JP5223369B2 - Multi-electrode submerged arc welding method for steel - Google Patents

Multi-electrode submerged arc welding method for steel Download PDF

Info

Publication number
JP5223369B2
JP5223369B2 JP2008040842A JP2008040842A JP5223369B2 JP 5223369 B2 JP5223369 B2 JP 5223369B2 JP 2008040842 A JP2008040842 A JP 2008040842A JP 2008040842 A JP2008040842 A JP 2008040842A JP 5223369 B2 JP5223369 B2 JP 5223369B2
Authority
JP
Japan
Prior art keywords
electrode
welding
submerged arc
arc welding
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008040842A
Other languages
Japanese (ja)
Other versions
JP2009195957A (en
Inventor
健次 大井
篤史 石神
直哉 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008040842A priority Critical patent/JP5223369B2/en
Priority to PCT/JP2009/053472 priority patent/WO2009104806A1/en
Priority to US12/918,095 priority patent/US8785806B2/en
Priority to CN200980105843.5A priority patent/CN101952074B/en
Priority to RU2010138932/02A priority patent/RU2486996C2/en
Priority to EP09713534.7A priority patent/EP2255915B1/en
Publication of JP2009195957A publication Critical patent/JP2009195957A/en
Application granted granted Critical
Publication of JP5223369B2 publication Critical patent/JP5223369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、鋼材の多電極サブマージアーク溶接方法に関し、詳しくは、母材の板厚が10〜50mmの、UOE鋼管やスパイラル鋼管等の大径鋼管の造管溶接に用いて好適なものに関する。   The present invention relates to a multi-electrode submerged arc welding method for steel materials, and more particularly, to a method suitable for pipe making welding of large-diameter steel pipes such as UOE steel pipes and spiral steel pipes having a base metal thickness of 10 to 50 mm.

大径鋼管のシーム溶接には、3電極以上の多電極サブマージアーク溶接で、内面側を1パス、外面側を1パスで溶接する両面一層盛り溶接が一般的に用いられている。   For seam welding of large-diameter steel pipes, double-sided single-layer welding, in which the inner surface side is welded in one pass and the outer surface side in one pass, is generally used by multi-electrode submerged arc welding of three or more electrodes.

両面一層溶接は高能率な溶接施工法であるが、内面溶接金属と外面溶接金属が重なり、未溶融部がないように十分な溶け込み深さを確保する必要があり、大電流を適用して溶接を行うのが一般的である。   Double-sided single-layer welding is a highly efficient welding method, but it is necessary to secure a sufficient penetration depth so that the inner and outer weld metals overlap and there are no unmelted parts. It is common to do.

しかしながら、入熱を増大させた場合は溶接熱影響部組織が粗大化して靭性劣化が生じ、入熱を低減した場合はスラグ巻き込み等の溶接欠陥が増加するため、低入熱であっても溶接欠陥の発生防止に優れる、大径鋼管のシーム溶接法が提案されている。   However, if the heat input is increased, the weld heat affected zone structure becomes coarse and toughness degradation occurs, and if the heat input is reduced, welding defects such as slag entrainment increase, so welding is possible even at low heat input. A seam welding method for large-diameter steel pipes, which is excellent in preventing the occurrence of defects, has been proposed.

特許文献1は、多電極サウマージアーク溶接法に関し、十分な溶け込み深さと良好なビード形状を得るために最後行電極に太径のワイヤーを使用してビード形状を整え、先行電極では直流電源を使用し、細径のワイヤーによって電流密度を増大することで溶け込み深さを得る方法が開示されている。   Patent Document 1 relates to a multi-electrode sommered arc welding method, in order to obtain a sufficient penetration depth and a good bead shape, a bead shape is prepared using a large-diameter wire for the last row electrode, and a DC power source is used for the preceding electrode. A method is disclosed that uses and increases the current density with a thin wire to obtain a penetration depth.

しかしながら、特許文献1記載の方法では溶け込み深さが得られ、ビード表面の形状は良好になるものの、先行電極で深く掘り下げた溶接金属の底部からスラグが十分に浮上せず、欠陥として残留する場合が指摘されている。   However, in the method described in Patent Document 1, the penetration depth is obtained and the shape of the bead surface is improved, but the slag does not sufficiently float from the bottom of the weld metal deeply dug by the preceding electrode and remains as a defect. Has been pointed out.

