JP2008248315A - Method for manufacturing ultrahigh-strength, high-deformability welded steel pipe having excellent toughness in base material and weld zone - Google Patents

Method for manufacturing ultrahigh-strength, high-deformability welded steel pipe having excellent toughness in base material and weld zone Download PDF

Info

Publication number
JP2008248315A
JP2008248315A JP2007090627A JP2007090627A JP2008248315A JP 2008248315 A JP2008248315 A JP 2008248315A JP 2007090627 A JP2007090627 A JP 2007090627A JP 2007090627 A JP2007090627 A JP 2007090627A JP 2008248315 A JP2008248315 A JP 2008248315A
Authority
JP
Japan
Prior art keywords
strength
welding
toughness
ferrite
martensite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007090627A
Other languages
Japanese (ja)
Other versions
JP4977876B2 (en
Inventor
Mitsuhiro Okatsu
光浩 岡津
Nobuyuki Ishikawa
信行 石川
Junji Shimamura
純二 嶋村
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007090627A priority Critical patent/JP4977876B2/en
Publication of JP2008248315A publication Critical patent/JP2008248315A/en
Application granted granted Critical
Publication of JP4977876B2 publication Critical patent/JP4977876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)
  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a welded steel pipe for line pipe having ≥900 MPa tensile strength by which cutting crack resistance can be improved without deteriorating toughness, particularly crack arrest property, while keeping high deformability and further a strength of a joint equal to or higher than that of a base material can be attained without decreasing toughness of a weld metal. <P>SOLUTION: A steel sheet having ≥900 MPa tensile strength and ≤85% yield ratio, which has specific components and also has a microstructure characterized as follows, is used: any of (ferrite plus bainite), (ferrite plus martensite) and (ferrite plus bainite plus martensite) includes ≥90% by area fraction; an area ratio of ferrite is 10 to 50%; and an average grain size of cementite in bainite and/or martensite is ≤0.5 μm. After the steel sheet is formed into a pipe shape by cold working, welding is carried out in such a way that a chemical composition of a weld metal consists of specific components by a hybrid welding process combining a laser using CO<SB>2</SB>gas shield with a gas shield arc welding using Ar-CO<SB>2</SB>gas shield. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,引張強度900MPa以上かつ降伏比≦85%である超高強度高変形能ラインパイプの製造方法に関し,素材鋼板の精製での付加工程を必要とせず,母材部において脆性亀裂伝播停止特性に優れ,かつ縦シーム溶接部の溶接金属および溶接熱影響部(HAZ)において十分な靱性を有し,さらに継手引張強度が母材強度を上回る引張強度を満足し,天然ガスや原油の輸送用として好適な、安全性に優れるものに関する。   The present invention relates to a manufacturing method of an ultra-high strength and high deformability line pipe having a tensile strength of 900 MPa or more and a yield ratio ≦ 85%, and does not require an additional step in refining the raw steel plate, and stops brittle crack propagation in the base metal part. Excellent properties, sufficient toughness in weld metal and weld heat affected zone (HAZ) of longitudinal seam welds, and satisfying the tensile strength that the joint tensile strength exceeds the base metal strength, and transport of natural gas and crude oil The present invention relates to a product that is suitable for use and has excellent safety.

近年,天然ガスや原油の輸送用として使用されるラインパイプは,高圧化による輸送効率の向上や薄肉化による現地溶接施工能率の向上のため,年々高強度化されるとともに,大地震や凍土地帯における地盤変動により,ラインパイプに大変形が生じても局部座屈による亀裂発生に至らないために高変形能を有することが望まれる。   In recent years, line pipes used for transportation of natural gas and crude oil have been strengthened year by year in order to improve transportation efficiency by increasing pressure and to improve local welding work efficiency by reducing wall thickness. It is desirable to have a high deformability because cracks due to local buckling will not occur even if large deformations occur in the line pipe due to ground deformation at.

これまでに,API規格でX100グレードのラインパイプが実用化されているが,さらに,引張強度900MPaを超えるX120グレードに対する要求が具体化されつつある。   So far, X100 grade line pipes have been put into practical use under the API standard, and further, the demand for X120 grade exceeding tensile strength 900 MPa is being realized.

このような高強度高変形能ラインパイプ用溶接鋼管およびその素材となる高強度厚鋼板の製造方法に関し,例えば特許文献1においては,熱間圧延後2段冷却を行い,2段目の冷却停止温度を300℃以下とすることで,高強度化を達成する技術が開示されている。   For example, in Patent Document 1, two-stage cooling is performed after hot rolling, and cooling of the second stage is stopped. A technique for achieving high strength by setting the temperature to 300 ° C. or lower is disclosed.

特許文献2には,高価な合金元素添加量を削減しつつ,高強度・高靱性を得るための加速冷却および焼戻し条件に関する技術が開示されている。特許文献3には,管厚と外径の比に応じて,適切な第2相組織の面積率を持たせることによって低降伏比を示す耐圧縮局部座屈性に優れた鋼管が開示されている。   Patent Document 2 discloses a technique relating to accelerated cooling and tempering conditions for obtaining high strength and high toughness while reducing the amount of expensive alloy element addition. Patent Document 3 discloses a steel pipe excellent in compression buckling resistance that exhibits a low yield ratio by giving an appropriate area ratio of the second phase structure according to the ratio of the tube thickness and the outer diameter. Yes.

また、特許文献4には,母材については同様に合金元素添加量を削減し,さらに縦シーム溶接部の溶接金属において高強度・高靱性を得るための成分設計に関する技術が開示されている。
特開2003−293089号公報 特開2002―173710号公報 特開平09−184015号公報 特開2000―355729号公報
Patent Document 4 discloses a technique related to component design for reducing the amount of alloying elements added to the base material and obtaining high strength and high toughness in the weld metal of the longitudinal seam weld.
JP 2003-293089 A JP 2002-173710 A Japanese Patent Laid-Open No. 09-184015 JP 2000-355729 A

しかしながら,母材の合金元素量を低く抑えたまま加速冷却等の手段によって高強度化を進めると,溶接熱影響部(以後、HAZと略す)の強度との乖離が生じてしまう。   However, if the strength is increased by means such as accelerated cooling while keeping the amount of alloying elements in the base metal low, there will be a deviation from the strength of the weld heat affected zone (hereinafter abbreviated as HAZ).

これは,縦シームの溶接方法が変わらない限り,HAZの冷却速度は一定であるので,HAZの強度が低いままとなってしまうからで,図1に示すように,縦シーム溶接部の硬さ分布ではする。   This is because the HAZ cooling rate remains constant unless the vertical seam welding method is changed, and the strength of the HAZ remains low. In distribution.

この結果,母材部のみ高強度化しても,水圧試験のような実管試験を行った場合には強度の低いHAZ部で破壊が生じてしまうこととなり,実用に際しては安全性の観点からHAZ部軟化は解決すべき課題である。   As a result, even if the strength of only the base metal part is increased, if an actual pipe test such as a water pressure test is performed, the HAZ part with low strength will break, and in practical use, HAZ is considered from the viewpoint of safety. Partial softening is a problem to be solved.

一方,加速冷却の冷却速度を緩め,母材の合金元素量を増やすことで母材とHAZ部の強度差を縮めることができるが、ハ゜イフ゜同士を接合する円周溶接の場合、入熱の小さい多層溶接を行うことが一般的であるため溶接部においてはむしろHAZ硬さが増大し,特に初層溶接部に低温割れを発生する危険が高まる。   On the other hand, by reducing the cooling rate of accelerated cooling and increasing the amount of alloy elements in the base material, the strength difference between the base material and the HAZ part can be reduced, but in the case of circumferential welding where the pipes are joined together, the heat input is small. Since it is common to perform multi-layer welding, the HAZ hardness of the weld is rather increased, and the risk of cold cracking in the first layer weld is increased.

縦シーム溶接部の溶接金属の高強度化はこのHAZ軟化部が起因の継手強度不足を補うが,十分とは言えない。更に,溶接方法を変えずに溶接金属を高強度化することは,溶接金属中の合金元素量を増加させることで,低温割れのような溶接金属欠陥の感受性が増大し,手直し等が必要となり溶接作業性を著しく悪化させる懸念がある。   Although increasing the strength of the weld metal in the longitudinal seam welds compensates for the lack of joint strength caused by this HAZ softened part, it cannot be said to be sufficient. Furthermore, increasing the strength of the weld metal without changing the welding method increases the sensitivity of weld metal defects such as cold cracking by increasing the amount of alloying elements in the weld metal and requires reworking. There is a concern that welding workability will be significantly deteriorated.

さらに,冷却停止温度を低くして,低温変態組織化することで高強度を達成した場合,冷却ままの鋼板を必要なサイズにせん断加工で切断する際,鋼中に残存する拡散性水素が原因で板面に平行な割れ(以降切断割れと称する)が発生する。   Furthermore, when high strength is achieved by lowering the cooling stop temperature and forming a low-temperature transformation structure, the diffusible hydrogen remaining in the steel is the cause when sheared steel sheets are cut into the required size by shearing. Thus, a crack parallel to the plate surface (hereinafter referred to as a cutting crack) occurs.

一方,加速冷却後に熱処理を行った場合,鋼中の水素は十分拡散させられるので,切断割れは抑制できるものの,熱処理過程でミクロ組織中にセメンタイトが析出・粗大化し,靱性低下,特に脆性亀裂伝播停止特性の評価を行うDWTT(Drop Weight Tear Test)特性が劣化する。   On the other hand, when heat treatment is performed after accelerated cooling, hydrogen in the steel is sufficiently diffused, so that cracking can be suppressed, but cementite precipitates and coarsens in the microstructure during the heat treatment process, resulting in reduced toughness, especially brittle crack propagation. DWTT (Drop Weight Tear Test) characteristics for evaluating stop characteristics deteriorate.

また,特許文献3に記載されている技術は,大地震や凍土地帯における地盤変動によりラインパイプに大変形が生じても亀裂発生に至らないように高変形能を備えるため,降伏強度を引張強度で除した降伏比(YR)を低くすることを指向するものである。   In addition, the technology described in Patent Document 3 has a high deformability so that cracks do not occur even if a large deformation occurs in the line pipe due to a large earthquake or ground deformation in a frozen land zone. It is aimed at lowering the yield ratio (YR) divided by.

本技術においては鋼管の母材は第2相を有することからシャルピー吸収エネルギーが低くなり,外因性の事故により発生する延性破壊の亀裂伝播停止特性に劣ることが懸念され、第1相がフェライト組織であるので,引張強度は900MPa以上に達しない。   In this technology, the steel pipe base material has the second phase, so the Charpy absorbed energy is low, and there is a concern that it will be inferior to the crack propagation stoppage property of ductile fracture caused by an extrinsic accident. Therefore, the tensile strength does not reach 900 MPa or more.

そこで、本発明は,高変形性能を有しつつ,靱性,特に亀裂伝播停止特性を劣化させずに,耐切断割れ性を改善し,さらに溶接金属の靱性を低下させることなく,母材以上の継手強度を達成した引張強度900MPa以上のラインパイプ用溶接鋼管の製造方法を提供することを目的とする。   Therefore, the present invention has a high deformation performance, improves toughness, in particular, crack propagation stopping characteristics without deteriorating the crack propagation stop property, and further improves the crack resistance of the weld metal and lowers the toughness of the weld metal. It aims at providing the manufacturing method of the welded steel pipe for line pipes of the tensile strength of 900 MPa or more which achieved joint strength.

