JPWO2013179614A1 - Laser-arc hybrid welding method - Google Patents

Laser-arc hybrid welding method Download PDF

Info

Publication number
JPWO2013179614A1
JPWO2013179614A1 JP2014518267A JP2014518267A JPWO2013179614A1 JP WO2013179614 A1 JPWO2013179614 A1 JP WO2013179614A1 JP 2014518267 A JP2014518267 A JP 2014518267A JP 2014518267 A JP2014518267 A JP 2014518267A JP WO2013179614 A1 JPWO2013179614 A1 JP WO2013179614A1
Authority
JP
Japan
Prior art keywords
welding
laser
arc
angle
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014518267A
Other languages
Japanese (ja)
Inventor
博幸 角
博幸 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014518267A priority Critical patent/JPWO2013179614A1/en
Publication of JPWO2013179614A1 publication Critical patent/JPWO2013179614A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

低温割れの発生を抑制すべく、引張強さが780MPa以上の高強度鋼板を溶接対象とし、溶接進行方向に対して、消耗電極式アーク溶接を先行に、レーザ溶接を後行に配置し、アーク溶接の溶接ワイヤ狙い位置とレーザビーム照射位置の距離を3〜5mmの範囲にするとともに、アーク溶接の電極角度を溶接進行方向側に20〜60?の範囲の後退角とし、レーザ溶接のレーザビームの入射角度を鉛直方向から溶接進行方向へ0〜30?の範囲の角度とする。【選択図】図1In order to suppress the occurrence of cold cracking, high strength steel sheets with a tensile strength of 780 MPa or more are to be welded, consumable electrode type arc welding is preceded in the welding progress direction, laser welding is arranged downstream, and arc The distance between the welding wire target position and the laser beam irradiation position is in the range of 3 to 5 mm, and the electrode angle of arc welding is set to a receding angle in the range of 20 to 60 mm on the welding direction side. The incident angle is set to an angle in the range of 0 to 30 mm from the vertical direction to the welding progress direction. [Selection] Figure 1

Description

本発明は、レーザ溶接(laser welding)と消耗電極式アーク溶接(consumable electrode arc welding)を併用させたレーザ・アークハイブリッド溶接方法(laser and arc hybrid welding method)に関し、特に引張強さ(tensile strength)が780MPa以上の高強度鋼板(high strength steel sheet
or plate)を対象としたレーザ・アークハイブリッド溶接方法に関するものである。
The present invention relates to a laser and arc hybrid welding method in which laser welding and consumable electrode arc welding are used in combination, and in particular, tensile strength. High strength steel sheet with high strength of 780 MPa or more
or plate) and a laser-arc hybrid welding method.

レーザ溶接は、高いエネルギー密度(high−energy density)を得ることができるため、深溶け込み(deep penetration)の高速溶接(high speed welding)が可能であり、高能率な溶接方法として期待されている。また、極めて局所的な溶融となるため、母材に加わる熱の影響も小さく、歪や変形の小さな高品質の溶接継手(weld joint)を得ることができる。  Since laser welding can obtain a high energy density, deep penetration and high speed welding are possible, and it is expected as a high-efficiency welding method. Moreover, since it becomes very local melting, the influence of the heat added to a base material is also small, and a high quality welded joint (weld joint) with a small distortion and a deformation | transformation can be obtained.

一方、従来から多用されているアーク溶接は、レーザ溶接よりも容易に扱うことができ、装置も安価で汎用性がある。しかしながら、レーザ溶接に比べると、溶け込み深さ(penetration depth)は小さく、溶接速度も遅い。  On the other hand, arc welding, which has been widely used conventionally, can be handled more easily than laser welding, and the apparatus is inexpensive and versatile. However, compared to laser welding, the penetration depth is small and the welding speed is also slow.

そこで、両者の利点を活用すべく、レーザ溶接とアーク溶接を組合せたレーザ・アークハイブリッド溶接が提案されている。そして、レーザ・アークハイブリッド溶接は、エネルギー密度が異なる2つの熱源(heat source)を利用しているため、溶接速度の高速化、開先ギャップ(groove gap)の寸法精度(dimension accuracy)の緩和、溶け込み深さの増大、溶接継手部の特性向上(具体的には、溶接金属の靭性改善など)、溶接欠陥(weld defects)の抑制などに効果があることが知られている。  Therefore, in order to utilize the advantages of both, laser / arc hybrid welding combining laser welding and arc welding has been proposed. Since laser-arc hybrid welding uses two heat sources having different energy densities, the welding speed is increased, the groove gap is dimensional accuracy reduced, It is known that it is effective in increasing the penetration depth, improving the characteristics of the welded joint (specifically, improving the toughness of the weld metal, etc.), and suppressing weld defects.

ちなみに、レーザ・アークハイブリッド溶接方法としては、例えば、下記特許文献1〜3などに記載されたものが知られている。  Incidentally, as a laser-arc hybrid welding method, for example, those described in Patent Documents 1 to 3 below are known.

