JP5954272B2 - Submerged arc welding method and welded joint manufacturing method - Google Patents

Submerged arc welding method and welded joint manufacturing method Download PDF

Info

Publication number
JP5954272B2
JP5954272B2 JP2013145793A JP2013145793A JP5954272B2 JP 5954272 B2 JP5954272 B2 JP 5954272B2 JP 2013145793 A JP2013145793 A JP 2013145793A JP 2013145793 A JP2013145793 A JP 2013145793A JP 5954272 B2 JP5954272 B2 JP 5954272B2
Authority
JP
Japan
Prior art keywords
surface side
welding
submerged arc
steel plate
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013145793A
Other languages
Japanese (ja)
Other versions
JP2015016496A (en
Inventor
渉平 上月
渉平 上月
横田 智之
智之 横田
早川 直哉
直哉 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013145793A priority Critical patent/JP5954272B2/en
Publication of JP2015016496A publication Critical patent/JP2015016496A/en
Application granted granted Critical
Publication of JP5954272B2 publication Critical patent/JP5954272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼板のサブマージアーク溶接方法に関するものである。
また、本発明は、上記のサブマージアーク溶接方法によって形成される溶接継手に関するものである。
The present invention relates to a submerged arc welding method for steel plates.
The present invention also relates to a welded joint formed by the above-described submerged arc welding method.

鋼板を溶接する際に用いられるサブマージアーク溶接は、大電流を供給して溶込み深さおよびワイヤ溶着量を増加することができるので、高能率の溶接技術として広く普及している。特にサブマージアーク溶接により厚鋼板を突合せて溶接する場合では、多電極を採用して、厚鋼板の下面側と上面側をそれぞれ1パスで溶接(いわゆる両面一層盛り溶接)することも可能である。
この両面一層盛り溶接では、下面側の溶接金属と上面側の溶接金属が十分に重なり、未溶融部が生じないように、溶込み深さを確保する必要があるので、1000A以上の大電流を供給して溶接を行うのが一般的である(たとえば特許文献1、2)。
Submerged arc welding used when welding steel sheets is widely used as a highly efficient welding technique because it can supply a large current to increase the penetration depth and the amount of wire welding. In particular, in the case where the thick steel plates are butt-welded by submerged arc welding, it is also possible to employ multiple electrodes and weld the lower surface side and the upper surface side of the thick steel plate in one pass (so-called double-sided single layer welding).
In this double-sided single-layer welding, it is necessary to secure a depth of penetration so that the weld metal on the lower surface side and the weld metal on the upper surface side are sufficiently overlapped, and an unmelted portion does not occur. It is common to perform welding by supplying (for example, Patent Documents 1 and 2).

また、アンダーカット等の表面欠陥を抑制するために、幅の広いビードを形成する必要があるので、電圧を増加する等の溶接条件の調整も行われている。
しかしながら、電流や電圧が増加すると、溶接入熱の増大を招き、溶接熱影響部の靭性が劣化するという問題が生じる。このような問題に対して、溶接熱影響部の靭性を向上するために、鋼板の特性を改善する技術(たとえば特許文献3、4、5)、溶接施工にて細径ワイヤを使用する技術(たとえば特許文献6、7)、ビード形状を制御する技術(たとえば特許文献8、9)等が検討されている。
Moreover, since it is necessary to form a wide bead in order to suppress surface defects such as undercut, adjustment of welding conditions such as increasing the voltage is also performed.
However, an increase in current and voltage causes an increase in welding heat input, resulting in a problem that the toughness of the weld heat affected zone deteriorates. In order to improve the toughness of the weld heat-affected zone with respect to such a problem, a technique for improving the characteristics of the steel sheet (for example, Patent Documents 3, 4, and 5), a technique for using a thin wire in welding construction ( For example, Patent Documents 6 and 7), techniques for controlling the bead shape (for example, Patent Documents 8 and 9), and the like have been studied.

ところが、これら特許文献3〜9に開示された技術は、溶接熱影響部の靭性を安定して高めることが困難である。
つまり、鋼板の下面側を溶接した際の溶接熱影響部(特に粗粒域)が上面側の溶接によって再び加熱されるので、局所脆化域と呼ばれる靱性劣化領域が生じるが、溶接熱影響部の形状によっては脆化域の寸法や形状が変化するため、靱性にばらつきが生じる。
However, it is difficult for the techniques disclosed in Patent Documents 3 to 9 to stably increase the toughness of the weld heat affected zone.
That is, the weld heat affected zone (especially the coarse grain region) when the lower surface side of the steel plate is welded is heated again by welding on the upper surface side, so that a toughness deteriorated region called a local embrittlement zone occurs. Depending on the shape, the size and shape of the embrittled region change, and the toughness varies.

特開平11-138266号公報Japanese Patent Laid-Open No. 11-138266 特開平10-109171号公報Japanese Patent Laid-Open No. 10-109171 特開2002-146471号公報JP 2002-146471 A 特開2004-52104号公報JP 2004-52104 A 特開2009-91653号公報JP 2009-91653 A 特開2006-272377号公報JP 2006-272377 A 特開2009-241128号公報JP 2009-241128 特開2010-274275号公報JP 2010-274275 A 特開2010-274276号公報JP 2010-274276 A

上記の問題を解決するものとして、発明者らは先に、PCT/JP2013/003307において、
「サブマージアーク溶接で突合せ溶接を行うに際し、鋼板の下面側を溶接した後に上面側を溶接する溶接方法であって、
下面側溶接金属の溶融境界線と上面側溶接金属の溶融境界線とが交わる会合点と、該会合点から前記鋼板の上表面の方向へ5mmの位置を通り該上表面に平行な第1平行線と前記上面側溶接金属の溶融境界線とが交わる第1交点と、を結ぶ上面側境界直線が、前記第1平行線に垂直な線となす角をθ1(°)とするとき、該θ1が下記の(1)式を満足し、
かつ前記会合点と、前記会合点から前記鋼板の下表面の方向へ5mmの位置を通り該下表面に平行な第2平行線と前記下面側溶接金属の溶融境界線とが交わる第2交点と、を結ぶ下面側境界直線が、前記第2平行線に垂直な線となす角をθ2(°)とするとき、該θ2が下記の(2)式を満足するとともに、
前記鋼板の下面側の溶接入熱と上面側の溶接入熱との合計入熱Q(kJ/cm)が、前記鋼板の板厚t(mm)との間で(3)式の関係を満足することを特徴とするサブマージアーク溶接方法。