本発明者らは,上記課題を解決すべく鋭意研究を重ねた結果,以下の知見を得た.
1)地盤変動によるパイプの大変形が生じても座屈を生じさせないためには,鋼を複相組織とすることで,鋼の降伏比を85%以下とする必要があり,かつ高強度を得るためにはミクロ組織をフェライト+ベイナイト,フェライト+マルテンサイト,およびフェライト+ベイナイト+マルテンサイトのいずれかとし,さらにフェライトの面積率が50%を超えないようにする必要がある。
2)上記復相組織鋼は高強度かつ低降伏比を達成できるものの,延性破壊の亀裂伝播停止性能を評価する指標であるシャルピー吸収エネルギーについては同じ強度レベルのベイナイト,あるいはマルテンサイト単相組織鋼より低くなる傾向にあるが,鋼中のO,Ca,Sを適切に制御して鋼中の硫化物系介在物の形態を制御し,特に粗大なMnSを低減させることにより,所望のシャルピー吸収エネルギーを達成することが可能となる。
3)上記複相組織鋼において,ベイナイトあるいはマルテンサイト組織を得るための熱間圧延後の加速冷却を施した鋼板をせん断加工にて切断する際,鋼中の拡散性水素が起因となって切断面に割れが生じる場合があるが,せん断加工前の鋼板中の水素量を2ppm未満とすることで防止可能,そのために加速冷却後,少なくとも300℃以上での脱水素熱処理が必要である。
As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.
1) In order to prevent buckling even if large deformation of the pipe occurs due to ground deformation, it is necessary to make the steel yield ratio 85% or less by making the steel a double phase structure, and high strength. In order to obtain it, the microstructure must be any of ferrite + bainite, ferrite + martensite, and ferrite + bainite + martensite, and the area ratio of ferrite must not exceed 50%.
2) Although the above-mentioned reverse phase structure steel can achieve high strength and low yield ratio, the same strength level of bainite or martensite single phase structure steel is used for Charpy absorbed energy, which is an index for evaluating the crack propagation stopping performance of ductile fracture. Although it tends to be lower, the desired Charpy absorption is achieved by appropriately controlling O, Ca, and S in the steel to control the form of sulfide inclusions in the steel, especially by reducing coarse MnS. Energy can be achieved.
3) When the steel with accelerated cooling after hot rolling to obtain bainite or martensite structure is cut by shearing in the above multiphase steel, it is cut due to diffusible hydrogen in the steel. Although cracks may occur on the surface, it can be prevented by setting the amount of hydrogen in the steel sheet before shearing to less than 2 ppm. For this purpose, dehydrogenation heat treatment at a temperature of at least 300 ° C. is required after accelerated cooling.

具体的には加速冷却停止後,ただちに再加熱を開始し,鋼板温度を300℃以上に昇温することで水素の拡散が促進され,その結果,鋼中に残留する水素量が切断割れ発生限界量である2ppmを下回るようになる。
4)但し,加速冷却後の再加熱により,ベイナイトあるいはマルテンサイト中に存在するセメンタイトが粗大化すると,脆性亀裂伝播停止特性の指標である,DWTT特性が劣化するが、再加熱の加熱速度を早くし,再加熱終了後も鋼中のセメンタイトの平均粒径を0.5μm以下とすることにより防止される。
5)上記高強度・高靭性・低降伏比の鋼板を筒状に成形した後,端部を溶接することで溶接鋼管を製造する場合,溶接熱影響により強度が低下し,継手強度が低下することを阻止するため,溶接部の冷却速度を速くするための溶接法として、レーザーとアークを組み合わせた新溶接法が有効で、溶接効率にも優れる。
Specifically, after accelerating cooling is stopped, reheating is started immediately and the steel sheet temperature is raised to 300 ° C or higher to promote hydrogen diffusion. The amount falls below 2 ppm.
4) However, if cementite present in bainite or martensite becomes coarse due to reheating after accelerated cooling, the DWTT characteristic, which is an indicator of brittle crack propagation stoppage characteristics, deteriorates, but the heating rate for reheating increases. Even after the reheating is completed, the average particle size of cementite in the steel is prevented to 0.5 μm or less.
5) When a welded steel pipe is manufactured by welding the end after forming the steel plate with the above high strength, high toughness, and low yield ratio into a cylindrical shape, the strength decreases due to the effect of welding heat, and the joint strength decreases. In order to prevent this, a new welding method that combines laser and arc is effective as a welding method for increasing the cooling rate of the weld zone, and the welding efficiency is also excellent.

本発明は以上の知見に基づいてさらに検討を加えてされたもので、すなわち,本発明は、
1.質量%で、
C:0.03〜0.12%
Si:0.01〜0.5%
Mn:1.5〜3%
Al:0.01〜0.08%
Nb:0.01〜0.08%
Ti:0.005〜0.025%
N:0.001〜0.01%
B:≦0.0003%
Ca:0.0005〜0.01%
O:≦0.003%
S:≦0.001%
更に
Cu:0.01〜0.5%
Ni:0.01〜1%
Cr:0.01〜0.5%
Mo:0.01〜0.5%
V:0.01〜0.1%
の一種または二種以上を含有し,Ca,O,Sの含有量が(1)式を満たし,かつ(2)式で計算されるPcmB値がPcmB≦0.22を満足し,残部Feおよび不可避的不純物からなる組成と,
フェライト+ベイナイト,フェライト+マルテンサイト,およびフェライト+ベイナイト+マルテンサイトのいずれかが面積分率で90%以上で,かつフェライトの面積率が10〜50%であり,ベイナイトおよび/またはマルテンサイト中のセメンタイトの平均粒径が0.5μm以下のミクロ組織を有する、引張強度900MPa以上かつ降伏比≦85%の鋼板を冷間加工で管状に成形した後,CO2ガスシールドを用いたレーザーとAr-CO2ガスシールドを用いたガスシールドアーク溶接を組み合わせたハイブリッド溶接法によって,溶接金属の化学組成が質量%で,
C:0.05〜0.09%
Si:0.1〜0.4%
Mn:1.0〜2.0%
Al:≦0.015%
Cu:≦0.5%
Ni:≦3.0%
Cr:≦1.0%
Mo:≦1.0%
V:≦0.1%
Ti:0.003〜0.10%
B:≦0.0030%
O:≦0.03%
N:≦0.008%
を含有し,
式(3)で計算されるPcmW値がPcmW≦0.2を満足し,
かつ残部Feおよび不可避的不純物となるように突合わせ部の溶接を行うことを特徴とする,母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法。
1≦(1-130×[O])×[Ca]/(1.25×[S])≦3 (1)
PcmB=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5*B (2)
PcmW=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60*B-12*N-4*O (3)
2.1記載の母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法において、突き合わせ溶接を,内外面1層ずつレーザーとガスシールドアーク溶接を組み合わせたハイブリッド溶接を行うことを特徴とする,母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法。
3.1記載の母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法において、突き合わせ溶接を,内面側をレーザーとガスシールドアーク溶接を組み合わせたハイブリッド溶接を行ったのち,外面側をサブマージアーク溶接することを特徴とする,母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法。
The present invention has been further studied based on the above knowledge, that is, the present invention,
1. % By mass
C: 0.03-0.12%
Si: 0.01 to 0.5%
Mn: 1.5 to 3%
Al: 0.01 to 0.08%
Nb: 0.01 to 0.08%
Ti: 0.005-0.025%
N: 0.001 to 0.01%
B: ≦ 0.0003%
Ca: 0.0005 to 0.01%
O: ≦ 0.003%
S: ≦ 0.001%
Furthermore, Cu: 0.01 to 0.5%
Ni: 0.01 to 1%
Cr: 0.01 to 0.5%
Mo: 0.01 to 0.5%
V: 0.01 to 0.1%
And the content of Ca, O, S satisfies the formula (1), the PcmB value calculated by the formula (2) satisfies PcmB ≦ 0.22, and the balance Fe and The composition of inevitable impurities,
Either ferrite + bainite, ferrite + martensite, or ferrite + bainite + martensite has an area fraction of 90% or more, and the area ratio of ferrite is 10 to 50%, and bainite and / or martensite A steel sheet having a microstructure with an average particle size of cementite of 0.5 μm or less and a tensile strength of 900 MPa or more and a yield ratio ≦ 85% is formed into a tubular shape by cold working, and then a laser using a CO 2 gas shield and Ar— By the hybrid welding method combined with gas shielded arc welding using a CO 2 gas shield, the chemical composition of the weld metal is
C: 0.05-0.09%
Si: 0.1 to 0.4%
Mn: 1.0-2.0%
Al: ≦ 0.015%
Cu: ≦ 0.5%
Ni: ≦ 3.0%
Cr: ≦ 1.0%
Mo: ≦ 1.0%
V: ≦ 0.1%
Ti: 0.003-0.10%
B: ≦ 0.0030%
O: ≦ 0.03%
N: ≦ 0.008%
Containing
The PcmW value calculated by Equation (3) satisfies PcmW ≦ 0.2,
In addition, a method for producing an ultra-high-strength, high-deformability welded steel pipe excellent in the toughness of the base metal and the welded portion, wherein the butt portion is welded so as to become the remaining Fe and inevitable impurities.
1 ≦ (1-130 × [O]) × [Ca] / (1.25 × [S]) ≦ 3 (1)
PcmB = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 * B (2)
PcmW = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 * B-12 * N-4 * O (3)
In the manufacturing method of the super-high-strength, high-deformability welded steel pipe excellent in the base metal and weld zone toughness described in 2.1, butt welding is performed, and hybrid welding is performed by combining laser and gas shield arc welding for each inner and outer surfaces A manufacturing method of ultra-high strength and high-deformability welded steel pipe with excellent base metal and weld toughness.
In the manufacturing method of super high strength and high deformability welded steel pipe excellent in base material and weld toughness described in 3.1, after butt welding and hybrid welding combining laser and gas shielded arc welding on the inner surface side, A method of manufacturing an ultra-high-strength, high-deformability welded steel pipe excellent in base metal and weld toughness, characterized by submerged arc welding of the outer surface.

本発明によれば、縦シーム部の継手強度が母材の引張強度以上で,水圧試験等をおこなってもシーム溶接部からの破壊が生じない、変形性能に優れた引張強度900MPa以上の超高強度溶接鋼管の製造が可能で産業上極めて有用である。   According to the present invention, the joint strength of the longitudinal seam portion is equal to or higher than the tensile strength of the base material, and even if a water pressure test or the like is performed, the seam welded portion does not break. It is possible to manufacture high strength welded steel pipes and is extremely useful industrially.

本発明によれば,低強度グレードの製造に用いられてきた溶接方法を用いても,縦シーム部の継手強度が十分高く,且つ強度・靱性特性に優れた引張強度900MPa以上かつ降伏比85%以下の高強度高変形能溶接鋼管の製造が可能である。   According to the present invention, even when the welding method that has been used for the production of low-strength grades is used, the joint strength of the longitudinal seam is sufficiently high, the tensile strength is 900 MPa or more, and the yield ratio is 85%. The following high-strength, high-deformability welded steel pipes can be manufactured.

以下,本発明について成分組成,組織,製造方法に分けて具体的に説明する.
[母材の成分組成]
まず,本発明の母材鋼板の成分組成について説明する。なお,%は質量%を意味する。
Hereinafter, the present invention will be described in detail by component composition, structure and manufacturing method.
[Ingredient composition of base material]
First, the component composition of the base steel sheet according to the present invention will be described. “%” Means “% by mass”.

C:0.03〜0.12%
Cは低温変態組織においては過飽和固溶することで強度上昇に寄与し,この効果をえるためには0.03%以上が必要であるが,0.12%を超えると,パイプに加工した時に,パイプの円周溶接部の硬度上昇が著しくなり,低温割れが発生しやすくなる。このため,C含有量を0.03〜0.12%とする。
C: 0.03-0.12%
C contributes to strength increase by supersaturated solid solution in the low-temperature transformation structure. To obtain this effect, 0.03% or more is necessary, but if it exceeds 0.12%, , The hardness of the circumferential welded part of the pipe is significantly increased, and cold cracking is likely to occur. Therefore, the C content is 0.03 to 0.12%.

