JP2013081985A - Submerged arc welding method for steel material - Google Patents

Submerged arc welding method for steel material Download PDF

Info

Publication number
JP2013081985A
JP2013081985A JP2011223545A JP2011223545A JP2013081985A JP 2013081985 A JP2013081985 A JP 2013081985A JP 2011223545 A JP2011223545 A JP 2011223545A JP 2011223545 A JP2011223545 A JP 2011223545A JP 2013081985 A JP2013081985 A JP 2013081985A
Authority
JP
Japan
Prior art keywords
electrode
welding
current density
submerged arc
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011223545A
Other languages
Japanese (ja)
Inventor
Atsushi Ishigami
篤史 石神
Naoya Hayakawa
直哉 早川
Kenji Oi
健次 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011223545A priority Critical patent/JP2013081985A/en
Publication of JP2013081985A publication Critical patent/JP2013081985A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-electrode submerged arc welding method which performs internal-and-external one layer welding, capable of obtaining a beautiful bead appearance while obtaining sufficient penetration with low heat input.SOLUTION: In the internal-and-external one layer welding using the submerged arc welding of three electrodes or more, at least one of the internal surface welding and the external surface welding is made such that the current density Dof a first electrode is 220 (A/mm) or more, the current density Dof a second electrode is 85 (A/mm), the distance between the wire centers of the first electrode and the second electrode measured at the surface layer position of the steel plate is 21 mm or more, and the distance between the wire center of a rearmost electrode and one electrode just before the rearmost electrode measured at the surface layer position of the steel plate is set to be 19 mm or less. Here, current density (A/mm)=welding current (A)/wire cross section (mm). Further preferably, in the internal surface welding and the external surface welding of which the conditions are made as above, the electrode angle of the rearmost electrode is set to be 40° or more, the included angle is set to be 50° or more and 70° or less.

Description

本発明は、鋼材のサブマージアーク溶接方法に関し、UOE鋼管、スパイラル鋼管などの大径鋼管の造管溶接に用いて好適なものに関する。   The present invention relates to a submerged arc welding method for steel materials, and more particularly to a method suitable for pipe making welding of large diameter steel pipes such as UOE steel pipes and spiral steel pipes.

大径鋼管の造管溶接(シーム溶接)には2電極以上のサブマージアーク溶接が適用されている。パイプ生産能率向上の観点から鋼管の内面側を1パス、外面側を1パスで溶接する両面一層盛り溶接が一般的で、高能率な溶接施工がなされている(例えば特許文献1、2)。   Submerged arc welding with two or more electrodes is applied to pipe making welding (seam welding) of large diameter steel pipes. From the viewpoint of improving pipe production efficiency, double-sided single-layer welding, in which the inner surface side of the steel pipe is welded in one pass and the outer surface side in one pass, is generally performed, and highly efficient welding is performed (for example, Patent Documents 1 and 2).

両面一層溶接では内面溶接金属と外面溶接金属が重なり未溶融部がないように十分な溶け込み深さを確保するため、1000A以上の大電流を適用して溶接を行うのが一般的であるが、能率と欠陥抑制を重視することで、溶接入熱が過剰となりやすく、溶接部、特に溶接熱影響部の靭性が劣化する傾向にある。   In double-sided single-layer welding, in order to ensure a sufficient penetration depth so that the inner surface welding metal and the outer surface welding metal overlap and there is no unmelted portion, it is common to perform welding by applying a large current of 1000 A or more, By placing importance on efficiency and defect suppression, welding heat input tends to be excessive, and the toughness of the welded portion, particularly the welded heat affected zone, tends to deteriorate.

溶接部の高靭性化のためには、溶接入熱を低減するのが有効で、特に板厚の大きな鋼管の造管溶接では必要な入熱が大きくなるため、可能な限り入熱を低減することが課題となっている。しかしながら、入熱を低減すると溶込み不足が生じやすくなるので、入熱低減と深溶け込みの両立を目的としたサブマージアーク溶接方法が種々提案されている。   In order to increase the toughness of welds, it is effective to reduce the heat input, especially in the case of steel pipe welding with thick steel pipes, the required heat input is increased, so the heat input is reduced as much as possible. This is an issue. However, when heat input is reduced, insufficient penetration tends to occur. Therefore, various submerged arc welding methods aiming to achieve both heat input reduction and deep penetration have been proposed.