特許文献1では、先行にレーザ、後行にアークを配置して、被溶接材のルートギャップ(root gap)を板厚の10%以上からレーザビーム径(laser beam diameter)以下の範囲に設定することで、深溶け込みの高速溶接が達成できるレーザ・アークハイブリッド溶接方法が開示されている。  In Patent Document 1, a laser is disposed in advance and an arc is disposed in the subsequent direction, and the root gap of the material to be welded is set to a range of 10% or more of the plate thickness to a laser beam diameter or less. Thus, a laser-arc hybrid welding method capable of achieving high penetration welding with deep penetration has been disclosed.

特許文献2では、アークを先行させ、レーザを後行させ、レーザとアークを同一溶接線上(same weld line)に配置させながら溶接することで、高速溶接性(high speed weldability)と耐ギャップ性(gap tolerance)に優れたレーザ・アークハイブリッド溶接方法に関する技術が開示されている。  In Patent Document 2, high-speed weldability and high gap resistance (high speed weldability) are achieved by performing welding with an arc preceding, a laser following, and placing the laser and the arc on the same weld line. A technique relating to a laser-arc hybrid welding method excellent in gap tolerance) is disclosed.

特許文献3では、アークを先行させるとともにレーザを後行させて、且つアーク溶接は一対のアーク電極(arc electrode)(トーチ(torch)も言う)を溶接線の両側に配置してそれらの先端を溶接進行方向に傾けた状態とし、アーク電極間の間隙を通ってレーザ光(laser beam)を照射することで、被溶接部材間に大きなギャップ(gap)が存在しても良好な溶接継手を高速で形成できるレーザ・アークハイブリッド溶接方法に関する技術が開示されている。  In Patent Document 3, an arc is preceded and a laser is moved backward, and arc welding is performed by arranging a pair of arc electrodes (also referred to as torches) on both sides of a welding line and arranging their tips. A laser beam (laser beam) is irradiated through the gap between the arc electrodes in a state tilted in the welding progress direction, so that a high-quality welded joint can be produced even when a large gap exists between the members to be welded. A technique relating to a laser-arc hybrid welding method that can be formed by the following method is disclosed.

特開平10−216972号公報Japanese Patent Laid-Open No. 10-216972 特開2006−224130号公報JP 2006-224130 A 特開2011−147944号公報JP 2011-147944 A

ところで、レーザ・アークハイブリッド溶接の溶接後の冷却速度(cooling rate)はアーク溶接に比べて高いため、特に硬化しやすい引張強さが780MPa以上の高強度鋼では溶接金属(weld metal)の低温割れ(cold cracking)の発生が懸念される。  By the way, since the cooling rate after welding of laser-arc hybrid welding is higher than that of arc welding, particularly in high strength steel having a tensile strength of 780 MPa or more which is easy to harden, low temperature cracking of weld metal (weld metal). There is concern about the occurrence of (cold cracking).

一般に、低温割れの発生要因としては、(a)溶接金属の拡散性水素(diffusible hydrogen)、(b)HAZ(welded heat−affected zone)や溶接金属の硬化組織(hardened microstructure)、(c)溶接継手の拘束応力(restraint stress)、の3つが挙げられ、これらの条件が揃った場合に低温割れが発生するとされている。溶接が終了した直後、溶接金属には水素が過飽和状態で溶解していることが多く、それらが応力の高い箇所に拡散し、集積して割れに至ると考えられている。  In general, the causes of cold cracking include (a) diffusible hydrogen of weld metal, (b) welded-heated zone (HAZ), hardened microstructure of weld metal, and (c) welding. The joint stress of the joint is three, and it is said that cold cracking occurs when these conditions are met. Immediately after the end of welding, hydrogen is often dissolved in a supersaturated state in the weld metal, and it is considered that these diffuse into high stress points and accumulate to crack.

しかしながら、前述の特許文献1〜3では、開先ギャップの余裕度(gap tolerance)と高速溶接を両立することに主眼が置かれたものであり、低温割れの防止については考慮されていない。特に、レーザ・アークハイブリッド溶接の場合には、アーク溶接のプロセスにおいて溶接ワイヤ(weld wire)や大気中から混入すると考えられる拡散性水素を無視できない。  However, in the above-mentioned Patent Documents 1 to 3, the main focus is on achieving both gap tolerance and high-speed welding, and no consideration is given to prevention of cold cracking. In particular, in the case of laser-arc hybrid welding, diffusible hydrogen, which is considered to be mixed from the welding wire or the atmosphere in the arc welding process, cannot be ignored.

本発明は、上記のような事情に鑑みてなされたものであり、引張強さが780MPa以上の高強度鋼板へのレーザ・アークハイブリッド溶接の適用を図る上で課題と考えられる低温割れ防止技術の確立のために、溶接金属の拡散性水素量を低減することができるレーザ・アークハイブリッド溶接方法を提供することを目的とする。  The present invention has been made in view of the circumstances as described above, and is a low-temperature crack prevention technique that is considered to be a problem in applying laser-arc hybrid welding to a high-strength steel sheet having a tensile strength of 780 MPa or more. For establishment, an object is to provide a laser-arc hybrid welding method capable of reducing the amount of diffusible hydrogen in a weld metal.