θ1≧15 ・・・(1)
θ2≧15 ・・・(2)
Q≦1.3×t1.37 ・・・(3)」
を提案した。
In order to solve the above problem, the inventors first in PCT / JP2013 / 003307,
“When performing butt welding by submerged arc welding, a welding method of welding the upper surface side after welding the lower surface side of the steel sheet,
A meeting point where the melting boundary line of the lower surface side weld metal intersects with the melting boundary line of the upper surface side welding metal, and a first parallel parallel to the upper surface passing through the position of 5 mm from the meeting point toward the upper surface of the steel sheet. When the upper surface side boundary straight line connecting the line and the first intersecting point where the upper surface side weld metal melt boundary line intersects with the line perpendicular to the first parallel line is θ1 (°), the θ1 Satisfies the following formula (1),
And a second intersection where the second parallel line passing through the position of 5 mm from the meeting point toward the lower surface of the steel plate and parallel to the lower surface intersects with the melting boundary line of the lower surface side weld metal. When the angle between the lower boundary line connecting the two and the line perpendicular to the second parallel line is θ2 (°), the θ2 satisfies the following expression (2):
The total heat input Q (kJ / cm) of the welding heat input on the lower surface side of the steel sheet and the welding heat input on the upper surface side satisfies the relationship of formula (3) with the plate thickness t (mm) of the steel sheet. A submerged arc welding method characterized by:
Record
θ1 ≧ 15 (1)
θ2 ≧ 15 (2)
Q ≦ 1.3 × t 1.37 (3) ”
Proposed.

上記の技術により、溶接熱影響部の靭性を安定して高めることが可能になったが、溶接条件によっては、全体での入熱量などの観点から上記したθ1およびθ2について所定の関係を満足させることが困難な場合もあり、この点に課題を残していた。   Although the above-mentioned technique has made it possible to stably improve the toughness of the weld heat affected zone, depending on the welding conditions, the above-described θ1 and θ2 satisfy the predetermined relationship from the viewpoint of the total heat input and the like. In some cases, it was difficult, and there was a problem in this respect.

本発明は、上掲したPCT/JP2013/003307に開示の技術の改良に係るもので、鋼板の下面側を溶接した後に上面側を溶接する両面各一層の多電極サブマージアーク溶接を行うにあたり、下面側の溶接における第1電極のアーク電圧、さらには上面側の溶接における第1電極のワイヤ径を調整することによって、高靭性の溶接熱影響部をより安定して得ることができるサブマージアーク溶接方法を提供することを目的とする。
また、本発明は、上記のサブマージアーク溶接方法で形成される溶接継手を提供することを目的とする。
なお、本発明では、溶接する鋼板の両面のうち、先に溶接する側の面を下面、その後で溶接する側の面を上面としている。
The present invention relates to the improvement of the technique disclosed in the above-mentioned PCT / JP2013 / 003307, and in performing multi-electrode submerged arc welding on each side of both surfaces in which the upper surface side is welded after the lower surface side of the steel plate is welded, Submerged arc welding method capable of more stably obtaining a high toughness heat-affected zone by adjusting the arc voltage of the first electrode in side welding and further adjusting the wire diameter of the first electrode in top side welding The purpose is to provide.
Moreover, an object of this invention is to provide the welded joint formed with said submerged arc welding method.
In addition, in this invention, the surface of the side to weld first among the both surfaces of the steel plate to weld is made into a lower surface, and the surface of the side welded after that is made into the upper surface.

さて、発明者は、種々の溶接条件にて、鋼板の下面側を溶接した後に上面側を溶接する両面各一層の多電極サブマージアーク溶接を行い、得られた溶接継手の溶接熱影響部の靭性を調査した。
その結果、鋼板の下面側の溶接における第1電極のアーク電圧を一定以上とすることで、上記したθ1、θ2およびQについて、より容易に所定の関係を満足させることができ、これによって、溶接継手の溶接熱影響部の靭性を一層安定して高められるとの知見を得た。
また、鋼板の上面側の溶接における第1電極のワイヤ径を一定の範囲内に調整することで、θ1を大きくし易くなり、溶接継手の溶接熱影響部の靭性をさらに安定して高められるとの知見を得た。
本発明は上記の知見に立脚するものである。
Now, the inventor performed multi-electrode submerged arc welding on each side of the double-sided welded on the upper surface side after welding the lower surface side of the steel sheet under various welding conditions, and the toughness of the welded heat affected zone of the resulting welded joint investigated.
As a result, by setting the arc voltage of the first electrode in welding on the lower surface side of the steel sheet to a certain level or more, it is possible to more easily satisfy the predetermined relationship with respect to the above-described θ1, θ2, and Q, thereby It was found that the toughness of the weld heat-affected zone of the joint can be improved more stably.
Further, by adjusting the wire diameter of the first electrode in the welding on the upper surface side of the steel sheet within a certain range, it becomes easy to increase θ1, and the toughness of the weld heat affected zone of the welded joint can be further stably increased. I got the knowledge.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.鋼板の下面側を溶接した後に上面側を溶接する両面各一層の多電極サブマージアーク溶接方法であって、
該鋼板の下面側の溶接における第1電極のアーク電圧を40V以上として溶接するものとし、
下面側溶接金属の溶融境界線と上面側溶接金属の溶融境界線とが交わる会合点と、該会合点から前記鋼板の上表面の方向へ5mmの位置を通り該上表面に平行な第1平行線と前記上面側溶接金属の溶融境界線とが交わる第1交点と、を結ぶ上面側境界直線が、前記第1平行線に垂直な線となす角をθ1(°)とするとき、該θ1が下記の(1)式を満足し、
かつ前記会合点と、前記会合点から前記鋼板の下表面の方向へ5mmの位置を通り該下表面に平行な第2平行線と前記下面側溶接金属の溶融境界線とが交わる第2交点と、を結ぶ下面側境界直線が、前記第2平行線に垂直な線となす角をθ2(°)とするとき、該θ2が下記の(2)式を満足するとともに、
前記鋼板の下面側の溶接入熱と上面側の溶接入熱との合計入熱Q(kJ/cm)が、前記鋼板の板厚t(mm)との間で(3)式の関係を満足することを特徴とするサブマージアーク溶接方法。

θ1≧15 ・・・(1)
θ2≧15 ・・・(2)
Q≦1.3×t1.37 ・・・(3)
That is, the gist configuration of the present invention is as follows.
1. It is a multi-electrode submerged arc welding method for each layer on both sides that welds the upper surface side after welding the lower surface side of the steel sheet,
The arc voltage of the first electrode in the welding on the lower surface side of the steel sheet shall be 40 V or higher,
A meeting point where the melting boundary line of the lower surface side weld metal intersects with the melting boundary line of the upper surface side welding metal, and a first parallel parallel to the upper surface passing through the position of 5 mm from the meeting point toward the upper surface of the steel sheet. When the upper surface side boundary straight line connecting the line and the first intersecting point where the upper surface side weld metal melt boundary line intersects with the line perpendicular to the first parallel line is θ1 (°), the θ1 Satisfies the following formula (1),
And a second intersection where the second parallel line passing through the position of 5 mm from the meeting point toward the lower surface of the steel plate and parallel to the lower surface intersects with the melting boundary line of the lower surface side weld metal. When the angle between the lower boundary line connecting the two and the line perpendicular to the second parallel line is θ2 (°), the θ2 satisfies the following expression (2):
The total heat input Q (kJ / cm) of the welding heat input on the lower surface side of the steel sheet and the welding heat input on the upper surface side satisfies the relationship of formula (3) with the plate thickness t (mm) of the steel sheet. A submerged arc welding method characterized by:
Record
θ1 ≧ 15 (1)
θ2 ≧ 15 (2)
Q ≦ 1.3 × t 1.37 (3)

2.前記鋼板の上面側の溶接における第1電極として、直径:2.0〜3.2mmのワイヤを使用することを特徴とする前記1に記載のサブマージアーク溶接方法。 2. 2. The submerged arc welding method according to 1 above, wherein a wire having a diameter of 2.0 to 3.2 mm is used as the first electrode in welding on the upper surface side of the steel plate.

