JP3499085B2 - Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof - Google Patents

Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof

Info

Publication number
JP3499085B2
JP3499085B2 JP17026296A JP17026296A JP3499085B2 JP 3499085 B2 JP3499085 B2 JP 3499085B2 JP 17026296 A JP17026296 A JP 17026296A JP 17026296 A JP17026296 A JP 17026296A JP 3499085 B2 JP3499085 B2 JP 3499085B2
Authority
JP
Japan
Prior art keywords
cooling
steel material
transformation point
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17026296A
Other languages
Japanese (ja)
Other versions
JPH1017982A (en
Inventor
俊永 長谷川
秀里 間渕
幸男 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17026296A priority Critical patent/JP3499085B2/en
Publication of JPH1017982A publication Critical patent/JPH1017982A/en
Application granted granted Critical
Publication of JP3499085B2 publication Critical patent/JP3499085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、使用中に大地震等
による大きくかつ繰り返しの塑性歪を受けるような構造
物に使用される強度部材用の鋼材及びその製造方法に関
するものである。例えば、この方法で製造した鋼材は海
洋構造物、圧力容器、造船、橋梁、建築物、ラインパイ
プなどの溶接鋼構造物一般に用いることができるが、低
降伏比鋼であることから、特に耐震性を必要とする建
築、橋梁等の構造物用鋼材として有用である。また、鋼
材の形態は特に問わないが、構造部材として用いられ、
低温靱性が要求される鋼板、特に厚板、鋼管素材、ある
いは形鋼で特に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material for a strength member used for a structure which is subjected to a large and repeated plastic strain due to a large earthquake or the like during use and a method for manufacturing the same. For example, the steel material produced by this method can be generally used for welded steel structures such as offshore structures, pressure vessels, shipbuilding, bridges, buildings, line pipes, etc. It is useful as a steel material for structures requiring construction, such as bridges. Further, the form of the steel material is not particularly limited, but it is used as a structural member,
It is particularly useful for steel plates requiring low temperature toughness, particularly thick plates, steel pipe materials, or shaped steel.

【0002】[0002]

【従来の技術】近年、建築物の高層化、橋梁の大スパン
化等に見られるように構造物は大型化の傾向にあり、該
用途に使用される鋼材には、地震、台風等による構造物
の崩壊防止のための性能確保が重要な課題となってい
る。特に、阪神大震災の経験から、設計、施工上の特段
の配慮無しに構造物の安全性を鋼材の性能によって確保
しようとすると、延性破壊、脆性破壊の両面で安全性の
高い鋼材が必要であることが認識されつつある。
2. Description of the Related Art In recent years, structures have tended to increase in size as seen in higher-rise buildings, larger spans of bridges, etc. Ensuring performance to prevent the collapse of objects has become an important issue. In particular, from the experience of the Great Hanshin Earthquake, if the safety of a structure is to be ensured by the performance of steel without special consideration in design and construction, it is necessary to have a steel with high safety in terms of both ductile fracture and brittle fracture. It is being recognized.

【0003】最近、高層建築用鋼材に延性破壊性能に配
慮した低降伏比鋼(低YR鋼)や高一様伸び鋼の使用が
検討されつつある。低降伏比特性については、地震、台
風等によるエネルギーを吸収する能力に優れ、また、構
造物の局所的な崩壊を抑制する上で有用であることが認
識されてきている。
Recently, use of a low yield ratio steel (low YR steel) or a high uniform elongation steel in consideration of ductile fracture performance has been investigated for high-rise building steel materials. It has been recognized that the low yield ratio characteristics are excellent in the ability to absorb energy due to earthquakes, typhoons, etc., and are also useful in suppressing the local collapse of structures.

【0004】地震による構造物の崩壊が材料の延性破壊
のみによって引き起こされるのであれば、このような鋼
材の使用は構造物の安全性向上につながる。しかし、阪
神大震災のような巨大地震においては、鋼材は必ずしも
延性破壊で終局的な崩壊に至っているわけではなく、延
性破壊の後に引き続いて脆性破壊を生じ、脆性き裂が全
体に伝播することによって最終的な構造物の崩壊を引き
起こす場合があることが、震災後の様々な調査によって
示された。
If the collapse of a structure due to an earthquake is caused only by ductile fracture of the material, the use of such a steel material leads to an improvement in the safety of the structure. However, in a huge earthquake such as the Great Hanshin Earthquake, steel materials do not always have a ductile fracture and finally collapse, and a ductile fracture is followed by a brittle fracture, and the brittle crack propagates throughout. Various post-earthquake studies have shown that it may cause eventual structural collapse.

【0005】また、地震による変形は単純ではなく、特
に巨大地震の場合にはその巨大かつ継続的な振動によっ
て、鋼材に塑性変形が生じるようなレベルの大きな力が
繰り返しかかると考えることが妥当である。
Further, it is appropriate to think that the deformation due to an earthquake is not simple, and that particularly in the case of a huge earthquake, the huge and continuous vibrations repeatedly apply a large level of force that causes plastic deformation of the steel material. is there.

【0006】以上の観点から、数十年〜数百年に1回と
いうような巨大地震や巨大台風によっても構造物が崩壊
しないためには、エネルギー吸収能に優れた低降伏比特
性に加えて、鋼材が追加的に具備すべき特性の内、特に
下記の〜の特性を追加することが重要となる。
From the above viewpoints, in order to prevent the structure from collapsing due to a huge earthquake or huge typhoon such as once every several decades to hundreds of years, in addition to the low yield ratio characteristics excellent in energy absorption capacity, Of the properties additionally required for the steel material, it is important to add the following properties (1) to (3).

【0007】延性特性の向上により、地震のエネルギ
ーを吸収し得る延性破壊能に優れるとともに、延性き裂
の発生、伝播抵抗が大きい。 繰り返し塑性変形による靱性劣化が小さい。 一旦脆性き裂が発生しても、途中で停止して部材及び
構造物全体の破壊、崩壊につながらない。 従来から、上記特性の確保に対しては種々の分野におい
て、個々の特性に関しては一部その向上技術が開発され
てきた。
Due to the improved ductility characteristics, the ductile fracture capacity capable of absorbing the energy of earthquake is excellent, and the ductile crack is generated and the propagation resistance is large. Little deterioration in toughness due to repeated plastic deformation. Even if a brittle crack occurs once, it stops halfway and does not lead to the destruction or collapse of the entire members and structures. Conventionally, various techniques have been developed for securing the above characteristics, and techniques for partially improving the individual characteristics have been developed.

【0008】エネルギー吸収能向上のための低降伏比化
の手段については数多く提案されている。例えば、C量
の増加等の化学組成の調整による方法、結晶粒を粗大化
させる方法、焼入れと焼戻し熱処理の間にフェライト
(α)+オーステナイト(γ)二相域に加熱する中間熱
処理を施す方法(以降、QLT処理と略)に代表される
ように、軟質相としてのαと硬質相としてのベイナイト
あるいはマルテンサイトを混在させる方法等がある。
Many means of lowering the yield ratio for improving the energy absorption capacity have been proposed. For example, a method by adjusting the chemical composition such as an increase in the amount of C, a method of coarsening crystal grains, a method of performing an intermediate heat treatment of heating in a ferrite (α) + austenite (γ) two-phase region between quenching and tempering heat treatments. As represented by (hereinafter, abbreviated to QLT treatment), there is a method of mixing α as a soft phase and bainite or martensite as a hard phase.

【0009】例えば、軟質相と硬質相の混合組織を得る
ための製造方法として、特開昭53−23817号公報
には鋼板を再加熱焼入れした後、Ac1 変態点とAc3
変態点の間に再加熱して、γとαの二相としてから空冷
する方法が示されており、また、特開平4−31482
4号公報には同様に二相域に再加熱した後、焼入れる方
法が開示されている。
[0009] For example, as a manufacturing method for obtaining a mixed structure of a soft phase and a hard phase, Japanese Patent Laid-Open No. 23817/1993 discloses that a steel sheet is reheat-quenched and then Ac 1 transformation point and Ac 3
A method of reheating between transformation points to obtain two phases of γ and α and then air cooling is disclosed, and further, it is disclosed in JP-A-4-31482.
Similarly, Japanese Patent Publication No. 4 discloses a method of quenching after reheating to a two-phase region.

【0010】また、再加熱処理を施さずにオンラインで
製造する方法として、例えば特開昭63−286517
号公報にはγ域から二相域にかけて熱間圧延を施した
後、Ar3 変態点より20〜100℃低い温度まで空冷
してα相を生成させ、その後急冷する方法が開示されて
いる。
Further, as a method for producing on-line without performing reheating treatment, for example, JP-A-63-286517
The publication discloses a method in which after hot rolling from the γ region to the two-phase region, air cooling is performed to a temperature 20 to 100 ° C. lower than the Ar 3 transformation point to generate the α phase, and then the material is rapidly cooled.

【0011】脆性き裂の停止に対しては従来からNiの
含有が有効であることが知られている。また、最近では
特開平4−141517号公報に示されるような、表層
部に超細粒組織を付与することによりNi量を高めるこ
となく、脆性き裂の伝播停止特性を向上させる技術が開
発されている。
It has been conventionally known that the inclusion of Ni is effective for stopping brittle cracks. Further, recently, a technique has been developed, as disclosed in Japanese Patent Application Laid-Open No. 4-141517, for improving the propagation stopping property of a brittle crack without increasing the amount of Ni by imparting an ultrafine grain structure to the surface layer portion. ing.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、阪神大
震災を経験する以前には、必要な鋼材特性としては想像
もされなかった前記〜の特性、特に,について
は必ずしも十分認識されておらず、そのため、〜の
特性を同時に満足して、設計、施工上の特段の配慮なし
に数十年〜数百年に1回というような巨大地震や巨大台
風に遭遇しても、構造物を崩壊させずにすむような耐破
壊性能に優れた鋼材及びその製造技術は現段階で確立さ
れているとは言えない。
However, before the experience of the Great Hanshin Earthquake, the above-mentioned characteristics (1), which were not conceived as necessary steel material characteristics, in particular, are not always sufficiently recognized, and therefore, The characteristics of ~ are satisfied at the same time, and even if a huge earthquake or huge typhoon such as once every several decades to several hundred years is encountered without any special consideration in design and construction, the structure will not collapse. It cannot be said at this stage that steel materials with excellent fracture resistance and their manufacturing technology have been established.

【0013】構造物としての安全性確保の観点からは、
当然のことながら脆性破壊の発生の抑制を考慮すること
が第一である。しかし、希に見る巨大地震時の安全性確
保の観点から見るとさらに、脆性破壊の発生を容易にす
る延性き裂の発生・進展の抑制を図ること、及び延性き
裂進展後のき裂先端で生じる塑性域での大きな靱性劣化
や、繰り返しの塑性変形後での大きな靱性の劣化が生じ
ないことまでもが鋼板に課せられた新たな課題となる。
From the viewpoint of ensuring safety as a structure,
Naturally, the first consideration is to control the occurrence of brittle fracture. However, from the viewpoint of ensuring safety in the event of a huge earthquake, which is rarely seen, it is necessary to suppress the initiation and propagation of ductile cracks that facilitate the initiation of brittle fracture, and to prevent crack tip after ductile crack growth. It is a new problem imposed on the steel sheet that no large deterioration of toughness in the plastic region and no large deterioration of toughness after repeated plastic deformation occur.

【0014】ただし、構造物は特性の劣化した溶接部を
有し、また脆性破壊の起点となるような欠陥の存在を皆
無にすることは不可能であり、溶接部及び欠陥の存在を
前提とした場合には、脆性破壊の発生自体を完全に抑制
することは非常に困難であり、経済的にも非常に不利で
ある。従って、万が一の脆性破壊を許容した上で、その
き裂の伝播を阻止できる脆性き裂の伝播停止特性を延性
破壊特性、塑性変形後の靱性確保と両立させることが課
題となる。
However, the structure has a welded portion with deteriorated characteristics, and it is impossible to completely eliminate the existence of a defect which becomes a starting point of brittle fracture. In that case, it is extremely difficult to completely suppress the occurrence of brittle fracture itself, and it is also extremely economically disadvantageous. Therefore, it is necessary to allow the brittle fracture in the unlikely event and to make the propagation stopping property of the brittle crack capable of preventing the propagation of the crack compatible with the ductile fracture property and the toughness after plastic deformation.

【0015】表層部に超細粒組織を形成せしめて脆性き
裂の伝播停止特性を向上する技術は、特開平4−141
517号公報等で開示されているが、本発明が目的とし
ているような大地震等により大きな塑性変形を受けるよ
うな場合には、表層部に超細粒組織を形成させただけで
は靱性、延性、脆性き裂伝播停止特性等、破壊に対する
抵抗を確保することは困難である。
A technique for forming a superfine grain structure in the surface layer to improve the propagation stopping property of a brittle crack is disclosed in Japanese Patent Application Laid-Open No. 4-141.
As disclosed in Japanese Laid-Open Patent Publication No. 517, etc., when a large plastic deformation due to a large earthquake, etc., which is the object of the present invention, toughness and ductility are obtained only by forming an ultrafine grain structure in the surface layer portion. It is difficult to secure resistance to fracture, such as brittle crack propagation arresting properties.

【0016】また、特開平4−141517号公報では
耐震性向上に大きな効果を有する低降伏比を付与する技
術は開示されておらず、低降伏比でかつ表層に超細粒組
織を形成させるための新たな技術が必要となる。
Further, Japanese Laid-Open Patent Publication No. 4-141517 does not disclose a technique for imparting a low yield ratio, which has a great effect on improving the seismic resistance. In order to form a superfine grain structure in the surface layer with a low yield ratio. New technology is required.

【0017】[0017]

【課題を解決するための手段】本発明者らは、延性破壊
の発生特性及びき裂の伝播停止特性の向上には不純物と
してのP,S、さらにO(酸素)を極力低減する必要が
あり、繰り返し塑性変形後もその特性を維持するために
は固溶Nの低減が重要であること、さらに繰り返し塑性
変形等の塑性歪による靱性劣化を抑制するためにも鋼中
の固溶Nを低減する必要があると考えた。
The inventors of the present invention need to reduce P and S as impurities and O (oxygen) as much as possible in order to improve the characteristics of ductile fracture initiation and crack propagation arrest. It is important to reduce the amount of solute N in order to maintain its properties even after repeated plastic deformation, and to reduce the toughness deterioration due to plastic strain such as repeated plastic deformation, reduce the amount of solute N in steel. I thought I needed to.

【0018】そのためには、窒化物を形成してNを固定
する効果のあるAl,Ti,Zr,Nb,Ta,V,B
を適切に含有させることが重要であることを詳細な実験
解析により知見し、さらに、鋼種、成分範囲によらず延
性破壊特性、脆性破壊発生特性(靱性)と脆性き裂の伝
播停止特性を両立させ得る手段としては、表層に超細粒
組織を付与することにより脆性き裂の伝播停止特性向上
を図ることが最も好ましいことを見出した。
To this end, Al, Ti, Zr, Nb, Ta, V, B which has the effect of forming a nitride to fix N.
It has been found through detailed experimental analysis that it is important to properly contain steel, and it has both ductile fracture characteristics, brittle fracture initiation characteristics (toughness) and propagation arrest characteristics of brittle cracks regardless of the steel type and composition range. It has been found that the most preferable means for improving the propagation stopping property of brittle cracks is to impart an ultrafine grain structure to the surface layer.

【0019】また、特にその平均フェライト粒径が3μ
m以下となるような超細粒組織では、塑性歪が10%を
超えるような厳しい塑性変形を受けた場合においても、
シャルピー衝撃特性や脆性き裂の伝播停止特性の劣化が
通常の組織に比べて顕著に小さくなることを明らかにし
た。
In particular, the average ferrite grain size is 3 μm.
With an ultrafine grain structure of m or less, even when subjected to severe plastic deformation such that the plastic strain exceeds 10%,
It was clarified that the deterioration of the Charpy impact properties and the propagation arrest properties of brittle cracks was significantly smaller than that of ordinary structures.

【0020】また、塑性変形後の脆性き裂伝播停止特性
確保のためには、表層部だけでなく、内部の靱性の塑性
変形による劣化をある程度抑制する必要があり、そのた
めには、内部の結晶粒径を微細化する必要があることも
実験的に明かにした。
Further, in order to secure the brittle crack propagation arresting property after plastic deformation, it is necessary to suppress not only the surface layer portion but also the internal toughness due to the plastic deformation to some extent. It was also clarified experimentally that the grain size needs to be reduced.

【0021】さらに、N量の低減、窒化物形成元素によ
るNの固定、表層部への超細粒層の付与は溶接継手の靱
性や延性向上にも有効であることが実験的に確かめられ
た。
Further, it has been experimentally confirmed that the reduction of the amount of N, the fixing of N by the nitride forming element, and the addition of the ultrafine grain layer to the surface layer portion are effective for improving the toughness and ductility of the welded joint. .

【0022】本発明は、以上の知見を総合的に解析する
ことによって、化学成分の限定により延性の向上や塑性
変形による靱性の劣化を図り、さらに表層部に超細粒組
織を形成させて脆性き裂の伝播停止特性を向上させた鋼
においては、低降伏比特性を得るための手段として、組
織中に適正量のマルテンサイト相を組織中に分散させる
手段が最も好ましいことを見いだした。
By comprehensively analyzing the above findings, the present invention improves ductility by limiting chemical components and deteriorates toughness due to plastic deformation, and further forms a superfine grain structure in the surface layer to form brittleness. It has been found that in a steel having improved crack propagation arresting properties, a means for dispersing an appropriate amount of martensite phase in the structure is the most preferable means for obtaining the low yield ratio property.

【0023】即ち、低降伏比特性を得るための手段は種
々考えられるが、表層に超細粒組織が存在する場合に
は、マルテンサイトのような脆い硬質相が分散しても靱
性劣化が抑制されるため、鋼成分の制限が比較的少ない
マルテンサイトの分散による低降伏比化を用いるのに最
も適している。表層部を除く内部の結晶粒径を粗大化し
て鋼材全体としての低降伏比化を図る方法では、内部の
靱性劣化が避けられない。
That is, although various means for obtaining a low yield ratio characteristic are conceivable, when the superfine grain structure is present in the surface layer, deterioration of toughness is suppressed even if a brittle hard phase such as martensite is dispersed. Therefore, it is most suitable to use the low yield ratio due to the dispersion of martensite, in which the steel composition is relatively limited. The internal toughness deterioration is inevitable by the method of increasing the grain size of the inside of the steel excluding the surface layer to lower the yield ratio of the entire steel material.