上記の課題を解決するために、本発明者は、レーザおよびアークの配置を種々変化させた条件におけるレーザ・アークハイブリッド溶接の溶接金属部の拡散性水素量を測定し、溶接条件(welding condition)が拡散性水素量におよぼす影響について鋭意検討した。その結果、先行にアーク、後行にレーザを配置して溶接した場合の方が、先行にレーザ、後行にアークを配置して溶接した場合に比べて、拡散性水素量が低減する傾向にあることを見出した。また、先行するアーク溶接の電極角度(angle of
electrode)を溶接進行方向側に対して後退角(sweptback angle)となるように傾斜させた場合に、その拡散性水素量の低減効果が大きいという知見も得た。さらには、アーク溶接の溶接ワイヤ狙い位置(wire aim position)とレーザビーム照射位置(laser beam irradiation position)の距離がある範囲でなければ、拡散性水素量の低減効果が小さいという知見も得た。
In order to solve the above-mentioned problems, the present inventor measured the amount of diffusible hydrogen in the weld metal part of laser-arc hybrid welding under various conditions of changing the arrangement of the laser and the arc, and welding conditions (welding conditions). The effects of selenium on the amount of diffusible hydrogen have been investigated. As a result, the amount of diffusible hydrogen tends to decrease when welding with an arc in the front and a laser in the succeeding case and welding with the laser in the preceding and the arc in the following. I found out. In addition, the electrode angle of the preceding arc welding (angle of)
It was also found that the effect of reducing the amount of diffusible hydrogen is large when the electrode is inclined so as to have a sweepback angle with respect to the welding progress direction side. Furthermore, it has also been found that the effect of reducing the amount of diffusible hydrogen is small unless the distance between the welding wire aiming position (wire aim position) and the laser beam irradiation position (laser beam irradiation position) of arc welding is within a certain range.

本発明は、上記のような知見に基づいてなされたものであり、以下のような特徴を備えている。  The present invention has been made on the basis of the above knowledge and has the following features.

[1]引張強さが780MPa以上の高強度鋼板を溶接対象とし、溶接進行方向に対して、消耗電極式アーク溶接を先行に、レーザ溶接を後行に配置し、アーク溶接の溶接ワイヤ狙い位置とレーザビーム照射位置の距離を3〜5mmの範囲にするとともに、アーク溶接の電極角度を溶接進行方向側に20〜60°の範囲の後退角とし、レーザ溶接のレーザビームの入射角度(angle of incidence)を鉛直方向(vertical direction)から溶接進行方向(welding direction)へ0〜30°の範囲の角度とすることを特徴とするレーザ・アークハイブリッド溶接方法。  [1] A high strength steel sheet having a tensile strength of 780 MPa or more is to be welded, consumable electrode type arc welding is preceded and laser welding is followed in the welding progress direction, and the welding wire target position for arc welding And the laser beam irradiation position within a range of 3 to 5 mm, the arc welding electrode angle is set to a receding angle of 20 to 60 ° in the welding direction, and the laser welding incident angle (angle of) A laser-arc hybrid welding method, characterized in that the incidence is set to an angle in a range of 0 to 30 ° from a vertical direction to a welding direction.

[2]前記アーク溶接の溶接電流(weld current)が300A以下であることを特徴とする前記[1]に記載のレーザ・アークハイブリッド溶接方法。  [2] The laser / arc hybrid welding method according to [1], wherein a welding current of the arc welding is 300 A or less.

[3]前記レーザ溶接のレーザ出力(laser power)が3kW以上であることを特徴とする前記[1]または[2]に記載のレーザ・アークハイブリッド溶接方法。  [3] The laser-arc hybrid welding method according to [1] or [2], wherein a laser power of the laser welding is 3 kW or more.

本発明によれば、引張強さが780MPa以上の高強度鋼板のレーザ・アークハイブリッド溶接を行なうにあたり、溶接金属の拡散性水素量を低減することができ、引張強さが780MPa以上の高強度鋼板での耐低温割れ性を向上することができる。  According to the present invention, in performing laser-arc hybrid welding of a high strength steel plate having a tensile strength of 780 MPa or more, the amount of diffusible hydrogen in the weld metal can be reduced, and a high strength steel plate having a tensile strength of 780 MPa or more. It is possible to improve the low temperature cracking resistance.

図1は、本発明の一実施形態において、被溶接材の突合せ溶接(butt welding)する時の状況を溶接進行方向の横側から見た模式的側面図である。FIG. 1 is a schematic side view of a situation in which butt welding of materials to be welded is seen from the side in the welding direction in one embodiment of the present invention. 図2は、本発明の実施例において、水素量の測定に用いた試験片の模式図である。FIG. 2 is a schematic view of a test piece used for measuring the hydrogen amount in the example of the present invention.