特許文献2は大径鋼管の造管溶接法に関し、内面側溶接を小入熱の多電極サブマージアーク溶接で行い、外面側溶接をガスメタルアーク溶接とサブマージアーク溶接による多層盛り溶接にて欠陥の抑制や形状を確保しつつ高性能な溶接部特性を持つ継手の作製方法が記載されている。   Patent Document 2 relates to a pipe making welding method for large-diameter steel pipes. The inner surface side welding is performed by multi-electrode submerged arc welding with small heat input, and the outer surface side welding is performed by multi-layer welding by gas metal arc welding and submerged arc welding. A method for producing a joint having high-performance weld properties while ensuring suppression and shape is described.

しかしながら、特許文献2記載の溶接法は、内面側溶接を小入熱溶接とし、外面側溶接を2層盛り溶接とする必要があるため、能率が極めて低く、実操業には適用しがたい。
特開昭52−82652号公報 特開昭58−32583号公報
However, since the welding method described in Patent Document 2 requires that the inner surface side welding be a small heat input welding and the outer surface side welding be a two-layer welding, the efficiency is extremely low and it is difficult to apply to actual operation.
JP-A-52-82652 JP 58-32583 A

上述したように、実用に耐えうる、低入熱であっても溶接欠陥の発生防止に優れる、大径鋼管のシーム溶接法は十分完成されているとは言い難く、実操業においては、高能率でかつ欠陥のない健全な溶接部を得るため、大電流大入熱のシーム溶接が実施されているのが現状である。   As mentioned above, it is difficult to say that the seam welding method for large-diameter steel pipes, which can withstand practical use and is excellent in preventing the occurrence of welding defects even at low heat input, is not fully completed. In addition, in order to obtain a sound weld with no defects, seam welding with a large current and a large heat input is currently being carried out.

その結果、APIX120の実機化など最近のラインパイプの高強度化に伴い、溶接金属や溶接熱影響部で良好な靭性の確保が困難となりつつある。   As a result, it is becoming difficult to ensure good toughness in weld metal and weld heat affected zone with the recent increase in strength of line pipes such as realization of APIX120.

そこで、本発明は、上記問題点に鑑み、従来どおりの溶け込みを確保しながら溶接入熱を低減し、さらには溶接欠陥の発生を抑制する鋼材の多電極サブマージアーク溶接方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention aims to provide a steel multi-electrode submerged arc welding method that reduces welding heat input while ensuring the conventional penetration and further suppresses the occurrence of welding defects. And

本発明者らは、既に、3電極以上の多電極サブマージアーク溶接の場合、溶接部において溶け込み深さを得るために細径のワイヤーを用いて電流および電流密度(=電流/ワイヤ断面積)を高めることが効果的であることを明らかにしている(例えば、特開2006−272377号公報)。電流および電流密度の増大によってアークの集中による母材へのガウジング力が強くなることが要因であり、特に先行する1,2電極の電流値と電流密度が一定値以上で効果が最大になる。   In the case of multi-electrode submerged arc welding with 3 or more electrodes, the present inventors have already used a thin wire to obtain current and current density (= current / wire cross-sectional area) in order to obtain a penetration depth at the weld. It has been clarified that the increase is effective (for example, JP-A-2006-272377). This is because the gouging force on the base material due to the concentration of the arc is increased due to the increase in current and current density, and the effect is maximized especially when the current values and current densities of the preceding 1 and 2 electrodes are above a certain value.

しかしながら、電流および電流密度の増大によって深溶け込みは得られるものの、溶け込みが深いために、溶接金属内で起きているスラグメタル反応で生成したスラグの浮上が十分でなく、欠陥の発生率が増加する傾向が認められた。   However, although deep penetration can be obtained by increasing the current and current density, since the penetration is deep, the slag generated by the slag metal reaction occurring in the weld metal is not sufficiently lifted and the incidence of defects increases. A trend was observed.

そこで、本発明者等は、上記課題を解決すべく鋭意検討し、以下の知見を得た。
(1)電流密度を高めて深溶け込みを得る場合、強いアーク力によって、多電極で形成される溶融池内に強いメタルの流れが発生し、その乱流が凝固時のスラグ巻き込みの原因となる。
Therefore, the present inventors have intensively studied to solve the above problems, and obtained the following knowledge.
(1) When deep penetration is obtained by increasing the current density, a strong arc force generates a strong metal flow in the molten pool formed by multiple electrodes, and the turbulence causes slag entrainment during solidification.

