JP5521632B2 - Thick steel plate welding method - Google Patents

Thick steel plate welding method Download PDF

Info

Publication number
JP5521632B2
JP5521632B2 JP2010038571A JP2010038571A JP5521632B2 JP 5521632 B2 JP5521632 B2 JP 5521632B2 JP 2010038571 A JP2010038571 A JP 2010038571A JP 2010038571 A JP2010038571 A JP 2010038571A JP 5521632 B2 JP5521632 B2 JP 5521632B2
Authority
JP
Japan
Prior art keywords
welding
electrode
arc welding
heat input
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010038571A
Other languages
Japanese (ja)
Other versions
JP2010221297A (en
Inventor
篤史 石神
直哉 早川
時彦 片岡
健次 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010038571A priority Critical patent/JP5521632B2/en
Publication of JP2010221297A publication Critical patent/JP2010221297A/en
Application granted granted Critical
Publication of JP5521632B2 publication Critical patent/JP5521632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、板厚30mm以上の厚鋼板の溶接方法に関し、詳しくは、UOE鋼管、スパイラル鋼管などの大径鋼管の造管溶接に用いて好適なものに関する。   The present invention relates to a method for welding thick steel plates having a thickness of 30 mm or more, and more particularly, to a method suitable for pipe making welding of large diameter steel pipes such as UOE steel pipes and spiral steel pipes.

大径鋼管の造管溶接(シーム溶接)には2電極以上のサブマージアーク溶接が適用されている。パイプ生産能率向上の観点から鋼管の内面側を1パス、外面側を1パスで溶接する両面一層盛り溶接が一般的で、高能率な溶接施工がなされている(例えば特許文献1,2)。   Submerged arc welding with two or more electrodes is applied to pipe making welding (seam welding) of large diameter steel pipes. From the viewpoint of improving pipe production efficiency, double-sided single-layer welding, in which the inner surface side of the steel pipe is welded with one pass and the outer surface side with one pass, is commonly performed, and highly efficient welding is performed (for example, Patent Documents 1 and 2).

両面一層溶接では内面溶接金属と外面溶接金属が重なり未溶融部がないように十分な溶け込み深さを確保するため、1000A以上の大電流を適用して溶接を行うのが一般的で、能率と欠陥抑制を重視することで、溶接入熱が過剰となり、溶接部特に溶接熱影響部の靭性が劣化する問題がある。   In double-sided single-layer welding, in order to ensure a sufficient penetration depth so that the inner surface weld metal and the outer surface weld metal overlap and there is no unmelted portion, it is common to perform welding by applying a large current of 1000 A or more. By placing emphasis on defect suppression, there is a problem that welding heat input becomes excessive and the toughness of the welded portion, particularly the welded heat affected zone, deteriorates.

特許文献3には、溶接熱影響部の靭性劣化を防止するため、溶接入熱を低減する方法として、高電流密度でのサブマージアーク溶接方法が提案されている。   Patent Document 3 proposes a submerged arc welding method at a high current density as a method for reducing welding heat input in order to prevent toughness deterioration of the weld heat affected zone.

特許文献4には、板厚30mmを超える肉厚の鋼板を溶接する際に溶接入熱を抑制するため多パス溶接とすることが提案されている。   Patent Document 4 proposes multi-pass welding in order to suppress welding heat input when welding a steel plate having a thickness exceeding 30 mm.

特開平11−138266号公報JP 11-138266 A 特開平10−109171号公報JP-A-10-109171 特開2006−272377号公報JP 2006-272377 A 特開平06−328255号公報Japanese Patent Laid-Open No. 06-328255

大径鋼管のシーム溶接において溶接熱影響部の靭性劣化を抑制するためには、溶接入熱を低減することが効果的であることが知られている。しかしながら特許文献3記載の方法では一般的に板厚が15〜20mmの場合、入熱が3〜6kJ/mm程度の従来法と比べて低入熱化できるものの、板厚の大きな鋼材を溶接する際には入熱が高くなり、マイナス40℃レベルの靭性を求められる場合には溶接熱影響部の靭性を確保することができない場合があるという問題があった。また、高電流密度溶接は余盛が高くなる問題があり、例えば製管後にコーティングを施すような場合には切削の工程が必要となり能率が低下する。   In seam welding of large diameter steel pipes, it is known that it is effective to reduce welding heat input in order to suppress toughness deterioration of the weld heat affected zone. However, in the method described in Patent Document 3, generally, when the plate thickness is 15 to 20 mm, the heat input can be reduced as compared with the conventional method in which the heat input is about 3 to 6 kJ / mm, but a steel material having a large plate thickness is welded. In some cases, the heat input becomes high, and when toughness of minus 40 ° C. is required, the toughness of the weld heat affected zone may not be ensured. In addition, high current density welding has a problem that the surplus is increased. For example, when coating is performed after pipe forming, a cutting process is required and efficiency is lowered.