【0024】以上述べたように、本発明は表層超細粒層
組織を有する鋼材での低降伏比化に対しては、マルテン
サイトの分散が最も好ましい手段であることを知見する
とともに、該表層超細粒組織とマルテンサイトの分散と
を同時に達成できる製造方法を確立し、発明するに至っ
たものであり、その要旨とする所は以下の通りである。
As described above, according to the present invention, it is found that the dispersion of martensite is the most preferable means for lowering the yield ratio in the steel material having the surface ultrafine grain layer structure, and the surface layer The inventors have established and invented a manufacturing method capable of simultaneously achieving ultrafine grain structure and dispersion of martensite, and the gist thereof is as follows.

【0025】 (1)質量%で、C:0.01〜0.1
5%、Si:0.01〜1.0%、Mn:0.1〜2.
0%、Al:0.003〜0.1%、N:0.001〜
0.006%を含有し、かつ、N(%)−Al(%)/
3.0≦0で、不純物としてのP,S,Oの含有量が、
P:0.01%以下、S:0.01%以下、O:0.0
06%以下で、残部鉄及び不可避不純物からなる鋼材で
あって、板厚中心部の平均結晶粒径が30μm以下であ
り、さらに、鋼材体積に占めるマルテンサイト割合が1
0〜60%であり、さらに、該鋼材を構成する外表面の
うち少なくとも2つの外表面に関して、表層から全厚み
の10〜33%の範囲内の平均フェライト粒径が3μm
以下の超細粒組織であることを特徴とする耐破壊性能に
優れた建築用低降伏比高張力鋼材。
(1) C: 0.01 to 0.1 by mass %
5%, Si: 0.01 to 1.0%, Mn: 0.1 to 2.
0%, Al: 0.003-0.1%, N: 0.001-
0.006% and N (%)-Al (%) /
When 3.0 ≦ 0, the contents of P, S and O as impurities are
P: 0.01% or less, S: 0.01% or less, O: 0.0
A steel material containing less than 06% and balance iron and unavoidable impurities, having an average crystal grain size of 30 μm or less at the center of the plate thickness, and having a martensite ratio in the steel material volume of 1
0 to 60%, and at least two of the outer surfaces constituting the steel material have an average ferrite grain size within a range of 10 to 33% of the total thickness from the surface layer to 3 μm.
A low-yield ratio, high-strength steel material for construction with excellent fracture resistance characterized by the following ultrafine grain structure.

【0026】 (2)質量%で、Ti:0.003〜
0.020%、Zr:0.003〜0.10%、Nb:
0.002〜0.050%、Ta:0.005〜0.2
0%、V:0.005〜0.20%、B:0.0002
〜0.003%、の1種または2種以上を含有し、N
(%)−Al(%)/3.0−Ti(%)/3.4−Z
r(%)/6.5−Nb(%)/13.2−Ta(%)
/25.8−V(%)/10.9−B(%)/2.0≦
0であることを特徴とする前記(1)記載の耐破壊性能
に優れた建築用低降伏比高張力鋼材。
(2) Ti: 0.003% by mass %
0.020%, Zr: 0.003 to 0.10%, Nb:
0.002-0.050%, Ta: 0.005-0.2
0%, V: 0.005 to 0.20%, B: 0.0002
To 0.003%, one or more of
(%)-Al (%) / 3.0-Ti (%) / 3.4-Z
r (%) / 6.5-Nb (%) / 13.2-Ta (%)
/25.8-V(%)/10.9-B(%)/2.0≤
The low yield ratio high tensile steel material for construction having excellent fracture resistance as described in (1) above, which is 0.

【0027】 (3)質量%で、Cr:0.01〜2.
0%、Mo:0.01〜2.0%、Ni:0.01〜
4.0%、Cu:0.01〜2.0%、W:0.01〜
2.0%の1種または2種以上を含有することを特徴と
する前記(1)または(2)記載の耐破壊性能に優れた
建築用低降伏比高張力鋼材。
(3) In mass %, Cr: 0.01 to 2.
0%, Mo: 0.01 to 2.0%, Ni: 0.01 to
4.0%, Cu: 0.01 to 2.0%, W: 0.01 to
2.0% of 1 type (s) or 2 or more types, The low yield ratio high tensile steel material for construction excellent in the fracture resistance performance of said (1) or (2) characterized by the above-mentioned.

【0028】 (4)質量%で、Mg:0.0005〜
0.01%、Ca:0.0005〜0.01%、RE
M:0.005〜0.10%のうち1種または2種以上
を含有することを特徴とする前記(1)〜(3)のいず
れか1項に記載の耐破壊性能に優れた建築用低降伏比高
張力鋼材。
(4) Mg: 0.0005 to 5% by mass
0.01%, Ca: 0.0005-0.01%, RE
M: 0.005 to 0.10% of 1 type or 2 types or more are contained, The construction excellent in the fracture resistance performance of any one of said (1)-(3) characterized by the above-mentioned. Low yield ratio, high strength steel.

【0029】 (5)前記(1)〜(4)のいずれかに
記載の成分の鋼片を、Ac3 変態点以上、1250℃以
下の温度に加熱し、950℃以下のオーステナイト域で
の累積圧下率が10〜50%の粗圧延を行った後、その
段階での鋼片厚みの10〜33%に対応する少なくとも
2つの外表面の表層部領域をAr3 変態点以上の温度か
ら2〜40℃/sの冷却速度で冷却を開始し、Ar3 変態
点以下で冷却を停止して復熱させることを1回以上経由
させる過程で、前記冷却の開始から最後の冷却後の復熱
が終了するまでの間に累積圧下率が20〜90%の仕上
げ圧延を完了させ、該圧延完了後の鋼材の前記表層域を
(Ac1 変態点−50℃)〜(Ac3 変態点+50℃)
の範囲に復熱させた後、さらに復熱終了後の鋼材を0.
2〜2℃/sの冷却速度で(該冷却速度における変態開始
温度(Ar3 )−50℃)〜500℃の範囲に冷却した
後、5〜40℃/sの冷却速度で20〜300℃まで冷却
して前記(1)〜(4)のいずれか1項に記載の鋼材を
製造することを特徴とする耐破壊性能に優れた建築用低
降伏比高張力鋼材の製造方法。
(5) A steel slab having the composition described in any of (1) to (4) above is heated to a temperature of Ac 3 transformation point or higher and 1250 ° C. or lower, and accumulated in an austenite region of 950 ° C. or lower. After performing a rough rolling with a rolling reduction of 10 to 50%, at least two surface layer regions of the outer surface corresponding to 10 to 33% of the thickness of the steel slab at that stage are changed from a temperature of Ar 3 transformation point or higher to 2 to In the process of starting the cooling at a cooling rate of 40 ° C./s and stopping the cooling at the Ar 3 transformation point or lower to reheat the heat at least once, the reheat after the last cooling from the start of the cooling is Finish rolling with a cumulative reduction of 20 to 90% is completed until the end, and the surface layer area of the steel material after the rolling is completed is (Ac 1 transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.).
After reheating to the range of 0, the steel material after the reheating is further reduced to 0.
2 to 2 ° C. / s in the cooling rate after cooling to a range of (the cooling rate in transformation start temperature (Ar 3) -50 ℃) ~500 ℃, 20~300 ℃ at a cooling rate of 5 to 40 ° C. / s To produce a steel material according to any one of (1) to (4) above, and a method for producing a high-strength steel material with a low yield ratio for construction having excellent fracture resistance.

【0030】 (6)前記(1)〜(4)のいずれかに
記載の成分の鋼片を、Ac3 変態点以上、1250℃以
下の温度に加熱し、950℃以下のオーステナイト域で
の累積圧下率が10〜50%の粗圧延を行った後、その
段階での鋼片厚みの10〜33%に対応する少なくとも
2つの外表面の表層部領域をAr3 変態点以上の温度か
ら2〜40℃/sの冷却速度で冷却を開始し、Ar3 変態
点以下で冷却を停止して復熱させることを1回以上経由
させる過程で、前記冷却の開始から最後の冷却後の復熱
が終了するまでの間に累積圧下率が20〜90%の仕上
げ圧延を完了させ、該圧延完了後の鋼材の前記表層域を
(Ac1 変態点−50℃)〜(Ac3 変態点+50℃)
の範囲に復熱させた後、復熱終了後の鋼材を放冷する
か、あるいは復熱終了後の鋼材を5〜40℃/sの冷却速
度で20〜650℃まで冷却した後、さらに0.1〜5
0℃/sの昇温速度で(Ac1 変態点+10℃)〜(Ac
3 変態点−30℃)の範囲に加熱し、該温度範囲で1〜
60s保持した後、0.5〜50℃/sで冷却する二相域
熱処理を施して前記(1)〜(4)のいずれか1項に記
載の鋼材を製造することを特徴とする耐破壊性能に優れ
た建築用低降伏比高張力鋼材の製造方法。
(6) A steel slab having the composition described in any of (1) to (4) above is heated to a temperature of Ac 3 transformation point or higher and 1250 ° C. or lower, and accumulated in an austenite region of 950 ° C. or lower. After performing a rough rolling with a rolling reduction of 10 to 50%, at least two surface layer regions of the outer surface corresponding to 10 to 33% of the thickness of the steel slab at that stage are changed from a temperature of Ar 3 transformation point or higher to 2 to In the process of starting the cooling at a cooling rate of 40 ° C./s and stopping the cooling at the Ar 3 transformation point or lower to reheat the heat at least once, the reheat after the last cooling from the start of the cooling is Finish rolling with a cumulative reduction of 20 to 90% is completed until the end, and the surface layer area of the steel material after the rolling is completed is (Ac 1 transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.).
After recuperating within the range, the steel after the recuperation is allowed to cool, or the steel after the recuperation is cooled to 20 to 650 ° C at a cooling rate of 5 to 40 ° C / s, and then 0 1-5
(Ac 1 transformation point + 10 ° C) ~ (Ac
3 transformation point -30 ℃) in the range of 1 to
After being held for 60 s, a two-phase region heat treatment of cooling at 0.5 to 50 ° C./s is performed to produce the steel material according to any one of (1) to (4) above, which is characterized by fracture resistance. A method of manufacturing a high-strength, low-yield-strength steel material with excellent performance.

【0031】(7)450〜650℃で焼戻しを行うこ
とを特徴とする前記(5)または(6)記載の耐破壊性
能に優れた建築用低降伏比高張力鋼材の製造方法。 なお、ここで言う高張力鋼材とは高張力鋼板(厚板)の
みならず、形鋼、管材をも含む鋼材を指すものである。
(7) A method for producing a low-yield ratio, high-strength steel material for construction having excellent fracture resistance as described in (5) or (6) above, which comprises performing tempering at 450 to 650 ° C. The high-strength steel material here means not only high-tensile steel plates (thick plates) but also steel materials including shaped steel and pipe materials.

【0032】[0032]

【発明の実施の形態】本発明における化学成分に関して
の要件は、塑性変形後における延性特性の向上のための
不純物としてのP,S,O量の制限、及び、巨大かつ繰
り返し塑性変形による靱性劣化の抑制のためのNの固定
のための化学成分の限定にある。以下、先ずこれらの要
件について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The requirements for chemical components in the present invention are that the amounts of P, S, and O as impurities for improving ductility after plastic deformation are limited, and that the toughness is deteriorated due to huge and repeated plastic deformation. The limitation is on the chemical composition for the fixation of N for the suppression of N. Hereinafter, these requirements will be described in detail first.

【0033】塑性変形能の向上、延性き裂の発生、進展
の抑制のためには、鋼のフェライト母地の延性を高める
必要があり、そのためには固溶P,C,Nを低減するこ
とが好ましい。Cに関してはフェライト中の固溶限が小
さく、析出物を形成しやすいため、実用鋼ではその延性
特性に対する悪影響は無視できる。また、Cは強度確保
の上で必須の元素であるため、完全に除くことは好まし
くない。
In order to improve the plastic deformability, suppress the initiation and growth of ductile cracks, it is necessary to increase the ductility of the ferrite matrix of the steel. For that purpose, the solid solution P, C and N should be reduced. Is preferred. As for C, the solid solubility limit in ferrite is small and precipitates are easily formed, so that the adverse effect on the ductility characteristics of practical steel can be ignored. Further, since C is an essential element for securing strength, it is not preferable to completely remove it.

【0034】Nは窒化物による加熱オーステナイト粒径
の微細化に有効であり、また不純物としてその含有は避
けられないが、Cと異なり、実用鋼でも一定量フェライ
ト母地中に固溶し、延性特性に悪影響を及ぼす。さら
に、固溶Nが存在する状態で塑性変形後あるいは延性き
裂進展後、鋼が塑性変形を受けると、塑性変形で生じた
転位との相互作用や転位線上への微細析出により靱性が
顕著に劣化するため、固溶Nは極限まで低減すべきであ
る。
N is effective for refining the heated austenite grain size by the nitride, and its inclusion as an impurity is unavoidable, but unlike C, practical steel also forms a solid solution in the ferrite matrix in a certain amount and becomes ductile. It adversely affects the characteristics. Furthermore, when the steel undergoes plastic deformation after plastic deformation or ductile crack growth in the presence of solute N, the toughness becomes remarkable due to the interaction with the dislocations caused by the plastic deformation and the fine precipitation on the dislocation lines. Since it deteriorates, the solid solution N should be reduced to the limit.

【0035】そのためには窒化物形成元素によりNを固
定する必要がある。窒化物形成元素としては、他の特性
への影響が最も小さい点でAlが好ましく、脆性き裂の
伝播停止特性に最も重要な表層部の超細粒組織に10%
の塑性歪を付与したことによる靱性の劣化が、シャルピ
ー試験の破面遷移温度の上昇で20℃以下となるために
必要なAl量を実験的に求めると、(1)式のような関
係が得られた。従って、本発明においては、後述する理
由により限定した範囲内のAl,Nの含有量を前提とし
た上で、NとAl量を(1)式の関係に限定する。
For that purpose, it is necessary to fix N by a nitride forming element. As the nitride-forming element, Al is preferable because it has the least effect on other properties, and 10% is added to the superfine grain structure of the surface layer, which is the most important for the propagation stopping property of brittle cracks.
When the Al amount necessary for the deterioration of the toughness due to the addition of the plastic strain to be 20 ° C. or less due to the increase of the fracture transition temperature in the Charpy test is experimentally obtained, the relationship as shown in the equation (1) is obtained. Was obtained. Therefore, in the present invention, the amounts of N and Al are limited to the relationship of the formula (1) on the assumption that the contents of Al and N are within the limited range for the reason described later.

【0036】 N(%)−Al(%)/3.0≦0 …………………(1)[0036]         N (%)-Al (%) / 3.0 ≦ 0 …………………… (1)

【0037】また、窒化物形成元素として、Alに加え
て、Ti,Zr,Nb,Ta,V,Bの1種または2種
以上を選択的に用いることもできる。その場合、Al,
Ti,Zr,Nb,Ta,V,Bの含有量は(1)式と
同様の判定基準のもとに、塑性変形による靱性劣化が抑
制されるために必要なN量との関係式((2)式)が成
立するように、その含有量を調整する必要があるため、
N量との関係でTi,Zr,Nb,Ta,V,Bは
(2)式の関係が成立するように限定する。 N(%)-Al(%)/3.0-Ti(%)/3.4-Zr(%)/6.5-Nb(%)/13.2-Ta(%)/25.8 -V(%)/10.9-B(%)/2.0≦0 ……………(2)
In addition to Al, one or more of Ti, Zr, Nb, Ta, V and B can be selectively used as the nitride forming element. In that case, Al,
The contents of Ti, Zr, Nb, Ta, V, and B are related to the amount of N necessary for suppressing the toughness deterioration due to plastic deformation under the same criteria as in the formula (1) ((( Since it is necessary to adjust the content so that equation 2) is established,
In relation to the amount of N, Ti, Zr, Nb, Ta, V and B are limited so that the relation of equation (2) is established. N (%)-Al (%) / 3.0-Ti (%) / 3.4-Zr (%) / 6.5-Nb (%) / 13.2-Ta (%) / 25.8 -V (%) / 10.9-B (% ) /2.0≦0 …………… (2)

【0038】不純物としてのP量を限定することも重要
である。即ち、Pはフェライト母地の延性を劣化させる
ため、塑性変形能、延性き裂の発生、進展特性向上のた
めにその含有量を限定する必要がある。P量は少ないほ
ど好ましいが、P量を低減することは精練工程へ負荷を
かけて生産性の低下、コストの上昇を招くため、延性特
性劣化に対して許容できるPの下限量を実験結果に基づ
いて0.01%以下とする。
It is also important to limit the amount of P as an impurity. That is, since P deteriorates the ductility of the ferrite matrix, it is necessary to limit its content in order to improve the plastic deformability, the occurrence of ductile cracks, and the growth characteristics. The smaller the amount of P is, the more preferable it is. However, reducing the amount of P puts a load on the refining process, resulting in a decrease in productivity and an increase in cost. Based on this, the content is made 0.01% or less.