例えば、特許文献3は高電流密度で溶接するサブマージアーク溶接方法を提案するもので、アークエネルギーを板厚方向に投入することにより、必要な溶け込み深さは確保するが、鋼材幅方向の母材の溶解は抑制して溶接入熱が過剰となることを防止した、入熱低減と深溶け込みを両立したサブマージアーク溶接方法が記載されている。   For example, Patent Document 3 proposes a submerged arc welding method for welding at a high current density, and by supplying arc energy in the plate thickness direction, the necessary penetration depth is ensured, but the base material in the steel width direction is secured. Describes a submerged arc welding method that suppresses melting and prevents excessive welding heat input and achieves both reduced heat input and deep penetration.

特許文献4および特許文献5には高電流密度のサブマージアーク溶接法の欠点であるスラグ巻き込みなどの溶接欠陥が発生しやすい点を、電極配置を適切に制御することで抑制するサブマージアーク溶接方法が記載されている。   Patent Document 4 and Patent Document 5 disclose a submerged arc welding method that suppresses a point at which a welding defect such as slag entrainment, which is a disadvantage of a high current density submerged arc welding method, is likely to occur by appropriately controlling the electrode arrangement. Have been described.

特開平11−138266号公報Japanese Patent Laid-Open No. 11-138266 特開平10−109171号公報JP-A-10-109171 特開2006−272377号公報JP 2006-272377 A 特開2009−195957号公報JP 2009-195957 A 特開2009−208114号公報JP 2009-208114 A

ところで、溶接条件の選定においては、溶接部の靭性、溶け込み形状の他に、ビード外観を考慮することが必要であるところ、特許文献4および5記載のサブマージアーク溶接方法ではビード幅を大きくすることが困難で、アンダーカットが発生しやすいという問題があった。   By the way, in selecting welding conditions, it is necessary to consider the appearance of the bead in addition to the toughness of the welded portion and the penetration shape. In the submerged arc welding methods described in Patent Documents 4 and 5, the bead width is increased. There is a problem that undercut is likely to occur.

そこで、本発明は低入熱で深溶込みを得ながらアンダーカットのない美麗なビード外観を得ることが可能な、鋼材を内外面一層で溶接する多電極サブマージアーク溶接方法を提供することを目的とする。   Therefore, the present invention has an object to provide a multi-electrode submerged arc welding method capable of obtaining a beautiful bead appearance without undercut while obtaining deep penetration with low heat input, and welding steel materials in one layer on the inner and outer surfaces. And

本発明者らは、鋼材の内外面一層溶接継手を種々の溶接条件による3電極以上のサブマージアーク溶接法で作製し、溶接金属断面形状およびビード外観について調査した。   The inventors of the present invention made a single-layer welded joint on the inner and outer surfaces of a steel material by a submerged arc welding method using three or more electrodes under various welding conditions, and investigated the weld metal cross-sectional shape and the bead appearance.

その結果、第1電極の電流密度、第2電極の電流密度、第1電極と第2電極とのワイヤ中心間距離、最後尾電極と最後尾より1つ前の電極とのワイヤ中心間距離を適正に設定することで、低入熱で深溶込みを得ながらアンダーカットのない美麗なビード外観が得られることを見出した。   As a result, the current density of the first electrode, the current density of the second electrode, the distance between the centers of the wires between the first electrode and the second electrode, and the distance between the centers of the wires between the last electrode and the last electrode before the last It was found that by setting it appropriately, a beautiful bead appearance without undercut is obtained while obtaining deep penetration with low heat input.