また、特許文献4記載の方法は上記問題を解決しうるものであるが、多パス溶接であるため生産能率が低下する問題があった。   Moreover, although the method of patent document 4 can solve the said problem, since it was multipass welding, there existed a problem that production efficiency fell.

そこで、本発明は、内外面1層盛溶接で生産能率を損なうことなく、溶接入熱を従来より大きく低減し、溶接熱影響部で優れた靭性を得る厚鋼板の溶接方法を提供することを目的とする。   Therefore, the present invention provides a method for welding thick steel plates that greatly reduces welding heat input and obtains excellent toughness in the weld heat affected zone without impairing the production efficiency by inner and outer surface single layer welding. Objective.

本発明者らは、30mm以上の板厚の鋼材を対象として、内外面1層盛溶接の低入熱化の方法を種々検討した。その結果、ガスシールドアーク溶接とサブマージアーク溶接とを複合して使用し、さらにサブマージアーク溶接の入熱を適正な範囲に制御することにより、溶接入熱を従来より大きく低減し、溶接熱影響部で優れた靭性を得ることができることを見出した。   The present inventors have studied various methods for reducing the heat input of inner and outer surface single-layer welding for steel materials having a thickness of 30 mm or more. As a result, gas shielded arc welding and submerged arc welding are used in combination, and the heat input of submerged arc welding is controlled to an appropriate range, so that the welding heat input is greatly reduced compared to the prior art, and the weld heat affected zone And found that excellent toughness can be obtained.

本発明は、上述の知見に基づくものであり、その要旨は以下の通りである。
1.板厚30mm以上の鋼材を両面から溶接する厚鋼板の溶接方法であって、少なくとも一方の面の溶接は、多電極サブマージアーク溶接の第1電極の溶接方向前方にガスシールドアーク溶接の電極を配置して溶接を行い、前記多電極サブマージアーク溶接は、(1)式を満足する入熱、前記ガスシールドアーク溶接は(2)式を満足する入熱とすることを特徴とする厚鋼板の溶接方法。
The present invention is based on the above-mentioned knowledge, and the gist thereof is as follows.
1. A welding method for a thick steel plate in which a steel material having a thickness of 30 mm or more is welded from both sides, and at least one of the surfaces is welded with a gas shielded arc welding electrode in front of the first electrode in multi-electrode submerged arc welding. Welding of thick steel plates, wherein the multi-electrode submerged arc welding is heat input satisfying the equation (1), and the gas shielded arc welding is heat input satisfying the equation (2) Method.

0.18t−3≦Q≦0.35t−5.5・・・・(1)
ここで、t:鋼材の板厚(mm)、Q:多電極サブマージアーク溶接の溶
接入熱(kJ/mm)
≦0.17t−1.5・・・・(2)
ここで、t:鋼材の板厚(mm)、Q:ガスシールドアーク溶接の溶接入
熱(kJ/mm)
2.ガスシールドアーク溶接が多電極溶接で、第1電極に適用するワイヤ径が1.4mm以上で、電流密度が500A/mm以上であることを特徴とする1に記載の厚鋼板の溶接方法。
3.1記載の厚鋼板の溶接方法において、鋼材を両面から溶接する場合、一方がバッキング側溶接、他方がファイナル側溶接で、前記バッキング側溶接は多電極サブマージアーク溶接のみで溶接し、前記多電極サブマージアーク溶接の第1電極のワイヤ径は3.2mm以下で、前記ファイナル側溶接は、多電極サブマージアーク溶接とガスシールドアーク溶接で溶接することを特徴とする厚鋼板の溶接方法。
0.18t-3 ≦ Q S ≦ 0.35t−5.5 (1)
Where t: steel plate thickness (mm), Q S : solution of multi-electrode submerged arc welding
Heat input (kJ / mm)
Q G ≦ 0.17t−1.5 (2)
Where t: steel plate thickness (mm), Q G : gas shielded arc welding input
Heat (kJ / mm)
2. 2. The thick steel plate welding method according to 1, wherein the gas shield arc welding is multi-electrode welding, the wire diameter applied to the first electrode is 1.4 mm or more, and the current density is 500 A / mm 2 or more.
In the thick steel plate welding method described in 3.1, when steel materials are welded from both sides, one is backing side welding, the other is final side welding, and the backing side welding is welded only by multi-electrode submerged arc welding. The wire diameter of the 1st electrode of electrode submerged arc welding is 3.2 mm or less, and the said final side welding is welding by multi-electrode submerged arc welding and gas shielded arc welding, The welding method of the thick steel plate characterized by the above-mentioned.