【0039】即ち、P量の増加にともなう延性特性の劣
化の度合いは、0.01%を超えるとその程度が顕著に
なる。P量が0.01%以下ではPの悪影響の程度は小
さくなる。従って、本発明においては不純物としてのP
量を0.01%以下に限定する。ただし、偏析部での局
所的な塑性変形や、延性破壊特性の劣化が影響を及ぼす
ような構造物に使用される場合には、精練の問題を度外
視すれば、P量は0.007%以下に限定する方がより
好ましい。
That is, the degree of deterioration of the ductility characteristics with the increase of the amount of P becomes remarkable when it exceeds 0.01%. When the amount of P is 0.01% or less, the adverse effect of P is small. Therefore, in the present invention, P as an impurity is used.
The amount is limited to 0.01% or less. However, when it is used in a structure where local plastic deformation in the segregation part or deterioration of ductile fracture characteristics has an effect, if the problem of refining is ignored, the P content is 0.007% or less. It is more preferable to limit to

【0040】SはMnSを形成するため延性破壊特性を
劣化させる。特に延性き裂の伝播特性を劣化させる。固
溶P,Nが多い条件のもとでは延性破壊の発生特性が低
下しているため、Sによる延性き裂の伝播特性の劣化
は、鋼材全体の塑性変形能や延性破壊特性に大きく影響
を及ぼし、Sを10ppm 以下程度まで極端に低減する必
要が生じる。
Since S forms MnS, it deteriorates the ductile fracture characteristics. In particular, it deteriorates the propagation characteristics of ductile cracks. Since the ductile fracture initiation characteristics deteriorate under the condition of a large amount of solid solution P and N, deterioration of the ductile crack propagation characteristics due to S greatly affects the plastic deformability and ductile fracture characteristics of the entire steel material. It becomes necessary to reduce S to 10 ppm or less.

【0041】ただし、本発明のようにP,N量の低減や
固溶Nの窒化物形成元素による固定が図られていれば、
延性破壊の発生までの抵抗が大となるためにSの許容量
は広がることから、本発明では実験結果に基づいて不純
物としてのSを0.01%以下に限定する。
However, if the amount of P and N is reduced and the solid solution N is fixed by a nitride forming element as in the present invention,
Since the allowable amount of S widens because the resistance until the occurrence of ductile fracture becomes large, the present invention limits S as an impurity to 0.01% or less based on the experimental results.

【0042】さらに、Oも延性に有害な介在物を形成す
るために極力低減することが好ましいが、Sと同様、固
溶P,Nが低減されていれば母地の延性がある程度確保
されるため、固溶P,Nの低減が図られていない場合に
比べて許容量は高く、実験結果に基づけば、0.006
%以下に限定する必要がある。
Further, it is preferable to reduce O as much as possible in order to form inclusions harmful to ductility. However, like S, ductility of the base material is secured to some extent if the solid solution P and N are reduced. Therefore, the allowable amount is higher than that in the case where the solid solution P and N are not reduced, and it is 0.006 based on the experimental result.
It is necessary to limit it to% or less.

【0043】上記が本発明の要件である塑性変形能及び
延性破壊特性の向上、さらに塑性変形後の靱性劣化抑制
のための成分限定範囲であるが、本発明のもう一つの重
要な要件である脆性き裂の伝播停止特性向上のために
は、前記成分の限定に加えて後述するその他の成分限定
を前提とした上で、鋼材の少なくとも2つの面の表層部
において、平均フェライト粒径が3μm以下の超細粒組
織を表層から板厚の10〜33%の厚さにわたって存在
させることが必要となる。
The above is the component limiting range for improving the plastic deformability and the ductile fracture characteristics, which are the requirements of the present invention, and for suppressing the toughness deterioration after the plastic deformation, but it is another important requirement of the present invention. In order to improve the propagation stopping property of brittle cracks, the average ferrite grain size is 3 μm in the surface layer portion of at least two surfaces of the steel material on the premise that the other components will be described in addition to the above-mentioned components. It is necessary to allow the following ultrafine grain structure to exist from the surface layer to a thickness of 10 to 33% of the plate thickness.

【0044】表層部に超細粒組織を形成させることによ
って、脆性き裂の進展中に、表層部に延性破壊であるシ
アリップが形成され、脆性き裂伝播停止特性が向上す
る。この方法によれば、合金成分の添加、調整によらず
に脆性き裂伝播停止特性が向上できる点で有利である。
By forming an ultrafine grain structure in the surface layer portion, a shear lip which is a ductile fracture is formed in the surface layer portion during the development of the brittle crack, and the brittle crack propagation stopping property is improved. This method is advantageous in that the brittle crack propagation arresting property can be improved without adding or adjusting alloy components.

【0045】高速で進展している脆性き裂に抵抗してシ
アリップを確実に生成させるためには、表層部の脆性破
壊の発生及び伝播停止特性を鋼板の要求靱性よりも顕著
に向上させる必要があり、そのためには該表層部のフェ
ライト粒径を顕著に微細化させることが必須条件とな
る。
In order to reliably generate a shear lip by resisting a brittle crack propagating at a high speed, it is necessary to remarkably improve the occurrence of brittle fracture in the surface layer portion and the propagation stoppage property to the required toughness of the steel sheet. Therefore, for that purpose, it is an essential condition that the ferrite grain size of the surface layer portion is remarkably reduced.

【0046】また、超細粒組織は、塑性変形による靱
性、脆性き裂伝播停止特性の劣化が非常に小さいため、
本発明が対象としているような、大地震等による塑性変
形を受ける可能性があって、塑性変形後においても安全
性を確保できる程度に靱性や脆性き裂伝播停止特性を有
する必要がある鋼材において、脆性き裂伝播停止特性向
上のための最も有利な手段である。
Further, in the ultrafine grain structure, deterioration of toughness and brittle crack propagation stopping characteristics due to plastic deformation is very small,
In the steel material that is subject to plastic deformation due to a large earthquake, etc., which is the subject of the present invention, and needs to have toughness and brittle crack propagation stopping properties to the extent that safety can be ensured even after plastic deformation , Is the most advantageous means for improving brittle crack propagation arrest properties.

【0047】該表層部のフェライト粒径は当然微細であ
るほど好ましいが、シアリップの形成が確実で、製造工
程に過大な負荷をかけない範囲として、本発明において
は、該表層部の平均フェライト粒径を3μm以下に限定
する。
The ferrite grain size in the surface layer portion is preferably finer as a matter of course. However, in the present invention, the average ferrite grain diameter in the surface layer portion is defined as a range in which the formation of the shear lip is sure and the manufacturing process is not overloaded. The diameter is limited to 3 μm or less.

【0048】なお、該表層部のフェライト粒組織は結晶
粒径にばらつきの少ない整粒であることが好ましいが、
平均粒径の2倍超の粗大粒が存在してもその存在割合が
該表層部全体に対して10%以内であれば、表層部の脆
性破壊特性に対して実質的に悪影響を及ぼさないため、
許容される。
The ferrite grain structure of the surface layer is preferably a grain size with less variation in crystal grain size.
Even if there are coarse particles having a size of more than twice the average particle size, if the existence ratio is within 10% with respect to the entire surface layer portion, the brittle fracture characteristics of the surface layer portion are not substantially adversely affected. ,
Permissible.

【0049】万一、欠陥部や溶接部等から脆性破壊が発
生し、伝播に至っても、表層部が確実に延性破壊してシ
アリップとなるためには、上記フェライト粒径の限定が
必須条件となるが、脆性き裂の伝播停止特性の向上に対
してはさらに該表層超細粒層の厚みも重要な要件とな
る。
Even if brittle fracture occurs from a defective portion or a welded portion and propagates, the surface layer portion surely undergoes ductile fracture to form a shear lip, and the limitation of the ferrite grain size is an essential condition. However, in order to improve the propagation stopping property of brittle cracks, the thickness of the surface ultrafine grain layer is also an important requirement.

【0050】即ち、鋼板内部の通常組織の脆性き裂を停
止させるためには、シアリップ部でその伝播エネルギー
を吸収する必要があるが、シアリップの厚みが不十分で
あると、たとえシアリップが形成されても脆性き裂の停
止に至らない場合が生じる。
That is, in order to stop the brittle crack of the normal structure inside the steel sheet, it is necessary to absorb the propagation energy at the shear lip portion, but if the thickness of the shear lip is insufficient, the shear lip may be formed. However, the brittle crack may not stop.

【0051】脆性き裂の伝播を確実に停止するには、シ
アリップはある程度の厚みが必要となる。当然シアリッ
プの厚みは厚ければ厚いほどき裂の停止効果が大となる
が、必要以上の超細粒層の厚みを確保しようとすると、
製造工程に過大な負荷をかけたり、製造条件によっては
母材の延性や鋼板の形状、表面性状等の劣化につなが
る。
The shear lip needs to have a certain thickness in order to surely stop the propagation of the brittle crack. Naturally, the thicker the shear lip, the greater the effect of stopping the cracks, but if you try to secure the thickness of the ultrafine grain layer more than necessary,
An excessive load is applied to the manufacturing process, and depending on the manufacturing conditions, the ductility of the base material, the shape of the steel sheet, the surface quality, etc. may be deteriorated.

【0052】これらの問題を生じない範囲として、本発
明においては平均フェライト粒径が3μm以下の表層超
細粒組織の厚みを表裏面各々について、下限を表層から
板厚の10%、上限を表層から極厚の33%と限定す
る。
In the present invention, the thickness of the superfine grain structure of the surface layer having an average ferrite grain size of 3 μm or less is defined as the range not causing these problems, the lower limit is from the surface layer to 10% of the plate thickness, and the upper limit is the surface layer. To 33% of the extra thickness.

【0053】該表層超細粒層は鋼材の全ての表面に付与
することが好ましいが、上記条件を満足すれば、最低限
2つの表面に該超細粒層を付与することにより脆性き裂
の停止には有効である。
The surface ultrafine grain layer is preferably applied to all surfaces of the steel material, but if the above conditions are satisfied, brittle cracks can be formed by applying the ultrafine grain layers to at least two surfaces. Effective for stopping.

【0054】表層部に超細粒組織があれば、塑性変形後
も表層部において脆性き裂の伝播に対する抵抗があるた
め、極端に脆性き裂伝播停止特性が劣化することはない
が、内部の特性の寄与が全くないわけではなく、内部の
靱性確保にも留意する必要がある。
If the surface layer portion has an ultra-fine grain structure, the resistance to the propagation of brittle cracks in the surface layer portion even after plastic deformation does not extremely deteriorate the brittle crack propagation stopping property, but It does not mean that the properties do not contribute at all, and it is also necessary to pay attention to ensuring internal toughness.

【0055】内部の靱性に対しても塑性変形の悪影響が
あるが、その悪影響を軽減するためにも、また靱性のレ
ベル確保のためにも、結晶粒の微細化が有効な手段とな
る。内部の粒径も当然微細であるほど有利であるが、内
部の組織微細化を図ると、表層部の微細化が困難となっ
たり、製造工程への負荷が大きくなったりするため、本
発明では、調査結果に基づいて、鋼材全体の脆性き裂伝
播停止特性が塑性変形前後で、十分なレベルを保持する
のに必要なレベルに基づいて、板厚中心部の結晶粒径を
30μm以下に限定する。
Although the internal toughness has an adverse effect of plastic deformation, the grain refining is an effective means for reducing the adverse effect and securing the toughness level. Of course, the finer the internal particle size is, the more advantageous it is, but when the internal structure is miniaturized, it becomes difficult to miniaturize the surface layer portion, or the load on the manufacturing process becomes large. Based on the survey results, the grain size at the center of the plate thickness is limited to 30 μm or less based on the level required to maintain a sufficient level of the brittle crack propagation arresting property of the entire steel material before and after plastic deformation. To do.

【0056】表層の超細粒層以外の粒径全体が30μm
以下となることが好ましいが、鋼材の破壊に際しては板
厚中心部が最も厳しい応力条件になることと、一般的に
は板厚中心部の粒径が最も粗大になるため、本発明にお
いては板厚中心部での結晶粒径を規定する。
The entire grain size other than the superfine grain layer on the surface layer is 30 μm
It is preferable that the following conditions are satisfied. However, when the steel material is broken, the stress condition is the most severe in the plate thickness center part, and in general, the grain size in the plate thickness center part is the coarsest. It defines the crystal grain size at the center of thickness.

【0057】なお、ここでの結晶粒径とは破壊に対する
抵抗を表す指標となり得る、いわゆる“有効結晶粒径”
を示す。従って、フェライト主体組織でほぼフェライト
結晶粒径に、ベイナイトあるいはマルテンサイト主体組
織ではほぼ各々ベイナイトパケットサイズ、マルテンサ
イトパケットサイズに対応する。
The crystal grain size here is a so-called "effective grain size" which can be used as an index showing resistance to fracture.
Indicates. Therefore, the ferrite main structure corresponds to almost the ferrite crystal grain size, and the bainite or martensite main structure corresponds to the bainite packet size and the martensite packet size, respectively.

【0058】なお、塑性変形後の靱性、脆性き裂伝播停
止特性、延性の確保に有効な、N量の低減、窒化物形成
元素によるNの固定、表層部への超細粒層の付与は溶接
継手の靱性や延性を向上させる付加的な効果も有してい
ることが有効であることが実験的に確かめられた。即
ち、大入熱溶接における溶接熱影響部の靱性に対しては
固溶Nの悪影響が大きいが、本発明のようにN量や固溶
N量を厳密に制御しておけば固溶Nの溶接熱影響部靱性
への悪影響は極小化される。
It should be noted that reduction of the amount of N, fixation of N by a nitride forming element, and addition of an ultrafine grain layer to the surface layer portion, which are effective for securing the toughness after plastic deformation, brittle crack propagation arresting property and ductility, It was experimentally confirmed that it is effective to have an additional effect of improving the toughness and ductility of the welded joint. That is, the solute N has a large adverse effect on the toughness of the heat-affected zone in high heat input welding, but if the amount of N and the amount of solute N are strictly controlled as in the present invention, the amount of solute N will change. The adverse effect on the toughness of the heat affected zone is minimized.

【0059】また、表層部に形成された超細粒層は溶接
熱影響部の内で溶接ビード直近の1300℃以上に再加
熱される様な領域では完全に消滅するが、より低温に加
熱されている熱影響部では超細粒組織は消滅するものの
変態前の超細粒組織の影響が残存して該溶接熱影響部の
組織を微細化する効果があるため、溶接熱影響部の靱性
向上に対しても効果がある。
The ultra-fine grain layer formed on the surface layer completely disappears in a region of the heat-affected zone where it is reheated to 1300 ° C. or higher in the vicinity of the weld bead, but is heated to a lower temperature. Although the ultra-fine grain structure disappears in the heat-affected zone, the effect of the ultra-fine grain structure before transformation remains and has the effect of refining the structure of the weld heat-affected zone. Is also effective against.

【0060】以上のように延性破壊特性の向上、脆性き
裂の伝播停止特性向上のために化学組成の限定、鋼材表
層部の超細粒化が重要ではあるが、耐破壊性能の確保の
ためには前提として鋼材の低降伏比化が図られていなけ
ればならない。
As described above, it is important to limit the chemical composition in order to improve the ductile fracture characteristics, to improve the propagation stopping characteristics of brittle cracks, and to make the surface layer of the steel material finer, but to secure the fracture resistance performance. As a precondition, the steel must have a low yield ratio.

【0061】表層部に超細粒組織を形成させて脆性き裂
の伝播停止特性を向上させた鋼においては、低降伏比特
性を得るための手段としては、組織中に適正量のマルテ
ンサイト相を組織中に分散させる手段が最も好ましい。
即ち、低降伏比特性を得るための手段は種々考えられる
が、表層に超細粒組織が存在する場合には、マルテンサ
イトのような脆い硬質相が分散しても靱性劣化が抑制さ
れるため、鋼成分の制限が比較的少ないマルテンサイト
の分散による低降伏比化を用いる場合に最も適してい
る。
In the steel in which the propagation arresting property of brittle cracks is improved by forming an ultrafine grain structure in the surface layer, a means for obtaining the low yield ratio property is to use an appropriate amount of martensite phase in the structure. Most preferred is a means to disperse in the tissue.
That is, various means for obtaining a low yield ratio property are conceivable, but when an ultrafine grain structure exists in the surface layer, deterioration of toughness is suppressed even if a brittle hard phase such as martensite is dispersed. It is most suitable when using a low yield ratio due to the dispersion of martensite, which has relatively few restrictions on the steel composition.

【0062】他の低降伏比化の手段、例えばC,Cr,
Mo等の添加による第二相の増加では、合金コストの上
昇を招き、かつ溶接性等への悪影響の懸念があり、ま
た、表層部を除く内部の結晶粒径を粗大化して鋼材全体
としての低降伏比化を図る方法では、内部の靱性劣化が
避けられない。本発明は表層超細粒層組織を有する鋼材
での低降伏比化に対してはマルテンサイトの分散が最も
好ましい手段であることを知見するとともに、該表層超
細粒組織とマルテンサイトの分散とを同時に達成できる
製造方法を確立した。
Other means for lowering the yield ratio, such as C, Cr,
The increase of the second phase due to the addition of Mo or the like causes an increase in the alloy cost and may have a bad influence on the weldability and the like, and the crystal grain size of the inside excluding the surface layer portion is coarsened to make the steel as a whole. Degradation of internal toughness is inevitable with the method of achieving a low yield ratio. The present invention finds that the dispersion of martensite is the most preferable means for lowering the yield ratio in the steel material having the surface ultrafine grain structure, and the dispersion of the surface ultrafine grain structure and martensite and We have established a manufacturing method that can achieve

【0063】延性特性を劣化させずに低降伏比化するた
めの組織要件は、硬質相であるマルテンサイト相の鋼材
体積に対する割合を10〜60%とすることである。即
ち、低降伏比化のためには母相中に母相に比べて十分強
度の高い第二相を分散させることによって、引張強度を
高めて降伏比(降伏応力/引張強度)を低下させる手段
が最も有効である。
The structural requirement for lowering the yield ratio without deteriorating the ductility characteristics is that the ratio of the martensite phase, which is the hard phase, to the steel material volume is 10 to 60%. That is, a means for increasing the tensile strength and lowering the yield ratio (yield stress / tensile strength) by dispersing in the mother phase a second phase having sufficiently higher strength than the mother phase for lowering the yield ratio. Is the most effective.

【0064】本発明においては実験結果に基づいて、硬
質相としてはマルテンサイト相が最も好ましく、その割
合としては鋼板体積中の平均として10〜60%の範囲
が、低降伏比化と他の材質特性との両立の点で最も好ま
しいことを見いだした。マルテンサイト相の割合が10
%未満であると、硬質相による引張強度の向上効果が得
られないため、低降伏比化が図られない。
In the present invention, based on the experimental results, the martensite phase is the most preferable as the hard phase, and the ratio thereof is in the range of 10 to 60% on the average in the volume of the steel sheet, which indicates a low yield ratio and other materials. It has been found that it is most preferable in terms of compatibility with characteristics. Martensite phase ratio is 10
If it is less than%, the effect of improving the tensile strength by the hard phase cannot be obtained, so that a low yield ratio cannot be achieved.