(2)先行の2極に高い電流および電流密度を適用して、溶融池を1プールではなく、セミ1プールとした場合、溶融池の強い流れが安定となり、凝固時のスラグ巻き込みが防止される。   (2) When a high current and current density are applied to the preceding two poles and the molten pool is not a single pool but a semi-one pool, the strong flow in the molten pool becomes stable and slag entrainment during solidification is prevented. The

(3)さらには、アーク力で母材をガウジングする際に後行極から押し出されるメタルによって溶け込み量が減少する場合についてもセミ1プールにすることで安定的に溶け込み深さを確保できる。   (3) Furthermore, even when the amount of penetration decreases due to the metal pushed out from the trailing electrode when gouging the base material with the arc force, the penetration depth can be stably secured by using the semi-1 pool.

本発明は上記知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.鋼材を3電極以上の多電極でサブマージアーク溶接するにあたり、第1電極への給電に直流電源を用いて、第1電極の電流密度を287A/mm 以上382A/mm 以下とし、第2電極の電流密度を154A/mm 以上271A/mm 以下とし、第1電極と第2電極との電極間距離前記鋼材表面位置において27mm以上30mm以下、第2電極と第3電極との電極間距離は15mm以上18mm以下とすることを特徴とする鋼材の多電極サブマージアーク溶接方法。
2.第1電極の電流を1150A以上1300A以下、第2電極の電流を850A以上950A以下で行うことを特徴とする1記載の鋼材の多電極サブマージアーク溶接方法。
3.第1電極による溶接を、ワイヤ径3.2mm以下で行うことを特徴とする1または2記載の鋼材の多電極サブマージアーク溶接方法。
4.鋼材の内面と外面の夫々を、1乃至3のいずれか一つに記載の多電極サブマージアーク溶接で、一層盛り溶接することを特徴とする鋼材の多電極サブマージアーク溶接方法。
The present invention has been made by further study based on the above knowledge, that is, the present invention,
1. In submerged arc welding of steel materials with three or more electrodes, a DC power source is used to supply power to the first electrode, and the current density of the first electrode is set to 287 A / mm 2 or more and 382 A / mm 2 or less. the current density of the 154A / mm 2 or more 271A / mm 2 or less, 27 mm or more 30mm or less in the steel material surface position electrode distance between the first electrode and the second electrode, between the electrodes of the second electrode and the third electrode A multi-electrode submerged arc welding method for steel, wherein the distance is 15 mm or more and 18 mm or less .
2. The following current 1150A or 1300A of the first electrode, a multi-electrode submerged arc welding method for steel 1, wherein the performing the current of the second electrode 850A or 950A or less.
3. The multi-electrode submerged arc welding method for steel according to 1 or 2, wherein welding with the first electrode is performed with a wire diameter of 3.2 mm or less.
4). A multi-electrode submerged arc welding method for a steel material, wherein the inner surface and the outer surface of the steel material are each welded by multi-electrode submerged arc welding according to any one of 1 to 3.

本発明によれば、従来どおりの溶け込みを確保しながら溶接入熱を低減し、さらには溶接欠陥の発生を抑制する多電極サブマージアーク溶接方法が得られるので、シーム溶接部の靭性に優れるAPIX100以上の高強度鋼管が生産性良く製造可能となり産業上極めて有用である。   According to the present invention, a multi-electrode submerged arc welding method is obtained that reduces welding heat input while ensuring penetration as before, and further suppresses the occurrence of welding defects. The high-strength steel pipe can be manufactured with high productivity and is extremely useful in industry.

以下、本発明の要件限定理由について説明する。
[溶接電源]
本発明では、3電極以上の多電極サブマージアーク溶接法において、第1電極への給電に直流電源を用いる。極性は、正極性、逆極性のいずれでも良く特に規定しない。
Hereinafter, the reasons for limiting the requirements of the present invention will be described.
[Welding power source]
In the present invention, in a multi-electrode submerged arc welding method having three or more electrodes, a DC power source is used for feeding power to the first electrode. The polarity may be either positive polarity or reverse polarity, and is not particularly defined.