3.前記θ1と前記θ2とが、次式(4)
θ1+θ2≧50 ・・・(4)
を満足することを特徴とする前記1または2に記載のサブマージアーク溶接方法。
3. The θ1 and the θ2 are expressed by the following equation (4)
θ1 + θ2 ≧ 50 (4)
The submerged arc welding method according to 1 or 2 above, wherein:

4.前記鋼板の上面側の溶接入熱が、前記鋼板の下面側の溶接入熱よりも大きいことを特徴とする前記1〜3のいずれか一項に記載のサブマージアーク溶接方法。 4). 4. The submerged arc welding method according to any one of claims 1 to 3, wherein a welding heat input on the upper surface side of the steel plate is larger than a welding heat input on the lower surface side of the steel plate.

5.前記鋼板の下面側および上面側の溶接を、それぞれ3電極以上で行うことを特徴とする前記1〜4のいずれか一項に記載のサブマージアーク溶接方法。 5. 5. The submerged arc welding method according to any one of claims 1 to 4, wherein the welding of the lower surface side and the upper surface side of the steel sheet is performed with three or more electrodes, respectively.

6.前記1〜5のいずれか一項に記載のサブマージアーク溶接方法により、溶接継手を形成することを特徴とする溶接継手の製造方法6). Method for producing a welded joint, characterized in that the submerged arc welding method according to any one of the 1-5, to form a welded joint.

本発明によれば、鋼板のサブマージアーク溶接において靭性に優れた溶接熱影響部を安定して得ることができるので、産業上格段の効果を奏する。   According to the present invention, a weld heat-affected zone having excellent toughness can be stably obtained in submerged arc welding of a steel sheet.

本発明で形成される溶接継手の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the welded joint formed by this invention. 靭性劣化領域の例を模式的に示す断面図である。It is sectional drawing which shows the example of a toughness degradation area | region typically. 鋼板の下面側の溶接における第1電極のアーク電圧と、吸収エネルギーV-30(J)との関係を示す図である。And arc voltage of the first electrode on the lower surface side of the welded steel plates, is a diagram showing the relationship between the absorbed energy V E -30 (J). 鋼板の開先形状の例を模式的に示す断面図である。It is sectional drawing which shows the example of the groove shape of a steel plate typically. シャルピー衝撃試験片の採取位置を模式的に示す断面図である。It is sectional drawing which shows typically the collection position of a Charpy impact test piece.

以下、図面に基づき本発明を具体的に説明する。
図1は、本発明で形成される溶接継手の例を模式的に示す断面図であり、ここで示した溶接継手は、所定の開先形状とした鋼板1同士を突合せ、鋼板1の下面側をサブマージアーク溶接で溶接して溶接金属2(以下、下面側溶接金属という)を得て、次に、鋼板1の上面側をサブマージアーク溶接で溶接して溶接金属3(以下、上面側溶接金属という)を得ることで、形成される。
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing an example of a welded joint formed in the present invention. The welded joint shown here buttes steel plates 1 having a predetermined groove shape, and the lower surface side of the steel plate 1. Is welded by submerged arc welding to obtain weld metal 2 (hereinafter referred to as lower surface side weld metal), and then the upper surface side of steel plate 1 is welded by submerged arc welding to obtain weld metal 3 (hereinafter referred to as upper surface side weld metal). It is formed by obtaining.

この溶接継手において、下面側の溶融境界線4と上面側の溶融境界線5とが交わる点6(以下、会合点という)から鋼板1の上表面の方向へ5mmの位置を通り上表面に平行な線7を第1平行線とする。その第1平行線7が、上面側の溶融境界線5と交わる点8を第1交点とする。そして、会合点6と第1交点8とを結ぶ直線9を上面側境界直線とし、その上面側境界直線9と第1平行線7に垂直な線とのなす角をθ1(°)とする。
なお、会合点は2ヶ所に形成されるが、基準としての会合点は板厚中心寄りの点を採用することが望ましい。
In this welded joint, the lower surface side melting boundary line 4 and the upper surface side melting boundary line 5 cross from the point 6 (hereinafter referred to as the meeting point) to the upper surface of the steel plate 1 through a position of 5 mm and parallel to the upper surface. A straight line 7 is defined as a first parallel line. A point 8 at which the first parallel line 7 intersects the melting boundary line 5 on the upper surface side is defined as a first intersection. A straight line 9 connecting the meeting point 6 and the first intersection point 8 is defined as an upper surface side boundary straight line, and an angle formed by the upper surface side boundary straight line 9 and a line perpendicular to the first parallel line 7 is defined as θ1 (°).
Although the meeting points are formed at two places, it is desirable to use a point closer to the center of the plate thickness as the reference meeting point.

また、会合点6から鋼板1の下表面の方向へ5mmの位置を通り下表面に平行な線10を第2平行線とする。その第2平行線10が、下面側の溶融境界線4と交わる点11を第2交点とする。そして、会合点6と第2交点11とを結ぶ直線12を下面側境界直線とし、その下面側境界直線12と第2平行線10に垂直な線とのなす角をθ2(°)とする。
なお、会合点6と第1平行線7および第2平行線10との距離は、靭性を評価するためのシャルピー衝撃試験の試験片の採取位置にあわせて、それぞれ5mmに設定したものである。
Further, a line 10 passing through a position of 5 mm from the meeting point 6 toward the lower surface of the steel plate 1 and parallel to the lower surface is defined as a second parallel line. A point 11 at which the second parallel line 10 intersects the melting boundary line 4 on the lower surface side is taken as a second intersection point. A straight line 12 connecting the meeting point 6 and the second intersection 11 is defined as a lower boundary line, and an angle formed by the lower boundary line 12 and a line perpendicular to the second parallel line 10 is defined as θ2 (°).
The distance between the meeting point 6 and the first parallel line 7 and the second parallel line 10 is set to 5 mm in accordance with the sampling position of the specimen of the Charpy impact test for evaluating toughness.

