferrite cannot be obtained, and deformation performance satisfying YR 85% or less and uniform elongation 5% or more cannot be obtained. Therefore, to limit the cooling start temperature in the range of Ar 3 -50 ° C. or more Ar 3 or less transformation point.

焼入れ冷却の冷却速度は,マルテンサイト生成臨界冷却速度Vcrm以上の冷却速度とする。なお,本発明でマルテンサイト生成臨界冷却速度Vcrmは以下の(3)式で定義される冷却速度をいう。
logVcrm=2.94−0.75*(β−1)
(β(%)=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+Mo)・・・(3)
(ここで,Vcrm:マルテンサイト生成臨界冷却速度(℃/s)でマルテンサイト生成臨界冷却速度Vcrmとは、全組織中の90%以上の分率でマルテンサイト組織を含有する冷却速度を意味する。
The quenching cooling rate is a cooling rate equal to or higher than the martensite formation critical cooling rate Vcrm. In the present invention, the martensite formation critical cooling rate Vcrm is a cooling rate defined by the following equation (3).
logVcrm = 2.94-0.75 * (β-1)
(Β (%) = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + Mo) (3)
(Here, Vcrm: Martensite formation critical cooling rate (° C./s) and martensite formation critical cooling rate Vcrm means a cooling rate containing a martensite structure in a fraction of 90% or more of the entire structure. .

マルテンサイト生成臨界冷却速度Vcrm以上の冷却速度で,マルテンサイト変態開始温度Ms以下300℃以上の温度域の焼入れ冷却停止温度まで冷却する焼入れ処理を施すことにより,板厚方向各位置で部分的にマルテンサイトがまず生成する。   By applying a quenching process that cools to a quenching stop temperature in the temperature range of 300 ° C. or more at a martensite transformation start temperature Ms or less at a cooling rate of the martensite generation critical cooling rate Vcrm or more, it is partially at each position in the plate thickness direction. Martensite is generated first.

マルテンサイトを部分的に生成させることで,生成したマルテンサイトと未変態のオーステナイトとの界面にマルテンサイト変態時の膨張による歪が生成され、この歪エネルギーにより未変態のオーステナイトが下部ベイナイトへ変態しやすくなるとともに,下部ベイナイト相を従来に比べて微細でかつ多量に生成させることが可能となる。   By partially generating martensite, strain due to expansion during martensite transformation is generated at the interface between the martensite and untransformed austenite, and this strain energy transforms untransformed austenite into lower bainite. In addition to being easier, the lower bainite phase can be produced in a finer amount and in a larger amount than in the prior art.

焼入れ冷却の冷却速度がマルテンサイト生成臨界冷却速度Vcrm未満では,マルテンサイト変態前に粗大なベイナイトの生成量が増加し,上記したマルテンサイト変態による歪の生成が不十分となり,所期の効果が得られない。   If the quenching cooling rate is less than the martensite formation critical cooling rate Vcrm, the amount of coarse bainite generated before the martensite transformation increases, and the strain generation due to the martensite transformation becomes insufficient, and the desired effect is achieved. I can't get it.

また,焼入れ冷却停止温度が,Ms点を超える温度では,マルテンサイトの生成による歪生成効果が期待できず,下部ベイナイト相への変態促進が不十分となり、更に等温保持中あるいは空冷中に生成する、靭性に有害な島状マルテンサイト量が増加する。   In addition, when the quenching and cooling stop temperature exceeds the Ms point, the strain generation effect due to the formation of martensite cannot be expected, the transformation to the lower bainite phase is insufficiently promoted, and it is generated during isothermal holding or air cooling. Increases the amount of island martensite harmful to toughness.

一方,焼入れ冷却停止温度が300℃未満では,Cの拡散が不十分となり,亀裂伝播抵抗に有効な炭化物がベイニティックフェライト内部に析出しない。このようなことから,焼入れ冷却停止温度はMs点以下300℃以上の温度域の温度とする。尚,好ましくは、Ms点以下350℃以上の温度範囲である。   On the other hand, when the quenching and cooling stop temperature is less than 300 ° C., the diffusion of C becomes insufficient, and carbide effective for crack propagation resistance does not precipitate inside the bainitic ferrite. For this reason, the quenching and cooling stop temperature is set to a temperature in the temperature range of 300 ° C. or lower from the Ms point. In addition, Preferably, it is a temperature range below 350 degreeC below Ms point.

次いで,上記した範囲の焼入れ冷却停止温度で冷却停止した後、60s〜300sの間,鋼の温度を冷却停止温度±50℃以内に保持し,その後室温まで空冷する。   Next, after the cooling is stopped at the quenching cooling stop temperature in the above-described range, the steel temperature is kept within the cooling stop temperature ± 50 ° C. for 60 s to 300 s, and then air-cooled to room temperature.

焼入れ冷却停止温度±50℃以内で60s〜300s保持することにより,マルテンサイトが自己焼鈍される一方,未変態オーステナイトの下部ベイナイトへの変態が促進され,焼戻しマルテンサイトと下部ベイナイトの混合組織を得ることができる。   By maintaining the quenching cooling stop temperature within ± 50 ° C for 60 s to 300 s, martensite is self-annealed, while the transformation of untransformed austenite to lower bainite is promoted, and a mixed structure of tempered martensite and lower bainite is obtained. be able to.

また、マルテンサイトのラス間に形成される、靭性に有害な針状の島状マルテンサイト量を減少させることが可能となる。   Moreover, it becomes possible to reduce the amount of acicular island-shaped martensite harmful to toughness formed between laths of martensite.