本発明は、鋼板を内外面から溶接するにあたり、ガスシールドアーク溶接とサブマージアーク溶接とを複合させて使用し、さらにガスシールドアーク溶接ならびにサブマージアーク溶接の入熱を適正な範囲に制御するようにしたので、内外面1層盛溶接で生産能率を損なうことなく、溶接入熱を板厚方向に効果的に分散し、溶接熱影響部で優れた靭性を得ることが可能で、産業上極めて有用である。   The present invention uses a combination of gas shielded arc welding and submerged arc welding to weld a steel plate from the inner and outer surfaces, and further controls the heat input of gas shielded arc welding and submerged arc welding to an appropriate range. Therefore, it is possible to effectively disperse the welding heat input in the plate thickness direction without impairing the production efficiency in the single-layer welding of the inner and outer surfaces, and to obtain excellent toughness in the weld heat affected zone, which is extremely useful industrially. It is.

実施例に用いた開先形状を示す図。The figure which shows the groove shape used for the Example. 実施例に用いたシャルピー衝撃試験片の採取位置とノッチ位置を説明する図で、(a)は採取位置:外面側、(b)は採取位置:内外面会合部、(c)は(b)のシャルピー衝撃試験片のノッチ位置を説明する図。It is a figure explaining the sampling position and notch position of the Charpy impact test piece used for the Example, (a) is a sampling position: outer surface side, (b) is a sampling position: inner and outer surface meeting part, (c) is (b) The figure explaining the notch position of the Charpy impact test piece.

本発明は、板厚30mm以上の鋼材を対象とし、鋼材を両面から溶接する際、少なくとも一方の面の溶接は、ガスシールドアーク溶接と多電極サブマージアーク溶接とを組合わせたハイブリッド溶接とする。以下の説明で、内面溶接はバッキング側の溶接、外面溶接はファイナル側の溶接とする。   The present invention is directed to a steel material having a plate thickness of 30 mm or more, and when welding the steel material from both sides, the welding of at least one surface is a hybrid welding combining gas shield arc welding and multi-electrode submerged arc welding. In the following description, it is assumed that the inner surface welding is welding on the backing side and the outer surface welding is welding on the final side.

多電極サブマージアーク溶接では、会合部における溶け込み不足を回避しようとすると、入熱量が大きくなるので、溶け込みの深い溶接部が得られるガスシールドアーク溶接の電極を多電極サブマージアーク溶接の第1電極の溶接線方向前方に配置する。ガスシールドアーク溶接は単電極溶接でも多電極溶接でも良いが、多電極溶接の場合は、各電極が多電極サブマージアーク溶接の第1電極の溶接線方向前方に一列となるように配置する。   In multi-electrode submerged arc welding, if an attempt is made to avoid insufficient penetration at the meeting part, the amount of heat input increases. Therefore, an electrode of gas shield arc welding that can obtain a deeply welded part is used as the first electrode of multi-electrode submerged arc welding. It is arranged in front of the weld line. The gas shield arc welding may be single electrode welding or multi-electrode welding, but in the case of multi-electrode welding, each electrode is arranged in a line in front of the first electrode of the multi-electrode submerged arc welding in the welding line direction.

板厚30mm以上の厚鋼板を溶接する場合、ハイブリッド溶接において多電極サブマージアーク溶接は、(1)式を満足する溶接入熱とする。   When welding thick steel plates having a plate thickness of 30 mm or more, multi-electrode submerged arc welding in hybrid welding is assumed to be welding heat input that satisfies the equation (1).