【0065】一方、マルテンサイト相の割合が60%超
であると、マルテンサイトへのCの濃化が十分でないた
めにマルテンサイトの硬さが低下して母相の硬さとの差
が小さくなるためと、硬質相であるマルテンサイト相の
降伏応力への影響が生じ始めるため、降伏応力の上昇と
引張強度の低下のために降伏比が高くなる。
On the other hand, when the ratio of the martensite phase is more than 60%, the concentration of C in the martensite is not sufficient, so that the hardness of martensite decreases and the difference from the hardness of the matrix phase decreases. Therefore, the effect of the martensite phase, which is a hard phase, on the yield stress begins to occur, and the yield ratio increases because the yield stress increases and the tensile strength decreases.

【0066】また、マルテンサイト相の割合が60%超
ではマルテンサイトの粗大化が生じて、延性や靱性が劣
化するため好ましくない。なお、ここでのマルテンサイ
ト相には、一部残留オーステナイト相が含まれたM−A
相(Martensite-Austenite Constituent)も含んでいる。
On the other hand, if the proportion of the martensite phase exceeds 60%, coarsening of martensite occurs and ductility and toughness deteriorate, which is not preferable. It should be noted that the martensite phase here contains MA containing a part of retained austenite phase.
It also contains a phase (Martensite-Austenite Constituent).

【0067】マルテンサイト相を一部含んだ組織形態を
得る手段としては、特開昭53−23817号公報等に
開示されているように、熱処理により一旦二相域温度に
再加熱してオーステナイト(γ)相を再析出させた後、
放冷あるいは急冷により冷却中にγ相をマルテンサイト
相に変態させる方法が代表的である。
As a means for obtaining a structure morphology containing a part of a martensite phase, as disclosed in JP-A-53-23817 and the like, austenite ( γ) after re-precipitating the phase,
A typical method is to transform the γ phase into a martensite phase during cooling by cooling by cooling.

【0068】しかしながら、本発明では、低降伏比化と
同時に表層部に超細粒組織を有し、これによって脆性き
裂の伝播停止特性の向上を図る必要がある。超細粒組織
は熱的に不安定であるため、該超細粒組織のフェライト
粒径の粗大化あるいは超細粒組織の消滅が生じないよう
に、製造方法に対する工夫が必須となる。
However, in the present invention, it is necessary to have a low yield ratio and, at the same time, to have an ultrafine grain structure in the surface layer portion to improve the propagation stopping property of brittle cracks. Since the ultrafine grain structure is thermally unstable, it is essential to devise a manufacturing method so that the ferrite grain size of the ultrafine grain structure does not become coarse or the ultrafine grain structure disappears.

【0069】本発明においては、詳細な実験の結果によ
り、他の材質特性との関係や製造の簡便さ、製造への負
荷の観点から、表層部の超細粒組織と低降伏比化に必要
な割合のマルテンサイト相の導入とを両立させる製造方
法として、以下の二つの方法が最も適当であるとの結論
に至った。
In the present invention, from the results of detailed experiments, from the viewpoint of the relationship with other material characteristics, the ease of production, and the load on the production, it is necessary to have an ultrafine grain structure in the surface layer and a low yield ratio. It was concluded that the following two methods are the most suitable as a production method that is compatible with the introduction of a large proportion of martensite phase.

【0070】第1の方法は、表層部に超細粒層を形成さ
せるために、鋼片をAc3 変態点以上、1250℃以下
の温度に加熱し、950℃以下でのオーステナイト域で
の累積圧下率が10〜50%の粗圧延を行った後、その
段階での鋼片厚みの10〜33%に対応する少なくとも
2つの外表面の表層部領域を、Ar3 変態点以上の温度
から2〜40℃/sの冷却速度で冷却を開始し、Ar3
態点以下で冷却を停止して復熱させることを1回以上経
由させる過程で、最後の冷却後の復熱が終了するまでの
間に累積圧下率が20〜90%の仕上げ圧延を完了さ
せ、該圧延完了後の鋼材の前記表層域を(Ac1 変態点
−50℃)〜(Ac3 変態点+50℃)の範囲に復熱さ
せる。
In the first method, in order to form an ultrafine grain layer on the surface layer, the steel slab is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1250 ° C., and accumulated in the austenite region at 950 ° C. or lower. After performing rough rolling with a rolling reduction of 10 to 50%, at least two surface layer regions of the outer surface corresponding to 10 to 33% of the thickness of the billet at that stage are treated at a temperature of Ar 3 transformation point or higher to 2 In the process of starting the cooling at a cooling rate of -40 ° C / s, stopping the cooling at the Ar 3 transformation point or lower and allowing the heat to be reheated at least once, until the reheat after the last cooling is completed. Finish rolling with a cumulative rolling reduction of 20 to 90% is completed in the meantime, and the surface layer region of the steel material after completion of the rolling is restored to the range of (Ac 1 transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.). Heat.

【0071】該復熱終了後の鋼材を0.2〜2℃/sの冷
却速度で冷却し、(該冷却速度における変態開始温度
(Ar3 )−50℃)〜500℃の範囲に冷却した後、
5〜40℃/sの冷却速度で20〜300℃まで冷却する
ことによって、所要のマルテンサイト相を形成させる。
The steel material after the end of the recuperation was cooled at a cooling rate of 0.2 to 2 ° C./s, and was cooled to a range of (transformation start temperature (Ar 3 ) -50 ° C. at the cooling rate) to 500 ° C. rear,
The required martensite phase is formed by cooling to 20-300 ° C at a cooling rate of 5-40 ° C / s.

【0072】即ち、低降伏比化のために、フェライト
相、ベイナイト相、及びこれらの組織の混合相からなる
母相にマルテンサイト相を導入するが、そのためにはフ
ェライト/オーステナイト二相域の適切な温度域まで冷
却した後、オーステナイト相をマルテンサイトに変態さ
せるために急冷する。このような製造方法によって、表
層部の超細粒組織の形態を損なうことなく所要のマルテ
ンサイト組織を導入することが可能となる。
That is, in order to reduce the yield ratio, the martensite phase is introduced into the matrix phase consisting of the ferrite phase, the bainite phase, and the mixed phase of these structures. For that purpose, an appropriate ferrite / austenite two-phase region is used. After cooling to a certain temperature range, it is rapidly cooled to transform the austenite phase into martensite. With such a manufacturing method, it becomes possible to introduce the required martensite structure without impairing the morphology of the ultrafine grain structure of the surface layer portion.

【0073】第2の方法は、鋼片をAc3 変態点以上、
1250℃以下の温度に加熱し、950℃以下でのオー
ステナイト域での累積圧下率が10〜50%の粗圧延を
行った後、その段階での鋼片厚みの10〜33%に対応
する少なくとも2つの外表面の表層部領域を、Ar3
態点以上の温度から2〜40℃/sの冷却速度で冷却を開
始し、Ar3 変態点以下で冷却を停止して復熱させるこ
とを1回以上経由させる過程で、最後の冷却後の復熱が
終了するまでの間に累積圧下率が20〜90%の仕上げ
圧延を完了させ、該圧延完了後の鋼材の前記表層域を
(Ac1 変態点−50℃)〜(Ac3 変態点+50℃)
の範囲に復熱させて、復熱終了後の鋼材を放冷するか、
あるいは復熱終了後の鋼材を5〜40℃/sの冷却速度で
20〜650℃まで冷却することによって、表層部に超
細粒層を形成した鋼材に以下の特殊な二相域熱処理を施
す方法である。
In the second method, a steel slab is made to have an Ac 3 transformation point or higher,
After heating to a temperature of 1250 ° C. or lower and performing a rough rolling with a cumulative rolling reduction in the austenite region of 950 ° C. or lower of 10 to 50%, at least corresponding to 10 to 33% of the thickness of the billet at that stage. To start the cooling of the surface layer regions of the two outer surfaces at a cooling rate of 2 to 40 ° C./s from the temperature of the Ar 3 transformation point or higher, and stop the cooling at the Ar 3 transformation point or lower to recover the heat 1. In the process of passing more than once, finish rolling with a cumulative rolling reduction of 20 to 90% is completed until the recuperation after the last cooling is completed, and the surface layer region of the steel material after the rolling is completed (Ac 1 Transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.)
Or re-heat to the range of
Alternatively, by cooling the steel material after the recuperation to 20 to 650 ° C at a cooling rate of 5 to 40 ° C / s, the steel material having an ultrafine grain layer formed on the surface layer is subjected to the following special two-phase heat treatment. Is the way.

【0074】即ち、通常の熱処理によってマルテンサイ
トの形成のための二相域熱処理を施すと、表層部の超細
粒組織は完全に、あるいは一部その形態が損なわれるた
め、採用できないが、二相域温度まで加熱するまでの昇
温速度を高め、かつ加熱温度での保持時間を短時間に限
定することによって、表層超細粒組織の機能を損なうこ
となく、組織中に低降伏比化に有効なマルテンサイト相
を導入することが可能となる。
That is, when the two-phase region heat treatment for forming martensite is performed by the ordinary heat treatment, the superfine grain structure of the surface layer portion is completely or partially impaired, and therefore it cannot be adopted. By increasing the rate of temperature rise until heating to the phase region temperature and limiting the holding time at the heating temperature to a short time, it is possible to reduce the yield ratio in the structure without impairing the function of the superfine grain surface structure. It becomes possible to introduce an effective martensite phase.

【0075】その場合、0.1〜50℃/sの昇温速度で
(Ac1 変態点+10℃)〜(Ac3 変態点−30℃)
の範囲に加熱した後、該温度範囲での潜在時間を1〜6
0sとする必要がある。加熱保持後の冷却は急冷の方が
マルテンサイト形成には好ましいが、0、5〜50℃/s
の範囲であれば良い。以上のマルテンサイト相導入のた
めの製造条件の、具体的な限定理由については後述す
る。
In that case, at a heating rate of 0.1 to 50 ° C./s, (Ac 1 transformation point + 10 ° C.) to (Ac 3 transformation point −30 ° C.)
After heating to the range of 1 to 6, the latent time in the temperature range is 1 to 6
It must be 0s. Cooling after heating and holding is preferably quenching for martensite formation, but 0, 5 to 50 ° C / s
It should be in the range of. The specific reasons for limiting the above manufacturing conditions for introducing the martensite phase will be described later.

【0076】以上が本発明の耐破壊性能に優れた建築用
高張力鋼材の要件であるが、個々の化学成分についても
下記に述べる理由により、各々限定する必要がある。
The above are the requirements for the high-strength steel material for construction which is excellent in fracture resistance of the present invention, but it is necessary to limit the individual chemical components for the reasons described below.

【0077】即ち、Cは鋼の強度を向上させる有効な成
分として含有するもので、0.01%未満では構造用鋼
に必要な強度の確保が困難であるが、0.15%を超え
る過剰の含有は延性破壊特性の劣化により、本発明が目
的としている耐破壊性能の低下を招く。また、靱性や耐
溶接割れ性なども低下させるので、0.01〜0.15
%の範囲とした。
That is, C is contained as an effective component for improving the strength of steel, and if it is less than 0.01%, it is difficult to secure the strength required for structural steel, but if it exceeds 0.15%, it is excessive. Incorporation of the element causes deterioration of the ductile fracture characteristics, resulting in a reduction in the fracture resistance which is the object of the present invention. Further, since toughness and weld cracking resistance are also reduced, 0.01 to 0.15
The range is%.

【0078】次に、Siは脱酸元素として、また母材の
強度確保に有効な元素であるが、0.01%未満の含有
では脱酸が不十分となり、また強度確保に不利である。
逆に1.0%を超える過剰の含有は粗大な酸化物を形成
して延性や靱性の劣化を招く。そこで、Siの範囲は
0.01〜1.0%とした。
Next, Si is an element effective as a deoxidizing element and for securing the strength of the base material. However, if the content of Si is less than 0.01%, deoxidation becomes insufficient and it is disadvantageous for securing the strength.
On the contrary, if the content exceeds 1.0%, a coarse oxide is formed and ductility and toughness are deteriorated. Therefore, the range of Si is set to 0.01 to 1.0%.

【0079】また、Mnは母材の強度、靱性の確保に必
要な元素であり、最低限0.l%以上含有する必要があ
るが、溶接部の靱性、割れ性など材質上許容できる範囲
で上限を2.0%とした。
Further, Mn is an element necessary for securing the strength and toughness of the base material, and is at least 0. It is necessary to contain 1% or more, but the upper limit was set to 2.0% in the range where the material such as toughness and crackability of the welded portion is acceptable.

【0080】Alは本発明の要件の一つであるNの固定
に有効な元素であり、かつ、脱酸、γ粒径の細粒化等に
有効な元素であるが、効果を発揮するためには0.00
3%以上含有する必要がある。一方、0.1%を超えて
過剰に含有すると、粗大な酸化物を形成して延性を極端
に劣化させるため、0.003〜0.1%の範囲に限定
する必要がある。
Al is an element effective in fixing N, which is one of the requirements of the present invention, and an element effective in deoxidizing, refining the γ grain size, etc., but exerts an effect. Is 0.00
It is necessary to contain 3% or more. On the other hand, if it is contained in excess of 0.1%, a coarse oxide is formed and ductility is extremely deteriorated. Therefore, it is necessary to limit the content to 0.003 to 0.1%.

【0081】Nは、固溶Nが存在すると、前述したよう
に延性破壊特性の劣化や塑性変形後の靱性劣化が生じる
ため、前記(1)式あるいは(2)式に従って、Al,
Ti,Zr,Nb,Ta,V,Bを適正量含有させる必
要がある。ただし、全含有量としても下記の理由により
限定する必要がある。
If solid solution N is present, the ductile fracture characteristics deteriorate and the toughness deteriorates after plastic deformation as described above. Therefore, according to the above equation (1) or (2), Al,
It is necessary to contain Ti, Zr, Nb, Ta, V, and B in appropriate amounts. However, it is necessary to limit the total content for the following reasons.

【0082】即ち、NはAlとTiと結びついてγ粒微
細化に有効に働くため、微量であれば機械的特性に有効
に働く。また、工業的に鋼中のNを完全に除去すること
は不可能であり、必要以上に低減することは製造工程に
過大な負荷をかけるため好ましくない。
That is, N works effectively for the refinement of γ grains by combining with Al and Ti, so that a small amount works effectively for mechanical properties. Further, it is impossible to industrially completely remove N in steel, and it is not preferable to reduce N more than necessary because it puts an excessive load on the manufacturing process.

【0083】そのため、工業的に御御が可能で、製造工
程への負荷が許容できる範囲としてNの下限を0.00
1%とする。過剰に含有すると、(1)式あるいは
(2)式を満足しても、製造履歴によっては延性破壊特
性や塑性変形後の靱性に悪影響を及ぼす可能性があるた
め、許容できる範囲として上限を0.006%とする。
Therefore, the lower limit of N is set to 0.00 as an industrially controllable range in which the load on the manufacturing process is allowable.
1% If it is contained excessively, even if the formula (1) or (2) is satisfied, the ductile fracture characteristics and the toughness after plastic deformation may be adversely affected depending on the manufacturing history. Therefore, the upper limit of the allowable range is 0. 0.006%.

【0084】Pについては、前述したように、フェライ
ト母地の延性を劣化させるため、塑性変形能、延性き裂
の発生、進展特性向上のためにその含有量を限定する必
要がある。P量は少ないほど好ましいが、P量を低減す
ることは精錬工程へ負荷をかけて生産性の低下、コスト
の上昇を招くため、延性特性劣化に対して許容できるP
の下限量を実験結果に基づいて0.01%以下とする。
即ち、P量の増加にともなって延性特性は劣化するが、
0.01を超えるとその程度が顕著になる。P量が0.
01%以下ではPの悪影響の程度は小さくなる。従っ
て、本発明においては不純物としてのP量を0.01%
以下に限定する。
As described above, since P deteriorates the ductility of the ferrite matrix, it is necessary to limit the content of P in order to improve the plastic deformability, the generation of ductile cracks, and the growth characteristics. The smaller the amount of P is, the more preferable it is. However, reducing the amount of P puts a load on the refining process and causes a decrease in productivity and an increase in cost.
The lower limit of is set to 0.01% or less based on the experimental result.
That is, although the ductility characteristic deteriorates as the P content increases,
When it exceeds 0.01, the degree becomes remarkable. P amount is 0.
If it is less than 01%, the adverse effect of P is small. Therefore, in the present invention, the amount of P as an impurity is set to 0.01%.
Limited to:

【0085】ただし、偏析部での局所的な塑性変形や延
性破壊特性の劣化が影響を及ぼすような構造物に使用さ
れる場合には、精錬の問題を度外視すれば、P量は0.
007%以下に限定する方がより好ましい。
However, when it is used in a structure where local plastic deformation in the segregation portion or deterioration of ductile fracture characteristics has an effect, the P content is 0.
It is more preferable to limit it to 007% or less.

【0086】Sについても、前述したように、MnSを
形成するため延性破壊特性を劣化させる。特に延性き裂
の伝播特性を劣化させる。固溶P,Nが多い条件のもと
では延性破壊の発生特性が低下しているため、Sによる
延性き裂の伝播特性の劣化は鋼材全体の塑性変形能や延
性破壊特性に大きく影響を及ぼし、Sを0.001%以
下程度まで極端に低減する必要が生じる。
As for S, as described above, since MnS is formed, the ductile fracture characteristic is deteriorated. In particular, it deteriorates the propagation characteristics of ductile cracks. Since the characteristic of ductile fracture is deteriorated under the condition of a large amount of solid solution P and N, deterioration of the ductile crack propagation characteristic due to S has a great influence on the plastic deformability and the ductile fracture characteristic of the entire steel material. , S must be extremely reduced to about 0.001% or less.