60s以内の等温変態では下部ベイナイト変態は完了せず高強度・高靭性が得られず、300sを超えて長く保持すると,組織の粗大化が起こるため強度が低下する。このため、該温度域での保持時間を60s〜300s、好ましくは60s〜100sの範囲とする。   In the isothermal transformation within 60 s, the lower bainite transformation is not completed and high strength and high toughness cannot be obtained, and when it is kept for longer than 300 s, the structure is coarsened and the strength is lowered. For this reason, the holding time in the temperature range is set to 60 s to 300 s, preferably 60 s to 100 s.

また,靭性を特に向上させる場合は、厚鋼板を冷却停止温度±50℃以内に60〜300sの間保持した後,該温度から450℃以上Ac変態点以下の温度域へ1℃/s以上の昇温速度で急速加熱して焼戻しを行う。 Further, in the case of particularly improving toughness, the steel plate is held for 60 to 300 s within the cooling stop temperature ± 50 ° C., and then from the temperature to a temperature range of 450 ° C. or more and Ac 1 transformation point or less 1 ° C./s or more. Tempering is carried out by rapid heating at a heating rate of.

なお、組織の粗大化による強度低下を抑制するため少なくとも冷却停止後300s以内に焼戻す必要がある。   It should be tempered at least within 300 s after cooling is stopped in order to suppress a decrease in strength due to coarsening of the structure.

加熱温度が450℃未満の場合,靭性向上の効果はほとんど得られず,Ac変態点以上の温度とすると強度の低下が起こるため,加熱温度は450℃以上Ac変態点以下とする。また,昇温速度を1℃/s未満とすると,靭性は向上するが強度の低下が著しくなるため,昇温速度は1℃/s以上とする。 If the heating temperature is lower than 450 ° C., the effect of improving toughness can not be almost obtained, since when the Ac 1 transformation point or more temperature reduction in strength occurs, the heating temperature is less than Ac 1 transformation point 450 ° C. or higher. Further, if the rate of temperature rise is less than 1 ° C./s, the toughness is improved, but the strength is remarkably reduced, so the rate of temperature rise is 1 ° C./s or more.

マルテンサイトが自己焼鈍される一方,未変態オーステナイトの下部ベイナイトへの変態が促進され,焼戻しマルテンサイトと下部ベイナイトの混合組織が得られる。これにより,強度をほとんど劣化させることなく靭性を向上することができる。   While martensite is self-annealed, the transformation of untransformed austenite to lower bainite is promoted, and a mixed structure of tempered martensite and lower bainite is obtained. Thereby, toughness can be improved with almost no deterioration in strength.

尚,鋼の製鋼方法については特に限定しないが,経済性の観点から,転炉法による製鋼プロセスと,連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。   The steel making method is not particularly limited, but it is desirable to carry out the steel making process by the converter method and the casting of the slab by the continuous casting process from the viewpoint of economy.

上記方法で製造された鋼板の鋼管への成形方法は特に限定はなく,従来から用いられているUOE成形,プレスベンド成形,ロール成形いずれも使用可能である。   There are no particular limitations on the method of forming the steel sheet produced by the above method into a steel pipe, and any of the conventionally used UOE forming, press bend forming, and roll forming can be used.

次に,溶接金属の添加元素の限定理由を説明する.
C:0.05〜0.09%
溶接金属においてもCは鋼の強化元素として重要な元素である。特に,継手部のオーバーマッチングを達成するため,溶接金属部においても引張強度≧800MPaとする必要があり,この強度を得るために0.05%以上含有している必要がある。一方,0.09%を超えていると,溶接金属の高温割れが発生しやすくなるため,上限を0.09%とした。
Next, the reasons for limiting the additive elements of the weld metal will be explained.
C: 0.05-0.09%
Also in the weld metal, C is an important element as a steel strengthening element. In particular, in order to achieve overmatching of the joint part, the weld metal part also needs to have a tensile strength ≧ 800 MPa, and in order to obtain this strength, it is necessary to contain 0.05% or more. On the other hand, if it exceeds 0.09%, hot cracking of the weld metal tends to occur, so the upper limit was made 0.09%.

Si:0.1〜0.4%
Siは溶接金属の脱酸ならびに良好な作業性を確保するために必要で,0.1%未満では十分な脱酸効果が得られず,一方0.4%を超えると,溶接作業性の劣化を引き起こすため,上限を0.4%とした。
Si: 0.1 to 0.4%
Si is necessary for deoxidizing the weld metal and ensuring good workability. If it is less than 0.1%, a sufficient deoxidation effect cannot be obtained. On the other hand, if it exceeds 0.4%, welding workability deteriorates. Therefore, the upper limit was made 0.4%.

Mn:1.0〜2.0%
Mnは溶接金属の高強度化に重要な元素である。特に,引張強度≧800MPaといった高強度は,従来のアシキュラフェライト組織化では達成不可能であり,多量のMnを含有させベイナイト組織とすることで可能となる。この効果を得るためには1.0%以上含有させる必要があるが,2.0%を超えると溶接性が劣化するため,上限を2.0%とした。
Mn: 1.0-2.0%
Mn is an important element for increasing the strength of the weld metal. In particular, high strength such as tensile strength ≧ 800 MPa cannot be achieved by the conventional acicular ferrite structure, and can be achieved by containing a large amount of Mn to form a bainite structure. In order to acquire this effect, it is necessary to make it contain 1.0% or more, but if it exceeds 2.0%, weldability deteriorates, so the upper limit was made 2.0%.