第1電極への給電に直流電源を用いた場合、小入熱であっても十分な溶け込み深さが得られる。第2電極以降は、互いのアークが干渉しないように交流電源を用いることが望ましい。
[溶接電流]
第1電極による溶接は、電流密度250A/mm以上で行い、第2電極による溶接は、電流密度150A/mm以上で行う。
When a DC power source is used for feeding power to the first electrode, a sufficient penetration depth can be obtained even with a small heat input. After the second electrode, it is desirable to use an AC power supply so that the mutual arcs do not interfere with each other.
[Welding current]
Welding with the first electrode is performed at a current density of 250 A / mm 2 or more, and welding with the second electrode is performed at a current density of 150 A / mm 2 or more.

3電極以上の多電極サブマージアーク溶接の場合、第1電極および第2電極による溶け込みが溶接部の溶け込み形状に与える影響が大きいので、両者の電流密度(=溶接電流/ワイヤ断面積)を規定する。   In the case of multi-electrode submerged arc welding with three or more electrodes, the penetration by the first electrode and the second electrode has a great influence on the penetration shape of the weld, so the current density (= welding current / wire cross-sectional area) of both is specified. .

第1電極の電流密度250A/mm未満で、第2電極の電流密度150A/mm未満の場合、アークエネルギーの密度が不十分で、鋼材厚さ方向への十分な溶け込みを得ることができない。 When the current density of the first electrode is less than 250 A / mm 2 and the current density of the second electrode is less than 150 A / mm 2 , the arc energy density is insufficient and sufficient penetration in the thickness direction of the steel cannot be obtained. .

また、こうした高電流密度溶接を行うためには、ワイヤ径を細くする必要があり、前記電流密度を得るためにはワイヤ径を3.2mm以下、好ましくは2.4mm以下とし、第1電極の溶接電流は1000A以上、第2電極の溶接電流は600A以上とすることが望ましい。   Further, in order to perform such high current density welding, it is necessary to reduce the wire diameter. In order to obtain the current density, the wire diameter is set to 3.2 mm or less, preferably 2.4 mm or less. The welding current is desirably 1000 A or more, and the welding current of the second electrode is desirably 600 A or more.

溶接電流の増加に伴い、ワイヤ送給速度を早くすることが必要である。その結果、ワイヤ送給装置に負担がかかるようになり、安定したワイヤーの送給が困難となるため、溶接電流の上限は使用する溶接機のワイヤ送給装置の能力に応じて適宜選定する。   As the welding current increases, it is necessary to increase the wire feeding speed. As a result, a load is applied to the wire feeding device, and stable wire feeding becomes difficult. Therefore, the upper limit of the welding current is appropriately selected according to the capability of the wire feeding device of the welding machine to be used.

[電極間距離]
本発明では複数の電極間距離(隣接するワイヤの中心間距離)の一つを前記鋼材表面位置において23mm以上、残りの電極間では20mm以下とする。例えば、4電極の場合、3つの電極間距離の一つが23mm以上で、残りの2つが20mm以下であれば良く、23mm以上とする電極間距離は第1電極ー第2電極間、第2電極ー第3電極間、第3電極ー第4電極間、のいずれであっても良い
先行電極は極めてエネルギー密度の高い溶接を行うものであるため、アーク圧力が高く、アーク後方の溶融金属が激しく後方に流れ、溶融池を振動させてスラグや開先表面の残留物を巻き込んで欠陥を生じたりする。
[Distance between electrodes]
In the present invention, one of a plurality of inter-electrode distances (distances between the centers of adjacent wires) is 23 mm or more at the steel material surface position and 20 mm or less between the remaining electrodes. For example, in the case of four electrodes, one of the three electrode distances may be 23 mm or more and the remaining two may be 20 mm or less, and the electrode distance of 23 mm or more may be the distance between the first electrode and the second electrode, -Between the third electrode and between the third electrode and the fourth electrode Since the leading electrode performs welding with extremely high energy density, the arc pressure is high and the molten metal behind the arc is intense. It flows backward, and the weld pool is vibrated to entrain slag and residue on the groove surface and cause defects.

そこで、本発明は、溶融池内において溶融金属が底面に沿って緩やかに流れるように、溶融池の形状を、溶融池の底面の一部が縊れて浅くなった、セミ1プールとする。セミ1プールとは前後2つの溶融池が、連結した略ひょうたん状の形状を指す。   In view of this, in the present invention, the shape of the molten pool is a semi-1 pool in which a part of the bottom surface of the molten pool is curled and shallow so that the molten metal flows gently along the bottom surface in the molten pool. Semi 1 pool refers to a generally gourd-like shape where two molten pools are connected.