【0087】ただし、本発明のようにP,N量の低減や
固溶Nの窒化物形成元素による固定が図られていれば、
延性破壊の発生までの抵抗が大となるためにSの許容量
は広がることから、本発明では実験結果に基づいて不純
物としてのSを0.01%以下に限定する。
However, if the amount of P and N is reduced and the solid solution N is fixed by the nitride forming element as in the present invention,
Since the allowable amount of S widens because the resistance until the occurrence of ductile fracture becomes large, the present invention limits S as an impurity to 0.01% or less based on the experimental results.

【0088】さらに、Oについても前述したように、O
は延性に有害な介在物を形成するために極力低減するこ
とが好ましいが、Sと同様、固溶P,Nが低減されてい
れば母地の延性がある程度確保されるため、固溶P,N
の低減が図られていない場合に比べて許容量は高いが、
実験結果に基づけば、0.006%以下に限定する必要
がある。
As for O, as described above,
Is preferably reduced as much as possible in order to form inclusions harmful to ductility, but like S, if the solid solution P and N are reduced, ductility of the base material is secured to some extent, so solid solution P, N
The allowable amount is higher than the case where the reduction of
Based on the experimental results, it is necessary to limit it to 0.006% or less.

【0089】Ti,Zr,Nb,Ta,V,BはN固定
を主目的として、必要に応じて1種または2種以上を選
択的に含有するが、個々の元素についても下記に示す理
由によりその成分量を限定する必要がある。
Ti, Zr, Nb, Ta, V, and B are mainly used for N-fixing, and optionally one or more of them are selectively contained, but the individual elements are also selected for the reasons described below. It is necessary to limit the amount of the components.

【0090】TiはN固定に有効な元素であり、さら
に、析出強化により母材強度向上に寄与するとともに、
TiNの形成によりγ粒微細化にも有効な元素である
が、効果を発揮するためには0.003%以上の含有が
必要である。一方、0.02%を超えると、粗大な析出
物、介在物を形成して靱性や延性を劣化させるため、上
限を0.02%とする。
Ti is an element effective for fixing N, and contributes to the improvement of the base metal strength by precipitation strengthening.
Although it is an element effective for making γ grains fine by forming TiN, it is necessary to contain 0.003% or more in order to exert the effect. On the other hand, if it exceeds 0.02%, coarse precipitates and inclusions are formed to deteriorate toughness and ductility, so the upper limit is made 0.02%.

【0091】Zrも窒化物を形成する元素であり、Nの
固定に有効であるが、その効果を発揮するためには0.
003%以上の含有が必要である。一方、0.10%を
超えると、Tiと同様、粗大な析出物、介在物を形成し
て靱性や延性を劣化させるため、0.003〜0.10
%の範囲に限定する。
Zr is also an element that forms a nitride and is effective in fixing N. However, in order to exert its effect, Zr.
It is necessary to contain 003% or more. On the other hand, if it exceeds 0.10%, as with Ti, coarse precipitates and inclusions are formed to deteriorate the toughness and ductility, so 0.003 to 0.10.
Limit to the range of%.

【0092】NbもNの固定に有効な元素であるが、過
剰の含有では析出脆化により靱性が劣化する。従って、
靱性の劣化を招かずに効果を発揮できる範囲として、
0.002〜0.05%の範囲に限定する。
Nb is also an element effective for fixing N, but if contained in excess, the toughness deteriorates due to precipitation embrittlement. Therefore,
As a range that can exert the effect without causing deterioration of toughness,
It is limited to the range of 0.002 to 0.05%.

【0093】TaもNの固定に有効な元素であるが、効
果を発揮するためには0.005%以上の含有が必要で
ある。一方、0.20%を超えると、析出脆化や粗大な
析出物、介在物による靱性劣化を生じるため、上限を
0.20%とする。
Ta is also an element effective in fixing N, but in order to exert the effect, it is necessary to contain 0.005% or more. On the other hand, if it exceeds 0.20%, precipitation embrittlement, coarse precipitates, and toughness deterioration due to inclusions occur, so the upper limit is made 0.20%.

【0094】VもVNを形成してNの固定に有効な元素
であるが、Nbと同様、過剰の含有では析出脆化により
靱性が劣化する。従って、靱性の劣化を招かずに効果を
発揮できる範囲として、0.005〜0.20%の範囲
に限定する。
V is also an element effective for fixing N by forming VN, but as with Nb, if contained in excess, the toughness deteriorates due to precipitation embrittlement. Therefore, the range in which the effect can be exhibited without causing deterioration of toughness is limited to the range of 0.005 to 0.20%.

【0095】Bは微量で確実にNと結びつくため、N固
定に有効な元素であり、効果を発揮するためには0.0
002%以上必要である。一方、0.003%を超えて
過剰に含有するとBNが粗大となり、延性や靱性に悪影
響を及ぼす。また溶接性も劣化させるため、上限を0.
003%とする。
Since B is a trace amount and is surely bound to N, it is an element effective for N fixing, and 0.0 is necessary for exerting the effect.
002% or more is required. On the other hand, if it is contained in excess of 0.003%, the BN becomes coarse, and the ductility and toughness are adversely affected. Moreover, since the weldability is also deteriorated, the upper limit is set to 0.
003%.

【0096】以上に加えて、所望の強度レベルに応じて
母材強度の上昇、靱性確保の目的で、必要に応じてC
r,Ni,Mo,Cu,Wの1種または2種以上を含有
することができる。先ず、Cr及びMoはいずれも母材
の強度向上に有効な元素であるが、明瞭な効果を生じる
ためには0.01%以上必要であり、一方、2.0%を
超えて添加すると、靱性及び溶接性が劣化する傾向を有
するため、各々0.01〜2.0%の範囲とする。
In addition to the above, in order to increase the strength of the base material and to secure the toughness in accordance with the desired strength level, C is added as necessary.
One or more of r, Ni, Mo, Cu and W may be contained. First, Cr and Mo are both effective elements for improving the strength of the base material, but 0.01% or more is necessary for producing a clear effect, while if added in excess of 2.0%, Since the toughness and the weldability tend to deteriorate, the respective ranges are 0.01 to 2.0%.

【0097】また、Niは母材の強度と靱性を同時に向
上でき、非常に有効な元素であるが、効果を発揮させる
ためには0.01%以上含有させる必要がある。含有量
が多くなると強度、靱性は向上するが4.0%を超えて
添加しても効果が飽和する一方で、溶接性が劣化するた
め、上限を4.0%とする。
Further, Ni is a very effective element because it can improve the strength and toughness of the base material at the same time, but it is necessary to contain Ni in an amount of 0.01% or more in order to exert the effect. When the content is large, the strength and toughness are improved, but the effect is saturated even if added in excess of 4.0%, but the weldability deteriorates, so the upper limit is made 4.0%.

【0098】次に、CuもほぼNiと同様の効果を有す
るが、2.0%超では熱間加工性に問題を生じるため、
0.01〜2.0%の範囲に限定する。Wは固溶強化及
び析出強化により母材強度の上昇に有効であるが、効果
を発揮するためには0.01%以上必要である。一方、
2.0%を超えて過剰に含有すると靱性劣化が顕著とな
るため、上限を2.0%とする。
Next, Cu has almost the same effect as Ni, but if it exceeds 2.0%, a problem occurs in hot workability.
It is limited to the range of 0.01 to 2.0%. W is effective in increasing the strength of the base metal due to solid solution strengthening and precipitation strengthening, but 0.01% or more is necessary to exert the effect. on the other hand,
If the content is excessively over 2.0%, the toughness will be significantly deteriorated, so the upper limit is made 2.0%.

【0099】さらに、延性の向上、継手靱性の向上のた
めに、必要に応じて、Mg,Ca,REMの1種または
2種以上を含有することができる。Mg,Ca,REM
はいずれも硫化物の熱間圧延中の展伸を抑制して延性特
性向上に有効である。酸化物を微細化させて継手靱性の
向上にも有効に働く。その効果を発揮するための下限の
含有量は、Mg及びCaは0.0005%、REMは
0.005%である。一方、過剰に含有すると、硫化物
や酸化物の粗大化を生じ、延性、靱性の劣化を招くた
め、上限を各々、Mg,Caは0.01%、REMは
0.10%とする。
Further, in order to improve ductility and joint toughness, one or more of Mg, Ca and REM may be contained, if necessary. Mg, Ca, REM
All of these are effective in improving the ductility characteristics by suppressing the expansion of the sulfide during hot rolling. It also works effectively to improve the joint toughness by refining the oxide. The lower limit content for exhibiting the effect is 0.0005% for Mg and Ca, and 0.005% for REM. On the other hand, if it is contained excessively, coarsening of sulfides and oxides occurs, leading to deterioration of ductility and toughness. Therefore, the upper limits are set to 0.01% for Mg and Ca, and 0.10% for REM.

【0100】次に、本発明の耐破壊性能に優れた建築用
低降伏比高温力鋼材の製造に際しての限定理由を述べ
る。上記理由により限定した化学成分を有する鋼におい
て、脆性き裂伝播停止特性の向上のために、鋼材の少な
くとも2つの面の表層部において、平均フェライト粒径
が3μm以下の超細粒組織を表層から板厚の10〜33
%の厚さにわたって存在させる必要がある。本発明で限
定する特徴を有する表層超細粒層は以下に示すように製
造条件を限定することによって形成させることができ
る。
Next, the reasons for limiting the production of the low yield ratio high temperature steel for construction having excellent fracture resistance of the present invention will be described. In the steel having a limited chemical composition for the above reasons, in order to improve the brittle crack propagation arresting property, in the surface layer portions of at least two surfaces of the steel material, an ultrafine grain structure having an average ferrite grain size of 3 μm or less is formed from the surface layer. Plate thickness 10-33
% Must be present over the thickness. The superfine grain surface layer having the characteristics limited in the present invention can be formed by limiting the production conditions as shown below.

【0101】鋼片を熱間圧延するに際し、熱間圧延中あ
るいは熱間圧延途中で表層部の適当な厚みの領域を水冷
等の手段により、Ar3 変態点よりも低い温度まで一旦
冷却して内部と温度差を付けた後、温度差のついたまま
の状態からさらに熱間圧延を行うと、Ar3 変態点より
も低い温度まで一旦冷却された領域は復熱及びその過程
の加工によりフェライト主体組織となる。
During hot rolling of a steel slab, a region of an appropriate thickness of the surface layer portion is once cooled to a temperature lower than the Ar 3 transformation point during or during hot rolling by means such as water cooling. After making a temperature difference with the inside, when hot rolling is further performed from the state where the temperature difference remains, the area once cooled to a temperature lower than the Ar 3 transformation point is reheated and processed in that process to produce ferrite. Become the main organization.

【0102】そのため、該フェライト主体組織を有する
表層部は内部の顕熱により復熱されながら加工を受ける
ことになり、この復熱中の加工条件を適正化することに
より、表層部のフェライト結晶粒が顕著に細粒化する。
従って、最終的な鋼材における表層超細粒層の割合は、
表層を一旦冷却した際にAr3 変態点まで低下した領域
の割合とほぼ一致することになる。
Therefore, the surface layer portion having the ferrite main structure is subjected to processing while being reheated by the sensible heat inside, and by optimizing the processing conditions during this reheating, the ferrite crystal grains in the surface layer portion are Remarkably fine-grained.
Therefore, the ratio of the surface ultrafine grain layer in the final steel product is
When the surface layer is once cooled, it almost coincides with the ratio of the region reduced to the Ar 3 transformation point.

【0103】上記熱間圧延工程において、以下に示すよ
うな条件を満足することによって超細粒化が達成され
る。先ず、鋼片をオーステナイト域に再加熱するが、こ
の場合の温度としてはAc3 変態点以上、1250℃以
下が好ましい。即ち、Ac3 変態点未満ではオーステナ
イト単相にならず、フェライト相が残存し、該フェライ
ト相が残存すると後の工程の如何によらず、表層に均一
な超細粒組織を形成することができない。
In the above hot rolling step, ultrafine graining can be achieved by satisfying the following conditions. First, the steel slab is reheated to the austenite region, and the temperature in this case is preferably the Ac 3 transformation point or higher and 1250 ° C. or lower. That is, below the Ac 3 transformation point, the austenite single phase is not formed and the ferrite phase remains. If the ferrite phase remains, a uniform ultrafine grain structure cannot be formed in the surface layer regardless of the subsequent steps. .

【0104】また、内部も二相域加工されるため、鋼材
の異方性が増大する問題も生じる。一方、1250℃超
では加熱オーステナイト粒径が極端に粗大となるため、
後の圧延によっても粒径の微細化ができず、板厚中心部
の靱性確保ができない。従って、本発明では鋼片の加熱
温度をAc3 変態点〜1250℃に限定する。
Further, since the inside is also processed in the two-phase region, there is a problem that the anisotropy of the steel material increases. On the other hand, if the temperature exceeds 1250 ° C, the heated austenite grain size becomes extremely coarse,
The grain size cannot be reduced even by the subsequent rolling, and the toughness at the center of the plate thickness cannot be secured. Therefore, in the present invention, the heating temperature of the billet is limited to the Ac 3 transformation point to 1250 ° C.

【0105】鋼片を加熱後、950℃以下のオーステナ
イト域で累積圧下率が10〜50%の圧延を行う。これ
は変態前のオーステナイト粒径を実質的に微細化して、
後の工程で表層を超細粒組織とするためと、板厚中心部
の結晶粒径を30μm以下として内部の通常組織の靱性
を確保するためである。なお、オーステナイト粒の実質
的な微細化とは、再結晶オーステナイトの微細化ととも
に未再結晶圧延によるオーステナイト粒の展伸化も指
す。
After heating the steel slab, rolling with a cumulative reduction of 10 to 50% is performed in the austenite region of 950 ° C. or lower. This is a refinement of the austenite grain size before transformation,
This is because the surface layer has an ultrafine grain structure in a later step, and the toughness of the internal normal structure is ensured by setting the crystal grain size at the center of the plate thickness to 30 μm or less. The term "substantial refinement of austenite grains" means refinement of recrystallized austenite as well as expansion of austenite grains by non-recrystallization rolling.

【0106】低温のオーステナイト域での圧下がオース
テナイトの実質的な微細化に有効であるが、950℃超
の圧下はオーステナイトの微細化に有効でないため、本
発明においては950℃以下の温度での圧下率を限定す
る。950℃以下の圧下率は10%未満では加工の効果
が不足するため、オーステナイトの微細化に効果がな
い。
The reduction in the austenite region at a low temperature is effective for substantially refining austenite, but the reduction above 950 ° C. is not effective for refining austenite. Therefore, in the present invention, reduction at a temperature below 950 ° C. Limit the rolling reduction. If the rolling reduction at 950 ° C. or less is less than 10%, the effect of processing is insufficient, and therefore there is no effect on the refinement of austenite.

【0107】950℃以下のオーステナイト域での圧下
率は大きければ大きいほどオーステナイトの微細化に有
効であるが、その効果は50%超では飽和傾向にあるこ
とと、該圧下率が50%超と大きくなると、オーステナ
イトの細粒化には有効であるものの、後の表層部のフェ
ライトを超細粒化する上で必須である復熱過程での圧下
率が確保できなくなるため、本発明では950℃以下で
の圧下率の上限を50%とする。
The larger the rolling reduction in the austenite region of 950 ° C. or lower, the more effective the refinement of austenite is. However, if the rolling reduction exceeds 50%, the effect tends to be saturated, and the rolling reduction exceeds 50%. When it becomes larger, it is effective for making the austenite finer, but it becomes impossible to secure the reduction rate in the recuperating process which is essential for making the ferrite of the surface layer later to be finer. The upper limit of the rolling reduction below is 50%.

【0108】なお、950℃超の温度での圧下はオース
テナイトの微細化に対する効果が小さいが、後の復熱工
程での必要圧下率を確保できる範囲であれば、材質に悪
影響を及ぼすものではないので、初期スラブ厚みが大き
い場合等、必要に応じて950℃超の温度での加工を行
ってもかまわない。
Note that the reduction at a temperature higher than 950 ° C. has a small effect on the refinement of austenite, but does not adversely affect the material as long as the required reduction rate in the subsequent reheating step can be secured. Therefore, when the initial slab thickness is large, the processing may be performed at a temperature higher than 950 ° C. as necessary.

【0109】上記の条件で十分オーステナイト粒の微細
化、未再結晶域圧延を施した上で、該鋼材の超細粒層と
すべき表層部を水冷等の手段により冷却し、該鋼材の水
冷前の熱間圧延時点での板厚の10〜33%に対応する
各表層部の領域をAr3 変態点以下まで冷却するととも
に、表層部と内部に温度差をつける。
Under the above conditions, the austenite grains were sufficiently refined and unrecrystallized region rolling was performed, and then the surface layer portion of the steel material to be an ultrafine grain layer was cooled by means of water cooling or the like, and the steel material was water-cooled. The area of each surface layer portion corresponding to 10 to 33% of the sheet thickness at the time of the previous hot rolling is cooled to the Ar 3 transformation point or lower, and a temperature difference is provided between the surface layer portion and the inside.

【0110】その際、該鋼材の水冷前の熱間圧延時点で
の板厚の10〜33%に対応する各表層部の領域の冷却
速度は2℃/s以上にする必要がある。これは冷却速度が
2℃/s未満では冷却前の熱間圧延によりオーステナイト
を微細化しておいても冷却後の変態組織が粗大となり、
その後の復熱中の圧延で均一な超微細フェライト組織を
得ることが困難となるためである。
At that time, the cooling rate of the region of each surface layer portion corresponding to 10 to 33% of the plate thickness at the time of hot rolling before water cooling of the steel material needs to be 2 ° C./s or more. This is because if the cooling rate is less than 2 ° C / s, the transformation structure after cooling becomes coarse even if the austenite is refined by hot rolling before cooling.
This is because it is difficult to obtain a uniform ultrafine ferrite structure by subsequent rolling during recuperation.

【0111】冷却速度は大きい方が組織微細化の観点か
らは好ましいが、40℃/sを超えて急冷しても効果が飽
和する上に、不必要に急冷することは鋼板の形状維持の
ためには好ましくないため、上限を40℃/sとする。
A higher cooling rate is preferable from the viewpoint of micronization of the structure, but the effect is saturated even if the material is rapidly cooled above 40 ° C./s, and unnecessary cooling is necessary to maintain the shape of the steel sheet. Therefore, the upper limit is set to 40 ° C./s.