0.18t−3≦Q≦0.35t−5.5・・・・(1)
ここで、t:鋼材の板厚(mm)、Q:多電極サブマージアーク溶接の溶
接入熱(kJ/mm)
多電極サブマージアーク溶接の溶接入熱Qが0.35t−5.5を超える場合、溶接熱影響部において組織が粗大化し靭性が劣化する。一方、Qが0.18t−3を下回る場合、アンダーカットが発生しやすい。
0.18t-3 ≦ Q S ≦ 0.35t−5.5 (1)
Where t: steel plate thickness (mm), Q S : solution of multi-electrode submerged arc welding
Heat input (kJ / mm)
If heat input Q S of the multi-electrode submerged arc welding is more than 0.35 T-5.5, it is degraded tissue coarsened toughness in the heat affected zone. On the other hand, if the Q S is less than the 0.18t-3, undercut it is likely to occur.

ガスシールドアーク溶接の溶接入熱Qは、内面溶接と外面溶接との会合部における溶接熱影響部の靭性劣化を抑制するため小さくすることが有利で、(2)式を満足するように設定することが好ましい。 The welding heat input Q G of gas shielded arc welding is advantageous to reduce the toughness deterioration of the weld heat affected zone at the joint between the inner surface welding and the outer surface welding, and is set to satisfy the equation (2). It is preferable to do.

≦0.17t−1.5・・・・(2)
ここで、t:鋼材の板厚(mm)、Q:ガスシールドアーク溶接の溶接入
熱(kJ/mm)
ガスシールドアーク溶接を多電極溶接とすると、単電極溶接の場合と比較して溶接速度を速くなり、製造能率を向上させて好ましい。
Q G ≦ 0.17t−1.5 (2)
Where t: steel plate thickness (mm), Q G : gas shielded arc welding input
Heat (kJ / mm)
If gas shielded arc welding is multi-electrode welding, the welding speed is increased compared with the case of single electrode welding, and the production efficiency is improved.

なお、(1)式、(2)式で規定する溶接入熱は、両溶接法が多電極溶接の場合は、それぞれの溶接法における各電極での溶接入熱の総和とする。   In addition, the welding heat input prescribed | regulated by (1) Formula and (2) Formula is the sum total of the welding heat input in each electrode in each welding method, when both welding methods are multi-electrode welding.

外面溶接を上記ハイブリッド溶接とし、内面溶接を多電極サブマージアーク溶接とし、その第1電極のワイヤ径を3.2mm以下とすることで、内面溶接の入熱を低減することができ、内面溶接の溶接熱影響部において優れた靭性が得られる。   The outer surface welding is the above hybrid welding, the inner surface welding is a multi-electrode submerged arc welding, and the wire diameter of the first electrode is 3.2 mm or less, so that the heat input of the inner surface welding can be reduced. Excellent toughness is obtained in the weld heat affected zone.

本発明の実施において、多電極サブマージアーク溶接の第1電極とガスシールドアーク溶接の電極間距離、ガスシールドアーク溶接のシールドガス組成、シールドガス流量、両溶接法の溶接ワイヤ径などは良好な溶接ビード外観が得られるように適宜設定する。   In the practice of the present invention, the distance between the first electrode of multi-electrode submerged arc welding and the electrode of gas shielded arc welding, the shielding gas composition of gas shielding arc welding, the shielding gas flow rate, the welding wire diameter of both welding methods, etc. are satisfactory. Set appropriately to obtain a bead appearance.

但し、入熱を板厚方向に分散させるためにはガスシールドアーク溶接において深い溶け込みを得ることが必要で、高電流・高電流密度溶接が必要となる。深い溶け込みを得るには電流値をワイヤの断面積で除した電流密度が500A/mm以上である必要があり、実用的にはワイヤ径が1.4mm以上なければ高電流での溶接ができない。好適な範囲は1.4mmから2.4mmの範囲である。 However, in order to disperse the heat input in the plate thickness direction, it is necessary to obtain deep penetration in gas shielded arc welding, and high current / high current density welding is required. In order to obtain deep penetration, the current density obtained by dividing the current value by the cross-sectional area of the wire needs to be 500 A / mm 2 or more. In practice, if the wire diameter is not more than 1.4 mm, high current welding cannot be performed. . The preferred range is from 1.4 mm to 2.4 mm.