Si:0.01〜0.5%
Siは脱酸材として作用し,さらに固溶強化により鋼材の強度を増加させる元素であるが,その量が0.01%未満ではその効果が得られず,0.5%を超えると靭性が著しく低下する.このため,Si含有量を0.01〜0.5%とする。
Si: 0.01 to 0.5%
Si is an element that acts as a deoxidizer and increases the strength of steel by solid solution strengthening. However, if its amount is less than 0.01%, its effect cannot be obtained. It drops significantly. For this reason, Si content shall be 0.01 to 0.5%.

Mn:1.5〜3%
Mnは焼入性向上元素として作用する.特にHAZにおいて高強度を達成するための低温変態組織を得るために1.5%以上が必要であるが,連続鋳造プロセスでは中心偏析部の濃度上昇が著しく,3%を超えると,偏析部での遅れ破壊の原因となる。このため,Mn含有量を1.5〜3%とする。
Mn: 1.5 to 3%
Mn acts as a hardenability improving element. In particular, 1.5% or more is necessary to obtain a low temperature transformation structure to achieve high strength in HAZ. However, in the continuous casting process, the concentration of the central segregation part is significantly increased. Cause delayed destruction. For this reason, Mn content shall be 1.5 to 3%.

Al:0.01〜0.08%
Alは脱酸元素として作用する.その含有量が0.01%以上で十分な脱酸効果が得られるが,0.08%を超えると鋼中の清浄度が低下し,靱性劣化の原因となる.このためAl含有量を0.01〜0.08%とする。
Al: 0.01 to 0.08%
Al acts as a deoxidizing element. When the content is 0.01% or more, a sufficient deoxidation effect can be obtained. However, if the content exceeds 0.08%, the cleanliness in the steel decreases and the toughness deteriorates. For this reason, Al content shall be 0.01-0.08%.

Nb:0.01〜0.08%
Nbは熱間圧延時のオーステナイト未再結晶領域を拡大する効果があり,特に950℃まで未再結晶領域とするためには0.01%以上含有させる.しかし,その量が0.08%を超えると,HAZの靱性を著しく損ねる。このため,Nb含有量を0.01〜0.08%とする。
Nb: 0.01 to 0.08%
Nb has the effect of expanding the austenite non-recrystallized region during hot rolling. In particular, Nb is contained in an amount of 0.01% or more in order to make the non-recrystallized region up to 950 ° C. However, if the amount exceeds 0.08%, the toughness of HAZ is significantly impaired. For this reason, Nb content shall be 0.01-0.08%.

Ti:0.005〜0.025%
Tiは窒化物を形成し,鋼中の固溶N量低減に有効であるほか,析出したTiNがピンニング効果でオーステナイト粒の粗大化抑制防止をすることで,母材,HAZの靱性向上に寄与する。
Ti: 0.005-0.025%
Ti forms nitrides and is effective in reducing the amount of solute N in the steel. Precipitated TiN prevents the austenite grains from becoming coarse by the pinning effect, contributing to improved toughness of the base metal and HAZ. To do.

必要なピンニング効果を得るためには0.005%以上含有させる必要があるが,0.025%を超えて添加すると炭化物を形成するようになり,その析出硬化で靱性が著しく劣化してしまうため,Ti含有量を0.005〜0.025%とする。   In order to obtain the necessary pinning effect, it is necessary to contain 0.005% or more, but if added over 0.025%, carbides are formed, and the toughness is significantly deteriorated by precipitation hardening. , Ti content is 0.005 to 0.025%.

N:0.001〜0.006%
Nは通常鋼中の不可避不純物として存在するが,前述の通りTi添加を行うことで,オーステナイト粗大化を抑制するTiNを形成する。
N: 0.001 to 0.006%
N is usually present as an inevitable impurity in steel, but TiN is formed by adding Ti as described above to suppress austenite coarsening.

必要とするピンニング効果をえるためにはその含有量が0.001%以上とすることが必要であるが,0.006%を超えると,溶接部,特に溶融線近傍で1450℃以上に加熱されたHAZでTiNが分解し,固溶Nの悪影響が著しくなるため,N含有量を0.001〜0.01%とする。   In order to obtain the required pinning effect, the content needs to be 0.001% or more, but if it exceeds 0.006%, it is heated to 1450 ° C or more near the weld, especially in the vicinity of the melting line. In addition, since TiN decomposes in HAZ and the adverse effect of solute N becomes significant, the N content is made 0.001 to 0.01%.

B:≦0.0003%
Bは0.0003%を超えて含有させると,熱間圧延時にオーステナイト粒界に偏析し,フェライト変態生成を抑制する効果があり,高変形能を達成させるための鋼の複相組織制御を阻害するため,B含有量を0.0003%以下とする。
B: ≦ 0.0003%
When B is contained in excess of 0.0003%, it segregates at the austenite grain boundaries during hot rolling, and has the effect of suppressing the formation of ferrite transformation, and hinders the control of the multiphase structure of steel to achieve high deformability. Therefore, the B content is 0.0003% or less.

Cu,Ni,Vr,Mo,Vの一種または二種以上
Cu,Cr,Mo,Vはいずれも焼入性向上元素として作用するため,高強度化を目的に,これらの元素の一種または二種以上を以下に示す範囲で含有させる。
One or more of Cu, Ni, Vr, Mo, and V Cu, Cr, Mo, and V all act as a hardenability improving element. Therefore, one or two of these elements is used for the purpose of increasing the strength. The above is contained in the range shown below.

Cu:0.01〜0.5%
Cuは0.01%以上で鋼の焼入れ性向上に寄与する.しかし,0.5%を超えて含有させると,後述するレーザー・アークハイブリッド溶接により高冷却速度で形成されるHAZの組織がマルテンサイトとなり,HAZ靭性の劣化を引き起こすため,Cuを添加する場合には,Cuの含有量を0.01〜0.5%とする。
Cu: 0.01 to 0.5%
Cu contributes to improving the hardenability of steel at 0.01% or more. However, if the content exceeds 0.5%, the structure of HAZ formed at a high cooling rate by laser-arc hybrid welding, which will be described later, becomes martensite and causes deterioration of HAZ toughness. Has a Cu content of 0.01 to 0.5%.

Ni:0.01〜1%
Niは0.01%以上含有することで鋼の焼入性向上に寄与する.特に多量に添加すても靭性劣化を生じないため,強靭化に有効であるが,高価な元素であり,かつ1%をこえても効果が飽和するため,Niを添加する場合には,Niの含有量を0.01〜1%とする。
Ni: 0.01 to 1%
Containing 0.01% or more of Ni contributes to improving the hardenability of steel. Especially when added in a large amount, it does not cause toughness deterioration, so it is effective for toughening. However, it is an expensive element and the effect is saturated even if it exceeds 1%. The content of is 0.01 to 1%.

Cr:0.01〜0.5%
Crは0.01%以上含有することで鋼の焼入性向上に寄与するが,0.5%を超えて含有させると,レーザー・アークハイブリッド溶接により高冷却速度で形成されるHAZの組織がマルテンサイトとなり,HAZ靭性の劣化を引き起こすため,Crを添加する場合には,Crの含有量を0.01〜0.05%とする。
Cr: 0.01 to 0.5%
When Cr is contained in an amount of 0.01% or more, it contributes to improving the hardenability of the steel. However, if the content exceeds 0.5%, the HAZ structure formed at a high cooling rate by laser-arc hybrid welding can be obtained. In order to become martensite and cause deterioration of HAZ toughness, when adding Cr, the content of Cr is set to 0.01 to 0.05%.

V:0.01〜0.1%
Vは炭窒化物を形成することで析出強化し,特に溶接熱影響部の軟化防止に寄与する。この効果は0.01%以上で得られるが,0.1%を超えると析出強化が著しく靭性が低下してしまうため,Vを添加する場合には,その含有量を0.01〜0.1%とする。
V: 0.01 to 0.1%
V strengthens precipitation by forming carbonitrides, and contributes particularly to the prevention of softening of the heat affected zone. This effect is obtained at 0.01% or more. However, if it exceeds 0.1%, precipitation strengthening significantly reduces toughness. Therefore, when V is added, its content is set to 0.01 to 0.00%. 1%.

Ca:0.005〜0.01%
Caは鋼中の硫化物の形態制御に有効な元素であり,添加することで靱性に有害なMnSの生成を抑制する.しかし,0.01%を超えて添加すると,CaO-CaSのクラスターを形成し,靱性を劣化させるようになるためCa含有量を0.005〜0.01%とする。
Ca: 0.005 to 0.01%
Ca is an effective element for controlling the morphology of sulfides in steel, and its addition suppresses the formation of MnS, which is harmful to toughness. However, if added over 0.01%, CaO-CaS clusters are formed and the toughness deteriorates, so the Ca content is made 0.005 to 0.01%.

O:0.003%以下,S:0.001%以下
本発明において,O,Sは不可避不純物であり含有量の上限を規定する。Oの含有量は粗大で靭性に悪影響を及ぼす介在物の生成を抑制する観点から0.003%以下とする。
また,Caを添加することで,MnSの生成が抑制されるが,Sの含有量が多いとCaによる形態制御でもMnSを抑制しきれないため,0.001%以下とする。
(1-130×[O])×[Ca]/(1.25×[S])
本パラメータ式:(1-130×[O])×[Ca]/(1.25×[S])は母材部のシャルピー吸収エネルギー向上のため、1≦(1-130×[O])×[Ca]/(1.25×[S])≦3を満足するように規定する。
O: 0.003% or less, S: 0.001% or less In the present invention, O and S are inevitable impurities and define the upper limit of the content. The content of O is 0.003% or less from the viewpoint of suppressing the formation of inclusions that are coarse and adversely affect toughness.
Moreover, although the production | generation of MnS is suppressed by adding Ca, when there is much content of S, since MnS cannot be suppressed even by the form control by Ca, it is 0.001% or less.
(1-130 × [O]) × [Ca] / (1.25 × [S])
This parameter formula: (1-130 × [O]) × [Ca] / (1.25 × [S]) is for 1 ≦ (1-130 × [O]) × [ It is defined so as to satisfy Ca] / (1.25 × [S]) ≦ 3.

上記範囲を満たすことにより,MnSの形成を抑制するとともに,過剰なCa添加により生成するCaO・CaSの粗大化も抑制することで,鋼の清浄度が向上し,高いシャルピー吸収エネルギーを得ることが可能である。   By satisfying the above range, the formation of MnS is suppressed and the coarsening of CaO · CaS generated by adding excessive Ca is also suppressed, thereby improving the cleanliness of steel and obtaining high Charpy absorbed energy. Is possible.

すなわち、Caは硫化物形成能を持ち,添加することで製鋼時の溶鋼中でシャルピー吸収エネルギーを低下させるMnSの生成を抑制し,代りに比較的靱性に無害なCaSを形成する。   That is, Ca has the ability to form sulfides, and by adding, it suppresses the generation of MnS that lowers Charpy absorbed energy in molten steel during steelmaking, and forms CaS that is relatively harmless to toughness instead.