【0112】また、上記の950℃以下での圧延を行っ
た後の冷却はAr3 変態点以上から開始する。これは、
単相オーステナイトから冷却することで表層超細粒層を
均一に形成させるためである。即ち、該表層部が強制冷
却前にAr3 変態点未満となると、フェライトが一部粗
大に生成し、その部分での超細粒化が阻害されるためで
ある。
Further, the cooling after the rolling at 950 ° C. or lower is started from the Ar 3 transformation point or higher. this is,
This is because the superfine grain surface layer is uniformly formed by cooling the single-phase austenite. That is, when the surface layer portion is below the Ar 3 transformation point before forced cooling, ferrite is partly coarsely formed and superfine grain formation is hindered at that portion.

【0113】以上の理由により、該鋼材の冷却前の熱間
圧延時点での板厚の10〜33%に対応する各表層部の
領域を2〜40℃/sの冷却速度でAr3 変態点以下まで
冷却し、その後仕上げ圧延を行う際、内部の顕熱による
か、及び/または外部からの加熱を利用して板厚の10
〜33%に対応する各表層部の領域を昇温中に圧延を施
すことにより、該領域の組織が超微細化し、脆性き裂伝
播停止特性向上に寄与できるようになる。
For the above reasons, the region of each surface layer portion corresponding to 10 to 33% of the plate thickness at the time of hot rolling of the steel material before cooling is cooled at an Ar 3 transformation point at a cooling rate of 2 to 40 ° C./s. When cooling to the following and then performing finish rolling, the sensible heat of the inside and / or the heating from the outside may be used to reduce the plate thickness to 10
By rolling the region of each surface layer portion corresponding to ˜33% while the temperature is rising, the structure of the region becomes ultra-fine and can contribute to the improvement of the brittle crack propagation arresting property.

【0114】後述するように、上記復熱過程の加工は1
回もしくは2回以上繰り返してもよいが、最後の冷却後
の復熱過程での圧延後の復熱温度は、(Ac1 変態点−
50℃)〜(Ac3 変態点+50℃)の範囲にする必要
がある。即ち、該最終復熱温度が(Ac1 変態点−50
℃)よりも低いと、加工後の加工フェライトの回復・再
結晶が十分でないため、超細粒化が不十分で、脆性き裂
伝播停止特性が向上しない。
As will be described later, the processing in the recuperation process is 1
The recuperation temperature after rolling in the recuperation process after the last cooling may be (Ac 1 transformation point-
50 ° C.) to (Ac 3 transformation point + 50 ° C.). That is, the final recuperation temperature is (Ac 1 transformation point −50
If the temperature is lower than (° C.), recovery and recrystallization of the worked ferrite after working are not sufficient, so that ultrafine graining is insufficient and brittle crack propagation arresting property is not improved.

【0115】一方、該最終復熱温度が(Ac1 変態点+
50℃)よりも高いと、加工により超細粒化したフェラ
イトの一部が再度オーステナイトに逆変態することによ
って消失してしまい、その割合が無視できないほど多く
なって靱性及び脆性き裂伝播停止特性を損なう。従って
本発明においては、最後の冷却後の復熱過程での圧延後
の復熱温度は(Ac1 変態点−50℃)〜(Ac3 変態
点+50℃)の範囲に限定する。
On the other hand, the final recuperation temperature is (Ac 1 transformation point +
If the temperature is higher than 50 ° C, part of the ultrafine-grained ferrite disappears due to the reverse transformation to austenite again by working, and the ratio becomes so large that it cannot be ignored, and the toughness and brittle crack propagation arresting characteristics are increased. Spoil. Therefore, in the present invention, the recuperation temperature after rolling in the recuperation process after the last cooling is limited to the range of (Ac 1 transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.).

【0116】以上のAr3 変態点以下への冷却と復熱中
の加工工程は1回でも良いが、複数回繰り返すことによ
り効果が重畳するため、2回以上繰り返しても所望の微
細組織を得ることが可能である。
The above-described processing steps during cooling to below the Ar 3 transformation point and during the reheating may be carried out once, but the effect is superposed by repeating it a plurality of times, so the desired microstructure can be obtained even if it is repeated twice or more. Is possible.

【0117】その場合、各復熱段階の最高温度あるいは
最低温度は任意であっても本発明の温度条件に従えば超
細粒化する。ただし、好ましくは途中の復熱温度の上限
は(Ac3 変態点+100℃)以下とする方が、細粒化
の効果が確実に重畳する点で好ましい。
In this case, even if the maximum temperature or the minimum temperature of each recuperation step is arbitrary, ultrafine particles are obtained according to the temperature conditions of the present invention. However, it is preferable that the upper limit of the recuperation temperature on the way is (Ac 3 transformation point + 100 ° C.) or less, because the grain refining effect is surely superposed.

【0118】最初の冷却後から最後の復熱に至るまでの
圧延としての仕上げ圧延の累積圧下率は、大きい方が均
一かつ安定に超細粒組織を得られる。そのためには、仕
上げ圧延の累積圧下率は最低限20%必要である。圧下
率は大きいほど超細粒化には有利であるが、圧下率が9
0%を超えるような圧延は効果が飽和し、生産性を極端
に阻害するため好ましくない。従って、本発明では仕上
げ圧延の累積圧下率は20〜90%に限定する。
If the cumulative reduction ratio of finish rolling as the rolling from the initial cooling to the final recuperation is large, an ultrafine grain structure can be obtained uniformly and stably. For that purpose, the cumulative rolling reduction of finish rolling must be at least 20%. The larger the rolling reduction is, the more advantageous the ultrafine graining is, but the rolling reduction is 9
Rolling exceeding 0% is not preferable because the effect is saturated and productivity is extremely hindered. Therefore, in the present invention, the cumulative reduction rate of finish rolling is limited to 20 to 90%.

【0119】上記の限定条件に従った製造方法により、
表層部に超細粒層を付与することが可能であるが、さら
に低降伏比化のために、圧延終了後の冷却条件あるいは
鋼材製造後の熱処理条件を下記に示すように限定する必
要がある。
By the manufacturing method according to the above-mentioned limiting conditions,
It is possible to add an ultrafine grained layer to the surface layer portion, but in order to further reduce the yield ratio, it is necessary to limit the cooling conditions after rolling or the heat treatment conditions after steel material production as shown below. .

【0120】最後の復熱が終了した後の冷却段階でマル
テンサイト相を導入する方法においては、復熱終了後の
鋼材を0.2〜2℃/sの冷却速度で(該冷却速度におけ
る変態開始温度(Ar3 )−50℃)〜500℃の範囲
に冷却した後、5〜40℃/sの冷却速度で20〜300
℃まで冷却する。
In the method of introducing the martensite phase in the cooling stage after the end of the final recuperation, the steel material after the end of recuperation is cooled at a cooling rate of 0.2 to 2 ° C./s (transformation at the cooling rate). after cooling to a range of start temperature (Ar 3) -50 ℃) ~500 ℃, 20~300 at a cooling rate of 5 to 40 ° C. / s
Cool to ° C.

【0121】先ず、復熱終了後の鋼材を二相域温度まで
冷却するが、その際の冷却速度が0.2℃/s未満では冷
却速度が遅すぎるため、変態により生成するフェライト
あるいはベイナイト、あるいはこれらの混合相である母
相組織が粗大化するため、靱性の劣化を生じるためと、
前段階で形成された超細粒層の結晶粒径が粗大化して脆
性き裂伝播停止特性を劣化させる可能性があるため、好
ましくない。
First, the steel material after the completion of recuperation is cooled to the temperature of the two-phase region. If the cooling rate at that time is less than 0.2 ° C./s, the cooling rate is too slow, so ferrite or bainite formed by transformation, Or, because the matrix structure, which is a mixed phase of these, becomes coarse, causing deterioration of toughness,
It is not preferable because the crystal grain size of the ultrafine grain layer formed in the previous stage may become coarse and the brittle crack propagation arresting property may be deteriorated.

【0122】また、冷却速度が2℃/s超であると変態開
始温度が低くなりすぎるため、変態相とオーステナイト
相との二相組織とすることが困難となったり、母相とマ
ルテンサイトとの硬さの差が小さくなって低降伏比化で
きない等の問題が生じるため好ましくない。
If the cooling rate is higher than 2 ° C./s, the transformation start temperature becomes too low, which makes it difficult to form a two-phase structure of a transformation phase and an austenite phase, or a matrix and martensite. It is not preferable because the difference in hardness between the two becomes small and the yield ratio cannot be lowered.

【0123】以上の理由により、本発明においては最後
の復熱から(該冷却速度における変態開始温度(A
3 )−50℃)〜500℃までの冷却速度の範囲を
0.2〜2℃/sに限定する。
For the above reasons, in the present invention, from the last recuperation (the transformation start temperature (A
r 3) -50 ℃) to limit the scope of the cooling rate to to 500 ° C. in 0.2 to 2 ° C. / s.

【0124】復熱終了後、0.2〜2℃/sで二相域温度
まで冷却して変態により生じた母相と未変態のオーステ
ナイト相の割合を適正化した後、未変態のオーステナイ
トをマルテンサイト相に変態させるために急冷する。そ
の際、0.2〜2℃/sでの冷却を停止する温度として
は、(該冷却速度における変態開始温度(Ar3 )−5
0℃)〜500℃の範囲とする必要がある。
After the completion of the recuperation, the temperature of the two-phase region was cooled at 0.2 to 2 ° C./s to optimize the ratio of the mother phase generated by the transformation and the untransformed austenite phase. Quench to transform to martensite phase. At that time, the temperature at which the cooling at 0.2 to 2 ° C./s is stopped is (transformation start temperature (Ar 3 ) −5 at the cooling rate).
It should be in the range of 0 ° C) to 500 ° C.

【0125】低降伏比化に必要な10〜60%のマルテ
ンサイト相を安定して組織中に形成させるためには、オ
ーステナイト中にCが一定以上濃縮する必要があるが、
そのためには二相域に入るまでの冷却速度での変態開始
温度(Ar3 変態点)よりも50℃以下とする必要があ
る。ただし、この温度が低くなりすぎると、その後の急
冷段階の前に変態が生じてしまい、Cの濃化した硬いマ
ルテンサイトではなく、母相との硬さの差の小さいベイ
ナイト相が生成する可能性が高くなる。
In order to stably form the martensite phase of 10 to 60% necessary for lowering the yield ratio in the structure, it is necessary to concentrate C in austenite to a certain level or more.
For that purpose, it is necessary to set the temperature to 50 ° C. or lower than the transformation start temperature (Ar 3 transformation point) at the cooling rate until entering the two-phase region. However, if this temperature becomes too low, transformation occurs before the subsequent quenching stage, and a bainite phase with a small hardness difference from the parent phase may be generated instead of a hard martensite with a high concentration of C. Will be more likely.

【0126】実験結果によれば、10〜60%のマルテ
ンサイトの割合を確保するための下限温度は500℃と
なる。そのため、本発明における急冷前の冷却停止温度
は、(該冷却速度における変態開始温度(Ar3 )−5
0℃)〜500℃の範囲に限定する。
According to the experimental results, the lower limit temperature for ensuring the proportion of martensite of 10 to 60% is 500 ° C. Therefore, the cooling stop temperature before quenching in the present invention, (the transformation start temperature in cooling rate (Ar 3) -5
(0 ° C) to 500 ° C.

【0127】Ar3 −50〜500℃から急冷して未変
態のオーステナイトをマルテンサイト相に変態させる
が、マルテンサイト変態のためには冷却速度は速ければ
速いほど有利であるが、Cの濃縮したオーステナイトか
らの変態であることを考慮すれば、冷却速度の下限は5
℃/sとする必要がある。
The untransformed austenite is transformed into a martensite phase by rapid cooling from Ar 3 -50 to 500 ° C. The higher the cooling rate is, the more advantageous for the martensite transformation. Considering the transformation from austenite, the lower limit of the cooling rate is 5
It should be ℃ / s.

【0128】また、冷却速度を速くするとマルテンサイ
ト変態のためには有利であるが、製造コストの上昇を招
き、鋼材に残留応力が残って鋼材の変形を生じる問題も
あるため、マルテンサイト生成に十分で、前記の問題点
の生じない範囲として冷却速度の上限は40℃/sとす
る。
Further, although increasing the cooling rate is advantageous for martensitic transformation, it causes a rise in manufacturing cost, and there is a problem that residual stress remains in the steel material to cause deformation of the steel material. The upper limit of the cooling rate is 40 ° C./s, which is sufficient and does not cause the above problems.

【0129】5〜40℃/sで冷却してマルテンサイト変
態を生じた後は、残留応力の軽減や材質の向上を目的と
して途中で冷却を停止することが可能である。マルテン
サイト変態後の急冷停止温度としては、20℃を超えて
低温まで冷却することはマルテンサイトの特性になんら
影響を及ぼさないため無意味であり、また300℃超の
高温で急冷を停止すると、まだマルテンサイト変態が完
了しておらず、未変態のオーステナイトがベイナイト相
へ変態して必要量のマルテンサイトが確保できない恐れ
があるため、該急冷停止温度は20〜300℃の範囲に
限定する。
After cooling at 5 to 40 ° C./s to cause martensitic transformation, cooling can be stopped midway for the purpose of reducing residual stress and improving the material. As the quenching stop temperature after martensitic transformation, cooling to a low temperature exceeding 20 ° C. is meaningless since it has no effect on the properties of martensite, and when quenching is stopped at a high temperature of more than 300 ° C., The martensite transformation is not yet completed, and untransformed austenite may transform into the bainite phase, and the required amount of martensite may not be secured. Therefore, the quench stop temperature is limited to the range of 20 to 300 ° C.

【0130】圧延・冷却後の鋼材を再加熱熱処理により
マルテンサイト相を生成させる場合は、復熱終了後の鋼
材を放冷するか、あるいは復熱終了後の綱材を5〜40
℃/sの冷却述度で20〜650℃まで冷却した後、さら
に0.1〜50℃/sの昇温速度で(Ac1 変態点+10
℃)〜(Ac3 変態点−30℃)の範囲に加熱した後、
該温度範囲で1〜60s保持した後、0.5〜50℃/s
で冷却する。
When the steel material after rolling / cooling is subjected to heat treatment for reheating to produce a martensite phase, the steel material after the end of the recuperation is allowed to cool, or the steel material after the end of the reheat is in a range of 5-40.
After cooling to 20 to 650 ° C. at a cooling rate of C / s, the temperature is further increased to 0.1 to 50 ° C./s (Ac 1 transformation point + 10
℃) ~ (Ac 3 transformation point -30 ℃) after heating in the range,
After holding for 1 to 60 s in the temperature range, 0.5 to 50 ° C / s
Cool with.

【0131】本発明の条件に従った復熱工程での圧延を
含む熱間圧延を施して表層部に超細粒組織を形成させた
後は、その後の粒成長を抑制できる程度の冷却速度で変
態が実質的に終了する温度まで冷却すればよい。
After the hot rolling including the rolling in the recuperating step according to the conditions of the present invention is performed to form the superfine grain structure in the surface layer portion, the cooling rate is such that the subsequent grain growth can be suppressed. It may be cooled to a temperature at which the transformation is substantially completed.

【0132】鋼材の最も厚い断面の板厚が100mm以下
の場合は放冷でも十分である。また、強度調整や製造時
間の短縮を目的として急冷することも当然可能であり、
その場合の冷却条件を、本発明では5〜40℃/sの冷却
速度で20〜650℃まで冷却することとする。
When the plate thickness of the thickest cross section of the steel material is 100 mm or less, even cooling is sufficient. In addition, it is also possible to quench rapidly for the purpose of strength adjustment and shortening of manufacturing time,
In the present invention, the cooling condition in that case is to cool to 20 to 650 ° C at a cooling rate of 5 to 40 ° C / s.

【0133】冷却速度を5〜40℃/sに限定するのは、
5℃/s未満では強度調整に効果がないためであり、40
℃/s超では強度上昇効果や組織制御効果が飽和する一方
で、鋼材の変形や残留応力が大となる傾向があり、実用
上これ以上冷却速度を高めても意味がないためである。
Limiting the cooling rate to 5 to 40 ° C./s is as follows.
This is because if it is less than 5 ° C / s, there is no effect on strength adjustment.
This is because if the temperature exceeds ℃ / s, the strength increasing effect and the structure controlling effect are saturated, but the deformation and residual stress of the steel material tend to be large, and it is meaningless to further increase the cooling rate in practice.

【0134】5〜40℃/sでの急速冷却を停止する温度
は20〜650℃の範囲とするが、これは、急速冷却を
20℃未満まで行っても材質や組織制御に対して全く効
果がない一方で、製造コストの上昇や鋼材形状の劣化を
生じる懸念があるためと、急速冷却停止温度が650℃
超では、板厚中心近傍の変態がまだ進行中のため、組織
の粗大化や高温変態生成物の増加により所望の材質が得
られなくなり、材質制御を目的とした急速冷却の意図が
全く失われてしまうためである。
The temperature at which the rapid cooling is stopped at 5 to 40 ° C./s is in the range of 20 to 650 ° C. This has no effect on the material and structure control even if the rapid cooling is performed to less than 20 ° C. On the other hand, there is a possibility that the manufacturing cost may rise and the shape of the steel material may deteriorate.
If it is over, the transformation near the plate thickness center is still in progress, so the desired material cannot be obtained due to the coarsening of the structure and the increase of high temperature transformation products, and the intention of rapid cooling for material control is completely lost. This is because it will end up.

【0135】以上の方法により製造した鋼材を二相域に
再加熱して、マルテンサイト相を必要量生成させる。そ
の熱処理の要件は、0.1〜50℃/sの昇温速度で(A
1変態点+10℃)〜(Ac3 変態点−30℃)の範
囲に加熱した後、該温度範囲で1〜60s保持した後、
0.5〜50℃/sで冷却することにある。
The steel material produced by the above method is reheated to the two-phase region to generate the required amount of martensite phase. The requirements for the heat treatment are (A
After heating in the range of (c 1 transformation point + 10 ° C.) to (Ac 3 transformation point −30 ° C.) and then maintaining the temperature range for 1 to 60 s,
It is to cool at 0.5 to 50 ° C./s.