そのため、3電極以上の多電極間において鋼材表面位置での電極間距離の1つが23mm以上でありかつ残りの電極間距離を20mm以下とする。セミ1プールの溶融池が得られ、深い溶け込みを確保しつつ欠陥の発生を抑制することが可能である。   For this reason, one of the interelectrode distances at the steel material surface position is 23 mm or more and the remaining interelectrode distance is 20 mm or less between the multiple electrodes of three or more electrodes. A semi-pool pool can be obtained, and it is possible to suppress the occurrence of defects while ensuring deep penetration.

すべての極間の距離が23mm未満の場合は、溶融池はその底面が円弧状となり欠陥が発生しやすく、しかも後行極からのメタルの流れによってかえって溶け込み深さを小さくする恐れがある。   When the distance between all the poles is less than 23 mm, the bottom surface of the molten pool has an arc shape and defects are likely to occur, and the depth of penetration may be reduced by the flow of metal from the trailing electrode.

一方、2つ以上の電極間距離が23mm以上の場合は溶融池が大きくなりすぎ、溶接金属底部の凝固速度が速くなりすぎるために、欠陥が著しく増加する。   On the other hand, when the distance between two or more electrodes is 23 mm or more, the weld pool becomes too large, and the solidification rate at the bottom of the weld metal becomes too fast, so that the number of defects increases remarkably.

本発明によれば、造管入熱の小さな深い溶け込み形状のビードが得られ、欠陥の発生も従来以下であることから、特には厚肉で高靭性が要求される、高強度鋼管のシーム溶接部などに有効な溶接方法である。   According to the present invention, a deeply welded bead with small heat input for pipe making is obtained, and the occurrence of defects is less than that of conventional ones. Therefore, seam welding of a high-strength steel pipe that is particularly thick and requires high toughness. This is an effective welding method for parts.

すなわち、高靭性を得るために入熱を低減することで、欠陥の発生が増大することによる歩留まりの低下や、鋼材を低成分で造り込まなければならないために、製造能率が極めて悪い加工熱処理を余儀なくされていたが、本発明により容易に高強度・高靭性の厚肉材の製造が可能となった。   In other words, by reducing heat input to obtain high toughness, a decrease in yield due to an increase in the occurrence of defects, and because of the fact that steel materials must be built with low components, a heat treatment with extremely poor production efficiency is required. Although it was unavoidable, the present invention made it possible to easily produce a thick material having high strength and high toughness.

尚、本発明をUOE鋼管のシーム溶接(両面一層盛り溶接)に用いる場合、内面、外面のいずれか一面側だけに適用した場合には、本発明の効果(深溶け込み溶接が可能になる効果)が発現しにくいので、両面側に適用するのが好ましい。   When the present invention is used for seam welding (double-sided single-layer welding) of a UOE steel pipe, the effect of the present invention (effect of enabling deep penetration welding) when applied to only one of the inner surface and the outer surface. It is preferable to apply to both sides.

表1に示す化学成分と機械的性質の鋼板を用いて、通常の工程によりUOE鋼管を作成した。シーム溶接の開先形状は図1に示すものとし、表2に示す寸法形状とした。   A UOE steel pipe was prepared by a normal process using steel plates having chemical components and mechanical properties shown in Table 1. The groove shape of seam welding shall be as shown in FIG.

シーム溶接は3電極サブマージアーク溶接と4電極サブマージアーク溶接で、内外面溶接をおこなった。   Seam welding was performed by three-electrode submerged arc welding and four-electrode submerged arc welding.

表3に3電極サブマージアーク溶接の溶接条件と溶接欠陥の有無とビード外観の目視結果を、表4、5に4電極サブマージアーク溶接の溶接条件と溶接欠陥の有無とビード外観の目視結果を示す。溶接欠陥の有無と溶け込み状況の確認は、X線検査により行った。   Table 3 shows the welding conditions of 3-electrode submerged arc welding, the presence or absence of welding defects, and the visual results of the bead appearance. Tables 4 and 5 show the welding conditions of 4-electrode submerged arc welding, the presence or absence of welding defects, and the visual results of the bead appearance. . The presence or absence of welding defects and the penetration status were confirmed by X-ray inspection.