しかし,Caは酸化物形成元素でもあるため,まず酸化物として消費される分を見込んだ添加を行わなくてはならない。粗大で靱性に悪影響を及ぼす介在物生成抑制の観点から、O≦0.003%、S≦0.005%とした上で、CaO生成分を除いた有効Ca量(Ca*)を実験結果の回帰による下記(4)式を用いて計算し、
Ca*=(1−130×[O])×[Ca]・・・(4)
さらにCaとSの化学量論比1.25で有効Ca量(Ca*)を割った値が下記(5)式を満たすようにCaを添加した場合は、鋼中SがすべてCaSを形成するのである。
[S]≦Ca*/1.25・・・(5)
一方,多大なCa添加を行うと,生成するCaO・CaSの粗大化が生じ,かえってシャルピー吸収エネルギーが低下することも判明した。実験室的検討結果より,このCa粗大化を抑制するためには
3・[S]≧Ca*/1.25・・・(6)
とすることが望ましい.よって,(5)式と(6)式で挟まれる範囲として本パラメータ式:(1-130×[O])×[Ca]/(1.25×[S])の値は1以上、3以下に規定する。
However, since Ca is also an oxide-forming element, it must first be added in anticipation of consumption as an oxide. From the viewpoint of suppressing inclusion formation that is coarse and adversely affects toughness, the effective Ca amount (Ca *) excluding CaO generation was determined after setting O ≦ 0.003% and S ≦ 0.005%. Calculate using the following equation (4) by regression,
Ca * = (1-130 × [O]) × [Ca] (4)
Furthermore, when Ca is added so that the value obtained by dividing the effective Ca amount (Ca *) by the stoichiometric ratio of Ca and S satisfies the following formula (5), all S in the steel forms CaS. It is.
[S] ≦ Ca * / 1.25 (5)
On the other hand, it was also found that when a large amount of Ca was added, the CaO · CaS produced was coarsened, and instead the Charpy absorbed energy was reduced. From the results of laboratory studies, 3 · [S] ≧ Ca * / 1.25 (6) in order to suppress this Ca coarsening.
It is desirable that Therefore, the range of this parameter formula: (1-130 × [O]) × [Ca] / (1.25 × [S]) should be 1 or more and 3 or less as the range between (5) and (6). Stipulate.

PcmB
PcmBは溶接割れ感受性組成として,下記(7)式で計算され,HAZ部の低温割れ防止のための予熱温度と相関する。
PcmB
PcmB is calculated by the following equation (7) as a weld cracking susceptibility composition, and correlates with a preheating temperature for preventing cold cracking in the HAZ part.

図2は,種々の化学組成を有する鋼を,種々の予熱温度を与えた後行った低温割れ試験によって得られたHAZ部の低温割れ阻止予熱条件をPcmB値で整理したものである.
パイプ同士の円周溶接時の初層溶接において,パイプ予熱温度を75℃まで許容する場合のHAZ割れを防止するためにはPcmB値を0.22以下とする必要があるため,上限を0.22とする。
Fig. 2 shows the PCMB values for the low temperature cracking prevention preheating conditions of the HAZ part obtained by the low temperature cracking test conducted after applying various preheating temperatures for steels having various chemical compositions.
In the first layer welding at the time of circumferential welding between pipes, in order to prevent HAZ cracking when the pipe preheating temperature is allowed to 75 ° C., the PcmB value needs to be 0.22 or less. 22

なお,パイプライン敷設現場での作業性を考えると,パイプ予熱温度が低い方が望ましく,この観点からPcmBの好適範囲は0.20以下である。
PcmB=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5*B (7)
[ミクロ組織]
母材鋼板のミクロ組織は軟質なフェライトと硬質相による、面積分率90%以上の複相組織とし、更に、軟質相であるフェライトの面積分率と硬質相を構成するベイナイトおよび/またはマルテンサイト中のセメンタイト平均粒径を規定する。
In consideration of workability at the pipeline laying site, it is desirable that the pipe preheating temperature is low. From this viewpoint, the preferred range of PcmB is 0.20 or less.
PcmB = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 * B (7)
[Micro structure]
The microstructure of the base steel sheet is a double phase structure with an area fraction of 90% or more due to soft ferrite and hard phase. Furthermore, the area fraction of ferrite, which is a soft phase, and bainite and / or martensite constituting the hard phase Specifies the average cementite particle size.

ミクロ組織において、フェライト+ベイナイト,フェライト+マルテンサイト,フェライト+ベイナイト+マルテンサイトのいずれかによる復相組織が,面積率で90%以上、望ましくは,95%以上を占めることで引張強度は高く,降伏強度は低くなり,高強度かつ低降伏比を両立することが可能となる。   In the microstructure, the tensile strength is high because the rephase structure of ferrite + bainite, ferrite + martensite, ferrite + bainite + martensite accounts for 90% or more in area ratio, preferably 95% or more. Yield strength is low, and it is possible to achieve both high strength and low yield ratio.

900MPa以上の引張強度を得るため,硬質相はベイナイトまたはマルテンサイトまたはこれらの混合組織とする。   In order to obtain a tensile strength of 900 MPa or more, the hard phase is bainite, martensite, or a mixed structure thereof.

靭性の観点から,硬質相を構成するベイナイトおよび/またはマルテンサイトは,板厚方向厚さが30μmの細粒オーステナイトから変態した組織であることが望ましい。   From the viewpoint of toughness, it is desirable that the bainite and / or martensite constituting the hard phase has a structure transformed from fine austenite having a thickness in the thickness direction of 30 μm.

軟質層である、フェライトの面積分率は10〜50%とする。フェライトが10%未満の場合,ベイナイトあるいはマルテンサイト単相組織あるいは両者の混合組織と挙動が変わらず、降伏強度が高く,所望の低降伏比を達成することが困難となる。   The area fraction of ferrite, which is a soft layer, is 10 to 50%. If the ferrite content is less than 10%, the behavior is the same as that of a bainite or martensite single phase structure or a mixed structure of both, and the yield strength is high and it is difficult to achieve a desired low yield ratio.

一方、フェライトが50%を越えると,軟質なフェライトが主体となり,引張強度が大きく低下し,900MPaを超える高強度を達成することが困難となる.好ましくは10〜30%である。   On the other hand, when ferrite exceeds 50%, soft ferrite is the main component, the tensile strength is greatly reduced, and it is difficult to achieve high strength exceeding 900 MPa. Preferably it is 10 to 30%.

靭性向上の観点から,フェライトの平均粒径が20μm以下の細粒であることが好ましい。本発明に係る母材(鋼材)は、面積分率において、10%未満の残留γ,島状マルテンサイト,パーライト等の存在は許容される。   From the viewpoint of improving toughness, it is preferable that the ferrite has an average particle diameter of 20 μm or less. In the base material (steel material) according to the present invention, the presence of residual γ, island martensite, pearlite, etc. of less than 10% is allowed in the area fraction.

更に、硬質相を構成する、ベイナイトおよび/またはマルテンサイト中のセメンタイト平均粒径:≦0.5μm以下とする。   Furthermore, the cementite average particle size in the bainite and / or martensite constituting the hard phase: ≦ 0.5 μm or less.

鋼のミクロ組織に硬質相としてベイナイトおよび/またはマルテンサイトを生成させるため,後述するように加速冷却を実施した場合,その後の鋼板の切断時に切断割れが生じる場合がある。   In order to form bainite and / or martensite as a hard phase in the microstructure of steel, when accelerated cooling is performed as described later, cut cracks may occur during subsequent cutting of the steel sheet.

その防止のため,加速冷却直後に焼き戻し処理を行うと,ベイナイトおよび/またはマルテンサイト組織中にセメンタイトが析出する。   To prevent this, when tempering is performed immediately after accelerated cooling, cementite precipitates in the bainite and / or martensite structure.

焼戻しにより,これらのセメンタイトが0.5μmを超える粗大なサイズまで成長すると,DWTT特性の劣化およびシャルピー吸収エネルギーの低下を生じるため、イナイトおよび/またはマルテンサイト中のセメンタイトの平均粒径を0.5μm以下とする。   When these cementites grow to a coarse size exceeding 0.5 μm by tempering, the DWTT characteristics deteriorate and the Charpy absorption energy decreases, so the average particle size of cementite in innite and / or martensite is 0.5 μm. The following.

特に,セメンタイトの平均粒径を0.2μm未満とすることで,シャルピー吸収エネルギーをより上昇させることができる。   In particular, when the average particle size of cementite is less than 0.2 μm, the Charpy absorbed energy can be further increased.

なお,セメンタイトの平均粒径は以下の手法を用いて測定する。鋼板圧延方向断面に平行にミクロ組織観察用サンプルを採取し,鏡面研磨後,スピードエッチング処理をおこなってから,走査型電子顕微鏡にて観察を行い,無作為10視野で電子顕微鏡写真を撮影する。得られた写真から,個々のセメンタイト粒子の円相当直径を画像解析にて算出し,その平均値を計算で求める。
[製造条件]
本発明では母材は上述した組成とミクロ組織、及び強度特性を有するものであれば良く、特に製造方法は規定しないが,好ましい製造方法は以下のようである。
(1)熱間圧延
加熱温度:1000〜1200℃
熱間圧延を行う際,完全にオーステナイト化するため,1000℃以上に圧延用スラブを加熱する。一方,1200℃を超える温度まで鋼片を加熱すると,TiNピンニングを行っていても,オーステナイト粒成長が著しく,母材靱性が劣化するため,加熱温度を1000〜1200℃とする。
The average particle size of cementite is measured using the following method. A sample for microstructural observation is taken in parallel to the cross section in the rolling direction of the steel sheet, mirror-polished, speed-etched, and then observed with a scanning electron microscope, and an electron micrograph is taken with 10 random fields of view. From the obtained photograph, the equivalent circle diameter of each cementite particle is calculated by image analysis, and the average value is calculated.
[Production conditions]
In the present invention, the base material only needs to have the above-described composition, microstructure, and strength characteristics. A manufacturing method is not particularly defined, but a preferable manufacturing method is as follows.
(1) Hot rolling heating temperature: 1000 to 1200 ° C
When performing hot rolling, the rolling slab is heated to 1000 ° C. or higher in order to completely austenite. On the other hand, when the steel slab is heated to a temperature exceeding 1200 ° C., even if TiN pinning is performed, the austenite grain growth is remarkable and the base material toughness deteriorates, so the heating temperature is set to 1000 to 1200 ° C.

950℃以下での累積圧下量≧67%
前述の通り,Nb添加によって950℃以下はオーステナイト未再結晶域である。当該温度域にて累積で大圧下を行うことにより,オーステナイト粒が伸展し特に板厚方向では細粒となり,この状態で加速冷却して得られるベイナイト鋼の靱性は良好となる。
Cumulative reduction at 950 ° C or lower ≧ 67%
As described above, 950 ° C. or lower is an austenite non-recrystallized region due to Nb addition. By accumulating large pressures in the temperature range, the austenite grains expand and become finer, especially in the thickness direction, and the toughness of the bainite steel obtained by accelerated cooling in this state is improved.

しかし,累積圧下量を67%未満では,細粒化効果は不十分で,鋼の靭性向上効果が得難いため,累積圧下量を67%以上とする。なお,著しく靱性向上のための好適範囲は75%以上である。   However, if the cumulative rolling amount is less than 67%, the effect of refining is insufficient and the effect of improving the toughness of the steel is difficult to obtain, so the cumulative rolling amount is set to 67% or more. Note that the preferred range for significantly improving toughness is 75% or more.

圧延終了温度:Ar3点以上,Ar3点+100℃以下
圧延終了温度がAr3点より低い場合,フェライト変態温度域で圧延することとなり,変態生成したフェライトが大きく加工され,シャルピー吸収エネルギーが低下する。
Rolling end temperature: Ar3 point or higher, Ar3 point + 100 ° C. or lower When the rolling end temperature is lower than Ar3 point, rolling is performed in the ferrite transformation temperature range, the transformation-generated ferrite is greatly processed, and Charpy absorbed energy is reduced.