そして、本発明の溶接方法では、溶接継手の溶接熱影響部の靭性を安定して高めるため、上記のθ1とθ2について、それぞれ以下の関係を満足させることが必要である。
θ1:15°以上
角度θ1を15°以上とすることにより、溶接熱影響部の靭性が向上する。その理由は、上面側境界直線9が水平に近づくとき裂の伝播経路が複雑化し、き裂が進展する際に必要な伝播エネルギーが高くなるためであると考えられる。
したがって、θ1は以下の(1)式に示すとおり、15°以上とする。しかしながら、θ1が50°を超えるような溶接部を形成するには、多大な溶接入熱が必要となる。そのため、θ1は、15〜50°の範囲とすることが好ましい。より好ましくは30〜50°の範囲である。
θ1≧15 ・・・(1)
In the welding method of the present invention, in order to stably increase the toughness of the weld heat affected zone of the welded joint, it is necessary to satisfy the following relations for the above θ1 and θ2.
θ1: 15 ° or more By setting the angle θ1 to 15 ° or more, the toughness of the heat affected zone is improved. The reason is considered to be that the propagation path of the crack becomes complicated when the upper surface side boundary straight line 9 approaches to the horizontal, and the propagation energy required when the crack progresses increases.
Therefore, θ1 is set to 15 ° or more as shown in the following equation (1). However, in order to form a welded portion where θ1 exceeds 50 °, a great amount of welding heat input is required. Therefore, it is preferable that θ1 be in the range of 15 to 50 °. More preferably, it is the range of 30-50 degrees.
θ1 ≧ 15 (1)

θ2:15°以上
角度θ2を15°以上とすることにより、溶接熱影響部の靭性が向上する。その理由は、上述したところと同様で、下面側境界直線12が水平に近づくとき裂の伝播経路が複雑化し、き裂が進展する際に必要な伝播エネルギーが高くなるためであると考えられる。
したがって、θ2も以下の(2)式に示すとおり、15°以上とする。しかしながら、θ2が50°を超えるような溶接部を形成するには、多大な溶接入熱が必要となる。そのため、θ2は、15〜50°の範囲とすることが好ましい。より好ましくは30〜50°の範囲である。
θ2≧15 ・・・(2)
θ2: 15 ° or more By setting the angle θ2 to 15 ° or more, the toughness of the heat affected zone is improved. The reason for this is the same as described above, and it is considered that the propagation path of the crack becomes complicated when the lower surface side boundary straight line 12 approaches to the horizontal, and the propagation energy required when the crack progresses increases.
Therefore, θ2 is set to 15 ° or more as shown in the following equation (2). However, enormous welding heat input is required to form a welded portion where θ2 exceeds 50 °. Therefore, θ2 is preferably in the range of 15 to 50 °. More preferably, it is the range of 30-50 degrees.
θ2 ≧ 15 (2)

ここに、板厚が25.4mm以上の厚鋼板の溶接では、溶接金属の形状が板厚方向により伸長した形状となるので、角度θ1ならびに角度θ2が15°以下になりやすい。したがって、このような厚鋼板では、特に靭性の向上が期待できる。
なお、本発明を適用して特に有効な鋼板の板厚は、20〜40mm程度である。
Here, in the welding of a thick steel plate having a plate thickness of 25.4 mm or more, the shape of the weld metal becomes a shape elongated in the plate thickness direction, so that the angle θ1 and the angle θ2 tend to be 15 ° or less. Therefore, such a thick steel plate can be expected to improve toughness.
Note that the thickness of the steel sheet that is particularly effective when the present invention is applied is about 20 to 40 mm.

θ1+θ2:50°以上
また、θ1とθ2の合計は、以下の(4)式に示すように50°以上とすることが好ましい。θ1+θ2を50°以上とすれば、図2に示すような下面側の溶接によって生じる溶接熱影響部13の靭性が上面側の溶接において再加熱されて劣化する領域、いわゆる靭性劣化領域14の面積を小さくすることができ、その結果、靭性の劣化が抑制されるからである。したがって、θ1+θ2は50°以上とすることが好ましい。一方、θ1+θ2が90°を超えると、溶接入熱が過大となるので、θ1+θ2は90°以下とすることが好ましい。
θ1+θ2≧50 ・・・(4)
θ1 + θ2: 50 ° or more The total of θ1 and θ2 is preferably 50 ° or more as shown in the following equation (4). If θ1 + θ2 is set to 50 ° or more, the area of the so-called toughness deterioration region 14 in which the toughness of the weld heat affected zone 13 caused by the lower surface side welding as shown in FIG. This is because it can be reduced, and as a result, deterioration of toughness is suppressed. Therefore, θ1 + θ2 is preferably set to 50 ° or more. On the other hand, if θ1 + θ2 exceeds 90 °, the welding heat input becomes excessive, so θ1 + θ2 is preferably 90 ° or less.
θ1 + θ2 ≧ 50 (4)

以上、θ1とθ2について、所定の関係を満足させる意義について説明したが、本発明では、これらθ1、θ2に加え、鋼板の下面側の溶接入熱と上面側の溶接入熱との合計入熱Qを一定以下に抑えることが、溶接継手の溶接熱影響部の靭性を安定して高めるために必要である。
Q:1.3×t1.37kJ/cm以下
鋼板1の下面側と上面側を溶接する際の溶接入熱は、鋼板1の板厚に応じて設定する必要がある。というのは、板厚が大きい鋼板、特に板厚が25.4mm以上の厚鋼板では、入熱が増大し、溶接熱影響部の靭性が劣化しやすいからである。
したがって、鋼板の下面側の溶接入熱と上面側の溶接入熱との合計入熱Q(kJ/cm)が鋼板1の板厚tに対して以下の(3)式を満たす範囲内で、溶接を行うものとする。
Q≦1.3×t1.37 ・・・(3)
ただし、厚鋼板のサブマージアーク溶接においては、Qがt1.37 kJ/cm未満では、十分な溶込み深さと溶着量を確保するのが困難になる。そのため、このような厚鋼板、特に板厚が25.4〜40mmの厚鋼板のサブマージアーク溶接では、Qはt1.37〜1.3×t1.37kJ/cmの範囲内とすることが好ましい。
As described above, the significance of satisfying the predetermined relationship with respect to θ1 and θ2 has been described, but in the present invention, in addition to these θ1 and θ2, the total heat input of the welding heat input on the lower surface side and the welding heat input on the upper surface side of the steel sheet. It is necessary to keep Q below a certain level in order to stably increase the toughness of the weld heat affected zone of the welded joint.
Q: 1.3 × t 1.37 kJ / cm or less The welding heat input when welding the lower surface side and the upper surface side of the steel plate 1 needs to be set according to the thickness of the steel plate 1. This is because, in a steel plate having a large thickness, particularly a thick steel plate having a thickness of 25.4 mm or more, the heat input increases and the toughness of the weld heat affected zone tends to deteriorate.
Accordingly, the total heat input Q (kJ / cm) of the welding heat input on the lower surface side and the upper surface side of the steel plate satisfies the following formula (3) with respect to the plate thickness t of the steel plate 1, Welding shall be performed.
Q ≦ 1.3 × t 1.37 (3)
However, in submerged arc welding of thick steel plates, if Q is less than t 1.37 kJ / cm, it is difficult to ensure a sufficient penetration depth and welding amount. Therefore, in the submerged arc welding of such a thick steel plate, particularly a thick steel plate having a thickness of 25.4 to 40 mm, Q is preferably in the range of t 1.37 to 1.3 × t 1.37 kJ / cm.