尚、表中の電極角度を図2に示す。図3は表中のUOE鋼管1のFL靭性(vTrs)を求めたシャルピー衝撃試験の試験片2の採取位置を示し、Final側(外面側)の溶接部4のBOND5を切欠き位置3とした。   The electrode angles in the table are shown in FIG. FIG. 3 shows the sampling position of the specimen 2 of the Charpy impact test for determining the FL toughness (vTrs) of the UOE steel pipe 1 in the table, and the BOND 5 of the welded part 4 on the final side (outer surface side) is set as the notch position 3. .

3電極サブマージアーク溶接、4電極サブマージアーク溶接ともに本発明例では、スラグ巻き込みや溶け込み不足のない良好な溶接部が得られた。   In both the three-electrode submerged arc welding and the four-electrode submerged arc welding, in the example of the present invention, a good weld without slag entrainment or insufficient penetration was obtained.

一方、電極間距離および/または第1、2電極の電流密度が本発明範囲外となる比較例では、スラグ巻き込みや溶け込み不足が観察された。   On the other hand, in the comparative example in which the distance between the electrodes and / or the current density of the first and second electrodes is outside the range of the present invention, slag entrainment and insufficient penetration were observed.

Figure 0005223369
Figure 0005223369

Figure 0005223369
Figure 0005223369

Figure 0005223369
Figure 0005223369

Figure 0005223369
Figure 0005223369

Figure 0005223369
Figure 0005223369

開先形状を示す断面図。Sectional drawing which shows a groove shape. 電極角度を説明する図。The figure explaining an electrode angle. シャルピー衝撃試験片採取位置を示す断面図。Sectional drawing which shows the Charpy impact test piece collection position.

符号の説明Explanation of symbols

1 UOE鋼管
2 試験片
3 切欠き位置
4 溶接部
5 BOND
1 UOE steel pipe 2 Test piece 3 Notch position 4 Welded part 5 BOND

Claims (4)

鋼材を3電極以上の多電極でサブマージアーク溶接するにあたり、第1電極への給電に直流電源を用いて、第1電極の電流密度を287A/mm 以上382A/mm 以下とし、第2電極の電流密度を154A/mm 以上271A/mm 以下とし、第1電極と第2電極との電極間距離前記鋼材表面位置において27mm以上30mm以下、第2電極と第3電極との電極間距離は15mm以上18mm以下とすることを特徴とする鋼材の多電極サブマージアーク溶接方法。 In submerged arc welding of steel materials with three or more electrodes, a DC power source is used to supply power to the first electrode, and the current density of the first electrode is set to 287 A / mm 2 or more and 382 A / mm 2 or less. the current density of the 154A / mm 2 or more 271A / mm 2 or less, 27 mm or more 30mm or less in the steel material surface position electrode distance between the first electrode and the second electrode, between the electrodes of the second electrode and the third electrode A multi-electrode submerged arc welding method for steel, wherein the distance is 15 mm or more and 18 mm or less . 第1電極の電流を1150A以上1300A以下、第2電極の電流を850A以上950A以下で行うことを特徴とする請求項1記載の鋼材の多電極サブマージアーク溶接方法。 The following current 1150A or 1300A of the first electrode, a multi-electrode submerged arc welding method of the steel according to claim 1, wherein the current of the second electrode and performs at least 850A 950A or less. 第1電極による溶接を、ワイヤ径3.2mm以下で行うことを特徴とする請求項1または2記載の鋼材の多電極サブマージアーク溶接方法。   The multi-electrode submerged arc welding method for steel according to claim 1 or 2, wherein welding with the first electrode is performed with a wire diameter of 3.2 mm or less. 鋼材の内面と外面の夫々を、請求項1乃至3のいずれか一つに記載の多電極サブマージアーク溶接で、一層盛り溶接することを特徴とする鋼材の多電極サブマージアーク溶接方法。   A multi-electrode submerged arc welding method for a steel material, wherein the inner surface and the outer surface of the steel material are each welded by multi-electrode submerged arc welding according to any one of claims 1 to 3.
JP2008040842A 2008-02-22 2008-02-22 Multi-electrode submerged arc welding method for steel Active JP5223369B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008040842A JP5223369B2 (en) 2008-02-22 2008-02-22 Multi-electrode submerged arc welding method for steel
PCT/JP2009/053472 WO2009104806A1 (en) 2008-02-22 2009-02-19 Submerged arc welding method with multiple electrodes for steel material
US12/918,095 US8785806B2 (en) 2008-02-22 2009-02-19 Submerged arc welding method with multiple electrodes for steel material
CN200980105843.5A CN101952074B (en) 2008-02-22 2009-02-19 Submerged arc welding method with multiple electrodes for steel material
RU2010138932/02A RU2486996C2 (en) 2008-02-22 2009-02-19 Method of hidden arc welding of steel material using multiple electrodes
EP09713534.7A EP2255915B1 (en) 2008-02-22 2009-02-19 Submerged arc welding method with multiple electrodes for steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008040842A JP5223369B2 (en) 2008-02-22 2008-02-22 Multi-electrode submerged arc welding method for steel