【0136】二相域熱処理を行う場合に問題となるの
は、圧延工程で形成された表層部の超細粒組織をいかに
保存するかにある。該表層部の超細粒組織は、特別に工
夫された熱履歴によって形成された組織であるため、変
態温度を超える温度はもちろん、高温に焼戻し処理を受
けただけでも、再度晶、粒成長等により、その特異な超
細粒組織が損なわれる可能性が高くなる。
A problem in performing the two-phase region heat treatment is how to preserve the ultrafine grain structure of the surface layer portion formed in the rolling step. The superfine grain structure of the surface layer is a structure formed by a specially devised thermal history, so that not only the temperature exceeding the transformation temperature but also the tempering treatment at a high temperature causes recrystallization, grain growth, etc. This increases the possibility of damaging the peculiar ultrafine grain structure.

【0137】該超細粒組織を保有しつつ、マルテンサイ
ト導入のための熱処理としては、急速加熱かつ短時間保
持の二相域熱処理が必須となる。即ち急速に加熱するこ
とにより、超細粒組織がその熱を駆動力として変化する
前に二相域温度まで到達することが可能であり、同様
に、短時間保持により保持段階での超細粒組織の粒成長
を抑制することが可能となる。
As the heat treatment for introducing martensite while maintaining the ultrafine grain structure, a two-phase region heat treatment of rapid heating and holding for a short time is essential. That is, by rapidly heating, it is possible for the ultrafine grain structure to reach the two-phase region temperature before it changes with its heat as a driving force. Similarly, by holding for a short time, the ultrafine grain structure in the holding stage It becomes possible to suppress the grain growth of the tissue.

【0138】その場合、昇温速度は0.1〜50℃/sの
範囲とする必要がある。昇温速度が0.1℃/s未満では
急速加熱の効果がなく、超細粒部の粒成長を抑制するこ
とが難しい。一方、50℃/s超では、超細粒部の粒成長
の抑制には有効ではあるものの、保持温度がオーバーシ
ュートしやすく、工業的に安定した制御が難しくなるた
め、本発明では上限を50℃/sに限定した。
In this case, the temperature rising rate needs to be in the range of 0.1 to 50 ° C./s. If the heating rate is less than 0.1 ° C./s, there is no effect of rapid heating, and it is difficult to suppress grain growth in the ultrafine grain portion. On the other hand, if it exceeds 50 ° C./s, although it is effective in suppressing the grain growth of the ultrafine grain portion, the holding temperature easily overshoots and industrially stable control becomes difficult. Therefore, the upper limit of the present invention is 50. Limited to ° C / s.

【0139】なお、加熱のはじめから保持温度までこの
昇温速度範囲内に制御されることが好ましいが、500
℃から保持温度までの平均の昇温速度が本発明の範囲内
にあれば、表層部の超細粒組織を損なうことなく二相域
熱処理が可能となる。
It is preferable to control the heating rate from the beginning to the holding temperature within this temperature increase rate range.
If the average temperature rising rate from the temperature of ℃ to the holding temperature is within the range of the present invention, the two-phase region heat treatment can be performed without damaging the superfine grain structure of the surface layer portion.

【0140】上記の加熱速度及び後述の保持時間の限定
範囲内において加熱温度を適正化して、熱処理後に鋼材
中のマルテンサイト相の割合が、低降伏比化に適した1
0〜60%の範囲となるように制御する。そのために
は、(Ac1 変態点+10℃)〜(Ac3 変態点−30
℃)の範囲の二相域温度に加熱する必要がある。
By optimizing the heating temperature within the limited range of the above heating rate and the holding time described later, the ratio of the martensite phase in the steel material after the heat treatment is suitable for lowering the yield ratio.
It is controlled to be in the range of 0 to 60%. For that purpose, (Ac 1 transformation point + 10 ° C.) to (Ac 3 transformation point −30)
It is necessary to heat to a two-phase region temperature in the range of (° C).

【0141】加熱温度が(Ac1 変態点+10℃)未満
であると加熱時に形成されるオーステナイト相の割合が
少ないため、冷却中の変態により形成されるマルテンサ
イト相の割合が10%以上確保できない。
If the heating temperature is lower than (Ac 1 transformation point + 10 ° C.), the proportion of the austenite phase formed during heating is small, so that the proportion of the martensite phase formed by transformation during cooling cannot be 10% or more. .

【0142】逆に加熱温度が(Ac3 変態点−30℃)
超であると、加熱時に形成されたオーステナイト相中へ
のCの濃化が十分でなく、化学組成によらないオーステ
ナイトの焼入性が確保されないため、加熱保持後の冷却
中のオーステナイトからマルテンサイトヘの変態が確実
でなくなり、安定して必要量のマルテンサイト量を得る
ことが困難になるためと、加熱温度が高くなると表層部
の超細粒組織の形態が崩れる危険性が増加する。
On the contrary, the heating temperature is (Ac 3 transformation point −30 ° C.)
If it is over, the concentration of C in the austenite phase formed at the time of heating is not sufficient and the hardenability of austenite, which does not depend on the chemical composition, cannot be ensured. This is because the transformation is not assured and it becomes difficult to stably obtain the required amount of martensite, and there is an increased risk that the morphology of the superfine grain structure in the surface layer portion will collapse when the heating temperature rises.

【0143】従って、本発明においては、昇温速度が
0.1〜50℃/sで該加熱温度での保持時間が1〜60
sであることを前提とした場合に、安定して必要量のマ
ルテンサイト量を確保でき、かつ表層部の超細粒組織の
形態を損なわないために、二相域熱処理の加熱温度は
(Ac1 変態点+10℃)〜(Ac3 変態点−30℃)
の範囲に限定する。
Therefore, in the present invention, the heating rate is 0.1 to 50 ° C./s and the holding time at the heating temperature is 1 to 60.
If it is assumed that s is s, the heating temperature for the two-phase heat treatment is (Ac) so that the required amount of martensite can be stably secured and the morphology of the superfine grain structure of the surface layer portion is not impaired. 1 transformation point + 10 ° C) ~ (Ac 3 transformation point -30 ° C)
It is limited to the range of.

【0144】加熱温度での保持時間を1〜60sに限定
するのは、昇温速度を高めるのと同様、表層部の超細粒
組織の形態を損なわないためである。保持時間が1s未
満では工業的に制御が困難であり、60s超では表層部
の超細粒組織の再結晶、粒成長が開始する。
The reason why the holding time at the heating temperature is limited to 1 to 60 s is that the morphology of the superfine grain structure in the surface layer portion is not impaired as in the case of increasing the temperature rising rate. If the holding time is less than 1 s, industrial control is difficult, and if it exceeds 60 s, recrystallization and grain growth of the superfine grain structure of the surface layer portion start.

【0145】なお、昇温速度を高めること、及び、加熱
温度での保持時間を短時間に限定することは、表層部の
組織保存に効果があると同時に、二相域熱処理時のマル
テンサイト相の微細化にも補足的に効果があり、靱性向
上に対しても有効である。
It should be noted that increasing the rate of temperature rise and limiting the holding time at the heating temperature to a short time are effective in preserving the structure of the surface layer portion, and at the same time, the martensite phase during the two-phase region heat treatment is performed. It also has a complementary effect on the refinement of, and is effective for improving toughness.

【0146】(Ac1 変態点+10℃)〜(Ac3 変態
点−30℃)に1〜60s保持した後の冷却条件は、冷
却変態時に必要量のマルテンサイト相が形成される範囲
内であればよい。本発明においては、冷却速度が0.5
℃/s未満であるとマルテンサイト相の形成が確実でな
く、冷却速度は速ければ速いほど有利ではあるが、50
℃/s超では二相域熱処理時のマルテンサイト相の形成に
対して効果が飽和する一方、鋼材の形状やコスト面での
デメリットも生じるため、冷却速度は0.5〜50℃/s
の範囲に限定する。
The cooling condition after holding for 1 to 60 s at (Ac 1 transformation point + 10 ° C.) to (Ac 3 transformation point −30 ° C.) should be within a range where a necessary amount of martensite phase is formed during cooling transformation. Good. In the present invention, the cooling rate is 0.5.
If it is less than ° C / s, the martensite phase is not surely formed, and the faster the cooling rate is, the more advantageous it is.
If the temperature exceeds ℃ / s, the effect will be saturated for the formation of martensite phase during the two-phase heat treatment, but there will also be a demerit in terms of the shape and cost of the steel material.
It is limited to the range of.

【0147】以上の、請求項5に示した超細粒層を形成
させた後、ただちに二相域温度から急速冷却する製造方
法、あるいは、請求項6に示した急速加熱、短時間保持
を特徴とする二相域熱処理による製造方法で製造された
鋼材に対して、強度調整、靱性向上、形状改善の目的
で、さらに焼戻し処理を施すことも可能である。その場
合には、表層部に形成された超細粒組織を損なわないこ
とが必須条件となる。
The above-mentioned manufacturing method in which the ultrafine grained layer according to claim 5 is formed and then immediately rapidly cooled from the two-phase region temperature, or the rapid heating and the short-term holding described in claim 6 are characterized. It is also possible to further temper the steel material manufactured by the manufacturing method by the two-phase heat treatment, for the purpose of adjusting strength, improving toughness, and improving shape. In that case, it is an essential condition that the ultrafine grain structure formed in the surface layer portion is not damaged.

【0148】本発明では焼戻し温度を450〜650℃
の範囲に限定するが、これは、450℃未満では焼戻し
の効果が明確ではなく、650℃超では表層部の超細粒
組織の形態を損なう恐れがあるためである。なお、該焼
戻し温度範囲であれば、焼戻しの加熱保持時間は任意で
あるが、表層部の超細粒組織保存の観点からは、保持時
間は5h以内であることが好ましい。
In the present invention, the tempering temperature is 450 to 650 ° C.
This is because the effect of tempering is not clear below 450 ° C., and the morphology of the superfine grain structure in the surface layer portion may be impaired above 650 ° C. It should be noted that the heating holding time for tempering is arbitrary within the tempering temperature range, but from the viewpoint of preserving the superfine grain structure of the surface layer portion, the holding time is preferably within 5 hours.

【0149】[0149]

【実施例】表1に示す化学成分の供試鋼を用いて、表2
に示す製造条件で製造した板厚50mmの厚鋼板につい
て、製造まま及び歪を10%付与した後の母材の強度及
びシャルピー試験による靱性(破面遷移温度vTrs)、
ESSO試験による脆性き裂伝播停止特性(Kca値が4
00 kgf・mm-3/2となる温度)、延性破壊発生の限界C
TOD値(δi)、及び溶接継手特性(溶接ままでのシ
ャルピー特性(−20℃での吸収エネルギーの平均
値)、溶接まま及び10%歪付与後のδi)を表3に示
す。
[Examples] Using test steels having the chemical compositions shown in Table 1, Table 2
For a thick steel plate having a plate thickness of 50 mm manufactured under the manufacturing conditions shown in (1), as-manufactured strength and toughness (fracture transition temperature vTrs) of a base metal after a strain of 10% by a Charpy test,
Brittle crack propagation arrest property (Kca value of 4 by ESSO test)
00 kgf ・ mm -3/2 ), the limit of ductile fracture occurrence C
Table 3 shows the TOD value (δi), welded joint properties (Charpy properties as-welded (average value of absorbed energy at −20 ° C.), as-welded and δi after 10% strain).

【0150】[0150]

【表1】 [Table 1]

【0151】[0151]

【表2】 [Table 2]

【0152】[0152]

【表3】 [Table 3]

【0153】[0153]

【表4】 [Table 4]

【0154】[0154]

【表5】 [Table 5]

【0155】[0155]

【表6】 [Table 6]

【0156】[0156]

【表7】 [Table 7]

【0157】[0157]

【表8】 [Table 8]

【0158】[0158]

【表9】 [Table 9]

【0159】[0159]

【表10】 [Table 10]

【0160】[0160]

【表11】 [Table 11]

【0161】[0161]

【表12】 [Table 12]

【0162】[0162]

【表13】 [Table 13]

【0163】[0163]

【表14】 [Table 14]

【0164】[0164]

【表15】 [Table 15]

【0165】[0165]

【表16】 [Table 16]

【0166】母材の引張特性は、板厚のt/4部から試
験方向が圧延方向と直角となるようにして採取した、平
行部直径が6mmで評点間距離が25mmの丸棒試験片によ
り実施した。母材のシャルピー衝撃特性も引張試験片と
同一の位置、方向で採取し、破面遷移温度(vTrs)を
求めた。
The tensile properties of the base material were measured by a round bar test piece having a parallel part diameter of 6 mm and an inter-rating distance of 25 mm, which was taken from the t / 4 part of the plate thickness so that the test direction was perpendicular to the rolling direction. Carried out. The Charpy impact characteristics of the base material were also sampled at the same position and direction as the tensile test piece, and the fracture surface transition temperature (vTrs) was determined.

【0167】延性破壊発生の限界CTOD値(δi)
は、板厚中心部から試験片の長手方向が圧延方向と直角
となるように採取した疲労ノッチ付き3点曲げ試験片に
より実施した。
Critical CTOD value (δi) for occurrence of ductile fracture
The test was performed using a three-point bending test piece with a fatigue notch that was taken from the center of the plate thickness so that the longitudinal direction of the test piece was perpendicular to the rolling direction.

【0168】溶接条件は、両面1層のサブマージアーク
溶接とした。溶接入熱を約190〜200kJ/cmの範囲
に入るように調整して溶接を実施した。継手の2mmVノ
ッチシャルピー衝撃試験片及びδi測定用の試験片は、
表面下7mmの位置が試験片の中心部となるようにして、
溶接金属とHAZの境界(融合部:FL)からHAZ側
に1mm入った位置がノッチ位置となるよう採取した。引
張特性及び母材、継手のδiの測定は全て室温で求め
た。なお、予歪試験については、鋼板からの板状試験片
を切り出して引張歪を10%付与した後、各試験片を採
取して特性調査に供している。
The welding conditions were submerged arc welding of one layer on both sides. Welding was performed by adjusting the welding heat input so as to fall within the range of about 190 to 200 kJ / cm. The 2mmV notch Charpy impact test piece of the joint and the test piece for measuring δi are
Set the position 7 mm below the surface to be the center of the test piece,
The sample was sampled so that the position 1 mm into the HAZ side from the boundary between the weld metal and the HAZ (fusion part: FL) would be the notch position. The tensile properties, the base metal, and the δi of the joint were all measured at room temperature. Regarding the pre-strain test, a plate-shaped test piece was cut out from a steel sheet and applied with a tensile strain of 10%, and then each test piece was sampled and subjected to a characteristic investigation.

【0169】表1,表2に示すように、鋼番A1〜A1
6の鋼板は本発明の範囲内の化学成分及び表層超細粒組
織を有し、かつ80%未満の低降伏比を示しており、
脆性き裂の伝播停止特性の指標であるESSO試験によ
り求められたKca値が400kgf/mm-3/2となる温度が非
常に良好であるばかりでなく、10%の大きな歪を付与
した後にもその劣化が非常に小さい、通常の丸棒引張
試験で求められる伸びに加えて、き裂が存在する場合の
延性破壊の発生特性を示すδiも、歪付与有無にかかわ
らず良好な値を維持する、溶接継手のシャルピー特性
も、建築、橋梁等の構造物に安全に用いるために必要な
特性を有しており、継手のδiも母材と同様、歪付与後
でも十分高い値が得られており、本発明により製造され
た鋼材は、使用中に大地震等による大きくかつ繰り返し
の塑性歪を受けるような構造物に使用された場合にも、
従来にない高い安全性を有した低降伏比鋼材であること
が明白である。
As shown in Tables 1 and 2, steel numbers A1 to A1
Steel sheet No. 6 has a chemical composition within the scope of the present invention and a surface superfine grain structure, and exhibits a low yield ratio of less than 80%,
Temperature Kca value determined by ESSO test is indicative of the propagation stop characteristics of brittle cracks becomes 400 kgf / mm -3/2 is not only very good, even after applying a large strain of 10% In addition to the elongation required for a normal round bar tensile test, which exhibits very little deterioration, δi, which indicates the characteristic of ductile fracture in the presence of cracks, maintains a good value regardless of whether or not strain is applied. The Charpy characteristics of the welded joint also have the characteristics necessary for safe use in structures such as buildings and bridges, and the δi of the joint, like the base metal, is sufficiently high even after straining. However, the steel material produced by the present invention, even when used in a structure that undergoes large and repeated plastic strain due to a large earthquake during use,
It is clear that it is a low yield ratio steel material with a high level of safety never before seen.

【0170】一方、鋼番B1〜B10は比較例であり、
本発明の要件を満足していないために、表3に示した特
性のいずれかが本発明の鋼に比べて劣っている。即ち、
鋼番B1は全N量が過剰であるため、歪付与前のESS
O特性も本発明の鋼に比べて劣るが、特に歪付与後のE
SSO特性及びδiが劣る。
On the other hand, steel numbers B1 to B10 are comparative examples,
One of the properties shown in Table 3 is inferior to the steel of the present invention because it does not satisfy the requirements of the present invention. That is,
Steel No. B1 has an excessive total N content, so ESS before straining
The O property is also inferior to that of the steel of the present invention, but especially E after straining
SSO characteristics and δi are inferior.

【0171】鋼番B2は全N量が過剰な上、固溶N固定
のためのAl,Ti,Nbの量が不十分であるため、歪
付与後の脆性き裂伝播停止特性やδiの値が本発明鋼に
比べて劣化している。鋼番B3は全N量としては本発明
の化学成分範囲であるが、Nの固定が不十分であるた
め、即ち(1)式の値が正の値となるため、歪付与によ
る材質劣化が大きい。
Steel No. B2 has an excessive amount of total N and an insufficient amount of Al, Ti, and Nb for fixing the solid solution N. Therefore, the brittle crack propagation arresting property after strain application and the value of δi Is deteriorated as compared with the steel of the present invention. Steel No. B3 is within the chemical composition range of the present invention as the total amount of N, but because the fixation of N is insufficient, that is, the value of the formula (1) is a positive value, the deterioration of the material due to the strain application is caused. large.