Al:≦0.015%
Alは脱酸元素として作用するが,溶接金属部においてはむしろTiによる脱酸による靱性改善効果が大きく,かつAl酸化物系の介在物が多くなると溶接金属シャルピーの吸収エネルギーの低下が起こるため,積極的には添加せず,その上限を0.015%とする。
Al: ≦ 0.015%
Al acts as a deoxidizing element, but in the weld metal part, the effect of improving toughness due to deoxidation by Ti is rather large, and when the inclusion of Al oxide system increases, the absorbed energy of weld metal Charpy decreases, Do not add aggressively, and set the upper limit to 0.015%.

Cu:≦0.5%、Ni:≦3.0%、Cr:≦1.0%、Mo:≦1.0%
母材と同じくCu,Ni,Cr,Moは溶接金属においても焼入性を向上させるので,ベイナイト組織化のために含有させる。ただし,その量が多くなると溶接ワイヤへの合金元素添加量が多大となり,ワイヤ強度が著しく上昇する結果,溶接時のワイヤ送給性に障害が生じるためそれぞれ上限を,0.5%,3.0%,1.0%,1.0%とした。
Cu: ≦ 0.5%, Ni: ≦ 3.0%, Cr: ≦ 1.0%, Mo: ≦ 1.0%
Like the base material, Cu, Ni, Cr, and Mo improve the hardenability even in the weld metal, so are included for bainite organization. However, as the amount increases, the amount of alloying elements added to the welding wire increases, resulting in a significant increase in wire strength. As a result, the wire feedability during welding is impaired. It was set to 0%, 1.0%, and 1.0%.

V:≦0.1%
適量のV添加は靱性・溶接性を劣化させずに強度を高めることから有効な元素であるが,0.1%を超えると溶接金属の再熱部の靱性が著しく劣化するため,上限を0.1%とした。
V: ≦ 0.1%
An appropriate amount of V is an effective element because it increases the strength without degrading toughness and weldability. However, if it exceeds 0.1%, the toughness of the reheated portion of the weld metal is significantly degraded, so the upper limit is set to 0. 0.1%.

Ti:0.003〜0.10%
Tiは溶接金属中では脱酸元素として働き,溶接金属中の酸素の低減に有効である。この効果を得るためには0.003%以上の含有が必要であるが,0.10%を超えた場合,余剰となったTiが炭化物を形成し,溶接金属の靱性を劣化させるため,上限を0.03%とした。
Ti: 0.003-0.10%
Ti acts as a deoxidizing element in the weld metal and is effective in reducing oxygen in the weld metal. In order to obtain this effect, a content of 0.003% or more is necessary. However, if it exceeds 0.10%, the excess Ti forms carbides and degrades the toughness of the weld metal, so the upper limit. Was 0.03%.

B:≦0.0030%
強度グレードの低いラインパイプ用溶接管においては,ミクロ組織をアシキュラフェライト化するために,B添加が有効であるが,引張強度800MPa以上の高強度化のため,ベイナイト組織とする場合,溶接金属中のB量が0.0030%を超えると靱性の低いマルテンサイト組織が生成するため,上限を0.0030%とした。
B: ≦ 0.0030%
In welded pipes for line pipes with low strength grades, it is effective to add B in order to make the microstructures into acicular ferrite. However, in order to increase the tensile strength to 800 MPa or higher, when using a bainite structure, weld metal When the amount of B exceeds 0.0030%, a martensite structure with low toughness is generated, so the upper limit was made 0.0030%.

O:≦0.03%
溶接金属中の酸素量の低減は靱性改善効果があり,特に0.03%以下とすることで著しく改善されるため,上限を0.03%とした。
O: ≦ 0.03%
Reduction of the amount of oxygen in the weld metal has an effect of improving toughness. In particular, the upper limit is set to 0.03% because it is remarkably improved by setting it to 0.03% or less.

N:≦0.008%
溶接金属中の固溶Nの低減もまた靱性改善効果があり,特に0.008%以下とすることで著しく改善されるため,上限を0.008%とした。
N: ≦ 0.008%
Reduction of solute N in the weld metal also has an effect of improving toughness. In particular, the upper limit is set to 0.008% because it can be remarkably improved by setting it to 0.008% or less.

PcmW≦0.2
PcmW(=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60×B−12×N−4×O)は溶接金属の溶接性の指標であり,パイプのシーム溶接部がパイプ同士の円周溶接を行ったときに受ける熱影響を受けた後の硬さ(以後、T−クロス硬さ)と良い相関を有する。
PcmW ≦ 0.2
PcmW (= C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 × B−12 × N−4 × O) is an indicator of weldability of the weld metal, and the seam weld of the pipe is a circle between the pipes. It has a good correlation with the hardness (hereinafter referred to as T-cross hardness) after being subjected to the thermal effect when circumferential welding is performed.

図3はT−クロス部1を示し、2は円周溶接、3は縦シーム溶接、31は縦シーム溶接3の外面側、32は縦シーム溶接3の内面側、4はT−クロス硬さを求める硬さ試験の測定位置で、T−クロス硬さは円周溶接2のボンド部よりHAZ側2mmの位置で管厚方向に硬さ試験を行い、得られた硬さ分布の最高硬さと定義する。   3 shows the T-cross part 1, 2 is circumferential welding, 3 is vertical seam welding, 31 is the outer surface side of the vertical seam welding 3, 32 is the inner surface side of the vertical seam welding 3, and 4 is T-cross hardness. The T-cross hardness is measured in the tube thickness direction at a position 2 mm on the HAZ side from the bond part of the circumferential weld 2 and the maximum hardness of the obtained hardness distribution is obtained. Define.