本発明の一実施形態におけるレーザ・アークハイブリッド溶接方法について図面を参照して説明する。  A laser-arc hybrid welding method according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態において、被溶接材の突合せ溶接する時の状況を溶接進行方向の横側から見た模式的側面図である。図1中、1は被溶接材、2はアーク溶接電極、3は溶接ワイヤ、4はレーザ溶接ヘッド(laser welding head)、5はレーザビーム、6は溶接ビード(weld bead)、矢印Aは溶接方向をそれぞれ示している。また、アーク溶接の溶接ワイヤ狙い位置とレーザビーム照射位置の距離をXとする。さらに、アーク溶接電極2の鉛直方向に対する傾斜角(すなわち、後退角)をθa、レーザ溶接のレーザビームの入射角をθbとする。なお、アーク溶接の溶接ワイヤ狙い位置とは、溶接ワイヤの延長線が鋼板表面と交差する点を言う。また、レーザビーム照射位置とは、鋼板表面の照射されたレーザビームのビーム径の中心を言う。  FIG. 1 is a schematic side view of a situation when butt welding of materials to be welded is viewed from the side in the welding progress direction in an embodiment of the present invention. In FIG. 1, 1 is a material to be welded, 2 is an arc welding electrode, 3 is a welding wire, 4 is a laser welding head, 5 is a laser beam, 6 is a weld bead, and arrow A is welding. Each direction is shown. Also, let X be the distance between the target position of the arc welding wire and the laser beam irradiation position. Further, the inclination angle (that is, the receding angle) of the arc welding electrode 2 with respect to the vertical direction is θa, and the incident angle of the laser beam of laser welding is θb. In addition, the welding wire target position of arc welding means the point where the extension line of a welding wire cross | intersects the steel plate surface. The laser beam irradiation position refers to the center of the beam diameter of the irradiated laser beam on the steel plate surface.

まず、この実施形態では、アーク溶接を先行、レーザ溶接を後行に配置するとともに、アーク溶接の電極角度θaが溶接進行方向側に後退角となるようにしている。これは、アーク溶接を後退角方式(sweptback angle method)で溶接することで、溶接ビードの幅が狭くなり、溶融金属の大気と接触する面積が小さくなることにより、大気中から持ち込まれる拡散性水素を少なくすることができるためである。そのために、アーク溶接電極2とレーザ溶接ヘッド4の取り回しを考えると、アーク溶接が先行の配置となる。  First, in this embodiment, arc welding is preceded and laser welding is arranged downstream, and the electrode angle θa of arc welding is set to a receding angle on the welding progress direction side. This is because diffusible hydrogen brought in from the atmosphere is reduced by welding the arc welding with a sweepback angle method, thereby reducing the width of the weld bead and reducing the area of the molten metal in contact with the atmosphere. This is because it can be reduced. Therefore, considering the handling of the arc welding electrode 2 and the laser welding head 4, arc welding is the preceding arrangement.

その上で、アーク溶接の溶接ワイヤ狙い位置とレーザビーム照射位置の距離Xを3〜5mmの範囲と規定している。Xが3mm未満の場合、溶接ワイヤ3の変動によりレーザビーム5が溶接ワイヤ3に直接当たってしまい、溶接が不安定になりやすい。またXが5mmを超えるとアーク溶接で形成された溶融池(molten weld pool)とレーザ溶接による溶融池が分離するため、溶融金属が大気と接触する表面積が増加して、拡散性水素が混入しやすくなる。したがって、アーク溶接の溶接ワイヤ狙い位置とレーザビーム照射位置の距離Xは3〜5mmの範囲とした。  In addition, the distance X between the welding wire aiming position of the arc welding and the laser beam irradiation position is defined as a range of 3 to 5 mm. When X is less than 3 mm, the laser beam 5 directly hits the welding wire 3 due to the fluctuation of the welding wire 3, and the welding tends to become unstable. Also, when X exceeds 5 mm, the molten pool formed by arc welding and the molten pool by laser welding are separated, so the surface area where the molten metal comes into contact with the atmosphere increases and diffusible hydrogen is mixed. It becomes easy. Therefore, the distance X between the welding wire aiming position of the arc welding and the laser beam irradiation position is set in the range of 3 to 5 mm.

そして、アーク溶接の後退角θaは20〜60°の範囲と規定している。後退角θaが20°未満であると、アーク溶接の溶接ビードの幅が顕著に狭くならないため、溶接金属の拡散性水素の低減効果が得られにくく、後退角θaが60°を超えると、アーク溶接のビード形状が不安定になるとともに、溶け込み深さが減少する。したがって、アーク溶接の後退角θaは20〜60°の範囲にする。より好ましくは、30〜45°の範囲である。  And the receding angle θa of arc welding is defined as a range of 20 to 60 °. If the receding angle θa is less than 20 °, the width of the weld bead of arc welding is not significantly narrowed, so it is difficult to obtain the effect of reducing the diffusible hydrogen of the weld metal, and if the receding angle θa exceeds 60 °, the arc The weld bead shape becomes unstable and the penetration depth decreases. Therefore, the receding angle θa for arc welding is set in the range of 20 to 60 °. More preferably, it is the range of 30-45 degrees.

さらに、レーザビーム5の入射角θbを鉛直方向から溶接進行方向へ0〜30°の範囲と規定している。レーザビーム5の入射角θbが0°未満の場合は、レーザ溶接ヘッド4とアーク溶接トーチ2とが溶接進行方向と同じ側に傾斜することになり、お互いに位置的に干渉することになるばかりでなく、得られる効果もない。一方、レーザビーム5の入射角θbが30°を超えると、溶け込み深さが減少する。したがって、レーザ溶接のレーザビーム5の入射角θbは0〜30°の範囲にする。より好ましくは、0〜15°の範囲である。  Further, the incident angle θb of the laser beam 5 is defined as a range of 0 to 30 ° from the vertical direction to the welding progress direction. When the incident angle θb of the laser beam 5 is less than 0 °, the laser welding head 4 and the arc welding torch 2 are inclined to the same side as the welding direction, and only interfere with each other in position. In addition, there is no effect obtained. On the other hand, when the incident angle θb of the laser beam 5 exceeds 30 °, the penetration depth decreases. Therefore, the incident angle θb of the laser beam 5 of laser welding is set in the range of 0 to 30 °. More preferably, it is the range of 0-15 degree.