本発明は上記知見に基づいてなされたものであり、その要旨は以下の通りである。
1.3電極以上のサブマージアーク溶接を用いた鋼材の内外面一層溶接において、内面溶接と外面溶接の少なくとも一方が下記の条件を満足することを特徴とする鋼材のサブマージアーク溶接方法。

第1電極の電流密度が下記の(1)式を満足し、第2電極の電流密度が下記の(2)式を満足し、鋼板表層位置で測定した第1電極と第2電極とのワイヤ中心間の距離が21mm以上で、かつ鋼板表層位置で測定した最後尾電極と最後尾より1つ前の電極とのワイヤ中心間の距離を19mm以下とする。
≧220 (1)
≧85 (2)
ここで、
電流密度(A/mm)=溶接電流(A)÷ワイヤ断面積(mm
:第1電極の電流密度(A/mm)、D:第2電極の電流密度(A/mm
2.更に、最後尾電極の電極角度が40度以上であることを特徴とする1に記載の鋼材のサブマージアーク溶接方法。
3.更に、開先角度が50度以上70度以下であることを特徴とする1または2に記載の鋼材のサブマージアーク溶接方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
1.3. A steel submerged arc welding method characterized in that at least one of inner surface welding and outer surface welding satisfies the following conditions in single-layer inner and outer surface welding of steel materials using submerged arc welding of at least electrodes.
The current density of the first electrode satisfies the following formula (1), the current density of the second electrode satisfies the following formula (2), and the first electrode and the second electrode measured at the surface layer position of the steel plate The distance between the wire centers is 21 mm or more, and the distance between the wire centers of the last electrode measured at the surface layer position of the steel sheet and the electrode immediately before the last is 19 mm or less.
D 1 ≧ 220 (1)
D 2 ≧ 85 (2)
here,
Current density (A / mm 2 ) = Welding current (A) ÷ Wire cross-sectional area (mm 2 )
D 1 : Current density of the first electrode (A / mm 2 ), D 2 : Current density of the second electrode (A / mm 2 )
2. Furthermore, the electrode angle of the last electrode is 40 degree | times or more, The submerged arc welding method of the steel materials of 1 characterized by the above-mentioned.
3. Furthermore, groove angle is 50 degree or more and 70 degrees or less, The submerged arc welding method of the steel materials of 1 or 2 characterized by the above-mentioned.

本発明によれば、溶接部靭性に優れる美麗なビード外観の内外面一層溶接部を得ることが可能で、産業上きわめて有効である。また、開先角度が小さくてもこの効果が得られることから、溶接ワイヤ消費量の削減効果もある。   According to the present invention, it is possible to obtain a beautiful welded inner and outer surface single-layer welded portion excellent in welded portion toughness, which is extremely effective industrially. Further, since this effect can be obtained even when the groove angle is small, there is an effect of reducing the welding wire consumption.

開先形状各部の名称を説明する図。The figure explaining the name of each part of groove shape. 内外面一層溶接部のマクロ断面を説明する模式図。The schematic diagram explaining the macro cross section of an inner and outer surface single layer welding part. 電極角度を説明する図で(a)は前進角、(b)後退角を説明する図。It is a figure explaining an electrode angle, (a) is an advancing angle, (b) A figure explaining a receding angle.

本発明では、1.深い溶け込みを得るため、第1電極と第2電極の電流密度を規定する。電流密度(A/mm)は溶接電流(A)÷ワイヤ断面積(mm)で求める。 In the present invention, In order to obtain deep penetration, the current density of the first electrode and the second electrode is defined. The current density (A / mm 2 ) is obtained by welding current (A) ÷ wire cross-sectional area (mm 2 ).

2.梨型割れやスラグ巻き込みの溶接欠陥を防止するため、第1電極と第2電極とのワイヤ中心間の距離(mm)を規定する。   2. In order to prevent welding defects such as pear-shaped cracks and slag entrainment, the distance (mm) between the wire centers of the first electrode and the second electrode is defined.

3.アンダーカットのない美麗なビード外観を得るため、最後尾電極と最後尾より1つ前の電極とのワイヤ中心間距離(mm)を規定し、更に、ビード外観を向上させる場合は、最後尾電極の電極角度を規定する。   3. In order to obtain a beautiful bead appearance without undercut, the distance between the center of the wire (mm) between the last electrode and the electrode immediately before the last tail is specified, and the tail electrode is used to improve the bead appearance. The electrode angle is defined.