図2はT−クロス硬さとPcmWの関係を示し、PcmWが大きく,T−クロス硬さが高くなると,円周溶接時にパイプシーム溶接部で低温割れが発生しやすくなることから,割れ発生防止の目安であるビッカース硬さ(Hv5)で300ポイント以下を満足させるため,溶接金属のPcmW値の上限を0.2とした。   Fig. 2 shows the relationship between T-cross hardness and PcmW. When PcmW is large and T-cross hardness is high, cracking is likely to occur at the pipe seam weld during circumferential welding. In order to satisfy the standard Vickers hardness (Hv5) of 300 points or less, the upper limit of the PcmW value of the weld metal was set to 0.2.

表1に示す化学組成のA〜Iの鋼を用い,表2に示す熱間圧延・加速冷却,再加熱条件で各種鋼板を作製した。なお,再加熱は,加速冷却設備と同一ライン場に設置した誘導加熱型の加熱装置を用いて行った。   Various steel plates were produced under the hot rolling / accelerated cooling and reheating conditions shown in Table 2 using steels A to I having chemical compositions shown in Table 1. Reheating was performed using an induction heating type heating device installed in the same line as the accelerated cooling equipment.

Figure 0004811166
Figure 0004811166

Figure 0004811166
Figure 0004811166

得られた鋼板をせん断機により20箇所切断し,その後,鋼板切断面を磁粉探傷により調査し,切断割れが認められた切断端面の数を求めた。ここで,1つの端面内に複数の割れが確認できた場合でも,端面としては1つなので,切断割れの発生数は1とした。   The obtained steel plate was cut at 20 points with a shearing machine, and then the cut surface of the steel plate was examined by magnetic particle inspection to determine the number of cut end faces where cut cracks were observed. Here, even when a plurality of cracks could be confirmed in one end face, the number of cut cracks was set to 1 because there was only one end face.

そして,全ての切断箇所において,切断割れが認められない場合を良好(切断割れ発生数0)とした。   And the case where the cutting crack was not recognized in all the cutting | disconnection locations was made favorable (the number of cutting crack generation | occurrence | production 0).

得られた鋼板より,API−5Lに準拠した全厚引張試験片およびDWTT試験片を,板厚中央位置からJIS Z2202(1980)のVノッチシャルピー衝撃試験片を採取し,鋼板の引張試験,DWTT試験(試験温度:−30℃)およびシャルピー衝撃試験(試験温度:−30℃)を実施して,強度と靱性を評価した。   From the obtained steel plate, a full-thickness tensile test piece and DWTT test piece in accordance with API-5L were collected, and a V-notch Charpy impact test piece of JIS Z2202 (1980) was taken from the central position of the plate thickness. A test (test temperature: −30 ° C.) and a Charpy impact test (test temperature: −30 ° C.) were conducted to evaluate strength and toughness.

表3に示す溶接方法で,溶接ワイヤおよび溶接方法を種々変更して得られた鋼板の突合わせ溶接を行い,溶接継手を作製した。それぞれの継手の溶接金属部より,分析試料を採取し化学分析を行った。分析結果を併せて表3に示す。   The welding methods shown in Table 3 were used to butt-weld steel sheets obtained by variously changing the welding wire and welding method to produce a welded joint. Analytical samples were collected from the weld metal parts of each joint and subjected to chemical analysis. The analysis results are also shown in Table 3.

Figure 0004811166
Figure 0004811166

また,API−5Lに準拠した継手引張試験片(余盛付)と,JIS Z2202のVノッチシャルピー衝撃試験片を採取し,溶接継手の引張試験およびシャルピー衝撃試験(採取位置:外面側表面下2mm、切欠位置:溶接金属,HAZ、試験温度:−30℃)を実施して,溶接部の強度と靱性を評価した。尚、溶接の開先形状は素管製造時の開先形状に準じた。   In addition, a joint tensile test piece (with surplus) conforming to API-5L and a V-notch Charpy impact test piece of JIS Z2202 were collected, and a tensile test and a Charpy impact test of the welded joint (collection position: 2 mm below the outer surface side surface) , Notch position: weld metal, HAZ, test temperature: −30 ° C.) to evaluate the strength and toughness of the weld. In addition, the groove shape of welding followed the groove shape at the time of a blank pipe manufacture.

低温割れ感受性は、JIS Z 3158に準じて,y形溶接割れ試験を実施した。試験雰囲気は,気温30℃で湿度80%とし、当該環境下に1時間放置した100kgf級高張力鋼用の手溶接棒を用い,予熱温度75℃とした試験体に試験ビードを溶接した。   The low temperature cracking susceptibility was subjected to a y-type weld cracking test in accordance with JIS Z 3158. The test atmosphere was a temperature of 30 ° C., a humidity of 80%, and a test bead was welded to a test body with a preheating temperature of 75 ° C. using a hand-welded rod for 100 kgf class high-strength steel left for 1 hour in the environment.

溶接割れ感受性は,試験ビードと直交する断面の観察結果で得られた断面割れ率で評価した。T−クロス硬さ試験は、溶接継手と直交するようにガスアーク溶接を実施してTクロス部を作成した試験体で行った。   Weld crack susceptibility was evaluated by the cross-sectional crack rate obtained from the observation results of the cross-section orthogonal to the test bead. The T-cross hardness test was performed on a test body in which gas arc welding was performed so as to be orthogonal to the welded joint to create a T-cross portion.

母材の強度・靱性調査結果,溶接継手部の強度・靱性調査結果,および溶接割れ感受性の評価,T−クロス硬さ結果をまとめて表4に示す。   Table 4 summarizes the results of the base metal strength / toughness investigation, weld joint strength / toughness investigation, weld crack susceptibility evaluation, and T-cross hardness results.