一方,Ar3点+100℃を越える高い温度で圧延を終了した場合,オーステナイト未再結晶域圧延による細粒化効果が不十分となるため,圧延終了温度をAr3点以上,Ar3点+100℃以下とする。なお,Ar3点は母材鋼板の化学組成の値を用い,下記(8)式で算出することが可能である。
Ar3=910−310×[C]―80×[Mn]―20×[Cu]―15×[Cr]―55×[Ni]―80×[Mo] (8)
加速冷却の冷却開始温度:Ar3点―50℃以上,Ar3点未満
低降伏比を実現するため,軟質なフェライト組織を変態生成させるが,加速冷却を行うと,フェライト変態が抑制されるため,熱間圧延後,加速冷却を開始するまでの間の空冷過程でフェライトを変態生成させる。このため,加速冷却の開始温度をAr3点未満とする。
On the other hand, if the rolling is finished at a high temperature exceeding the Ar3 point + 100 ° C, the effect of refining by the austenite non-recrystallization zone rolling becomes insufficient, so the rolling finishing temperature is set to the Ar3 point or higher and Ar3 point + 100 ° C or lower. . The Ar3 point can be calculated by the following equation (8) using the value of the chemical composition of the base steel plate.
Ar3 = 910-310 × [C] −80 × [Mn] −20 × [Cu] −15 × [Cr] −55 × [Ni] −80 × [Mo] (8)
Accelerated cooling start temperature: Ar3 point -50 ℃ or more and less than Ar3 point to achieve a low yield ratio, a soft ferrite structure is generated. However, accelerated cooling suppresses ferrite transformation, After hot rolling, ferrite is transformed during the air cooling process until accelerated cooling starts. For this reason, the start temperature of accelerated cooling is made less than the Ar3 point.

一方,冷却開始温度をAr3点―50℃未満とすると,フェライトの面積分率が50%を超え,900MPa以上の引張強度が得られないため,下限をAr3点―50℃とする。   On the other hand, if the cooling start temperature is less than Ar3 point-50 ° C, the ferrite area fraction exceeds 50% and a tensile strength of 900 MPa or more cannot be obtained, so the lower limit is Ar3 point-50 ° C.

加速冷却の冷却速度:20〜80℃/s
ベイナイトおよび/またはマルテンサイトからなる硬質相を得るために20℃/s以上で加速冷却を行う。一方,80℃/sを超える冷却速度としても得られる組織が変わらず材質向上が飽和することから上限を80℃/sとする。
Accelerated cooling rate: 20-80 ° C / s
In order to obtain a hard phase composed of bainite and / or martensite, accelerated cooling is performed at 20 ° C./s or more. On the other hand, even if the cooling rate exceeds 80 ° C./s, the obtained structure does not change and the material improvement is saturated, so the upper limit is set to 80 ° C./s.

加速冷却の冷却停止温度:≦250℃
鋼板の高強度化をはかるため,加速冷却の停止温度を下げて,低温で変態するベイナイトやマルテンサイトを生成させる。冷却停止温度が250℃を超えると変態が不十分なまま加速冷却をとめることとなり,未変態から生成する粗い組織が靭性を低下させるので,冷却停止温度は250℃以下とする。
Cooling stop temperature for accelerated cooling: ≤250 ° C
In order to increase the strength of the steel sheet, the stop temperature of accelerated cooling is lowered to produce bainite and martensite that transform at low temperatures. When the cooling stop temperature exceeds 250 ° C., the accelerated cooling is stopped with insufficient transformation, and the rough structure generated from the untransformed lowers the toughness. Therefore, the cooling stop temperature is set to 250 ° C. or less.

加速冷却で低温変態させた鋼板を,そのまま空冷させると鋼中の拡散性水素が残留し,切断割れを起こす可能性が高まる。   If a steel sheet that has been transformed at a low temperature by accelerated cooling is air-cooled as it is, diffusible hydrogen in the steel remains, which increases the possibility of cutting cracks.

そこで,冷却停止後すみやかに再加熱を行う。再加熱までの時間が長いと,その間の空冷過程での温度低下によって水素が拡散しにくくなるため,300秒以内で加熱開始することが望ましい.(好ましくは100秒以内.)再加熱方法は,炉加熱,誘導加熱いずれでもかまわない。   Therefore, reheating is performed immediately after cooling is stopped. If the time until reheating is long, it becomes difficult for hydrogen to diffuse due to the temperature drop during the air cooling process, so it is desirable to start heating within 300 seconds. (Preferably within 100 seconds.) The reheating method may be furnace heating or induction heating.

再加熱時の昇温速度:≧5℃/s
再加熱時の昇温速度が5℃/s未満の場合,特に300℃を超えるような温度まで加熱する途中でセメンタイトが生成,粗大化するため,DWTT特性の劣化が生じる。一方、昇温速度をはやくすることでセメンタイトの粗大化を抑制することが可能であるため,再加熱時の昇温速度を5℃/s以上とする。
Heating rate during reheating: ≧ 5 ° C / s
When the heating rate at the time of reheating is less than 5 ° C./s, cementite is generated and coarsened during heating to a temperature exceeding 300 ° C. in particular, resulting in deterioration of DWTT characteristics. On the other hand, since it is possible to suppress the cementite coarsening by increasing the rate of temperature rise, the rate of temperature rise during reheating is set to 5 ° C./s or more.

再加熱温度:300℃〜450℃
再加熱温度が300℃未満の場合,十分水素が拡散せず,切断割れを防止することができないため,再加熱温度は300℃以上とする。一方,450℃を超える温度まで加熱すると,焼き戻しによる軟化で強度低下が著しいことから,上限を450℃とする。
Reheating temperature: 300 ° C to 450 ° C
When the reheating temperature is less than 300 ° C., hydrogen does not diffuse sufficiently and cutting cracks cannot be prevented. Therefore, the reheating temperature is set to 300 ° C. or higher. On the other hand, when heated to a temperature exceeding 450 ° C., the upper limit is set to 450 ° C. because the strength is significantly reduced due to softening by tempering.

なお,鋼の製鋼方法については特に限定しないが,経済性の観点から,転炉法による製鋼プロセスと,連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。   The steel making method is not particularly limited, but from the economical viewpoint, it is desirable to carry out the steel making process by the converter method and the slab casting by the continuous casting process.

上記方法で製造された鋼板の鋼管への成形方法は特に限定はなく,従来から用いられているUOE成形,プレスベンド成形,ロール成形いずれも使用可能である。次に,溶接金属中の化学組成の限定理由を説明する.
[溶接金属化学組成]
C:0.05〜0.09%
溶接金属においてもCは鋼の強化元素として重要な元素である.特に,継手部のオーバーマッチングを達成するため,溶接金属部においても引張強度≧900MPaとする必要があり,この強度を得るために0.05%以上含有させる必要がある。
There are no particular limitations on the method of forming the steel sheet produced by the above method into a steel pipe, and any of the conventionally used UOE forming, press bend forming, and roll forming can be used. Next, the reason for limiting the chemical composition in the weld metal will be explained.
[Chemical composition of weld metal]
C: 0.05-0.09%
In weld metal, C is an important element as a strengthening element for steel. In particular, in order to achieve overmatching of the joint part, the weld metal part also needs to have a tensile strength ≧ 900 MPa, and in order to obtain this strength, it is necessary to contain 0.05% or more.

一方,0.09%を超えると,溶接金属の高温割れが発生しやすくなるため,溶接金属のC含有量を0.05〜0.09%とする。   On the other hand, if it exceeds 0.09%, hot cracking of the weld metal tends to occur, so the C content of the weld metal is set to 0.05 to 0.09%.

Si:0.1〜0.4%
Siは溶接金属の脱酸ならびに良好な作業性を確保するために必要で,0.1%未満では十分な脱酸効果が得られず,一方0.4%を超えると,溶接作業性の劣化を引き起こすため,溶接金属のSi含有量を0.1〜0.4%とする。
Si: 0.1 to 0.4%
Si is necessary for deoxidizing the weld metal and ensuring good workability. If it is less than 0.1%, a sufficient deoxidation effect cannot be obtained. On the other hand, if it exceeds 0.4%, welding workability deteriorates. Therefore, the Si content of the weld metal is set to 0.1 to 0.4%.

Mn:1.0〜2.0%
Mnは溶接金属の高強度化に重要な元素である。特に,引張強度≧900MPaといった高強度は,従来のアシキュラフェライト組織化では達成不可能であり,多量のMnを含有させベイナイト組織とすることで可能となる。この効果を得るために1.0%以上含有させる必要があるが,2.0%を超えると溶接性が劣化するため,溶接金属のMn含有量を1.0〜2.0%とする。
Mn: 1.0-2.0%
Mn is an important element for increasing the strength of the weld metal. In particular, high strength such as tensile strength ≧ 900 MPa cannot be achieved by conventional acicular ferrite organization, and can be achieved by containing a large amount of Mn to form a bainite structure. In order to acquire this effect, it is necessary to make it contain 1.0% or more, but since weldability will deteriorate when it exceeds 2.0%, Mn content of a weld metal shall be 1.0-2.0%.

Al:≦0.015%
Alは脱酸元素として作用するが,溶接金属部においてはむしろTiによる脱酸による靱性改善効果が大きく,かつAl酸化物系の介在物が多くなると溶接金属シャルピーの吸収エネルギーの低下が起こるため,溶接金属のAl含有量を0.015%以下とする。
Al: ≦ 0.015%
Al acts as a deoxidizing element, but in the weld metal part, the effect of improving toughness due to deoxidation by Ti is rather large, and when the inclusion of Al oxide system increases, the absorbed energy of weld metal Charpy decreases, The Al content of the weld metal is set to 0.015% or less.

Cu:≦0.5%、Ni:≦3.0%、Cr:≦1.0%、Mo:≦1.0%
母材と同じくCu,Ni,Cr,Moは溶接金属においても焼入性を向上させるので,ベイナイト組織化のために含有させる。ただし,その量が多くなると溶接ワイヤへの合金元素添加量が多大となり,ワイヤ強度が著しく上昇する結果,溶接時のワイヤ送給性に障害が生じる。このため,溶接金属のCu,Ni,Cr,Mo含有量の上限を,それぞれ0.5%,3.0%,1.0%,1.0%とする。
Cu: ≦ 0.5%, Ni: ≦ 3.0%, Cr: ≦ 1.0%, Mo: ≦ 1.0%
Like the base material, Cu, Ni, Cr, and Mo improve the hardenability even in the weld metal, so are included for bainite organization. However, when the amount increases, the amount of alloying elements added to the welding wire increases, resulting in a significant increase in wire strength, resulting in an obstacle in wire feedability during welding. For this reason, the upper limits of the Cu, Ni, Cr, and Mo contents of the weld metal are 0.5%, 3.0%, 1.0%, and 1.0%, respectively.

V:≦0.1%
適量のV添加は靱性・溶接性を劣化させずに強度を高めることから有効な元素であるが,0.10%を超えると溶接金属の再熱部の靱性が著しく劣化する。このため,溶接金属のV含有量を0.1%以下とする。
V: ≦ 0.1%
An appropriate amount of V is an effective element because it increases strength without degrading toughness and weldability. However, if it exceeds 0.10%, the toughness of the reheated portion of the weld metal is significantly degraded. For this reason, the V content of the weld metal is set to 0.1% or less.

Ti:0.003〜0.10%
Tiは溶接金属中では脱酸元素として働き,溶接金属中の酸素の低減に有効である。この効果を得るためには0.003%以上必要であるが,0.10%を超えた場合,余剰となったTiが炭化物を形成し,溶接金属の靱性を劣化させる。このため,溶接金属のTi含有量を0.003〜0.10%とする。
Ti: 0.003-0.10%
Ti acts as a deoxidizing element in the weld metal and is effective in reducing oxygen in the weld metal. In order to obtain this effect, 0.003% or more is necessary, but when it exceeds 0.10%, excess Ti forms carbides and deteriorates the toughness of the weld metal. For this reason, the Ti content of the weld metal is set to 0.003 to 0.10%.

B:≦0.0030%
強度グレードの低いラインパイプ用溶接管においては,溶接金属のミクロ組織をアシキュラフェライト化するために,B添加が有効であるが,高強度化のため,ベイナイト組織を含む組織とする場合,溶接金属中のB量が0.0030%を超えるとマルテンサイト組織が生成し,靭性が低下してしまう。このため,溶接金属のB含有量を0.0030%以下とする。
B: ≦ 0.0030%
In welded pipes for line pipes with low strength grades, B is effective to make the microstructure of weld metal into acicular ferrite. When the amount of B in the metal exceeds 0.0030%, a martensite structure is generated and the toughness is lowered. For this reason, the B content of the weld metal is set to 0.0030% or less.