4.更に、入熱低減および溶接ワイヤ使用量削減の効果を得る場合は、開先角度は50度以上70度以下とする。開先角度を小さくすることで必要なワイヤ溶着量が減るが、小さくしすぎると溶込みを得るために大きな入熱が必要になるため、50度以上70度以下とする。以下、具体例によって本発明を説明する。   4). Furthermore, when obtaining the effects of heat input reduction and welding wire usage reduction, the groove angle is set to 50 degrees or more and 70 degrees or less. By reducing the groove angle, the amount of wire welding required is reduced. However, if the groove angle is too small, large heat input is required to obtain the penetration, so the angle is set to 50 degrees or more and 70 degrees or less. Hereinafter, the present invention will be described by way of specific examples.

板厚25.4mm、31.8mm、38.1mmの鋼板(長さ1000mm)に、開先加工を施した後、内外面一層溶接の3または4電極サブマージアーク溶接を施して溶接継手を作製し、溶込み状態、溶接欠陥の有無およびビード外観を調査した。   After performing groove processing on steel plates with a thickness of 25.4 mm, 31.8 mm, and 38.1 mm (length 1000 mm), 3 or 4 electrode submerged arc welding of inner and outer surface single layer welding is performed to produce a welded joint. The penetration state, the presence or absence of weld defects, and the bead appearance were investigated.

ビード外観の調査は、溶接継手のビード外観を目視観察し、鋼板表層におけるビード幅を測定した。溶込み状態と溶接欠陥の調査はビード定常部を等分して採取した3個のマクロ断面を目視観察して行った。表1に鋼板の化学成分を、表2に溶接に用いた開先形状の各部の寸法(図1参照)を、表3に溶接条件を示す。表3において電極角度は鉛直方向と電極との成す角度を示し、前進角の場合を正、後退角の場合を負とする(図3参照)。   The investigation of the bead appearance was performed by visually observing the bead appearance of the welded joint and measuring the bead width in the steel sheet surface layer. The penetration state and the weld defect were investigated by visually observing three macro sections taken by equally dividing the bead steady portion. Table 1 shows the chemical composition of the steel sheet, Table 2 shows the dimensions of each part of the groove shape used for welding (see FIG. 1), and Table 3 shows the welding conditions. In Table 3, the electrode angle indicates the angle formed between the vertical direction and the electrode, and the forward angle is positive and the backward angle is negative (see FIG. 3).

各板厚毎に、開先形状では、内外面において開先角度と開先深さを変化させ、溶接条件では、内外面溶接のそれぞれにおいて、第1電極と第2電極とのワイヤ中心間の距離と最後尾電極と最後尾より1つ前の電極(3電極の場合は、第3電極と第2電極、4電極の場合は、第4電極と第3電極)とのワイヤ中心間の距離を変化させた。また、第1電極と第2電極の各電極の電流密度と溶接速度を変化させた。   For each plate thickness, in the groove shape, the groove angle and groove depth are changed on the inner and outer surfaces, and in the welding condition, between the wire centers of the first electrode and the second electrode in each of the inner and outer surface welding. The distance between the center of the wire between the distance, the last electrode, and the electrode one before the last (in the case of three electrodes, the third electrode and the second electrode, and in the case of four electrodes, the fourth electrode and the third electrode) Changed. Moreover, the current density and welding speed of each electrode of the 1st electrode and the 2nd electrode were changed.

表4に、溶接結果を示す。表において、内面溶接金属と外面溶接金属との会合部から外面溶接金属の溶込み先端までの板厚方向の距離を測定した値L(図2参照)が板厚の0.05倍未満となる場合は溶込み不足とした。また、内面ビード幅は板厚の0.65倍未満、外面ビード幅は板厚の0.80倍未満をビード幅過小とした。   Table 4 shows the welding results. In the table, a value L (see FIG. 2) obtained by measuring the distance in the plate thickness direction from the meeting portion between the inner surface weld metal and the outer surface weld metal to the penetration tip of the outer surface weld metal is less than 0.05 times the plate thickness. In some cases, the penetration was insufficient. The inner bead width was less than 0.65 times the plate thickness, and the outer bead width was less than 0.80 times the plate thickness.