なお、下面側と上面側の溶接入熱は、同一にする必要はなく、上面側の溶接入熱を下面側の溶接入熱よりも大きくすることが好ましい。その理由は、下面側の溶接における溶接入熱を低く抑えることによって、下面側の溶融境界線4近傍の溶接熱影響部の粗粒化を防止することができ、その結果、上面側を溶接する際の再加熱による靭性劣化を防止できるからである。   The welding heat input on the lower surface side and the upper surface side do not need to be the same, and it is preferable that the welding heat input on the upper surface side is larger than the welding heat input on the lower surface side. The reason for this is that by suppressing the welding heat input in the welding on the lower surface side, coarsening of the weld heat affected zone in the vicinity of the fusion boundary 4 on the lower surface side can be prevented, and as a result, the upper surface side is welded. This is because deterioration of toughness due to reheating at the time can be prevented.

以上説明した通り、本発明では、溶接熱影響部において優れた靭性を安定して得るために、上記したθ1、θ2およびQについて所定の関係を満足させるのであるが、より容易にこれらの関係を満足させるには、以下に示す溶接条件、特に鋼板の下面側の溶接における溶接進行方向の先頭の電極(以下、第1電極という)のアーク電圧を適正に制御することが肝要である。
なお、本発明は、鋼板の下面側を溶接した後に上面側を1パスで溶接する両面各一層の多電極サブマージアーク溶接方法であるが、電極数は上面側、下面側とも2電極以上、好ましくは3電極以上とする。より好ましくは3電極または4電極である。
As described above, in the present invention, in order to stably obtain excellent toughness in the weld heat affected zone, the above-described θ1, θ2, and Q satisfy the predetermined relationship, but these relationships can be more easily achieved. In order to satisfy the requirements, it is important to appropriately control the arc voltage of the leading electrode (hereinafter referred to as the first electrode) in the welding progress direction in the welding conditions shown below, particularly welding on the lower surface side of the steel plate.
Although the present invention is a multi-electrode submerged arc welding method for each double-sided surface in which the upper surface side is welded in one pass after the lower surface side of the steel plate is welded, the number of electrodes is preferably two or more on both the upper surface side and the lower surface side. Is 3 electrodes or more. More preferred are 3 electrodes or 4 electrodes.

鋼板の下面側の溶接における第1電極のアーク電圧:40V以上
まず、本発明の溶接方法において、鋼板の下面側の溶接における第1電極のアーク電圧を40V以上とすることに至らしめた実験について説明する。
後述する実施例で示す溶接記号3、4、5および6の条件をベースとして、鋼板の下面側の溶接における第1電極のアーク電圧を種々変化させて、両面各一層のサブマージアーク溶接を行い、種々の溶接継手を形成した。
First, the arc voltage of the first electrode in welding on the lower surface side of the steel plate: 40 V or more First, in the welding method of the present invention, the experiment that led to the arc voltage of the first electrode in welding on the lower surface side of the steel plate being 40 V or more. explain.
Based on the conditions of welding symbols 3, 4, 5 and 6 shown in the examples described later, the arc voltage of the first electrode in the welding on the lower surface side of the steel sheet is variously changed, and submerged arc welding is performed on each layer on both sides. Various weld joints were formed.

ついで、得られた溶接継手について、後述する実施例と同様の方法で、試験温度:−30℃における吸収エネルギーV-30(J)を測定した。
測定した吸収エネルギーV-30(J)を、鋼板の下面側の溶接における第1電極のアーク電圧に対してプロットしたものを図3に示す。なお、ここでは、鋼板の上面側の溶接における第1電極のワイヤ直径毎に、測定した吸収エネルギーV-30(J)をプロットしている。
Next, with respect to the obtained welded joint, the absorbed energy V E -30 (J) at a test temperature of −30 ° C. was measured by the same method as in the examples described later.
FIG. 3 shows a plot of the measured absorbed energy V E -30 (J) against the arc voltage of the first electrode in welding on the lower surface side of the steel plate. Here, the measured absorbed energy V E -30 (J) is plotted for each wire diameter of the first electrode in welding on the upper surface side of the steel plate.

図3に示したように、鋼板の上面側の溶接における第1電極のワイヤ直径がいずれであっても、鋼板の下面側の溶接における第1電極のアーク電圧が40V以上となると、靭性が大きく向上する。
発明者は、上記の実験結果に基づき、鋼板の下面側の溶接における第1電極のアーク電圧を40V以上とすることに想到したのである。
As shown in FIG. 3, regardless of the wire diameter of the first electrode in the welding on the upper surface side of the steel sheet, the toughness is increased when the arc voltage of the first electrode in the welding on the lower surface side of the steel sheet is 40 V or more. improves.
Based on the above experimental results, the inventor has conceived that the arc voltage of the first electrode in welding on the lower surface side of the steel sheet is 40 V or higher.

ここに、鋼板の下面側の溶接における第1電極のアーク電圧を40V以上とすることで靭性が向上する理由は、電圧を高くすることでアークが広がり、そのため、下面側の溶融境界線がその先端で広がって、θ2が大きくなり易いためであると考えられる。
一方、電圧が高すぎると、溶接入熱が増大するため良好な靭性を得られず、さらには溶接電流が不安定化し溶接欠陥が生じるおそれがある。このため、鋼板の下面側の溶接における第1電極のアーク電圧の上限は60Vとすることが好ましい。より好ましくは50V以下である。
なお、鋼板の上面側の溶接では、第1電極のアーク電圧は特に限定されることはないが、例えば30〜38V程度とすれば、上記のθ1、θ2およびQを適正範囲内に好適に制御することができる。
Here, the reason that the toughness is improved by setting the arc voltage of the first electrode in the welding on the lower surface side of the steel sheet to 40 V or more is that the arc spreads by increasing the voltage. This is considered to be because it spreads at the tip and θ2 tends to increase.
On the other hand, if the voltage is too high, welding heat input increases, so that good toughness cannot be obtained, and further, the welding current may become unstable and welding defects may occur. For this reason, it is preferable that the upper limit of the arc voltage of the 1st electrode in welding of the lower surface side of a steel plate shall be 60V. More preferably, it is 50 V or less.
In the welding on the upper surface side of the steel plate, the arc voltage of the first electrode is not particularly limited. However, for example, if it is about 30 to 38 V, the above θ1, θ2 and Q are suitably controlled within an appropriate range. can do.