O:≦0.03%
溶接金属中の酸素量の低減は靱性改善効果があり,特に0.03%以下とすることで著しく改善されるため,溶接金属中のO含有量を0.03%以下とする。
O: ≦ 0.03%
Reduction of the amount of oxygen in the weld metal has an effect of improving toughness, and is particularly improved by making it 0.03% or less, so the O content in the weld metal is made 0.03% or less.

N:≦0.008%
溶接金属中の固溶Nの低減もまた靱性改善効果があり,特に0.008%以下とすることで著しく改善されるため,溶接金属中のN含有量を0.008%以下とする。
N: ≦ 0.008%
Reduction of solute N in the weld metal also has an effect of improving toughness, and is particularly remarkably improved by setting it to 0.008% or less. Therefore, the N content in the weld metal is set to 0.008% or less.

PcmW≦0.2
PcmWは(9)式で計算される,溶接金属の溶接性の指標であり,特に図4に示すTクロス部1のように,パイプのシーム溶接部3(外面側溶接金属31、内面側溶接金属32)がパイプ同士の円周溶接2を行ったときに受ける、熱影響を受けた後の硬さ(T−クロス硬さで、点線4が測定位置)と良い相関を示す。
PcmW ≦ 0.2
PcmW is an index of the weldability of the weld metal calculated by the equation (9). Particularly, the seam welded portion 3 of the pipe (outer surface side weld metal 31, inner surface side weld, as in the T-cross portion 1 shown in FIG. The metal 32) shows a good correlation with the hardness (T-cross hardness, the dotted line 4 is the measurement position) after being subjected to the thermal effect that is received when the circumferential welding 2 between the pipes is performed.

図3に熱影響を受けた後の硬さ(T−クロス硬さ)をPcmWで整理した結果を示す。図3より、PcmWが大きく,T−クロス硬さが高くなると,円周溶接時にパイプシーム溶接部3(外面側溶接金属31、内面側溶接金属32)で低温割れが発生しやすくなることから,割れ発生防止の目安であるビッカース硬さ300ポイント以下を満足させるため,溶接金属のPcmW値の上限を0.2とする。
PcmW=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60*B-12*N-4*O (9)
[溶接方法]
次に鋼管成形後の端部溶接方法の限定理由を説明する。図5に、本発明における、CO2ガスシールドを用いたレーザーとAr-CO2ガスシールドを用いたガスシールドアーク溶接を組み合わせたハイブリッド溶接法を模式的に示す。
FIG. 3 shows the result of arranging the hardness (T-cross hardness) after being affected by heat by PcmW. From FIG. 3, when PcmW is large and T-cross hardness is high, cold cracking is likely to occur in the pipe seam welded portion 3 (outer surface side weld metal 31, inner surface side weld metal 32) during circumferential welding. In order to satisfy the Vickers hardness of 300 points or less, which is a measure for preventing cracking, the upper limit of the PcmW value of the weld metal is set to 0.2.
PcmW = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 * B-12 * N-4 * O (9)
[Welding method]
Next, the reasons for limiting the end welding method after forming the steel pipe will be described. 5, in the present invention, hybrid welding method combining a gas shielded arc welding using a laser and Ar-CO 2 gas shielded with CO 2 gas shielded are shown schematically.

ハイブリッド溶接法は、レーザートーチ6とガスアーク溶接トーチ7を配置し,両者による1プール8での溶接で溶接ビード9を形成することで,従来のサブマージアーク溶接並の溶接速度で鋼板突き合わせ部の溶接を行うことが可能で,溶接部の冷却速度が著しく向上する。   In the hybrid welding method, a laser torch 6 and a gas arc welding torch 7 are arranged, and a weld bead 9 is formed by welding in one pool 8 by both of them. This can significantly improve the cooling rate of the weld.

先行するレーザートーチ6により狭い領域に高密度の入熱を与えることで鋼板を容易に溶解させ,その後のガスアーク溶接の入熱レベルでも十分に溶接金属を溶着させられるからと考えられる。   This is probably because the steel plate can be easily melted by applying high-density heat input to a narrow region by the preceding laser torch 6, and the weld metal can be sufficiently deposited even at the heat input level of the subsequent gas arc welding.

レーザーのシールドにCO2ガスを用いることでレーザー溶接特有のブローホールブローホールの発生を著しく抑制し,さらにガスアーク溶接のシールドをArとCO2の混合ガスとすることで溶接金属中の酸素量を低く抑えることができる。 By using CO 2 gas for the laser shield, the generation of blowholes and blowholes peculiar to laser welding is remarkably suppressed, and the gas arc welding shield is made of a mixed gas of Ar and CO 2 to reduce the amount of oxygen in the weld metal. It can be kept low.

図6に本発明によるレーザー・アークハイブリッド溶接を用いた溶接部断面を模式に示す。図において10はレーザー・アークハイブリッド溶接部、12はサブマージアーク溶接部を示す。   FIG. 6 schematically shows a cross section of a weld using laser / arc hybrid welding according to the present invention. In the figure, 10 indicates a laser-arc hybrid weld, and 12 indicates a submerged arc weld.

(a)は薄肉鋼管の場合で、レーザー・アークハイブリッド溶接による外面一層溶接の場合、(b)は板厚が厚い場合、レーザー・アークハイブリッド溶接による内外面一層溶接の場合、(c)は、内面一層溶接をレーザー・アークハイブリッド溶接、外面は従来のサブマージアーク溶接で一層溶接を行った場合で、レーザー・アークハイブリッド溶接では溶け込みの深い溶接部が得られる。   (A) is a case of thin-walled steel pipe, in the case of outer surface single layer welding by laser / arc hybrid welding, (b) is in the case of thick plate, in case of inner / outer surface single layer welding by laser / arc hybrid welding, (c) Laser-arc hybrid welding is used for inner surface single layer welding and outer surface is subjected to single-layer welding by conventional submerged arc welding.

レーザー・アークハイブリッド溶接によるHAZ部の硬さは従来のSAWに較べ十分硬いため,管厚が厚く,レーザー・アークハイブリッド溶接1層では貫通溶接できない場合には,図6(b)に示すようにパイプの内外面それぞれ1層ずつレーザー・アークハイブリッド溶接を行っても継手強度の低下は小さい。   As the hardness of the HAZ part by laser-arc hybrid welding is sufficiently hard compared to conventional SAW, if the tube thickness is thick and one-layer laser-arc hybrid welding is not possible, as shown in Fig. 6 (b) Even when laser-arc hybrid welding is performed one layer at a time on the inner and outer surfaces of the pipe, the decrease in joint strength is small.

また,図6(c)に示すように外面側を従来のSAW溶接による1層溶接を行っても同様に内面側のHAZ部で十分な強度が確保され,母材と同等以上の継手強度を満足することができる。   In addition, as shown in FIG. 6 (c), even if the outer surface is subjected to conventional single layer welding by SAW welding, a sufficient strength is ensured in the HAZ portion on the inner surface, and the joint strength is equal to or higher than that of the base material. Can be satisfied.

レーザー・アークハイブリッド溶接によれば、シーム溶接部の低温割れ,ならびにシーム溶接金属が円周溶接されて硬化することによる割れを防止しつつ,シーム溶接部の高強度化を図ることが可能である。   With laser-arc hybrid welding, it is possible to increase the strength of the seam weld while preventing cold cracking of the seam weld and cracking due to the seam weld metal being circumferentially welded and hardened. .

表1に示す化学組成の鋼を用い,表2に示す熱間圧延・加速冷却,再加熱条件で鋼板A〜Kを作製した.なお,再加熱には,加速冷却設備と同一ライン場に設置した誘導加熱型の加熱装置を用いて行った。   Steel plates A to K were produced using the steel having the chemical composition shown in Table 1 under the hot rolling / accelerated cooling and reheating conditions shown in Table 2. The reheating was performed using an induction heating type heating device installed in the same line field as the accelerated cooling equipment.

Figure 2008248315
Figure 2008248315

Figure 2008248315
Figure 2008248315

まず,それぞれの鋼板をせん断機により20箇所切断し,その後,鋼板切断面を磁粉探傷により調査し,切断割れが認められた切断端面の数を求めた。ここで,1つの端面内に複数の割れが確認できた場合でも,端面としては1つなので,切断割れの発生数は1とした。そして,全ての切断箇所において,切断割れが認められない場合,(切断割れ発生数0)を良好とした。   First, each steel plate was cut at 20 points by a shearing machine, and then the cut surface of the steel plate was examined by magnetic particle flaw detection to determine the number of cut end surfaces where cut cracks were observed. Here, even when a plurality of cracks could be confirmed in one end face, the number of cut cracks was set to 1 because there was only one end face. When no cut cracks were observed at all cut locations, (the number of cut crack occurrences 0) was considered good.

次に,それぞれの鋼板より,ミクロ組織確認用試験片を採取し,ミクロ組織分率,セメンタイト粒径の調査を行った。さらに,API-5Lに準拠した全厚引張試験片およびDWTT試験片を,板厚中央位置からJIS Z2202(1980)のVノッチシャルピー衝撃試験片を採取し,鋼板の引張試験,DWTT試験およびシャルピー衝撃試験を実施して,強度と靱性を評価した。 Next, specimens for microstructural confirmation were collected from each steel sheet, and the microstructural fraction and cementite grain size were investigated. Furthermore, full thickness tensile test specimens and DWTT test specimens conforming to API-5L, JIS Z2202 (1980) V-notch Charpy impact test specimens were collected from the center of the thickness, and steel sheet tensile tests, DWTT tests and Charpy impact tests were conducted. Tests were conducted to evaluate strength and toughness.

また,表3に示す溶接方法で,主として溶接ワイヤおよび溶接方法を種々変更して鋼板の突き合わせ溶接を行い,溶接継手を作製した。それぞれの継手の溶接金属部より,分析試料を採取し化学分析を行った。分析結果を併せて表3に示す。   In addition, the welding methods shown in Table 3 were mainly used for butt welding of steel plates with various changes in welding wires and welding methods to produce welded joints. Analytical samples were collected from the weld metal parts of each joint and subjected to chemical analysis. The analysis results are also shown in Table 3.

Figure 2008248315
Figure 2008248315

また,API-5Lに準拠した継手引張試験片(余盛付)と,溶接金属,およびHAZにノッチが当たる位置でJIS Z2202のVノッチシャルピー衝撃試験片を採取し,溶接継手の引張試験およびのシャルピー衝撃試験を実施して,溶接部の強度と靱性を評価した。   In addition, a joint tensile test piece (with surplus) conforming to API-5L, a JIS Z2202 V-notch Charpy impact test piece taken at the position where the notch hits the weld metal and HAZ, A Charpy impact test was conducted to evaluate the strength and toughness of the weld.

さらに,JIS Z 3158に従い,y形溶接割れ試験を試験環境を気温30℃で湿度80%にコントロールして実施した。当該環境下に1時間放置した100kgf級高張力鋼用の手溶接棒を用い,予熱温度75℃とした試験体に試験ビードを溶接した。溶接割れ感受性は,試験ビードと直交する断面の観察結果で得られた断面割れ率で評価した。   Furthermore, in accordance with JIS Z 3158, the y-type weld cracking test was conducted with the test environment controlled at a temperature of 30 ° C and a humidity of 80%. A test bead was welded to a specimen with a preheating temperature of 75 ° C using a hand-welded rod for 100 kgf-class high-strength steel that was left in the environment for 1 hour. Weld crack susceptibility was evaluated by the cross-sectional crack rate obtained from the observation results of the cross-section orthogonal to the test bead.