内面溶接および/または外面溶接で第1電極の電流密度Dが220(A/mm)以上で、第2電極の電流密度Dが85(A/mm)、鋼板表層位置で測定した第1電極と第2電極とのワイヤ中心間の距離が21mm以上で、かつ鋼板表層位置で測定した最後尾電極と最後尾より1つ前の電極とのワイヤ中心間の距離を19mm以下として、内面溶接および/または外面溶接を行ったNo.1〜5、No.10〜12の内面溶接部および/または外面溶接部では梨型割れやスラグ巻き込みの溶接欠陥が無く、美麗なビード外観が得られている。尚、No.10〜12のうち、最後尾電極の電極角度(前進角)40度以上として溶接したものはビード外観が特に良好であった。 The current density D 1 of the first electrode was 220 (A / mm 2 ) or more by inner surface welding and / or outer surface welding, and the current density D 2 of the second electrode was 85 (A / mm 2 ). The distance between the wire centers of the first electrode and the second electrode is 21 mm or more, and the distance between the wire centers of the last electrode measured at the steel sheet surface layer position and the electrode immediately before the last is 19 mm or less, No. in which inner surface welding and / or outer surface welding was performed. 1-5, no. 10 to 12 inner surface welds and / or outer surface welds have no pear-shaped cracks or slag entrainment welding defects, and a beautiful bead appearance is obtained. No. 10 to 12, those welded with an electrode angle (advance angle) of 40 ° or more of the last electrode were particularly good in bead appearance.

No.6は内面溶接と外面溶接ともに第1電極と第2電極とのワイヤ中心間距離が21mm未満であり、内面溶接ではスラグが発生し、外面溶接では梨型割れが発生した。
No.7は内面溶接と外面溶接ともに最後尾電極とその1つ前の電極とのワイヤ中心間距離が19mmを超える場合であり、内面溶接と外面溶接ともにビード幅が小さかった。
No. In No. 6, the distance between the wire centers of the first electrode and the second electrode was less than 21 mm for both inner surface welding and outer surface welding, slag was generated in inner surface welding, and pear-shaped cracks were generated in outer surface welding.
No. No. 7 is a case where the distance between the center of the wire between the last electrode and the immediately preceding electrode exceeds 19 mm in both the inner surface welding and the outer surface welding, and the bead width was small in both the inner surface welding and the outer surface welding.

No.8は内面溶接と外面溶接ともに第1電極の電流密度が220A/mm未満の場合であり、溶込み不足が生じた。
No.9は内面溶接と外面溶接ともに第2電極の電流密度が85A/mm未満の場合であり、溶込み不足が生じた。
No. No. 8 is a case where the current density of the first electrode is less than 220 A / mm 2 for both the inner surface welding and the outer surface welding, resulting in insufficient penetration.
No. No. 9 is a case where the current density of the second electrode is less than 85 A / mm 2 in both the inner surface welding and the outer surface welding, resulting in insufficient penetration.

No.13は外面溶接のみ第1電極の電流密度Dが220(A/mm)以上で、第2電極の電流密度Dが85(A/mm)、鋼板表層位置で測定した第1電極と第2電極とのワイヤ中心間の距離が21mm以上で、かつ鋼板表層位置で測定した最後尾電極と最後尾より1つ前の電極とのワイヤ中心間の距離を19mm以下の条件を満足する場合であり、内面溶接は最後尾電極とその1つ前の電極とのワイヤ中心間距離が19mmを超えるためビード幅が小さかった。 No. 13 is a current density D 1 of the first electrode only the outer surface welding is 220 (A / mm 2) or more, the current density D 2 of the second electrode 85 (A / mm 2), the first electrode as measured by the steel sheet surface position The distance between the wire center between the first electrode and the second electrode is 21 mm or more, and the distance between the wire center between the last electrode measured at the surface layer position of the steel sheet and the electrode immediately before the last is 19 mm or less. In the case of inner surface welding, the bead width was small because the distance between the center of the wire between the last electrode and the previous electrode exceeded 19 mm.