鋼板の上面側の溶接における第1電極のワイヤ直径:2.0〜3.2mm
また、鋼板の上面側の溶接における第1電極には、直径:2.0〜3.2mmのワイヤを使用することが好ましい。直径:3.2mm以下のワイヤを使用することで、アークが狭くなり、図1に示すような深い溶け込みが鋼板の上面側の溶接で得られるため、θ1を大きくすることが容易になる。一方、ワイヤ直径が2.0mm未満になると、アーク幅が狭くなり過ぎ、上面側の溶融境界線が先鋭になって、却ってθ1が小さくなる。加えて、ワイヤ径に対して溶接電流が過大になるため、ジュール発熱によるワイヤ溶融が不安定になり、結果としてアーク長が不安定になる。したがって、鋼板の上面側の溶接における第1電極のワイヤ直径は2.0〜3.2mmの範囲とすることが好ましい。より好ましくは2.0〜2.4mmの範囲である。
なお、鋼板の下面側の溶接における第1電極で使用するワイヤ直径は特に限定する必要はないが、3電極以上で溶接を行う場合には、鋼板の上面側の溶接における第1電極のワイヤ直径以上とすることが好ましい。
Wire diameter of the first electrode in welding on the upper surface side of the steel plate: 2.0 to 3.2 mm
Moreover, it is preferable to use a wire having a diameter of 2.0 to 3.2 mm for the first electrode in the welding on the upper surface side of the steel plate. By using a wire having a diameter of 3.2 mm or less, the arc is narrowed, and deep penetration as shown in FIG. 1 is obtained by welding on the upper surface side of the steel sheet, so that it is easy to increase θ1. On the other hand, when the wire diameter is less than 2.0 mm, the arc width becomes too narrow, the upper boundary of the melt becomes sharp, and θ1 becomes smaller. In addition, since the welding current becomes excessive with respect to the wire diameter, the wire melting due to Joule heating becomes unstable, and as a result, the arc length becomes unstable. Therefore, the wire diameter of the first electrode in welding on the upper surface side of the steel plate is preferably in the range of 2.0 to 3.2 mm. More preferably, it is the range of 2.0-2.4 mm.
In addition, the wire diameter used in the first electrode in the welding on the lower surface side of the steel plate is not particularly limited. However, when welding is performed with three or more electrodes, the wire diameter of the first electrode in the welding on the upper surface side of the steel plate. The above is preferable.

また、第2電極(溶接進行方向の2番目の電極)以降の各電極のアーク電圧およびワイヤ直径については、鋼板の下面側および上面側の溶接とも特に限定されることはなく、例えばアーク電圧を37〜44V程度とし、直径:3.2〜4.0mm程度のワイヤを使用すればよい。   Further, the arc voltage and the wire diameter of each electrode after the second electrode (second electrode in the welding progress direction) are not particularly limited to the welding on the lower surface side and the upper surface side of the steel sheet. A wire having a diameter of about 37 to 44 V and a diameter of about 3.2 to 4.0 mm may be used.

以上、θ1、θ2およびQについて、より容易に所定の関係を満足させるための溶接条件について説明したが、上記以外の溶接条件は特に限定されず、本発明の効果は、開先形状や溶接電流、溶接速度、電極配置に拘らず、発揮される。   As described above, the welding conditions for satisfying the predetermined relationship more easily with respect to θ1, θ2, and Q have been described. However, the welding conditions other than the above are not particularly limited, and the effect of the present invention is the groove shape and the welding current. Regardless of welding speed and electrode arrangement.

また、ワイヤは、一般のサブマージアーク溶接にて広く用いられているソリッドワイヤを本発明でも使用できるが、金属粉等の充填材を内包したコアードワイヤも使用でき、さらにフラックスとしては、高塩基性の溶融型フラックス等が好適である。
なお、溶接に供する鋼材については、特に限定されることはないが、とりわけ低炭素の高強度鋼等が有利に適合する。
In addition, as the wire, a solid wire widely used in general submerged arc welding can be used in the present invention, but a cored wire including a filler such as metal powder can also be used. A melt type flux or the like is preferable.
In addition, although it does not specifically limit about the steel materials used for welding, Especially low-carbon high-strength steel etc. fit advantageously.

表1に示す成分を有する鋼板(板厚t:39mm)に、図4に示すような形状の開先を形成した後、下面側のサブマージアーク溶接(1パス)を行い、次いで上面側のサブマージアーク溶接(1パス)を行った。   After forming a groove having a shape as shown in FIG. 4 on a steel plate (thickness t: 39 mm) having the components shown in Table 1, submerged arc welding (one pass) on the lower surface side is performed, followed by submerging on the upper surface side. Arc welding (1 pass) was performed.

Figure 0005954272
Figure 0005954272

鋼板1の開先形状を表2に示す。表2中の下面側の開先角度は図4に示す角β(°)、上面側の開先角度は図4に示す角α(°)である。また、表2中の下面の開先深さは図4に示すV(mm)、上面の開先深さは図4に示すU(mm)である。   Table 2 shows the groove shape of the steel plate 1. In Table 2, the groove angle on the lower surface side is an angle β (°) shown in FIG. 4, and the groove angle on the upper surface side is an angle α (°) shown in FIG. In Table 2, the groove depth on the lower surface is V (mm) shown in FIG. 4, and the groove depth on the upper surface is U (mm) shown in FIG.

Figure 0005954272
Figure 0005954272

サブマージアーク溶接の溶接条件を表3、4に示す。表3に示すように、ここでは全て4電極(1パス)で溶接を行った。また、表3に示す電流は、いずれも第1電極を直流とし、第2電極以降を交流とした。
表4中の極間距離は、鋼板1の表面(下面または上面)での各電極におけるワイヤ先端の間隔(mm)であり、母材−電極間距離は、鋼板1の表面(下面または上面)とコンタクトチップ下面との間隔(mm)である。また、電極角度は、鋼板に垂直な線とワイヤとがなす角であり、前進角(°)を正、後退角(°)を負としている。
ここで、前進角は、ワイヤ先端がトーチよりも溶接進行方向の前方に位置するようにワイヤを傾斜させた場合における、鋼板に垂直な線とワイヤのなす角であり、後退角は、ワイヤ先端がトーチよりも溶接進行方向の後方に位置するようにワイヤを傾斜させた場合における、鋼板に垂直な線とワイヤのなす角である。
Tables 3 and 4 show the welding conditions for submerged arc welding. As shown in Table 3, here, welding was performed with four electrodes (one pass). Moreover, as for the electric current shown in Table 3, all made the 1st electrode into direct current | flow, and made the 2nd electrode and later into alternating current.
The distance between the electrodes in Table 4 is the distance (mm) between the wire tips of each electrode on the surface (lower surface or upper surface) of the steel plate 1, and the distance between the base material and the electrode is the surface (lower surface or upper surface) of the steel plate 1. And the distance (mm) between the contact chip and the lower surface of the contact chip. The electrode angle is an angle formed by a wire perpendicular to the steel sheet and the wire, and the advancing angle (°) is positive and the receding angle (°) is negative.
Here, the advance angle is an angle formed by a wire perpendicular to the steel plate and the wire when the wire is inclined so that the wire tip is positioned in front of the welding direction with respect to the torch, and the receding angle is the wire tip Is the angle between the wire perpendicular to the steel sheet and the wire when the wire is inclined so that it is positioned behind the torch in the welding direction.