そして、アーク溶接の溶接電流は300A以下とすることが好ましい。また、レーザ溶接のレーザ出力は3kW以上とすることが好ましい。  And it is preferable that the welding current of arc welding shall be 300 A or less. The laser output of laser welding is preferably 3 kW or more.

すなわち、アーク溶接電流が300Aを超えると、溶接ワイヤ3の溶着量(volume of deposit metal)が増加するため、溶接ワイヤ3より混入する拡散性水素も増加する。したがって、アーク溶接の溶接電流は300A以下とすることが好ましい。  That is, when the arc welding current exceeds 300 A, the welding amount of the welding wire 3 (volume of deposition metal) increases, so that diffusible hydrogen mixed from the welding wire 3 also increases. Therefore, the welding current for arc welding is preferably 300 A or less.

一方、レーザ出力が3kW未満であると、厚板のレーザ・アークハイブリッド溶接で期待する深い溶け込みを得ることが難しくなる。また、レーザ溶接による母材の溶融(希釈率(dilution ratio))が小さくなると、アーク単独溶接の場合と近づくことから、拡散性水素の低減効果も得られ難くなる。したがって、レーザ溶接のレーザ出力は3kW以上とすることが好ましい。  On the other hand, if the laser output is less than 3 kW, it is difficult to obtain the deep penetration expected in laser-arc hybrid welding of thick plates. In addition, when the melting of the base material by laser welding (dilution ratio) becomes small, it becomes closer to the case of arc-only welding, and it is difficult to obtain the effect of reducing diffusible hydrogen. Therefore, the laser output of laser welding is preferably 3 kW or more.

なお、本発明で使用するレーザ溶接としては、様々な形態の発振器(oscillator)を用いたレーザビームを用いることができる。  In addition, as laser welding used in the present invention, laser beams using various forms of oscillators can be used.

例えば、気体(例えば、CO(carbon dioxide gas)、ヘリウム−ネオン(helium−neon)、アルゴン(argon)、窒素(nitrogen)、ヨウ素(iodine)等)を媒質として用いる気体レーザ(gas laser)、固体(例えば、希土類元素をドープした YAG等)を媒質として用いる固体レーザ(solid laser)、レーザ媒質(laser medium)としてバルク(bulk)の代わりにファイバー(fiber)を利用するファイバーレーザ(fiber laser)、デイスクレーザ(disk laser)等が好適である。あるいは、半導体レーザ(semiconductor laser)を使用しても良い。For example, a gas (e.g., CO 2 (carbon dioxide gas) , helium - neon (helium-neon), argon (argon would be), nitrogen (Pnitrogen), iodine (iodine) or the like) gas laser (gas laser) used as the medium, A solid laser using a solid (for example, YAG doped with rare earth elements) as a medium, a fiber laser using a fiber instead of a bulk as a laser medium A disk laser or the like is preferable. Or you may use a semiconductor laser (semiconductor laser).

また、本発明で使用するアーク溶接としては、シールドガスによりアークおよび溶接金属を大気から遮蔽しながら溶接するガスシールドアーク溶接を用いることができる。  Moreover, as the arc welding used in the present invention, gas shielded arc welding can be used in which welding is performed while shielding the arc and the weld metal from the atmosphere with a shielding gas.

例えば、COガスあるいはArとCOの混合ガスを用いるMAG溶接(metal
active gas welding)、ArやHeなどの不活性ガスを用いるMIG溶接(metal inert gas welding)等の電極が連続的に溶融して消耗する溶極式(消耗電極式)溶接が好適である。
For example, MAG welding using a CO 2 gas or a mixed gas of Ar and CO 2 (metal
Electrode welding (consumable electrode type), in which electrodes are continuously melted and consumed, such as active gas welding) and MIG welding (metal inert gas welding) using an inert gas such as Ar or He, is preferable.

レーザ・アークハイブリッド溶接継手の溶接金属部の拡散性水素量について、実施例を挙げて本発明をより具体的に説明する。  The present invention will be described more specifically with reference to examples of the amount of diffusible hydrogen in the weld metal portion of the laser-arc hybrid weld joint.