本発明をUOE鋼管に適用して鋼管のシーム部の開先を両面から溶接する場合、一方の面は鋼管内面側のバッキング側溶接、他方が鋼管外面側のファイナル側溶接となり、まず、バッキング側溶接を第1電極のワイヤ径を好ましくは3.2mm以下、より好ましくは1.2mm〜2.4mmとする多電極サブマージアーク溶接のみで溶接し、その後、ファイナル側溶接を、多電極サブマージアーク溶接とガスシールドアーク溶接の上記ハイブリッド溶接で溶接する。   When the present invention is applied to a UOE steel pipe and the groove of the seam portion of the steel pipe is welded from both sides, one side is the welding on the inner side of the steel pipe and the other side is the final side welding on the outer side of the steel pipe. Welding is performed only by multi-electrode submerged arc welding in which the wire diameter of the first electrode is preferably 3.2 mm or less, more preferably 1.2 mm to 2.4 mm, and then final-side welding is performed by multi-electrode submerged arc welding. And the above hybrid welding of gas shielded arc welding.

表1に示す化学組成の板厚30.2mm、33.0mm、38.1mmの鋼板に、表2および図1に示す開先を加工し、表3に示す溶接条件で内面溶接(バッキング側の溶接)を実施した後、表4および表5に示す溶接条件で外面溶接(ファイナル側の溶接)を実施した。作製した継手について、ビード外観の調査を実施した。   A groove shown in Table 2 and FIG. 1 is processed into a steel plate having a thickness of 30.2 mm, 33.0 mm, and 38.1 mm having a chemical composition shown in Table 1, and inner surface welding (on the backing side) is performed under the welding conditions shown in Table 3. After performing welding), outer surface welding (final side welding) was performed under the welding conditions shown in Tables 4 and 5. About the produced coupling, the bead appearance was investigated.

さらに、溶接熱影響部から採取した試料を用いてJIS Z 2242の金属材料衝撃試験方法に準拠してシャルピー衝撃試験を行い、溶接熱影響部の靭性を評価した。シャルピー衝撃試験片(JIS Z 3111に規定する4号試験片)の採取は、試験片のノッチの方向と板厚方向が平行となるように採取し、図2(a)に示すように、外面Fusion Line(以下、FLと表記)シャルピー試験片は外面溶接側の鋼板表面下7mmの位置がシャルピー試験片中央となるよう採取し、図2(b)に示すようにルート部FL シャルピー試験片は内面溶接と外面溶接の会合部がシャルピー試験片中央となるよう採取した。図2(c)はルート部FLシャルピー試験片のノッチ位置詳細を示す。
シャルピー試験は−30℃で3本実施し、シャルピー吸収エネルギーの平均値を求めた。なお、シャルピー試験片のノッチ底における溶接金属と母材(溶接熱影響部)の比率が50%−50%になるように試験片を加工した。
Further, a Charpy impact test was performed in accordance with the metal material impact test method of JIS Z 2242 using samples collected from the weld heat affected zone, and the toughness of the weld heat affected zone was evaluated. The Charpy impact test piece (No. 4 test piece specified in JIS Z 3111) was collected so that the notch direction and the plate thickness direction of the test piece were parallel to each other, and as shown in FIG. Fusion Line (hereinafter referred to as FL) Charpy test piece was taken so that the position 7mm below the surface of the steel plate on the outer surface welding side would be the center of the Charpy test piece, as shown in Fig. 2 (b), the root part FL Charpy test piece was The gathering part of the inner surface welding and the outer surface welding was sampled so as to be in the center of the Charpy specimen. FIG. 2C shows details of the notch position of the root part FL Charpy specimen.
Three Charpy tests were performed at −30 ° C., and the average value of Charpy absorbed energy was determined. In addition, the test piece was processed so that the ratio of the weld metal and the base material (welding heat affected zone) at the notch bottom of the Charpy test piece was 50% to 50%.

結果を表6に示す。記号1〜10は(1)式および(2)式を満たす本発明例であり、ルート部FLシャルピー試験および外面FLシャルピー試験において高い吸収エネルギーが得られた。   The results are shown in Table 6. Symbols 1 to 10 are examples of the present invention that satisfy the expressions (1) and (2), and high absorbed energy was obtained in the root part FL Charpy test and the outer surface FL Charpy test.

記号1〜5についてはガスシールドアーク溶接が2電極以上の多電極溶接であり、第1電極に適用するワイヤ径が1.4mm以上で、電流密度が500A/mm以上であり、表6に示すように外面溶接速度VOWを内面溶接速度VIWに対して大きく低下させずに板厚の60%以上の深い溶込みが得られた。 For symbols 1 to 5, gas shield arc welding is multi-electrode welding of two or more electrodes, the wire diameter applied to the first electrode is 1.4 mm or more, and the current density is 500 A / mm 2 or more. As shown, a deep penetration of 60% or more of the plate thickness was obtained without significantly reducing the outer surface welding speed V OW with respect to the inner surface welding speed VIW .