No.14は内面溶接の第1電極の電流密度が220A/mm未満であるが、外面溶接は第1電極の電流密度Dが220(A/mm)以上で、第2電極の電流密度Dが85(A/mm)、鋼板表層位置で測定した第1電極と第2電極とのワイヤ中心間の距離が21mm以上で、かつ鋼板表層位置で測定した最後尾電極と最後尾より1つ前の電極とのワイヤ中心間の距離を19mm以下のため低入熱で欠陥を発生させずに深い溶込みを得ながら内面と外面ともに大きなビード幅が得られた。 No. Although 14 is the first electrode 2 below the current density is 220A / mm of inner surface welding, at a current density D 1 of the outer surface welding first electrode 220 (A / mm 2) or more, the current density D of the second electrode 2 is 85 (A / mm 2 ), the distance between the wire centers of the first electrode and the second electrode measured at the steel plate surface layer position is 21 mm or more, and 1 from the last electrode and the last tail measured at the steel plate surface layer position Since the distance between the wire center and the previous electrode was 19 mm or less, a large bead width was obtained on both the inner surface and the outer surface while obtaining deep penetration without generating defects with low heat input.

以上より、本発明では、3電極以上のサブマージアーク溶接を用いた鋼材の内外面一層溶接において、内面溶接と外面溶接の少なくとも一方を第1電極の電流密度Dを220(A/mm)以上で、第2電極の電流密度Dを85(A/mm)、鋼板表層位置で測定した第1電極と第2電極とのワイヤ中心間の距離を21mm以上で、かつ鋼板表層位置で測定した最後尾電極と最後尾より1つ前の電極とのワイヤ中心間の距離を19mm以下とする。但し、電流密度(A/mm)=溶接電流(A)÷ワイヤ断面積(mm)。 From the above, in the present invention, the inner and outer surfaces further welding steel with submerged arc welding of three or more electrodes, the current density D 1 of the first electrode at least one of the inner surface weld and the outer surface welding 220 (A / mm 2) Thus, the current density D 2 of the second electrode is 85 (A / mm 2 ), the distance between the wire centers of the first electrode and the second electrode measured at the steel plate surface layer position is 21 mm or more, and at the steel plate surface layer position. The distance between the wire centers of the measured last electrode and the electrode immediately before the last is 19 mm or less. However, current density (A / mm 2 ) = welding current (A) ÷ wire cross-sectional area (mm 2 ).

Figure 2013081985
Figure 2013081985

Figure 2013081985
Figure 2013081985

Figure 2013081985
Figure 2013081985

Figure 2013081985
Figure 2013081985

1 鋼材
2 内面溶接部
3 外面溶接部
L 距離
t 板厚
1 Steel 2 Internal weld 3 External weld L Distance t Thickness

Claims (3)

3電極以上のサブマージアーク溶接を用いた鋼材の内外面一層溶接において、内面溶接と外面溶接の少なくとも一方が下記の条件を満足することを特徴とする鋼材のサブマージアーク溶接方法。

第1電極の電流密度が下記の(1)式を満足し、第2電極の電流密度が下記の(2)式を満足し、鋼板表層位置で測定した第1電極と第2電極とのワイヤ中心間の距離が21mm以上で、かつ鋼板表層位置で測定した最後尾電極と最後尾より1つ前の電極とのワイヤ中心間の距離を19mm以下とする。
≧220 (1)
≧85 (2)
ここで、
電流密度(A/mm)=溶接電流(A)÷ワイヤ断面積(mm
:第1電極の電流密度(A/mm)、D:第2電極の電流密度(A/mm
A steel submerged arc welding method characterized in that at least one of inner surface welding and outer surface welding satisfies the following conditions in single-layer inner and outer surface welding of a steel material using submerged arc welding of three or more electrodes.
The current density of the first electrode satisfies the following formula (1), the current density of the second electrode satisfies the following formula (2), and the first electrode and the second electrode measured at the surface layer position of the steel plate The distance between the wire centers is 21 mm or more, and the distance between the wire centers of the last electrode measured at the surface layer position of the steel sheet and the electrode immediately before the last is 19 mm or less.
D 1 ≧ 220 (1)
D 2 ≧ 85 (2)
here,
Current density (A / mm 2 ) = Welding current (A) ÷ Wire cross-sectional area (mm 2 )
D 1 : Current density of the first electrode (A / mm 2 ), D 2 : Current density of the second electrode (A / mm 2 )
更に、最後尾電極の電極角度が40度以上であることを特徴とする請求項1に記載の鋼材のサブマージアーク溶接方法。   Furthermore, the electrode angle of the last electrode is 40 degrees or more, The submerged arc welding method of the steel materials of Claim 1 characterized by the above-mentioned. 更に、開先角度が50度以上70度以下であることを特徴とする請求項1または2に記載の鋼材のサブマージアーク溶接方法。   Furthermore, a groove angle is 50 degree or more and 70 degrees or less, The submerged arc welding method of the steel materials of Claim 1 or 2 characterized by the above-mentioned.
JP2011223545A 2011-10-11 2011-10-11 Submerged arc welding method for steel material Pending JP2013081985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223545A JP2013081985A (en) 2011-10-11 2011-10-11 Submerged arc welding method for steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223545A JP2013081985A (en) 2011-10-11 2011-10-11 Submerged arc welding method for steel material