Figure 0004811166
Figure 0004811166

継手No.1〜10は本発明鋼を用いた継手で、継手を構成する母材はいずれも板切断実験で割れが発生せず,800MPaを超える母材引張強度を有し,200Jを超える高いシャルピー吸収エネルギーおよび85%を超えるDWTT延性破面率を示し,かつYR85%以下および一様伸び5%以上の変形性能を満足した。   Fitting No. 1 to 10 are joints using the steel of the present invention, and the base materials constituting the joints do not generate any cracks in the plate cutting experiment, have a base metal tensile strength exceeding 800 MPa, and high Charpy absorbed energy exceeding 200 J. Further, the DWTT ductile fracture surface ratio exceeding 85% was exhibited, and deformation performance of YR 85% or less and uniform elongation 5% or more was satisfied.

更に,継手強度も母材と同等以上の値を示し,溶接金属およびHAZシャルピー吸収エネルギーも100Jを超える優れた値が得られた。また,y形溶接割れ試験では割れは観察されず、T−クロス試験でもT−クロス部の硬さは低く優れた溶接性が確認された。   Furthermore, the joint strength was also equal to or higher than that of the base metal, and the weld metal and HAZ Charpy absorbed energy were excellent values exceeding 100 J. In addition, no cracks were observed in the y-type weld cracking test, and the T-cross test showed low weld hardness and excellent weldability.

一方,レーザー・アークハイブリッド溶接時のガスアークトーチのシールドガスをCOガスとし,溶接金属の酸素量が上限を超えた継手No.11は,溶接金属のシャルピー吸収エネルギーが著しく低下した。 On the other hand, when the gas arc torch shield gas during laser-arc hybrid welding was CO 2 gas, the oxygen content of the weld metal exceeded the upper limit. No. 11 significantly decreased the Charpy absorbed energy of the weld metal.

また,レーザートーチのシールドガスをArとCOの混合ガスとした継手No.12は,溶接金属中にブローホールと考えられる欠陥が残存していたため,継手引張時に溶接金属で破断したほか,シャルピー吸収エネルギーが低下した。 Further, joint No. of shielding gas laser torch was a mixed gas of Ar and CO 2 In No. 12, defects that were thought to be blowholes remained in the weld metal, which caused the weld metal to fracture during joint tension and reduced Charpy absorbed energy.

溶接金属のPcmW値が上限を超えた継手No.13は溶接継手強度,靱性は良好であったが,T−クロス硬さ(Hv5)が300超えで低温割れ感受性に劣る。   Fitting No. whose weld metal PcmW value exceeded the upper limit. No. 13 had good weld joint strength and toughness, but its T-cross hardness (Hv5) exceeded 300 and was inferior in cold cracking susceptibility.

一方,圧延終了温度が本発明の上限を上回った継手No.14の母材は,オーステナイト粒の微細化が不十分となった結果,母材のシャルピー吸収エネルギー値が低く,DWTT延性破面率も40%以下であった。   On the other hand, a joint No. whose rolling finish temperature exceeded the upper limit of the present invention was used. In the base material No. 14, the austenite grains were insufficiently refined. As a result, the Charpy absorbed energy value of the base material was low, and the DWTT ductile fracture rate was 40% or less.

また,冷却開始温度が本発明の上限を上回った継手No.15の母材は,Ar変態点以下でのフェライト変態が起こらなかったためYRが高く,一様伸びが5%未満となり,変形性能が劣化した。 In addition, a joint No. whose cooling start temperature exceeded the upper limit of the present invention was used. The base material of No. 15 did not undergo ferrite transformation below the Ar 3 transformation point, so the YR was high, the uniform elongation was less than 5%, and the deformation performance deteriorated.

継手No.16の母材は、圧延後の冷却停止温度が本発明の上限を上回り、マルテンサイト変態が起こらず,ベイナイト主体組織となり,より高温での冷却停止のためにベイナイト下部組織が粗大化し,母材降伏強度とともに継手引張強度が低下した。   Fitting No. In the base material No. 16, the cooling stop temperature after rolling exceeds the upper limit of the present invention, martensite transformation does not occur, a bainite main structure is formed, and the bainite substructure is coarsened due to the cooling stop at a higher temperature. Joint tensile strength decreased with yield strength.

また,継手No.17の母材は圧延後の冷却停止温度が本発明の下限を下回り、下部ベイナイト主体組織が得られず,焼戻しマルテンサイト主体組織となったために,強度は高い値を示したが,シャルピー吸収エネルギー値が低く、DWTT延性破面率も55%であった。   In addition, the joint No. Although the base metal of No. 17 had a cooling stop temperature after rolling lower than the lower limit of the present invention, and the lower bainite main structure was not obtained and became a tempered martensite main structure, the strength was high, but Charpy absorbed energy The value was low, and the DWTT ductile fracture surface ratio was 55%.

また,圧延後の冷却速度が本発明の下限を下回った継手No.18の母材は著しく強度が低下した。冷却停止温度±50℃での保持時間が本発明の下限を下回った継手No.19の母材は,マルテンサイト組織の増加により強度は上昇したものの,下部ベイナイト組織の体積率が充分ではなく,シャルピー吸収エネルギー値が低く、DWTT延性破面率も55%と低かった。   In addition, the joint No. in which the cooling rate after rolling was lower than the lower limit of the present invention was used. The strength of the 18 base material was significantly reduced. Fitting No. whose holding time at the cooling stop temperature ± 50 ° C. was below the lower limit of the present invention. Although the base material of 19 increased in strength due to an increase in the martensite structure, the volume fraction of the lower bainite structure was not sufficient, the Charpy absorbed energy value was low, and the DWTT ductile fracture surface ratio was as low as 55%.