一方、記号6〜8はガスシールドアーク溶接を1電極としており、外面溶接速度を内面溶接速度より30%以上低下させて深い溶込みを得た実施例である。また、記号9はガスシールドアーク溶接の第1電極のワイヤ径が1.2mmのため高電流での溶接ができず、記号1〜5に比べ溶込みが小さい実施例である。   On the other hand, symbols 6 to 8 are examples in which gas shielded arc welding is used as one electrode and the outer surface welding speed is reduced by 30% or more from the inner surface welding speed to obtain deep penetration. Symbol 9 is an embodiment in which the first electrode of gas shielded arc welding has a wire diameter of 1.2 mm, so that welding at a high current cannot be performed, and the penetration is smaller than those of symbols 1 to 5.

記号10はガスシールドアーク溶接の第1電極の電流密度が500A/mm未満であり、記号1〜5に比べ溶込みが小さい実施例である。 Symbol 10 is an example in which the current density of the first electrode of gas shielded arc welding is less than 500 A / mm 2 and the penetration is smaller than those of symbols 1 to 5.

記号11〜13は(2)式を満たさず、ガスシールドアーク溶接の入熱が過大でルート部FLシャルピー試験において高い吸収エネルギーを得られなかった比較例である。また、記号14、15、17は外面サブマージアーク溶接の入熱が過小で(1)式を満たさず、アンダーカットが生じた。   Symbols 11 to 13 are comparative examples in which the formula (2) is not satisfied, the heat input of gas shield arc welding is excessive, and high absorbed energy cannot be obtained in the root part FL Charpy test. Further, symbols 14, 15, and 17 indicate that the heat input of the outer surface submerged arc welding is too small to satisfy the expression (1), and an undercut occurs.

さらに記号16、18は外面サブマージアーク溶接の入熱が過大で(1)式を満たさず、外面FLシャルピー試験において高い吸収エネルギーを得られなかった。   Further, symbols 16 and 18 did not satisfy the formula (1) because the heat input of the outer surface submerged arc welding was excessive, and high absorbed energy could not be obtained in the outer surface FL Charpy test.

記号19〜21は(1)式および(2)式を満たし、さらに内面溶接を多電極サブマージアーク溶接としてその第1電極のワイヤ径を3.2mm以下とした本発明例であり、ルート部FLシャルピー試験、外面FLシャルピー試験および内面FLシャルピー試験において高い吸収エネルギーが得られた。 記号19〜21は内面サブマージアーク溶接の第1電極にワイヤ径3.2mm以下のワイヤを用いたので内面溶接速度が速くなっている。  Symbols 19 to 21 are examples of the present invention that satisfy the formulas (1) and (2), and the inner diameter welding is multi-electrode submerged arc welding, and the wire diameter of the first electrode is 3.2 mm or less. High absorbed energy was obtained in the Charpy test, the outer surface FL Charpy test and the inner surface FL Charpy test. Symbols 19 to 21 use a wire having a wire diameter of 3.2 mm or less for the first electrode of the inner surface submerged arc welding, so that the inner surface welding speed is increased.

Figure 0005521632
Figure 0005521632

Figure 0005521632
Figure 0005521632

Figure 0005521632
Figure 0005521632

Figure 0005521632
Figure 0005521632

Figure 0005521632
Figure 0005521632

Figure 0005521632
Figure 0005521632

1 鋼板母材
2 外面Fusion Lineシャルピー試験片
3 シャルピー試験片ノッチ
4 溶接金属
5 Fusion Line
6 ルート部Fusion Lineシャルピー試験片
DESCRIPTION OF SYMBOLS 1 Steel plate base material 2 Outer surface Fusion Line Charpy test piece 3 Charpy test piece notch 4 Weld metal 5 Fusion Line
6 root part Fusion Line Charpy specimen

Claims (2)