また,溶接継手と直交するようにガスアーク溶接を実施し,作製した試験体でT-クロス硬さ試験を行った。   In addition, gas arc welding was performed perpendicular to the welded joint, and a T-cross hardness test was performed on the prepared specimen.

母材のミクロ組織調査結果,強度・靱性調査結果,溶接継手部の強度・靱性調査結果,および溶接割れ感受性の評価,T-クロス硬さ結果をまとめて表4に示す。   Table 4 summarizes the results of the microstructure investigation, strength / toughness investigation, weld joint strength / toughness investigation, weld crack susceptibility evaluation, and T-cross hardness results.

Figure 2008248315
Figure 2008248315

本発明に適合する鋼はいずれも板切断実験で割れ発生せず,900MPaを超える母材引張強度を有し,かつ200Jを超える高い母材シャルピー吸収エネルギーおよび85%を超えるDWTT延性破面率を満足した。   None of the steels conforming to the present invention has cracks in the plate cutting experiment, has a base metal tensile strength exceeding 900 MPa, has a high base metal Charpy absorbed energy exceeding 200 J, and a DWTT ductile fracture surface ratio exceeding 85%. Satisfied.

さらに,継手強度も母材と同等以上の値を示し,溶接金属およびHAZシャルピー吸収エネルギーも100Jを超える高い値となった。また,y形溶接割れ試験およびT-クロス試験において優れた溶接性を示した。   Furthermore, the joint strength was also equal to or greater than that of the base metal, and the weld metal and HAZ Charpy absorbed energy were also high values exceeding 100J. In addition, excellent weldability was exhibited in the y-type weld crack test and the T-cross test.

一方,従来と同じ内外面SAW溶接を行った比較例2-2は,HAZ軟化が著しく,継手引張試験においてHAZ部で破断した結果,継手引張強度が母材引張強度を大きく下回った。   On the other hand, in Comparative Example 2-2 where the same inner and outer surface SAW welding was performed, HAZ softening was remarkable, and as a result of fracture at the HAZ part in the joint tensile test, the joint tensile strength was significantly lower than the base metal tensile strength.

レーザー・アークハイブリッド溶接時のガスアークトーチのシールドガスをCOガスとし,溶接金属の酸素量が上限を超えた比較例2-3は,溶接金属のシャルピー吸収エネルギーが著しく低下した。 In Comparative Example 2-3, where the gas arc torch shield gas during laser-arc hybrid welding was CO 2 gas and the oxygen content of the weld metal exceeded the upper limit, the Charpy absorbed energy of the weld metal was significantly reduced.

また,レーザートーチのシールドガスをArとCOの混合ガスとした比較例2-4は,溶接金属にブローホールと考えられる欠陥が残存していたため,継手引張時に溶接金属で破断したほか,シャルピー吸収エネルギーが低下した。 In Comparative Example 2-4, in which the laser torch shield gas was a mixed gas of Ar and CO 2 , the weld metal had a defect that was thought to be a blowhole. Absorbed energy decreased.

溶接金属のPcmW値が上限を超えた比較例6-2は溶接継手強度,靱性は良好であったが,T-クロス硬さが300ポイントを超える低溶接性を示した。   Comparative Example 6-2, in which the PcmW value of the weld metal exceeded the upper limit, had good weld joint strength and toughness, but exhibited low weldability with a T-cross hardness exceeding 300 points.

板圧延,加速冷却後に再加熱を実施しなかった比較例10は,板切断実験で割れが発生した。また,加速冷却後の再加熱における昇温速度が下限を下回った比較例11は,加熱中にベイナイトとマルテンサイト中のセメンタイトが平均で0.7μmまで粗大化した結果,母材シャルピー吸収エネルギー及びDWTT特性が目標を下回った。   In Comparative Example 10 where reheating was not performed after sheet rolling and accelerated cooling, cracks occurred in the sheet cutting experiment. In Comparative Example 11, where the heating rate during reheating after accelerated cooling was below the lower limit, the cementite in bainite and martensite was coarsened to 0.7 μm on average during heating, resulting in the base material Charpy absorbed energy and DWTT. The characteristic fell below the target.

さらに,冷却開始温度が上限を上回った比較例12は,加速冷却前の空冷過程でのフェライト変態が十分でなく,フェライト面積率が10%を下回った結果,降伏強度が上昇し,低降伏比を達成できなかった。   Furthermore, in Comparative Example 12 in which the cooling start temperature exceeded the upper limit, the ferrite transformation in the air cooling process before accelerated cooling was not sufficient, and as a result of the ferrite area ratio falling below 10%, the yield strength increased and the low yield ratio Could not be achieved.

また,母材C量が下限を下回った比較例13は,母材引張強度が目標を下回った。母材B量が上限を上回った比較例14は,Bのオーステナイト粒界偏析によりフェライト変態が抑制された結果,鋼のミクロ組織中のフェライト分率が0%となり,降伏強度が上昇し,低降伏比を達成できなかった。   Further, in Comparative Example 13 where the amount of the base material C was below the lower limit, the base material tensile strength was below the target. In Comparative Example 14 in which the amount of base metal B exceeded the upper limit, ferrite transformation was suppressed by segregation of B austenite grain boundaries, resulting in a ferrite fraction of 0% in the microstructure of the steel, yield strength increasing, The yield ratio could not be achieved.

母材Ca,O,Sで本発明に係るパラメータ式を用いて計算される値が下限を下回った比較例15は,Ca添加によるMnSの形態制御が不十分で,粗大なMnSによる清浄度が劣化した結果,母材シャルピー吸収エネルギーが低下した。   In Comparative Example 15 in which the values calculated using the parameter formulas according to the present invention for the base materials Ca, O, and S were below the lower limit, the morphology control of MnS by Ca addition was insufficient, and the cleanliness by coarse MnS was insufficient. As a result of deterioration, the Charpy absorbed energy of the base material decreased.

母材の化学組成で計算されるPcmB値が上限を上回った比較例16は,母材および溶接部で高強度を達成したが,y形溶接割れ試験で割れが発生したため,溶接性が劣化した。   In Comparative Example 16, in which the PcmB value calculated by the chemical composition of the base metal exceeded the upper limit, high strength was achieved in the base metal and the weld zone, but weldability deteriorated because cracks occurred in the y-type weld crack test. .

内外面1層サブマージアーク溶接を行った溶接鋼管の外面側硬度分布を示す図。The figure which shows the outer surface side hardness distribution of the welded steel pipe which performed inner and outer surface 1 layer submerged arc welding. 鋼の低温割れ阻止予熱温度とPcm値の相関図。Correlation diagram between cold crack prevention preheating temperature and Pcm value of steel. Tクロス試験で得られた溶接金属HAZ硬さとPcmW値の相関図。The correlation diagram of the weld metal HAZ hardness and PcmW value which were obtained by the T cross test. Tクロス部を説明する図。The figure explaining a T cross part. レーザー・アークハイブリッド溶接法を説明する模式図。The schematic diagram explaining the laser arc hybrid welding method. レーザー・アークハイブリッド溶接継手断面の模式図で、(a)は薄肉鋼管の場合で、レーザー・アークハイブリッド溶接による外面一層溶接の場合、(b)は板厚が厚い場合、レーザー・アークハイブリッド溶接による内外面一層溶接の場合、(c)は、内面一層溶接をレーザー・アークハイブリッド溶接、外面は従来のサブマージアーク溶接で一層溶接を行った場合を示す図。Schematic diagram of laser-arc hybrid welded joint cross-section, (a) for thin-walled steel pipe, outer-layer single-layer welding by laser-arc hybrid welding, (b) for laser-arc hybrid welding when plate thickness is thick In the case of inner / outer surface single layer welding, (c) is a diagram showing a case where inner surface single layer welding is performed by laser / arc hybrid welding, and the outer surface is subjected to single layer welding by conventional submerged arc welding.

符号の説明Explanation of symbols

1 Tクロス部
2 円周溶接
3 シーム溶接部
31 外面側溶接金属
32 内面側溶接金属
4 測定位置
6 レーザートーチ
7 ガスアーク溶接トーチ
8 プール
9 溶接ビード
10 ハイブリッド溶接部
11 サブマージアーク溶接部
DESCRIPTION OF SYMBOLS 1 T cross part 2 Circumferential welding 3 Seam welding part 31 Outer surface side welding metal 32 Inner surface side welding metal 4 Measurement position 6 Laser torch 7 Gas arc welding torch 8 Pool 9 Welding bead 10 Hybrid welding part 11 Submerged arc welding part

Claims (3)

質量%で、
C:0.03〜0.12%
Si:0.01〜0.5%
Mn:1.5〜3%
Al:0.01〜0.08%
Nb:0.01〜0.08%
Ti:0.005〜0.025%
N:0.001〜0.01%
B:≦0.0003%
Ca:0.0005〜0.01%
O:≦0.003%
S:≦0.001%
更に
Cu:0.01〜0.5%
Ni:0.01〜1%
Cr:0.01〜0.5%
Mo:0.01〜0.5%
V:0.01〜0.1%
の一種または二種以上を含有し,Ca,O,Sの含有量が(1)式を満たし,かつ(2)式で計算されるPcmB値がPcmB≦0.22を満足し,残部Feおよび不可避的不純物からなる組成と,
フェライト+ベイナイト,フェライト+マルテンサイト,およびフェライト+ベイナイト+マルテンサイトのいずれかが面積分率で90%以上で,かつフェライトの面積率が10〜50%であり,ベイナイトおよび/またはマルテンサイト中のセメンタイトの平均粒径が0.5μm以下のミクロ組織を有する、引張強度900MPa以上かつ降伏比≦85%の鋼板を冷間加工で管状に成形した後,COガスシールドを用いたレーザーとAr−COガスシールドを用いたガスシールドアーク溶接を組み合わせたハイブリッド溶接法によって,溶接金属の化学組成が質量%で,
C:0.05〜0.09%
Si:0.1〜0.4%
Mn:1.0〜2.0%
Al:≦0.015%
Cu:≦0.5%
Ni:≦3.0%
Cr:≦1.0%
Mo:≦1.0%
V:≦0.1%
Ti:0.003〜0.10%
B:≦0.0030%
O:≦0.03%
N:≦0.008%
を含有し,
式(3)で計算されるPcmW値がPcmW≦0.2を満足し,
かつ残部Feおよび不可避的不純物となるように突合わせ部の溶接を行うことを特徴とする,母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法。
1≦(1-130×[O])×[Ca]/(1.25×[S])≦3 (1)
PcmB=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5*B (2)
PcmW=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60*B-12*N-4*O (3)
% By mass
C: 0.03-0.12%
Si: 0.01 to 0.5%
Mn: 1.5 to 3%
Al: 0.01 to 0.08%
Nb: 0.01 to 0.08%
Ti: 0.005-0.025%
N: 0.001 to 0.01%
B: ≦ 0.0003%
Ca: 0.0005 to 0.01%
O: ≦ 0.003%
S: ≦ 0.001%
Furthermore, Cu: 0.01 to 0.5%
Ni: 0.01 to 1%
Cr: 0.01 to 0.5%
Mo: 0.01 to 0.5%
V: 0.01 to 0.1%
And the content of Ca, O, S satisfies the formula (1), the PcmB value calculated by the formula (2) satisfies PcmB ≦ 0.22, and the balance Fe and The composition of inevitable impurities,
Either ferrite + bainite, ferrite + martensite, or ferrite + bainite + martensite has an area fraction of 90% or more, and the area ratio of ferrite is 10 to 50%, and bainite and / or martensite A steel sheet having a microstructure with an average particle size of cementite of 0.5 μm or less and a tensile strength of 900 MPa or more and a yield ratio ≦ 85% is formed into a tubular shape by cold working, and then laser and Ar− using a CO 2 gas shield are used. By the hybrid welding method combined with gas shielded arc welding using CO 2 gas shield, the chemical composition of the weld metal is mass%,
C: 0.05-0.09%
Si: 0.1 to 0.4%
Mn: 1.0-2.0%
Al: ≦ 0.015%
Cu: ≦ 0.5%
Ni: ≦ 3.0%
Cr: ≦ 1.0%
Mo: ≦ 1.0%
V: ≦ 0.1%
Ti: 0.003-0.10%
B: ≦ 0.0030%
O: ≦ 0.03%
N: ≦ 0.008%
Containing
The PcmW value calculated by Equation (3) satisfies PcmW ≦ 0.2,
In addition, a method for producing an ultra-high-strength, high-deformability welded steel pipe excellent in the toughness of the base metal and the welded portion, wherein the butt portion is welded so as to become the remaining Fe and inevitable impurities.
1 ≦ (1-130 × [O]) × [Ca] / (1.25 × [S]) ≦ 3 (1)
PcmB = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 * B (2)
PcmW = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 * B-12 * N-4 * O (3)
請求項1記載の母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法において、突き合わせ溶接を,内外面1層ずつレーザーとガスシールドアーク溶接を組み合わせたハイブリッド溶接を行うことを特徴とする,母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法。   In the manufacturing method of the ultra-high strength and high deformability welded steel pipe excellent in base material and welded portion toughness according to claim 1, butt welding is performed, and hybrid welding is performed by combining laser and gas shield arc welding for each inner and outer surface layers. A manufacturing method of ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness. 請求項1記載の母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法において、突き合わせ溶接を,内面側をレーザーとガスシールドアーク溶接を組み合わせたハイブリッド溶接を行ったのち,外面側をサブマージアーク溶接することを特徴とする,母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法。   In the manufacturing method of the super-high strength and high deformability welded steel pipe excellent in the base material and weld zone toughness according to claim 1, after performing butt welding and hybrid welding in which the inner surface side is combined with laser and gas shielded arc welding, A method of manufacturing an ultra-high-strength, high-deformability welded steel pipe with superior base metal and weld toughness, characterized by submerged arc welding of the outer surface.
JP2007090627A 2007-03-30 2007-03-30 Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness Active JP4977876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090627A JP4977876B2 (en) 2007-03-30 2007-03-30 Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090627A JP4977876B2 (en) 2007-03-30 2007-03-30 Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness

Publications (2)

Publication Number Publication Date
JP2008248315A true JP2008248315A (en) 2008-10-16
JP4977876B2 JP4977876B2 (en) 2012-07-18

Family

ID=39973609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090627A Active JP4977876B2 (en) 2007-03-30 2007-03-30 Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness

Country Status (1)

Country Link
JP (1) JP4977876B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284588A (en) * 2007-05-17 2008-11-27 Hitachi-Ge Nuclear Energy Ltd Equipment and method for combined welding of laser and arc
WO2011155620A1 (en) 2010-06-07 2011-12-15 新日本製鐵株式会社 Ultra high-strength welded joint and method for producing same
EP2441854A1 (en) * 2009-06-11 2012-04-18 Nippon Steel Corporation High strength steel pipe and method for producing same
JP2012214891A (en) * 2011-03-29 2012-11-08 Jfe Steel Corp Wear resistant steel plate excellent in stress corrosion cracking resistance and method for manufacturing the same
JP2013091094A (en) * 2011-10-27 2013-05-16 Ihi Corp Weld crack testing method for laser arc hybrid welding
JP2014520208A (en) * 2011-09-26 2014-08-21 宝山鋼鉄股▲分▼有限公司 Low yield ratio high toughness steel sheet and manufacturing method thereof
JPWO2013179614A1 (en) * 2012-05-29 2016-01-18 Jfeスチール株式会社 Laser-arc hybrid welding method
JP2016132007A (en) * 2015-01-20 2016-07-25 三井造船株式会社 Laer-arc hybrid welding method, ana laser-arc hybrid welded structure
WO2016152170A1 (en) * 2015-03-26 2016-09-29 Jfeスチール株式会社 Thick steel plate for structural pipe, method for producing thick steel plate for structural pipe, and structural pipe.
CN106457477A (en) * 2014-06-30 2017-02-22 杰富意钢铁株式会社 Method for butt welding steel plates and butt welded joint of steel plates
CN106498279A (en) * 2016-10-14 2017-03-15 武汉钢铁股份有限公司 A kind of economical X65 pipe line steels of low Cr of anti-CO2 corrosion and production method
JP2017155333A (en) * 2016-02-26 2017-09-07 Jfeスチール株式会社 Low yield ratio high strength thick steel sheet excellent in large heat input weld heat-affected zone toughness and manufacturing method therefor
CN111058035A (en) * 2019-12-31 2020-04-24 南京中科煜宸激光技术有限公司 Process for preparing wear-resistant and corrosion-resistant alloy coating on surface of copper and copper alloy by laser cladding and alloy coating
CN114515890A (en) * 2022-02-24 2022-05-20 南京钢铁股份有限公司 Submerged-arc welding process for 890-grade ultrahigh-strength marine plate
WO2024057534A1 (en) * 2022-09-16 2024-03-21 日本製鉄株式会社 Baked flux, method for manufacturing submerged-arc-welded joint, and submerged-arc-welded joint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197195A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Thick steel plate excellent in weldability with high energy beam
JP2006307334A (en) * 2005-03-31 2006-11-09 Jfe Steel Kk High-strength thick steel plate and process for production thereof, and high-strength steel pipe
JP4811166B2 (en) * 2006-07-24 2011-11-09 Jfeスチール株式会社 Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197195A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Thick steel plate excellent in weldability with high energy beam
JP2006307334A (en) * 2005-03-31 2006-11-09 Jfe Steel Kk High-strength thick steel plate and process for production thereof, and high-strength steel pipe
JP4811166B2 (en) * 2006-07-24 2011-11-09 Jfeスチール株式会社 Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284588A (en) * 2007-05-17 2008-11-27 Hitachi-Ge Nuclear Energy Ltd Equipment and method for combined welding of laser and arc
US8685182B2 (en) 2009-06-11 2014-04-01 Nippon Steel & Sumitomo Metal Corporation High-strength steel pipe and producing method thereof
EP2441854A1 (en) * 2009-06-11 2012-04-18 Nippon Steel Corporation High strength steel pipe and method for producing same
EP2441854A4 (en) * 2009-06-11 2013-01-16 Nippon Steel Corp High strength steel pipe and method for producing same
WO2011155620A1 (en) 2010-06-07 2011-12-15 新日本製鐵株式会社 Ultra high-strength welded joint and method for producing same
JP4903918B1 (en) * 2010-06-07 2012-03-28 新日本製鐵株式会社 Ultra high strength welded joint and manufacturing method thereof
CN102753300A (en) * 2010-06-07 2012-10-24 新日本制铁株式会社 Ultra high-strength welded joint and method for producing same
KR101211284B1 (en) 2010-06-07 2012-12-11 신닛테츠스미킨 카부시키카이샤 Ultra high-strength welded joint and method for producing same
US8758901B2 (en) 2010-06-07 2014-06-24 Nippon Steel & Sumitomo Metal Corporation Ultrahigh-strength welded joint and production method thereof
US9879334B2 (en) 2011-03-29 2018-01-30 Jfe Steel Corporation Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same
JP2012214891A (en) * 2011-03-29 2012-11-08 Jfe Steel Corp Wear resistant steel plate excellent in stress corrosion cracking resistance and method for manufacturing the same
JP2014520208A (en) * 2011-09-26 2014-08-21 宝山鋼鉄股▲分▼有限公司 Low yield ratio high toughness steel sheet and manufacturing method thereof
RU2588755C2 (en) * 2011-09-26 2016-07-10 Баошан Айрон Энд Стил Ко., Лтд. Steel strip with low ratio of yield strength to ultimate strength and high impact strength and method for production thereof
JP2013091094A (en) * 2011-10-27 2013-05-16 Ihi Corp Weld crack testing method for laser arc hybrid welding
JPWO2013179614A1 (en) * 2012-05-29 2016-01-18 Jfeスチール株式会社 Laser-arc hybrid welding method
CN106457477A (en) * 2014-06-30 2017-02-22 杰富意钢铁株式会社 Method for butt welding steel plates and butt welded joint of steel plates
JP2016132007A (en) * 2015-01-20 2016-07-25 三井造船株式会社 Laer-arc hybrid welding method, ana laser-arc hybrid welded structure
CN107406946A (en) * 2015-03-26 2017-11-28 杰富意钢铁株式会社 The manufacture method and structural tube of structural tube thick steel sheet, structural tube thick steel sheet
KR20170128570A (en) * 2015-03-26 2017-11-22 제이에프이 스틸 가부시키가이샤 Thick steel plate for structural pipe, method for producing thick steel plate for structural pipe, and structural pipe
WO2016152170A1 (en) * 2015-03-26 2016-09-29 Jfeスチール株式会社 Thick steel plate for structural pipe, method for producing thick steel plate for structural pipe, and structural pipe.
EP3276024A4 (en) * 2015-03-26 2018-01-31 JFE Steel Corporation Thick steel plate for structural pipe, method for producing thick steel plate for structural pipe, and structural pipe.
RU2677554C1 (en) * 2015-03-26 2019-01-17 ДжФЕ СТИЛ КОРПОРЕЙШН Steel plates for construction pipes or tubes, steel plates for construction pipes or tubes manufacturing method, and construction pipes or tubes
KR102119561B1 (en) 2015-03-26 2020-06-05 제이에프이 스틸 가부시키가이샤 Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
US11555233B2 (en) 2015-03-26 2023-01-17 Jfe Steel Corporation Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP2017155333A (en) * 2016-02-26 2017-09-07 Jfeスチール株式会社 Low yield ratio high strength thick steel sheet excellent in large heat input weld heat-affected zone toughness and manufacturing method therefor
CN106498279A (en) * 2016-10-14 2017-03-15 武汉钢铁股份有限公司 A kind of economical X65 pipe line steels of low Cr of anti-CO2 corrosion and production method
CN106498279B (en) * 2016-10-14 2018-08-07 武汉钢铁有限公司 A kind of anti-CO2The economical X65 pipe line steels of low Cr and production method of corrosion
CN111058035A (en) * 2019-12-31 2020-04-24 南京中科煜宸激光技术有限公司 Process for preparing wear-resistant and corrosion-resistant alloy coating on surface of copper and copper alloy by laser cladding and alloy coating
CN114515890A (en) * 2022-02-24 2022-05-20 南京钢铁股份有限公司 Submerged-arc welding process for 890-grade ultrahigh-strength marine plate
WO2024057534A1 (en) * 2022-09-16 2024-03-21 日本製鉄株式会社 Baked flux, method for manufacturing submerged-arc-welded joint, and submerged-arc-welded joint

Also Published As

Publication number Publication date
JP4977876B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
JP4997805B2 (en) High-strength thick steel plate, method for producing the same, and high-strength steel pipe
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
RU2427662C2 (en) High strength welded steel pipe for pipeline possessing excellent low temperature ductility and procedure for its fabrication
EP2105513B1 (en) High strength thick welded steel pipe for a line pipe superior in low temperature toughness and process for producing the same.
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
EP2036995B1 (en) High-strength steel pipe with excellent low-temperature toughness for line pipe, high-strength steel plate for line pipe, and processes for producing these
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP4819185B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
WO2010052928A1 (en) Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
WO2010052927A1 (en) Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
JP2005040816A (en) Ultrahigh strength weld joint excellent in low temperature cracking property of weld metal, ultrahigh strength welded steel pipe, and their manufacturing methods
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP5157066B2 (en) A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance and DWTT characteristics.
US20070240794A1 (en) Ultrahigh strength UOE steel pipe and a process for its manufacture
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP2009185368A (en) Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same
EP2093302B1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP4171267B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP2006183127A (en) Method for producing high strength welded steel tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4977876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250