アーク溶接を対象とした鋼溶接部の水素量の測定方法としては、JIS Z 3118に示された試験方法が一般的に用いられている。そこで、レーザ・アークハイブリッド溶接の拡散性水素の測定においても、試験片形状、拡散性水素の捕集、水素量の測定方法などの基本事項はJIS(Japanese Industrial Standards)に準拠して実施した。すなわち、供試鋼として用いたHT780級鋼板より、図2に示すような、板厚12mm×幅25mm×長さ40mmの試験板1Aと板厚12mm×幅25mm×長さ45mmのエンドタブ(end tab)1Bを作製し、レーザ・アークハイブリッド溶接条件を種々変化させた溶接部の拡散性水素量を測定した。  The test method shown in JIS Z 3118 is generally used as a method for measuring the hydrogen content of steel welds intended for arc welding. Accordingly, in the measurement of diffusible hydrogen in laser-arc hybrid welding, basic matters such as the shape of the test piece, collection of diffusible hydrogen, and a method for measuring the amount of hydrogen were performed in accordance with JIS (Japan Industrial Standards). That is, from an HT780 grade steel plate used as a test steel, a test plate 1A having a plate thickness of 12 mm × width of 25 mm × length of 40 mm and an end tab (end tab of 12 mm thick × 25 mm wide × 45 mm long) as shown in FIG. ) 1B was prepared, and the amount of diffusible hydrogen in the welds with various laser-arc hybrid welding conditions varied was measured.

表1にレーザ・アークハイブリッド溶接条件を示す。  Table 1 shows the laser-arc hybrid welding conditions.

Figure 2013179614
Figure 2013179614

なお、レーザ溶接にはYAGレーザ溶接機を用い、レーザシールドガス(laser shielding gas)は純Arとした。一方、アーク溶接はHT780級MAG溶接用ソリッドワイヤ(solid wire)(1.2mm径)を用い、シールドガスは80vol%Ar−20vol%COを用いた。また、溶接速度は、板厚12mmの試験板1Aの貫通を防ぐため0.5m/minとした。Note that a YAG laser welding machine was used for laser welding, and the laser shielding gas was pure Ar. On the other hand, HT780 grade MAG welding solid wire (1.2 mm diameter) was used for arc welding, and 80 vol% Ar-20 vol% CO 2 was used as the shielding gas. The welding speed was set to 0.5 m / min to prevent penetration of the test plate 1A having a thickness of 12 mm.

表1中の本発明例(継手No.1、3、4、6、7、8)は、アーク溶接をレーザ溶接に先行させるとともに、アーク溶接の溶接ワイヤ狙い位置とレーザビーム照射位置の距離Xを3〜5mmの範囲に、またアーク溶接の電極角度θaを20〜60°の後退角に、レーザビームの入射角θbを0〜30°に配置した例である。なお、継手No.1、3、4、7では、アーク溶接の溶接電流を300A以下とし、レーザ溶接のレーザ出力を3kW以上としているが、継手No.6では、アーク溶接の溶接電流を300A超えである320Aとし、継手No.8では、レーザ溶接のレーザ出力を3kW未満である2.5kWとしている。  In the present invention examples (joints No. 1, 3, 4, 6, 7, and 8) in Table 1, the arc welding is preceded by the laser welding, and the distance X between the welding wire target position of the arc welding and the laser beam irradiation position Is an example in which the electrode angle θa of arc welding is set to a receding angle of 20 to 60 ° and the incident angle θb of the laser beam is set to 0 to 30 °. In addition, the joint No. In Nos. 1, 3, 4, and 7, the welding current for arc welding is 300 A or less, and the laser output for laser welding is 3 kW or more. 6, the welding current of arc welding is set to 320 A, which exceeds 300 A, and the joint No. In No. 8, the laser output of laser welding is 2.5 kW, which is less than 3 kW.

これに対して、表1中の比較例(継手No.2、5、9、10、11)のうち、継手No.2はレーザ溶接をアーク溶接に先行させた例、継手No.5はアーク溶接の溶接ワイヤ狙い位置とレーザビーム照射位置の距離Xを3mm未満である1mmとした例、継手No.9はアーク溶接の溶接ワイヤ狙い位置とレーザビーム照射位置の距離Xを5mm超えである6mmとした例、継手No.10はレーザビームの入射角θbを30°超えである45°とした例、継手No.11はアーク溶接のトーチ角度θaを60°超えである70°の後退角とした例である。  On the other hand, among the comparative examples (joints No. 2, 5, 9, 10, 11) in Table 1, the joint No. No. 2 is an example in which laser welding precedes arc welding. No. 5 is an example in which the distance X between the target position of the welding wire for arc welding and the laser beam irradiation position is 1 mm which is less than 3 mm. No. 9 is an example in which the distance X between the target position of the welding wire for arc welding and the laser beam irradiation position is 6 mm, which is more than 5 mm. No. 10 is an example in which the incident angle θb of the laser beam is 45 ° which is more than 30 °. 11 is an example in which the arc welding torch angle θa is set to a receding angle of 70 °, which exceeds 60 °.

これらのレーザ・アークハイブリッド溶接部の拡散性水素量の測定結果を表2に示す。  Table 2 shows the results of measurement of the amount of diffusible hydrogen in these laser-arc hybrid welds.