継手No.20の母材は冷却停止温度±50℃での保持時間が本発明の上限を上回り、母材強度が低く、およびDWTT延性破面率も70%に低下した。   Fitting No. In the base material No. 20, the holding time at the cooling stop temperature ± 50 ° C. exceeded the upper limit of the present invention, the base metal strength was low, and the DWTT ductile fracture surface ratio was also reduced to 70%.

継手No.21の母材は冷却停止後の加熱温度が本発明の上限を上回り,鋼板のAc変態点を超えた結果,α−γ逆変態が起きて,島状マルテンサイトが多量に生成し,下部ベイナイト組織の体積率が減少した結果,強度が低下した。 Fitting No. In the base material of 21, the heating temperature after stopping the cooling exceeded the upper limit of the present invention and exceeded the Ac 1 transformation point of the steel sheet. As a result, α-γ reverse transformation occurred and a large amount of island martensite was generated. As a result of the decrease in the volume fraction of the bainite structure, the strength decreased.

冷却停止後オンライン加熱時の昇温速度が本発明の下限を下回った継手No.22の母材は,母材強度は高い値を示したが,シャルピー吸収エネルギー値は低く、DWTT延性破面率が20%に低下した。   Fitting No. in which the heating rate during online heating after cooling stopped was below the lower limit of the present invention. The base material No. 22 showed a high base material strength, but the Charpy absorbed energy value was low, and the DWTT ductile fracture surface ratio was reduced to 20%.

また,継手No.23の母材はACR値が本発明範囲外で,MnS系硫化物が増加した結果,DWTT延性破面率が低下した。   In addition, the joint No. The base material of No. 23 had an ACR value outside the range of the present invention, and as a result of an increase in MnS-based sulfides, the DWTT ductile fracture surface ratio decreased.

継手No.24の母材は鋼板のMn添加量が本発明の範囲外で上限を上回り、母材シャルピー値,溶接金属シャルピー値,HAZシャルピー値が劣化し,さらに,y形溶接割れ試験において,低温割れが発生した。   Fitting No. In the base material No. 24, the amount of Mn added to the steel sheet exceeds the upper limit outside the range of the present invention, the base metal Charpy value, the weld metal Charpy value, and the HAZ Charpy value are deteriorated. Occurred.

一方,鋼板のC添加量が本発明の上限を上回った継手No.25の母材も同様に低温割れが発生した。   On the other hand, the joint No. in which the C addition amount of the steel sheet exceeded the upper limit of the present invention. Similarly, cold cracking occurred in the 25 base metal.

鋼の低温割れ阻止予熱温度とPcmB値の相関図。The correlation diagram of the cold crack prevention preheating temperature of steel and a PcmB value. Tクロス試験で得られた溶接金属HAZ硬さとPcmW値の相関図。The correlation diagram of the weld metal HAZ hardness and PcmW value which were obtained by the T cross test. Tークロス硬さ試験を説明する図。The figure explaining a T-cross hardness test. レーザー・アークハイブリッド溶接を説明する模式図。The schematic diagram explaining laser arc hybrid welding. 本発明に係る縦シーム溶接部を説明する図で(a)はレーザー・アークハイブリッド溶接の外面側一層溶接、(b)はレーザー・アークハイブリッド溶接の内外面側一層溶接、(c)は内面側をレーザー・アークハイブリッド溶接、外面側をサブマージアーク溶接の場合を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining a longitudinal seam weld according to the present invention, wherein (a) is a single layer welding on the outer surface side of laser / arc hybrid welding, (b) is a single layer welding on the inner / outer surface side of laser / arc hybrid welding, Shows the case of laser-arc hybrid welding and the outer surface side of submerged arc welding.

符号の説明Explanation of symbols

1 T−クロス部
2 円周溶接
3 縦シーム溶接
31 縦シーム溶接の外面側
32 縦シーム溶接の内面側
4 T−クロス硬さを求める硬さ試験の測定位置
5 ハイブリッド溶接
6 レーザトーチ
7 ガスアーク溶接トーチ
8 溶融池
9 ビード
10 サブマージアーク溶接
DESCRIPTION OF SYMBOLS 1 T-cross part 2 Circumferential welding 3 Longitudinal seam welding 31 Outer surface side of vertical seam welding 32 Inner surface side of vertical seam welding 4 Measurement position of hardness test for obtaining T-cross hardness 5 Hybrid welding 6 Laser torch 7 Gas arc welding torch 8 Weld pool 9 Bead 10 Submerged arc welding

Claims (5)