Figure 0005954272
Figure 0005954272

Figure 0005954272
Figure 0005954272

これらの各条件(溶接記号1〜11)で溶接を行い、それぞれ5個ずつ溶接継手を作製した。次に、図5に示す試験片採取位置15からシャルピー衝撃試験片および断面マクロ試験片を採取した。
シャルピー衝撃試験片は、JIS Z 3111に規定する4号試験片として、各溶接継手から20個ずつ(すなわち溶接記号ごとに100個ずつ)採取した。シャルピー衝撃試験片は、ノッチが鋼板の板厚方向に平行となり、かつ会合点6を含む面(鋼板1の表面に平行な面)が試験片の板厚方向中央となるように採取した。そのノッチの位置は、ノッチ底における溶接金属と溶接熱影響部の比率が50%ずつとなる位置とした。
Welding was performed under each of these conditions (welding symbols 1 to 11), and five weld joints were produced. Next, a Charpy impact test piece and a cross-sectional macro test piece were collected from the test piece collection position 15 shown in FIG.
Charpy impact test pieces were taken as No. 4 test pieces specified in JIS Z 3111, 20 pieces from each welded joint (that is, 100 pieces for each weld symbol). The Charpy impact test piece was sampled so that the notch was parallel to the plate thickness direction of the steel plate and the plane including the meeting point 6 (plane parallel to the surface of the steel plate 1) was the center of the test piece in the plate thickness direction. The position of the notch was a position where the ratio of the weld metal and the weld heat affected zone at the notch bottom was 50%.

シャルピー衝撃試験は、JIS Z 2242に準拠(試験温度:−30℃)して行い、吸収エネルギーV-30(J)を測定した。
その結果を表5に示す。ここで、表5中の吸収エネルギーV-30は、溶接記号ごとに100個のシャルピー衝撃試験片に対するシャルピー衝撃試験で得られた測定値のうち、最も低い値を示している。
なお、この値が56J以上であれば、溶接熱影響部において優れた靭性が安定して得られていると言える。
また、断面マクロ試験片は、各溶接継手から3個ずつ(すなわち溶接記号ごとに15個ずつ)採取した。それぞれの断面マクロ試験片から角度θ1(°)とθ2(°)を測定した結果を表5に示す。なお、表5中のθ1、θ2は、溶接記号ごとに15個の試験片を測定したときの平均値である。
The Charpy impact test was performed in accordance with JIS Z 2242 (test temperature: −30 ° C.), and the absorbed energy V E -30 (J) was measured.
The results are shown in Table 5. Here, the absorbed energy V E -30 in Table 5 indicates the lowest value among the measured values obtained in the Charpy impact test for 100 Charpy impact test pieces for each welding symbol.
If this value is 56 J or more, it can be said that excellent toughness is stably obtained in the weld heat affected zone.
Further, three cross-section macro test pieces were collected from each welded joint (that is, 15 for each weld symbol). Table 5 shows the results of measuring the angles θ1 (°) and θ2 (°) from the respective cross-section macro test pieces. In Table 5, θ1 and θ2 are average values when 15 test pieces are measured for each welding symbol.

Figure 0005954272
Figure 0005954272

表5に示した溶接記号3〜6および8〜11は発明例である。これらの溶接記号3〜6および8〜11では、いずれも安定して優れた靭性が得られた。
特に、鋼板の上面側の溶接における第1電極のワイヤ直径が2.0〜2.4mmの範囲である溶接記号3、4、8、9では、いずれもθ1+θ2が(4)式を満足し、86J以上の高い靭性が安定して得られた。
The welding symbols 3-6 and 8-11 shown in Table 5 are invention examples. In these welding symbols 3 to 6 and 8 to 11, all excellent toughnesses were obtained.
In particular, in welding symbols 3, 4, 8, and 9 where the wire diameter of the first electrode in the welding on the upper surface side of the steel sheet is in the range of 2.0 to 2.4 mm, θ1 + θ2 satisfies the expression (4) and is 86 J or more. High toughness was stably obtained.

一方、比較例である溶接記号1は、鋼板の下面側の溶接における第1電極のアーク電圧が40Vに満たず、θ1およびθ2がいずれも15°未満であるから、溶接熱影響部において優れた靭性が安定して得られなかった。
また、溶接記号2、7は、θ1がいずれも15°未満であるから、溶接熱影響部において優れた靭性が安定して得られなかった。
On the other hand, the welding symbol 1 as a comparative example is excellent in the weld heat affected zone because the arc voltage of the first electrode in welding on the lower surface side of the steel sheet is less than 40 V and both θ1 and θ2 are less than 15 °. The toughness was not obtained stably.
In addition, since welding symbols 2 and 7 both have θ1 of less than 15 °, excellent toughness was not stably obtained in the heat affected zone.

1 鋼板
2 下面側溶接金属
3 上面側溶接金属
4 下面側の溶融境界線
5 上面側の溶融境界線
6 会合点
7 第1平行線
8 第1交点
9 上面側境界直線
10 第2平行線
11 第2交点
12 下面側境界直線
13 下面側の溶接によって生じる溶接熱影響部
14 靭性劣化領域
15 試験片採取位置
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Lower surface side weld metal 3 Upper surface side weld metal 4 Lower surface side melting boundary line 5 Upper surface side melting boundary line 6 Meeting point 7 First parallel line 8 First intersection point 9 Upper surface side boundary straight line
10 Second parallel line
11 Second intersection
12 Lower boundary line
13 Weld heat affected zone caused by bottom side welding
14 Toughness degradation area
15 Specimen sampling position

Claims (6)