ここで、拡散性水素量の評価指標(evaluation index)として、アーク溶接で一般的に評価に用いられる「溶着金属(deposit metal)の質量当たりの水素量」ではなく、「溶接金属の質量当たりの水素量」を用いることとした。その理由として、レーザ・アークハイブリッド溶接の場合には、高エネルギー密度であるレーザ溶接の効果によって母材の溶融(希釈率)がアーク単独溶接に比べて高いため、後者の方が低温割れの評価には適切と判断したためである。なお、拡散性水素の捕集条件(collecting condition)は45℃×72時間とし、水素量はガスクロマトグラフ法(gas chromatography measurement)にて測定した。  Here, as an evaluation index of the amount of diffusible hydrogen, not “amount of hydrogen per mass of deposited metal” generally used for evaluation in arc welding, but “amount per mass of weld metal” “Hydrogen amount” was used. The reason for this is that in the case of laser-arc hybrid welding, the melting (dilution ratio) of the base metal is higher than that of arc-only welding due to the effect of high-energy density laser welding. This is because it was deemed appropriate. The collecting conditions for diffusible hydrogen were 45 ° C. × 72 hours, and the amount of hydrogen was measured by gas chromatographic measurement.

Figure 2013179614
Figure 2013179614

表2から明らかなように、本発明例では「溶接金属の質量当たりの水素量」は0.40ml/100g以下の値となった。一方、比較例の「溶接金属の質量当たりの水素量」は0.60ml/100gを超える値となった。すなわち、本発明により、「溶接金属の質量当たりの水素量」は概ね半減することができた。  As is apparent from Table 2, in the present invention example, the “hydrogen amount per mass of the weld metal” was 0.40 ml / 100 g or less. On the other hand, the “hydrogen amount per mass of weld metal” in the comparative example was a value exceeding 0.60 ml / 100 g. That is, according to the present invention, the “hydrogen amount per mass of the weld metal” can be almost halved.

本発明によれば、レーザ・アークハイブリッド溶接部の拡散性水素量を低減することができることから、高強度鋼での耐低温割れ性を向上することができるので、産業上格段の効果を奏する。  According to the present invention, since the amount of diffusible hydrogen in the laser-arc hybrid weld can be reduced, the low temperature cracking resistance of the high strength steel can be improved, and thus an industrially significant effect is achieved.

1 被溶接材
1A 試験板
1B エンドタブ
2 アーク溶接電極
3 溶接ワイヤ
4 レーザ溶接ヘッド
5 レーザビーム
6 溶接ビード
1 Work Material 1A Test Plate 1B End Tab 2 Arc Welding Electrode 3 Welding Wire 4 Laser Welding Head 5 Laser Beam 6 Welding Bead

Claims (3)

引張強さが780MPa以上の高強度鋼板を溶接対象とし、溶接進行方向に対して、消耗電極式アーク溶接を先行に、レーザ溶接を後行に配置し、アーク溶接の溶接ワイヤ狙い位置とレーザビーム照射位置の距離を3〜5mmの範囲にするとともに、アーク溶接の電極角度を溶接進行方向側に20〜60°の範囲の後退角とし、レーザ溶接のレーザビームの入射角度を鉛直方向から溶接進行方向へ0〜30°の範囲の角度とすることを特徴とするレーザ・アークハイブリッド溶接方法。  A high strength steel plate with a tensile strength of 780 MPa or more is the object to be welded. Consumable electrode type arc welding is preceded and laser welding is arranged downstream of the welding direction, and the welding wire target position and laser beam of arc welding are arranged. The distance of the irradiation position is set to a range of 3 to 5 mm, the electrode angle of arc welding is set to a receding angle of 20 to 60 ° on the welding progress direction side, and the laser beam incidence angle of laser welding is progressed from the vertical direction. A laser-arc hybrid welding method characterized in that the angle is in the range of 0 to 30 ° to the direction. 前記アーク溶接の溶接電流が300A以下であることを特徴とする請求項1に記載のレーザ・アークハイブリッド溶接方法。  The laser-arc hybrid welding method according to claim 1, wherein a welding current of the arc welding is 300 A or less. 前記レーザ溶接のレーザ出力が3kW以上であることを特徴とする請求項1または2に記載のレーザ・アークハイブリッド溶接方法。
The laser-arc hybrid welding method according to claim 1 or 2, wherein the laser output of the laser welding is 3 kW or more.
JP2014518267A 2012-05-29 2013-05-23 Laser-arc hybrid welding method Pending JPWO2013179614A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014518267A JPWO2013179614A1 (en) 2012-05-29 2013-05-23 Laser-arc hybrid welding method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012121481 2012-05-29
JP2012121481 2012-05-29
PCT/JP2013/003278 WO2013179614A1 (en) 2012-05-29 2013-05-23 Laser-arc hybrid welding method
JP2014518267A JPWO2013179614A1 (en) 2012-05-29 2013-05-23 Laser-arc hybrid welding method

Publications (1)

Publication Number Publication Date
JPWO2013179614A1 true JPWO2013179614A1 (en) 2016-01-18

Family

ID=49672841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014518267A Pending JPWO2013179614A1 (en) 2012-05-29 2013-05-23 Laser-arc hybrid welding method

Country Status (4)