板厚30mm以上の鋼材を両面から溶接する厚鋼板の溶接方法であって、少なくとも一方の面の溶接は、多電極サブマージアーク溶接の第1電極の溶接方向前方にガスシールドアーク溶接の電極を配置して溶接を行い、前記多電極サブマージアーク溶接は、(1)式を満足する入熱、前記ガスシールドアーク溶接は(2)式を満足する入熱とし、
前記ガスシールドアーク溶接は、多電極溶接で、第1電極に適用するワイヤ径が1.4mm〜2.4mmで、電流密度が500A/mm以上であることを特徴とする厚鋼板の溶接方法。
18t−3≦Q≦0.35t−5.5・・・・(1)
ここで、t:鋼材の板厚(mm)、Q:多電極サブマージアーク溶接の溶接入熱(kJ/mm)
≦0.17t−1.5・・・・(2)
ここで、t:鋼材の板厚(mm)、Q:ガスシールドアーク溶接の溶接入熱(kJ/mm)
A welding method for a thick steel plate in which a steel material having a thickness of 30 mm or more is welded from both sides, and at least one of the surfaces is welded with a gas shielded arc welding electrode in front of the first electrode in multi-electrode submerged arc welding. The multi-electrode submerged arc welding is heat input satisfying the equation (1), the gas shielded arc welding is heat input satisfying the equation (2) ,
The gas shielded arc welding is multi-electrode welding, the wire diameter applied to the first electrode is 1.4 mm to 2.4 mm, and the current density is 500 A / mm 2 or more. .
18t-3 ≦ Q S ≦ 0.35t−5.5 (1)
Here, t: steel plate thickness (mm), Q S : welding heat input of multi-electrode submerged arc welding (kJ / mm)
Q G ≦ 0.17t−1.5 (2)
Where t: steel plate thickness (mm), Q G : welding heat input of gas shield arc welding (kJ / mm)
請求項1記載の厚鋼板の溶接方法において、鋼材を両面から溶接する場合、一方がバッキング側溶接、他方がファイナル側溶接で、前記バッキング側溶接は多電極サブマージアーク溶接のみで溶接し、前記多電極サブマージアーク溶接の第1電極のワイヤ径は3.2mm以下で、前記ファイナル側溶接は、多電極サブマージアーク溶接とガスシールドアーク溶接で溶接することを特徴とする厚鋼板の溶接方法。   2. The method for welding thick steel plates according to claim 1, wherein when steel is welded from both sides, one side is backing side welding, the other side is final side welding, and the backing side welding is welded only by multi-electrode submerged arc welding. The wire diameter of the 1st electrode of electrode submerged arc welding is 3.2 mm or less, and the said final side welding is welding by multi-electrode submerged arc welding and gas shielded arc welding, The welding method of the thick steel plate characterized by the above-mentioned.
JP2010038571A 2009-02-25 2010-02-24 Thick steel plate welding method Active JP5521632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038571A JP5521632B2 (en) 2009-02-25 2010-02-24 Thick steel plate welding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009041660 2009-02-25
JP2009041660 2009-02-25
JP2010038571A JP5521632B2 (en) 2009-02-25 2010-02-24 Thick steel plate welding method

Publications (2)

Publication Number Publication Date
JP2010221297A JP2010221297A (en) 2010-10-07
JP5521632B2 true JP5521632B2 (en) 2014-06-18

Family

ID=43039043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038571A Active JP5521632B2 (en) 2009-02-25 2010-02-24 Thick steel plate welding method

Country Status (1)

Country Link
JP (1) JP5521632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081530A (en) * 2015-09-22 2015-11-25 武汉钢铁(集团)公司 All-around weld gas-shielded welding method for high-strength bridge steel notches