鋼板の下面側を溶接した後に上面側を溶接する両面各一層の多電極サブマージアーク溶接方法であって、
該鋼板の下面側の溶接における第1電極のアーク電圧を40V以上として溶接するものとし、
下面側溶接金属の溶融境界線と上面側溶接金属の溶融境界線とが交わる会合点と、該会合点から前記鋼板の上表面の方向へ5mmの位置を通り該上表面に平行な第1平行線と前記上面側溶接金属の溶融境界線とが交わる第1交点と、を結ぶ上面側境界直線が、前記第1平行線に垂直な線となす角をθ1(°)とするとき、該θ1が下記の(1)式を満足し、
かつ前記会合点と、前記会合点から前記鋼板の下表面の方向へ5mmの位置を通り該下表面に平行な第2平行線と前記下面側溶接金属の溶融境界線とが交わる第2交点と、を結ぶ下面側境界直線が、前記第2平行線に垂直な線となす角をθ2(°)とするとき、該θ2が下記の(2)式を満足するとともに、
前記鋼板の下面側の溶接入熱と上面側の溶接入熱との合計入熱Q(kJ/cm)が、前記鋼板の板厚t(mm)との間で(3)式の関係を満足することを特徴とするサブマージアーク溶接方法。

θ1≧15 ・・・(1)
θ2≧15 ・・・(2)
Q≦1.3×t1.37 ・・・(3)
It is a multi-electrode submerged arc welding method for each layer on both sides that welds the upper surface side after welding the lower surface side of the steel sheet,
The arc voltage of the first electrode in the welding on the lower surface side of the steel sheet shall be 40 V or higher,
A meeting point where the melting boundary line of the lower surface side weld metal intersects with the melting boundary line of the upper surface side welding metal, and a first parallel parallel to the upper surface passing through the position of 5 mm from the meeting point toward the upper surface of the steel sheet. When the upper surface side boundary straight line connecting the line and the first intersecting point where the upper surface side weld metal melt boundary line intersects with the line perpendicular to the first parallel line is θ1 (°), the θ1 Satisfies the following formula (1),
And a second intersection where the second parallel line passing through the position of 5 mm from the meeting point toward the lower surface of the steel plate and parallel to the lower surface intersects with the melting boundary line of the lower surface side weld metal. When the angle between the lower boundary line connecting the two and the line perpendicular to the second parallel line is θ2 (°), the θ2 satisfies the following expression (2):
The total heat input Q (kJ / cm) of the welding heat input on the lower surface side of the steel sheet and the welding heat input on the upper surface side satisfies the relationship of formula (3) with the plate thickness t (mm) of the steel sheet. A submerged arc welding method characterized by:
Record
θ1 ≧ 15 (1)
θ2 ≧ 15 (2)
Q ≦ 1.3 × t 1.37 (3)
前記鋼板の上面側の溶接における第1電極として、直径:2.0〜3.2mmのワイヤを使用することを特徴とする請求項1に記載のサブマージアーク溶接方法。   2. The submerged arc welding method according to claim 1, wherein a wire having a diameter of 2.0 to 3.2 mm is used as the first electrode in welding on the upper surface side of the steel plate. 前記θ1と前記θ2とが、次式(4)
θ1+θ2≧50 ・・・(4)
を満足することを特徴とする請求項1または2に記載のサブマージアーク溶接方法。
The θ1 and the θ2 are expressed by the following equation (4)
θ1 + θ2 ≧ 50 (4)
The submerged arc welding method according to claim 1 or 2, wherein:
前記鋼板の上面側の溶接入熱が、前記鋼板の下面側の溶接入熱よりも大きいことを特徴とする請求項1〜3のいずれか一項に記載のサブマージアーク溶接方法。   The submerged arc welding method according to any one of claims 1 to 3, wherein welding heat input on the upper surface side of the steel plate is larger than welding heat input on the lower surface side of the steel plate. 前記鋼板の下面側および上面側の溶接を、それぞれ3電極以上で行うことを特徴とする請求項1〜4のいずれか一項に記載のサブマージアーク溶接方法。   The submerged arc welding method according to any one of claims 1 to 4, wherein welding of the lower surface side and the upper surface side of the steel plate is performed with three or more electrodes. 請求項1〜5のいずれか一項に記載のサブマージアーク溶接方法により、溶接継手を形成することを特徴とする溶接継手の製造方法A welded joint manufacturing method comprising forming a welded joint by the submerged arc welding method according to any one of claims 1 to 5.
JP2013145793A 2013-07-11 2013-07-11 Submerged arc welding method and welded joint manufacturing method Active JP5954272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013145793A JP5954272B2 (en) 2013-07-11 2013-07-11 Submerged arc welding method and welded joint manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013145793A JP5954272B2 (en) 2013-07-11 2013-07-11 Submerged arc welding method and welded joint manufacturing method

Publications (2)

Publication Number Publication Date
JP2015016496A JP2015016496A (en) 2015-01-29
JP5954272B2 true JP5954272B2 (en) 2016-07-20

Family

ID=52438037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013145793A Active JP5954272B2 (en) 2013-07-11 2013-07-11 Submerged arc welding method and welded joint manufacturing method

Country Status (1)

Country Link
JP (1) JP5954272B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521632B2 (en) * 2009-02-25 2014-06-18 Jfeスチール株式会社 Thick steel plate welding method
EP2436472B1 (en) * 2009-05-27 2023-02-01 JFE Steel Corporation Submerged arc welding method for steel plate

Also Published As

Publication number Publication date
JP2015016496A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP5854145B2 (en) Submerged arc welding method, welded joint and steel pipe manufacturing method
JP5283306B2 (en) Submerged arc welding method for steel
JP2010221297A (en) Welding method of thick steel plate
KR20190043638A (en) Submerged arc welding method for steel plate
CN102448655A (en) Submerged arc welding method for steel plate
KR20150086372A (en) Method for narrow-groove gas-shielded arc welding
WO2013179614A1 (en) Laser-arc hybrid welding method
JP2015223605A (en) Narrow groove gas-shield arc-welding method
JP6060604B2 (en) Submerged arc welding method
KR101472722B1 (en) Method for high-efficiency welding of thick steel plate
JP5954433B2 (en) Narrow groove gas shielded arc welded joint
TWI629134B (en) Submerged arc welding method on both sides
JP5239900B2 (en) Multi-electrode submerged arc welding method for steel
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP6383319B2 (en) Multi-electrode single-sided single layer submerged arc welding method
EP3162489B1 (en) Method of butt welding steel plates and butt weld joint of steel plates
JP5954272B2 (en) Submerged arc welding method and welded joint manufacturing method
JP2013237103A (en) Multi-electrode submerged arc welding method of steel sheet
KR20180031046A (en) Vertical narrowing improvement Gas shield arc welding method
CN115703163A (en) Multi-electrode single-side submerged arc welding method
JP2013081985A (en) Submerged arc welding method for steel material
JPWO2017141760A1 (en) Multi-electrode submerged arc welding method
JP2013111622A (en) Multi-electrode submerged arc welding method
JP7323781B2 (en) Multi-electrode submerged arc welding method
JP6455210B2 (en) UOE steel pipe with excellent low temperature toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5954272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250