Country Link
JP (1) JPWO2013179614A1 (en)
KR (1) KR20140133935A (en)
CN (1) CN104349863A (en)
WO (1) WO2013179614A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2627220T3 (en) * 2014-05-09 2017-07-27 Gestamp Hardtech Ab Methods for the union of two formats and the formats and products obtained
CN104014934B (en) * 2014-06-19 2016-08-24 兰州理工大学 It is applicable to the electric arc auxiliary laser melt-brazing method of foreign material docking
CN104907696B (en) * 2015-06-03 2016-09-14 广东省工业技术研究院(广州有色金属研究院) A kind of laser-arc hybrid welding in industry method considering welding current value
CN105171243A (en) * 2015-10-23 2015-12-23 南京南车浦镇城轨车辆有限责任公司 Laser-arc hybrid welding method of medium-thickness board corner joint
KR101720087B1 (en) * 2016-06-01 2017-03-28 주식회사 포스코 Welded joint having excellent fatigue property and method of manufacturing the same
CN107309563A (en) * 2017-06-27 2017-11-03 重庆科技学院 A kind of laser electrical arc complex welding method of high-grade pipe line steel
CN111032275B (en) * 2017-09-20 2021-10-08 杰富意钢铁株式会社 Laser-arc hybrid welding method
CN110405344A (en) * 2018-04-27 2019-11-05 上海汇众汽车制造有限公司 The gas hole defect suppressing method of the electric arc combined welding of high-strength steel laser-MIG

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260715A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing superhigh strength welded steel pipe
JP2008023569A (en) * 2006-07-24 2008-02-07 Jfe Steel Kk METHOD FOR PRODUCING ULTRAHIGH-STRENGTH WELDED STEEL PIPE HAVING TENSILE STRENGTH EXCEEDING 800 MPa
JP2008248315A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Method for manufacturing ultrahigh-strength, high-deformability welded steel pipe having excellent toughness in base material and weld zone
JP2010125512A (en) * 2008-12-01 2010-06-10 Kobe Steel Ltd Laser arc combination welding method
JP2010167483A (en) * 2009-01-26 2010-08-05 Kobe Steel Ltd Laser-arc composite welding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224130A (en) * 2005-02-16 2006-08-31 Nippon Steel Corp Composite welding method of laser beam and metal argon gas (mag) arc
JP5219959B2 (en) * 2009-08-11 2013-06-26 三菱電機株式会社 T-joint welding method and apparatus
CN101733564A (en) * 2010-01-25 2010-06-16 长春理工大学 Laser-electric arc composite heat source high-speed welding method of ultrahigh strength steel
JP5509923B2 (en) * 2010-02-25 2014-06-04 新日鐵住金株式会社 Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260715A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing superhigh strength welded steel pipe
JP2008023569A (en) * 2006-07-24 2008-02-07 Jfe Steel Kk METHOD FOR PRODUCING ULTRAHIGH-STRENGTH WELDED STEEL PIPE HAVING TENSILE STRENGTH EXCEEDING 800 MPa
JP2008248315A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Method for manufacturing ultrahigh-strength, high-deformability welded steel pipe having excellent toughness in base material and weld zone
JP2010125512A (en) * 2008-12-01 2010-06-10 Kobe Steel Ltd Laser arc combination welding method
JP2010167483A (en) * 2009-01-26 2010-08-05 Kobe Steel Ltd Laser-arc composite welding method

Also Published As

Publication number Publication date
WO2013179614A1 (en) 2013-12-05
KR20140133935A (en) 2014-11-20
CN104349863A (en) 2015-02-11

Similar Documents

Publication Publication Date Title
WO2013179614A1 (en) Laser-arc hybrid welding method
Meng et al. High speed TIG–MAG hybrid arc welding of mild steel plate
US9364921B2 (en) Method of manufacturing laser welded steel pipe
US9321119B2 (en) Combination welding method using combination of gas metal arc welding and submerged-arc welding and combination arc welding machine
US9061374B2 (en) Laser/arc hybrid welding method and method for producing welded member using same
US20050263500A1 (en) Laser or laser/arc hybrid welding process with formation of a plasma on the backside
Asai et al. Application of plasma MIG hybrid welding to dissimilar joints between copper and steel
EP2695694A1 (en) Method of welding of elements for the power industry, particulary of sealed wall panels of power boilers using MIG/MAG and laser welding
JP5954009B2 (en) Manufacturing method of welded steel pipe
KR101472722B1 (en) Method for high-efficiency welding of thick steel plate
JP2014073523A (en) Submerged arc welding method
JP4978121B2 (en) Butt joining method of metal plates
JP3767369B2 (en) Method of lap welding of thin steel plates and welded thin steel plates
Fellman et al. The effect of shielding gas composition on welding performance and weld properties in hybrid CO 2 laser–gas metal arc welding of carbon manganese steel
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
EP3162489B1 (en) Method of butt welding steel plates and butt weld joint of steel plates
KR100631404B1 (en) The laser-arc hybrid welding weldment of carbon steel, and the laser-arc hybrid welding method for the same
US7038163B2 (en) Use of helium/nitrogen gas mixtures in up to 12 kW laser welding
JP2019051542A (en) Plasma keyhole welding method
JP2004017161A (en) Use of helium/nitrogen gas mixture in up to 8kw laser welding
JP5483553B2 (en) Laser-arc combined welding method
JP7160090B2 (en) Composite welding method for metallic materials and butt welding member for metallic materials
Wanjara et al. Hybrid laser-arc welding of AA6061-T6 butt joints
Westin et al. Laser hybrid welding of a lean duplex stainless steel
JP5954272B2 (en) Submerged arc welding method and welded joint manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308