Publications (2)

Publication Number Publication Date
JP2009195957A JP2009195957A (en) 2009-09-03
JP5223369B2 true JP5223369B2 (en) 2013-06-26

Family

ID=41140076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008040842A Active JP5223369B2 (en) 2008-02-22 2008-02-22 Multi-electrode submerged arc welding method for steel

Country Status (1)

Country Link
JP (1) JP5223369B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565021B2 (en) * 2010-03-23 2014-08-06 Jfeスチール株式会社 Welding wire feed guide, submerged arc welding machine, and UOE steel pipe manufacturing method
JP5895423B2 (en) * 2011-09-27 2016-03-30 Jfeスチール株式会社 Multi-electrode submerged arc welding method for steel sheet
DK2767361T3 (en) 2011-11-15 2017-03-13 Nippon Steel & Sumitomo Metal Corp PROCEDURE FOR HIGH-EFFICIENCY WELDING OF THICK STEEL STEPS
US9764410B2 (en) 2011-11-29 2017-09-19 Jfe Steel Corporation Submerged arc welding method for steel plate
JP6064799B2 (en) * 2013-06-18 2017-01-25 Jfeスチール株式会社 Welding torch, multi-electrode submerged arc inner surface welding machine, and inner surface welding method for large diameter welded steel pipe
JP2015150572A (en) * 2014-02-12 2015-08-24 株式会社神戸製鋼所 Method of welding multi-electrode single-sided submerged arc, method of manufacturing weldment
JP6211431B2 (en) * 2014-02-12 2017-10-11 株式会社神戸製鋼所 Multi-electrode single-sided submerged arc welding method, welded product manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50117656A (en) * 1974-02-28 1975-09-13
JP2007260684A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Multiple electrode submerged arc welding method of thick steel plate
JP2007268564A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Multi-electrode submerged arc welding method

Also Published As

Publication number Publication date
JP2009195957A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5223369B2 (en) Multi-electrode submerged arc welding method for steel
JP5521632B2 (en) Thick steel plate welding method
JP5283306B2 (en) Submerged arc welding method for steel
WO2009104806A1 (en) Submerged arc welding method with multiple electrodes for steel material
KR101888780B1 (en) Vertical narrow gap gas shielded arc welding method
WO2010137186A1 (en) Submerged arc welding method for steel plate
JP2010221298A (en) Complex method of welding in combination of gas shield arc welding with submerged arc welding, and complex welding machine thereof
JP6119940B1 (en) Vertical narrow groove gas shielded arc welding method
JP2007268564A (en) Multi-electrode submerged arc welding method
KR20140094579A (en) Submerged arc welding method for steel sheets
JP4998353B2 (en) Manufacturing method of welded steel pipe
JP2009214127A (en) Submerged arc welding method for steel material
JP5854145B2 (en) Submerged arc welding method, welded joint and steel pipe manufacturing method
KR102126667B1 (en) Method for vertical narrow gas shield arc welding
JP5239900B2 (en) Multi-electrode submerged arc welding method for steel
JP2014073523A (en) Submerged arc welding method
JP2009233679A (en) Submerged arc welding method of steel material
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP5742091B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP5742090B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP2013081985A (en) Submerged arc welding method for steel material
WO2017141760A1 (en) Multi-electrode submerged arc welding method
JP5672697B2 (en) Submerged arc welding method for steel
JP2013111622A (en) Multi-electrode submerged arc welding method
JP5470718B2 (en) Multi-electrode submerged arc welding method for thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Ref document number: 5223369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250