ミクロ組織がフェライトと焼戻しマルテンサイトと下部ベイナイトの混合組織で、鋼中のCa,O,Sから求まるACRが0〜2を満足する、引張強度800MPa以上でYR85%以下かつ一様伸び5%以上の鋼板を冷間加工で管状に成形した後,突合せ部を、COガスシールドを用いたレーザーとAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法によって溶接することを特徴とする超高強度溶接鋼管の製造方法.
但し、ACR=(Ca−(0.18+130×Ca)×O)/(1.25×S)で、Ca,O、Sは鋼中含有量(%)を示す。
The microstructure is a mixed structure of ferrite, tempered martensite, and lower bainite, and ACR obtained from Ca, O, S in the steel satisfies 0-2, tensile strength of 800 MPa or more, YR 85% or less, and uniform elongation 5% or more the steel sheet after forming the tubular by cold working, welding the butted portions, the hybrid welding in combination with gas shielded arc welding using a laser and Ar-CO 2 gas shielded with CO 2 gas shielded A method for producing an ultra-high strength welded steel pipe characterized by
However, ACR = (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S), and Ca, O, and S indicate the content (%) in steel.
前記突合せ部の内外面を前記ハイブリッド溶接で溶接することを特徴とする請求項1記載の超高強度溶接鋼管の製造方法。   The method for manufacturing an ultra high strength welded steel pipe according to claim 1, wherein the inner and outer surfaces of the butt portion are welded by the hybrid welding. 前記突合せ部の内面を前記ハイブリッド溶接で溶接し、外面をサブマージアーク溶接で溶接することを特徴とする請求項1記載の超高強度溶接鋼管の製造方法。   The method for producing an ultra-high strength welded steel pipe according to claim 1, wherein an inner surface of the butt portion is welded by the hybrid welding and an outer surface is welded by submerged arc welding. 前記鋼板が、
質量%で、
C:0.04〜0.12%
Si:0.01〜0.5%
Mn:1.80〜2.50%
Al:0.01〜0.08%
P≦0.010%,S≦0.002%
Cu:0.01〜0.8%
Ni:0.1〜1.0%
Cr:0.01〜0.8%
Mo:0.01〜0.8%
Nb:0.01〜0.08%
V:0.01〜0.10%
Ti:0.005〜0.025%
Ca:0.0005〜0.01%
N:0.001〜0.006%
PcmB≦0.22
残部Feおよび不可避的不純物からなる鋼を,
1000〜1200℃に加熱した後,熱間圧延を開始し,圧延終了温度をAr変態点以上,Ar+100℃以下の温度域となるよう圧延を行い,次いで,Ar−50℃以上,Ar変態点以下の温度域から,(1)式を満足するマルテンサイト生成臨界冷却速度Vcrm以上の冷却速度でマルテンサイト変態開始温度Ms以下、300℃以上の温度域の冷却停止温度まで冷却した後,冷却停止温度±50℃以内に60s〜300sの間保持し,その後室温まで空冷することによって得られる鋼板で、
前記突合せ部の溶接金属の化学成分が
質量%で,
C:0.05〜0.09%
Si:0.1〜0.4%
Mn:1.0〜2.0%
Al:≦0.015%
Cu:≦0.5%
Ni:≦3.0%
Cr:≦1.0%
Mo:≦1.0%
V:≦0.1%
Ti:0.003〜0.10%
B:≦0.0030%
O:≦0.03%
N:≦0.008%
PcmW≦0.2
残部Feおよび不可避的不純物
であることを特徴とする請求項1乃至3の何れか一つに記載の超高強度溶接鋼管の製造方法。
但し、PcmB=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B
PcmW=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60×B−12×N−4×O
ACR=(Ca−(0.18+130×Ca)×O)/(1.25×S)
Ms=517−300C−11Si−33Mn−22Cr−17Ni−11Mo
で、各元素は含有量(%)を示す。
logVcrm=2.94−0.75×(β−1) (1)
ここで、β(%)=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+Mo
The steel plate is
% By mass
C: 0.04 to 0.12%
Si: 0.01 to 0.5%
Mn: 1.80 to 2.50%
Al: 0.01 to 0.08%
P ≦ 0.010%, S ≦ 0.002%
Cu: 0.01 to 0.8%
Ni: 0.1 to 1.0%
Cr: 0.01 to 0.8%
Mo: 0.01 to 0.8%
Nb: 0.01 to 0.08%
V: 0.01-0.10%
Ti: 0.005-0.025%
Ca: 0.0005 to 0.01%
N: 0.001 to 0.006%
PcmB ≦ 0.22
Steel consisting of the balance Fe and inevitable impurities,
After heating to 1000 to 1200 ° C., hot rolling is started, rolling is performed so that the rolling end temperature is in the temperature range of Ar 3 transformation point or higher and Ar 3 + 100 ° C. or lower, and then Ar 3 −50 ° C. or higher, Cooled from the temperature range below the Ar 3 transformation point to the cooling stop temperature in the temperature range above the martensite transformation start temperature Ms and above 300 ° C. at a cooling rate above the martensite formation critical cooling rate Vcrm satisfying the equation (1). Thereafter, a steel plate obtained by holding for 60 s to 300 s within a cooling stop temperature ± 50 ° C. and then air cooling to room temperature,
The chemical composition of the weld metal at the butt is mass%,
C: 0.05-0.09%
Si: 0.1 to 0.4%
Mn: 1.0-2.0%
Al: ≦ 0.015%
Cu: ≦ 0.5%
Ni: ≦ 3.0%
Cr: ≦ 1.0%
Mo: ≦ 1.0%
V: ≦ 0.1%
Ti: 0.003-0.10%
B: ≦ 0.0030%
O: ≦ 0.03%
N: ≦ 0.008%
PcmW ≦ 0.2
The method for producing an ultra-high-strength welded steel pipe according to any one of claims 1 to 3, wherein the balance is Fe and inevitable impurities.
However, PcmB = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B
PcmW = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 × B-12 × N-4 × O
ACR = (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S)
Ms = 517-300C-11Si-33Mn-22Cr-17Ni-11Mo
And each element shows content (%).
logVcrm = 2.94−0.75 × (β−1) (1)
Here, β (%) = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + Mo
更に前記鋼板が、冷却停止温度±50℃以内に60s〜300sの間保持後、直ちに該温度から450℃以上、Ac変態点以下の温度域へ1℃/s以上の昇温速度で急速加熱し、焼戻しを行って得られることを特徴とする請求項4記載の超高強度溶接鋼管の製造方法。 Furthermore, after the steel sheet is held for 60 s to 300 s within the cooling stop temperature ± 50 ° C., it is rapidly heated from the temperature to a temperature range of 450 ° C. or higher and below the Ac 1 transformation point at a rate of 1 ° C./s or higher. The method for producing an ultra-high strength welded steel pipe according to claim 4, wherein the method is obtained by tempering.
JP2006200516A 2006-07-24 2006-07-24 Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa Active JP4811166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200516A JP4811166B2 (en) 2006-07-24 2006-07-24 Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200516A JP4811166B2 (en) 2006-07-24 2006-07-24 Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa

Publications (2)

Publication Number Publication Date
JP2008023569A JP2008023569A (en) 2008-02-07
JP4811166B2 true JP4811166B2 (en) 2011-11-09

Family

ID=39114744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200516A Active JP4811166B2 (en) 2006-07-24 2006-07-24 Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa

Country Status (1)

Country Link
JP (1) JP4811166B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248315A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Method for manufacturing ultrahigh-strength, high-deformability welded steel pipe having excellent toughness in base material and weld zone
CN110512207A (en) * 2019-09-25 2019-11-29 沈阳大陆激光工程技术有限公司 Laser manufactures and remanufactures copper plate of crystallizer composite powder material and its manufacturing method
EP3950995A4 (en) * 2019-03-27 2023-01-25 Nippon Steel Corporation Automobile undercarriage part

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101670478B (en) * 2009-10-23 2011-11-02 东方电气集团东方锅炉股份有限公司 Sealing welding technique of low-alloy steel pipe plate and stainless steel pipe of low-pressure heat exchanger
JP5646646B2 (en) 2009-12-16 2014-12-24 イーエスエービー・エービー Welding method and welding apparatus
CN102753300B (en) 2010-06-07 2014-04-30 新日铁住金株式会社 Ultra high-strength welded joint and method for producing same
CN101913035B (en) * 2010-08-23 2012-08-15 山东索力得焊材有限公司 High-tenacity gas shielded welding wire for welding low-temperature steel and using method thereof
CN102642071B (en) * 2011-02-22 2014-08-06 中国石油天然气集团公司 Preparation method of V140 steel-grade oil well pipe testing object
JP6047947B2 (en) * 2011-06-30 2016-12-21 Jfeスチール株式会社 Thick high-strength seamless steel pipe for line pipes with excellent sour resistance and method for producing the same
CN102310119B (en) * 2011-09-02 2013-03-20 中国石油集团渤海石油装备制造有限公司 Manufacturing method of X65 pipeline steel longitudinal submerged arc welded pipe for undersea use
JPWO2013179614A1 (en) * 2012-05-29 2016-01-18 Jfeスチール株式会社 Laser-arc hybrid welding method
CN103447672B (en) * 2013-08-16 2015-07-22 江苏省沙钢钢铁研究院有限公司 Submerged-arc welding technology of big-thickness low-temperature steel plate with yield strength of 690MPa grade
CN104511720B (en) * 2013-09-27 2017-01-25 中国石油天然气集团公司 Reducing production method of deepwater submerged arc welding large-caliber steel pipes
KR20160127808A (en) * 2014-03-31 2016-11-04 제이에프이 스틸 가부시키가이샤 High-tensile-strength steel plate and process for producing same
CN106133165B (en) * 2014-03-31 2019-03-08 杰富意钢铁株式会社 Welding point
CN104002059B (en) * 2014-06-11 2016-09-28 江苏省沙钢钢铁研究院有限公司 A kind of welding wire for submerged-arc welding and welding method
CN104400225B (en) * 2014-09-25 2018-09-25 北京航星机器制造有限公司 A kind of Ti2AlNb intermetallic compound method for laser welding
JP6402581B2 (en) * 2014-10-17 2018-10-10 新日鐵住金株式会社 Welded joint and method for producing welded joint
CN105522263A (en) * 2016-02-29 2016-04-27 上海瑞尔实业有限公司 Welding equipment of cast magnesium alloy and welding process thereof
CN109609850B (en) * 2018-12-28 2021-02-23 林州凤宝管业有限公司 High-strength petroleum steel pipe and preparation method thereof
CN110129683B (en) * 2019-05-16 2020-10-16 武汉科技大学 Manufacturing method of high-strength bridge cable steel
CN114351044A (en) * 2021-12-02 2022-04-15 包头钢铁(集团)有限责任公司 Rare earth treatment low-temperature pipeline and production method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277829A (en) * 2002-03-26 2003-10-02 Jfe Steel Kk Method of producing high toughness, high tensile strength steel
JP4119706B2 (en) * 2002-08-02 2008-07-16 新日本製鐵株式会社 High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP4120408B2 (en) * 2003-01-21 2008-07-16 Jfeエンジニアリング株式会社 Laser and arc combined welding method and groove shape of welded joint used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248315A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Method for manufacturing ultrahigh-strength, high-deformability welded steel pipe having excellent toughness in base material and weld zone
EP3950995A4 (en) * 2019-03-27 2023-01-25 Nippon Steel Corporation Automobile undercarriage part
CN110512207A (en) * 2019-09-25 2019-11-29 沈阳大陆激光工程技术有限公司 Laser manufactures and remanufactures copper plate of crystallizer composite powder material and its manufacturing method

Also Published As

Publication number Publication date
JP2008023569A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP4819185B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
WO2013145771A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
WO2013145770A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
JP2008163456A (en) Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP2009149917A (en) Weld steel pipe for high-strength line pipe excellent in low-temperature toughness, and manufacturing method therefor
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
WO2010052927A1 (en) Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
US11001905B2 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
EP2093302B1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JPH1017980A (en) Welded steel pipe with low yield ratio, and its production
JP2006183127A (en) Method for producing high strength welded steel tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4811166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250