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653022B (en) * 2012-05-16 2015-06-17 中国核工业二三建设有限公司 Method for welding narrow-gap butt-joint connector of pipeline with large pipe diameter and thick wall
CN102744498A (en) * 2012-07-05 2012-10-24 首钢总公司 Method for welding specially-thick high-strength bridge steel plate
CN104520049B (en) * 2012-08-09 2016-11-02 杰富意钢铁株式会社 Submerged-arc welding method, the welding point formed by this welding method and there is the steel pipe of this welding point
CN103056666B (en) * 2012-12-25 2015-02-18 李雷 Double-head welding and milling machine for steel aluminum composite rails
CN103056484A (en) * 2013-01-28 2013-04-24 南京钢铁股份有限公司 Manual electric arc welding technology of low-temperature alloy steel plate
CN103341686B (en) * 2013-06-09 2016-01-20 武汉钢铁(集团)公司 A kind of high-strength nuclear power steel thick plate buried arc welding method
JP5954272B2 (en) * 2013-07-11 2016-07-20 Jfeスチール株式会社 Submerged arc welding method and welded joint manufacturing method
CN103433604B (en) * 2013-08-20 2015-06-24 首钢总公司 Multiple-wire submerged-arc welding technology for guaranteeing subsea pipeline steel pipe connector comprehensive performance
CN103801795B (en) * 2013-12-12 2017-05-03 内蒙古科技大学 Welding method for SS400 ultra-fine grained steel medium plates
CN104475935B (en) * 2014-11-24 2016-07-06 南京钢铁股份有限公司 A kind of anti-CO2The Site Welding method of corroded pipeline steel
CN104526129A (en) * 2014-11-27 2015-04-22 芜湖中集瑞江汽车有限公司 Tungsten inert gas spot welding process of steel plate with thickness of 4mm
CN104439649A (en) * 2014-11-27 2015-03-25 芜湖中集瑞江汽车有限公司 6 mm-thick steel plate tungsten inert gas shielded welding process
CN104942414B (en) * 2015-06-16 2017-03-01 中石化石油工程机械有限公司沙市钢管厂 A kind of ply-metal submerged welding process
CN105499757A (en) * 2016-01-26 2016-04-20 保定天威电气设备结构有限公司 Method for welding type-A welding seams in walls of gas insulation transformer tanks
CN106001855A (en) * 2016-06-21 2016-10-12 中国科学院自动化研究所 Welding method and robot welding system
CN110560849B (en) * 2019-09-05 2021-09-14 广州黄船海洋工程有限公司 Soft gasket single-side submerged arc welding process for EH36 high-strength steel thick plate
CN112719531A (en) * 2021-01-27 2021-04-30 中国水电四局(兰州)机械装备有限公司 Assembly welding method of magnetic high-strength alloy steel plate
CN114289836A (en) * 2021-12-17 2022-04-08 沪东中华造船(集团)有限公司 Swing submerged arc welding method suitable for EH47 crack arrest steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410263A (en) * 1977-06-24 1979-01-25 Sumitomo Metal Ind Ltd Multiple-electrode welding for line pipe
JP2833279B2 (en) * 1991-08-06 1998-12-09 住友金属工業株式会社 Steel pipe welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081530A (en) * 2015-09-22 2015-11-25 武汉钢铁(集团)公司 All-around weld gas-shielded welding method for high-strength bridge steel notches

Also Published As

Publication number Publication date
JP2010221297A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5521632B2 (en) Thick steel plate welding method
WO2010137186A1 (en) Submerged arc welding method for steel plate
CN100450688C (en) Thin-wall stainless steel double-layer and carbon steel base layer composite tube girth weld welding method
EP2977139B1 (en) Welding filler material for bonding different kind materials, and method for producing different kind material welded structure
JP2010221298A (en) Complex method of welding in combination of gas shield arc welding with submerged arc welding, and complex welding machine thereof
JP2012011429A (en) Fillet welded joint, and gas shielded arc welding method
WO2009104806A1 (en) Submerged arc welding method with multiple electrodes for steel material
JP5693279B2 (en) Laser-arc hybrid welding method for high-strength steel sheet and high-strength steel sheet weld metal obtained thereby
JP2013078775A (en) Welded steel pipe excelling in toughness of welding heat affected part, and method for manufacturing the same
JP2009214127A (en) Submerged arc welding method for steel material
JP5854145B2 (en) Submerged arc welding method, welded joint and steel pipe manufacturing method
JP5223369B2 (en) Multi-electrode submerged arc welding method for steel
JP6201803B2 (en) Submerged arc welds with excellent low temperature toughness
JP2009233679A (en) Submerged arc welding method of steel material
WO2013073565A1 (en) Method for high-efficiency welding of thick steel plate
JP2010172896A (en) Multi-electrode submerged arc welding method of steel material
JP5742091B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
EP3162489B1 (en) Method of butt welding steel plates and butt weld joint of steel plates
CN107470793A (en) A kind of plasma MIG coaxial hybrid weldings for considering arc energy proportioning connect method
JP5742090B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP6693688B2 (en) Welded steel pipe for line pipe excellent in low temperature toughness and method of manufacturing the same
JP2011255403A (en) Method for joining aluminum plate material
CN107030413A (en) A kind of flux-cored wire suitable for slab high-strength steel narrow-clearance submerged arc welding
JP2001239367A (en) Gas shielded arc welding method
JP5672697B2 (en) Submerged arc welding method for steel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250