Publications (1)

Publication Number Publication Date
JP2013081985A true JP2013081985A (en) 2013-05-09

Family

ID=48527750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223545A Pending JP2013081985A (en) 2011-10-11 2011-10-11 Submerged arc welding method for steel material

Country Status (1)

Country Link
JP (1) JP2013081985A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406644A (en) * 2013-08-20 2013-11-27 中国海洋石油总公司 Submerged-arc welding process for longitudinal seam and circular seam welding of pipe sections
WO2015159545A1 (en) * 2014-04-17 2015-10-22 Jfeスチール株式会社 Tack welding method in large-diameter welded steel pipe production process
JP2016150364A (en) * 2015-02-18 2016-08-22 新日鐵住金株式会社 Uoe steel pipe excellent in low-temperature toughness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406644A (en) * 2013-08-20 2013-11-27 中国海洋石油总公司 Submerged-arc welding process for longitudinal seam and circular seam welding of pipe sections
WO2015159545A1 (en) * 2014-04-17 2015-10-22 Jfeスチール株式会社 Tack welding method in large-diameter welded steel pipe production process
CN106232281A (en) * 2014-04-17 2016-12-14 杰富意钢铁株式会社 Tack welding method in the manufacture process of heavy caliber welded still pipe
JPWO2015159545A1 (en) * 2014-04-17 2017-04-13 Jfeスチール株式会社 Tack welding method in manufacturing process of large diameter welded steel pipe
RU2656431C2 (en) * 2014-04-17 2018-06-05 ДжФЕ СТИЛ КОРПОРЕЙШН Method of welding tack welds in the production of welded steel pipe of a larger diameter
JP2016150364A (en) * 2015-02-18 2016-08-22 新日鐵住金株式会社 Uoe steel pipe excellent in low-temperature toughness

Similar Documents

Publication Publication Date Title
JP5283306B2 (en) Submerged arc welding method for steel
JP5772977B2 (en) Submerged arc welding method for steel sheet
JP2010221297A (en) Welding method of thick steel plate
WO2010137186A1 (en) Submerged arc welding method for steel plate
JP2007268564A (en) Multi-electrode submerged arc welding method
CN113210869B (en) Efficient titanium alloy laser-electric arc composite heat source pipeline welding process
JP2009214127A (en) Submerged arc welding method for steel material
WO2009104806A1 (en) Submerged arc welding method with multiple electrodes for steel material
JP5239900B2 (en) Multi-electrode submerged arc welding method for steel
JP5223369B2 (en) Multi-electrode submerged arc welding method for steel
JP5854145B2 (en) Submerged arc welding method, welded joint and steel pipe manufacturing method
JP2009233679A (en) Submerged arc welding method of steel material
JP2013081985A (en) Submerged arc welding method for steel material
JPWO2013080524A1 (en) Submerged arc welding method for steel sheet
JP5742091B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP5742090B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP5672697B2 (en) Submerged arc welding method for steel
JP2013237103A (en) Multi-electrode submerged arc welding method of steel sheet
JP2013111622A (en) Multi-electrode submerged arc welding method
JP6605596B2 (en) Multi-electrode submerged arc welding method
JP2014155949A (en) Welded steel pipe for line pipe with excellent low-temperature toughness, and method of manufacturing the same
JP2014155948A (en) Welded steel pipe for line pipe with excellent low-temperature toughness, and method of manufacturing the same
JP5895423B2 (en) Multi-electrode submerged arc welding method for steel sheet
JP5470718B2 (en) Multi-electrode submerged arc welding method for thick steel plate
JP5758573B2 (en) Multi-electrode submerged arc welding method for steel