【0172】鋼番B4は固溶Nの固定に最も有効なAl
の含有量が不十分であるため、Nの固定が十分でなく、
歪付与によるESSO特性及びδiの劣化が顕著であ
る。鋼番B5はPが過剰であるため、延性破壊特性及び
ESSO特性が歪付与前でも低めであり、さらに、歪付
与後の延性破壊特性及びESSO特性は大きく低下す
る。
Steel No. B4 is Al most effective for fixing solid solution N.
Since the content of N is insufficient, N is not fixed enough,
Degradation of ESSO characteristics and δi due to application of strain is remarkable. Steel No. B5 has an excessive amount of P, so that the ductile fracture characteristics and ESSO characteristics are relatively low even before the strain is applied, and further, the ductile fracture characteristics and the ESSO characteristics after the strain are applied are significantly reduced.

【0173】鋼番B6はSが過剰であるため、特に延性
特性(伸び、δi)が歪付与前、付与後とも本発明鋼に
比べて大幅に劣る。鋼番B7はCが過剰であるため、歪
付与前後における延性破壊特性及びESSO特性は低め
である上に、溶接継手の靱性が顕著に劣る。
Since steel No. B6 has an excessive amount of S, the ductility characteristics (elongation, δi) are significantly inferior to those of the steel of the present invention both before and after strain is imparted. Since steel No. B7 has an excessive amount of C, the ductile fracture characteristics and ESSO characteristics before and after the application of strain are relatively low, and the toughness of the welded joint is remarkably poor.

【0174】鋼番B8は化学成分としては本発明の範囲
内であるが、表層部の超細粒組織を有していないため、
ESSO特性が歪付与前、付与後とも顕著に劣化してい
る。鋼番9は表層部に中心部に比較して細粒の組織を有
しているが、その粒径が本発明の要件を満足せず、粗大
であるため、十分な脆性き裂伝播停止特性が歪付与前後
とも得られない。
Steel No. B8 is within the scope of the present invention as a chemical component, but since it does not have a superfine grain structure in the surface layer portion,
The ESSO characteristics are significantly deteriorated before and after the strain is applied. Steel No. 9 has a fine-grained structure in the surface layer as compared with the center, but its grain size does not satisfy the requirements of the present invention and is coarse. Cannot be obtained before and after applying strain.

【0175】鋼番10は表層超細粒層の厚さが不十分で
あるため、十分な脆性き裂伝播停止特性が歪付与前後と
も得られない。鋼番B11は、圧延後の二相域温度から
の加速冷却がなく、二相域への急速加熱焼戻し処理も施
されていないため、組織中のマルテンサイト割合が過小
となり、降伏比が建築用低降伏比鋼としては不十分であ
る。
In Steel No. 10, since the thickness of the superfine grain surface layer is insufficient, sufficient brittle crack propagation arresting properties cannot be obtained before and after applying strain. Steel No. B11 does not undergo accelerated cooling from the temperature of the two-phase region after rolling and is not subjected to rapid heating and tempering treatment to the two-phase region, so the martensite ratio in the structure is too small and the yield ratio is for construction. It is insufficient as a low yield ratio steel.

【0176】鋼番B12は逆に、二相焼戻しの加熱温度
が高すぎてマルテンサイトが遇剰なため、シャルピー特
性、脆性き裂伝播停止特性ともに顕著に劣化している。
鋼番B13は二相域焼戻しの条件が、本発明の特徴であ
る二相域への急速加熱、短時間保持の要件を満足してい
ない。即ち、二相域焼戻しの昇温速度が遅く、保持時間
も過剰なため、一旦形成された表層部の超細粒層の形態
がくずれ、平均粒径が粗大化したため、歪付与前におい
ても、脆性き裂伝播停止特性の向上が認められない。
On the contrary, with steel No. B12, the heating temperature for two-phase tempering is too high and martensite is surplus, so that both the Charpy property and the brittle crack propagation stopping property are significantly deteriorated.
Steel No. B13 does not satisfy the requirements for the two-phase region tempering conditions of rapid heating to the two-phase region and holding for a short time, which are features of the present invention. That is, since the temperature rising rate of the two-phase region tempering is slow and the holding time is excessive, the morphology of the superfine grain layer of the surface layer portion once formed collapses, and since the average grain size becomes coarse, even before straining, No improvement in brittle crack propagation arresting property.

【0177】鋼番B14はO量が過剰であるため、特に
延性破壊特性が劣る。鋼番B15は表層部の冷却の前の
γ域での圧延が行われていないため、板厚中心部の平均
結晶粒径が粗大となり、内部の靱性が劣り、塑性変形に
よる脆性き裂伝播停止特性劣化が顕著である。
Steel No. B14 is particularly inferior in ductile fracture characteristics because the O content is excessive. Steel No. B15 has not been rolled in the γ region before cooling the surface layer, so the average grain size at the center of the plate thickness becomes coarse, the internal toughness is poor, and brittle crack propagation stops due to plastic deformation. The characteristic deterioration is remarkable.

【0178】以上の実施例から、本発明によれば、予歪
を付与する前はもちろん、及び大地震等で大きな変形を
受けた場合を想定した10%の予歪付与後においても、
シャルピー特性、脆性き裂伝播停止特性及び延性破壊特
性(絞り値、δi)が非常に良好な鋼材を得ることが可
能であることが明白である。
From the above examples, according to the present invention, not only before applying the pre-strain, but also after applying the pre-strain of 10% which is assumed to be subjected to a large deformation such as a large earthquake,
It is clear that it is possible to obtain a steel material with very good Charpy properties, brittle crack propagation arrest properties and ductile fracture properties (drawing value, δi).

【0179】[0179]

【発明の効果】本発明は、使用中に大地震等による大き
くかつ繰り返しの塑性歪を受けるような場合にも、塑性
歪による材質の劣化が非常に小さく、塑性変形後におい
ても脆性き裂を容易にする延性き裂の発生や進展を抑制
し、かつ万一破壊が発生した場合でも、その脆性き裂を
停止できる安全性の非常に大きな低降伏比化高聴力鋼材
を、特殊な合金成分を用いることなく、通常の鋼材の製
造プロセスにおいて可能にしたものであり、その産業上
の効果は極めて大きい。
INDUSTRIAL APPLICABILITY The present invention has very little deterioration of the material due to plastic strain even when it is subjected to large and repeated plastic strain due to a large earthquake or the like during use, and brittle cracks are generated even after plastic deformation. It suppresses the initiation and propagation of ductile cracks that make it easier, and even if a fracture occurs, it can stop the brittle cracks. This is made possible in a normal steel material manufacturing process without using, and its industrial effect is extremely large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/58 C22C 38/58 (56)参考文献 特開 昭61−235534(JP,A) 特開 昭64−47815(JP,A) 特開 平7−126798(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 38/58 C22C 38/58 (56) Reference JP-A 61-235534 (JP, A) JP-A 64-47815 (JP , A) JP-A-7-126798 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60 C21D 8/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、 C :0.01〜0.15% Si:0.01〜1.0% Mn:0.1〜2.0% Al:0.003〜0.1% N :0.001〜0.006%を含有し、かつ、 N(%)−Al(%)/3.0≦0で、 不純物としてのP,S,Oの含有量が P :0.01%以下 S :0.01%以下 O :0.006%以下で、 残部鉄及び不可避不純物からなる鋼材であって、板厚中
心部の平均結晶粒径が30μm以下であり、さらに、鋼
材体積に占めるマルテンサイト割合が10〜60%であ
り、さらに、該鋼材を構成する外表面のうち少なくとも
2つの外表面に関して、表層から全厚みの10〜33%
の範囲内の平均フェライト粒径が3μm以下の超細粒組
織であることを特徴とする耐破壊性能に優れた建築用低
降伏比高張力鋼材。
1. In mass %, C: 0.01 to 0.15% Si: 0.01 to 1.0% Mn: 0.1 to 2.0% Al: 0.003 to 0.1% N : 0.001 to 0.006%, and N (%)-Al (%) / 3.0 ≦ 0, and the content of P, S, O as impurities is P: 0.01% Hereinafter, S: 0.01% or less, O: 0.006% or less, a steel material composed of the balance iron and unavoidable impurities, the average crystal grain size of the center part of the plate thickness is 30 μm or less, and further occupies the steel material volume. The martensite ratio is 10 to 60%, and further 10 to 33% of the total thickness from the surface layer with respect to at least two outer surfaces of the outer surfaces constituting the steel material.
A low yield ratio high tensile steel material for construction having an excellent fracture resistance, characterized by having an ultrafine grain structure with an average ferrite grain size within the range of 3 μm or less.
【請求項2】 質量%で、 Ti:0.003〜0.020% Zr:0.003〜0.10% Nb:0.002〜0.050% Ta:0.005〜0.20% V :0.005〜0.20% B :0.0002〜0.003% の1種または2種以上を含有し、 N(%)-Al(%)/3.0-Ti(%)/3.4-Zr(%)/6.5-Nb(%)/13.2-Ta
(%)/25.8-V(%)/10.9-B(%)/2.0 ≦0 であることを特徴とする請求項1記載の耐破壊性能に優
れた建築用低降伏比高張力鋼材。
2. In mass %, Ti: 0.003 to 0.020% Zr: 0.003 to 0.10% Nb: 0.002 to 0.050% Ta: 0.005 to 0.20% V : 0.005 to 0.20% B: 0.0002 to 0.003% of 1 type or 2 types or more, N (%)-Al (%) / 3.0-Ti (%) / 3.4-Zr (%) / 6.5-Nb (%) / 13.2-Ta
(%) / 25.8-V (%) / 10.9-B (%) / 2.0 ≦ 0. The low yield ratio, high tensile steel material for construction with excellent fracture resistance according to claim 1.
【請求項3】 質量%で、 Cr:0.01〜2.0% Mo:0.01〜2.0% Ni:0.01〜4.0% Cu:0.01〜2.0% W :0.01〜2.0% の1種または2種以上を含有することを特徴とする請求
項1または2記載の耐破壊性能に優れた建築用低降伏比
高張力鋼材。
3. In mass %, Cr: 0.01 to 2.0% Mo: 0.01 to 2.0% Ni: 0.01 to 4.0% Cu: 0.01 to 2.0% W : 0.01 to 2.0% of 1 type or 2 types or more are contained, The low yield ratio high tensile steel material for construction excellent in fracture resistance of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 質量%で、 Mg:0.0005〜0.01% Ca:0.0005〜0.01% REM:0.005〜0.10% のうち1種または2種以上を含有することを特徴とする
請求項1〜3のいずれか1項記載の耐破壊性能に優れた
建築用低降伏比高張力鋼材。
4. In mass %, Mg: 0.0005-0.01% Ca: 0.0005-0.01% REM: 0.005-0.10% One or more kinds are contained. The low-yield-ratio, high-strength steel material for construction having excellent fracture resistance according to any one of claims 1 to 3.
【請求項5】 請求項1〜4のいずれかに記載の成分の
鋼片を、Ac3 変態点以上、1250℃以下の温度に加
熱し、950℃以下のオーステナイト域での累積圧下率
が10〜50%の粗圧延を行った後、その段階での鋼片
厚みの10〜33%に対応する少なくとも2つの外表面
の表層部領域をAr3 変態点以上の温度から2〜40℃
/sの冷却速度で冷却を開始し、Ar3 変態点以下で冷却
を停止して復熱させることを1回以上経由させる過程
で、前記冷却の開始から最後の冷却後の復熱が終了する
までの間に累積圧下率が20〜90%の仕上げ圧延を完
了させ、該圧延完了後の鋼材の前記表層域を(Ac1
態点−50℃)〜(Ac3 変態点+50℃)の範囲に復
熱させた後、さらに復熱終了後の鋼材を0.2〜2℃/s
の冷却速度で(該冷却速度における変態開始温度(Ar
3 )−50℃)〜500℃の範囲に冷却した後、5〜4
0℃/sの冷却速度で20〜300℃まで冷却して請求項
1〜4のいずれか1項に記載の鋼材を製造することを特
徴とする耐破壊性能に優れた建築用低降伏比高張力鋼材
の製造方法。
5. A steel slab having the composition according to any one of claims 1 to 4 is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1250 ° C., and the cumulative rolling reduction in the austenite region of not higher than 950 ° C. is 10. After carrying out rough rolling of ˜50%, at least two surface layer regions of the outer surface corresponding to 10 to 33% of the thickness of the billet at that stage are heated at a temperature of Ar 3 transformation point or higher to 2 to 40 ° C.
In the process of starting the cooling at a cooling rate of / s and stopping the cooling at the Ar 3 transformation point or lower to reheat the heat at least once, the reheating after the last cooling from the start of the cooling is completed. Finish rolling with a cumulative rolling reduction of 20 to 90% is completed in the range of (Ac 1 transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.) in the surface layer region of the steel material after the rolling. The steel material after the recuperation is 0.2-2 ℃ / s
At the cooling rate of (the transformation start temperature (Ar
3 ) After cooling in the range of -50 ° C) to 500 ° C, 5-4
A low yield ratio high for construction excellent in fracture resistance, characterized in that the steel material according to any one of claims 1 to 4 is manufactured by cooling to 20 to 300 ° C at a cooling rate of 0 ° C / s. Method of manufacturing tensile steel.
【請求項6】 請求項1〜4のいずれかに記載の成分の
鋼片を、Ac3 変態点以上、1250℃以下の温度に加
熱し、950℃以下のオーステナイト域での累積圧下率
が10〜50%の粗圧延を行った後、その段階での鋼片
厚みの10〜33%に対応する少なくとも2つの外表面
の表層部領域をAr3 変態点以上の温度から2〜40℃
/sの冷却速度で冷却を開始し、Ar3 変態点以下で冷却
を停止して復熱させることを1回以上経由させる過程
で、前記冷却の開始から最後の冷却後の復熱が終了する
までの間に累積圧下率が20〜90%の仕上げ圧延を完
了させ、該圧延完了後の鋼材の前記表層域を(Ac1
態点−50℃)〜(Ac3 変態点+50℃)の範囲に復
熱させた後、復熱終了後の鋼材を放冷するか、あるいは
復熱終了後の鋼材を5〜40℃/sの冷却速度で20〜6
50℃まで冷却した後、さらに0.1〜50℃/sの昇温
速度で(Ac1 変態点+10℃)〜(Ac3 変態点−3
0℃)の範囲に加熱し、該温度範囲で1〜60s保持し
た後、0.5〜50℃/sで冷却する二相域熱処理を施し
て請求項1〜4のいずれか1項に記載の鋼材を製造する
ことを特徴とする耐破壊性能に優れた建築用低降伏比高
張力鋼材の製造方法。
6. A steel slab having the composition according to any one of claims 1 to 4 is heated to a temperature of Ac 3 transformation point or higher and 1250 ° C. or lower, and a cumulative rolling reduction in an austenite region of 950 ° C. or lower is 10. After carrying out rough rolling of ˜50%, at least two surface layer regions of the outer surface corresponding to 10 to 33% of the thickness of the billet at that stage are heated at a temperature of Ar 3 transformation point or higher to 2 to 40 ° C.
In the process of starting the cooling at a cooling rate of / s and stopping the cooling at the Ar 3 transformation point or lower to reheat the heat at least once, the reheating after the last cooling from the start of the cooling is completed. Finish rolling with a cumulative rolling reduction of 20 to 90% is completed in the range of (Ac 1 transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.) in the surface layer region of the steel material after the rolling. After the recuperation, the steel after the recuperation is left to cool, or the steel after the recuperation is completed at 20 to 6 at a cooling rate of 5 to 40 ° C / s.
After cooling to 50 ° C., the temperature is further increased from 0.1 to 50 ° C./s at a rate of (Ac 1 transformation point + 10 ° C.) to (Ac 3 transformation point −3).
0 ° C.) range, after holding for 1 to 60 s in the temperature range, it is subjected to a two-phase zone heat treatment of cooling at 0.5 to 50 ° C./s. A method for producing a high yielding steel material having a low yield ratio for construction, which is excellent in fracture resistance and is characterized by producing the above steel material.
【請求項7】 450〜650℃で焼戻しを行うことを
特徴とする請求項5または6記載の耐破壊性能に優れた
建築用低降伏比高張力鋼材の製造方法。
7. The method for producing a high yield steel material having a low yield ratio for construction excellent in fracture resistance according to claim 5, wherein tempering is performed at 450 to 650 ° C.
JP17026296A 1996-06-28 1996-06-28 Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof Expired - Fee Related JP3499085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17026296A JP3499085B2 (en) 1996-06-28 1996-06-28 Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17026296A JP3499085B2 (en) 1996-06-28 1996-06-28 Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
JPH1017982A JPH1017982A (en) 1998-01-20
JP3499085B2 true JP3499085B2 (en) 2004-02-23

Family

ID=15901686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17026296A Expired - Fee Related JP3499085B2 (en) 1996-06-28 1996-06-28 Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof

Country Status (1)

Country Link
JP (1) JP3499085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230167417A (en) 2021-07-08 2023-12-08 닛폰세이테츠 가부시키가이샤 hot rolled steel plate

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323434A (en) * 1998-05-14 1999-11-26 Nippon Steel Corp Production of thick high tensile strength steel excellent in low temperature toughness
JP3889907B2 (en) * 1999-12-14 2007-03-07 新日本製鐵株式会社 Manufacturing method of welded steel pipe with excellent formability
JP3854574B2 (en) * 2002-12-13 2006-12-06 新日本製鐵株式会社 Crude oil tank steel with excellent fatigue crack propagation resistance
AU2004243718B2 (en) 2003-05-28 2007-07-05 Nippon Steel Corporation Oil well steel pipe to be placed under ground and be expanded
JP4997805B2 (en) 2005-03-31 2012-08-08 Jfeスチール株式会社 High-strength thick steel plate, method for producing the same, and high-strength steel pipe
CN102242306B (en) 2005-08-03 2013-03-27 住友金属工业株式会社 Hot-rolled steel sheet and cold-rolled steel sheet and manufacturing method thereof
KR20090078807A (en) * 2006-10-06 2009-07-20 엑손모빌 업스트림 리서치 캄파니 Low yield ratio dual phase steel linepipe with superior strain aging resistance
JP5087966B2 (en) * 2007-03-28 2012-12-05 Jfeスチール株式会社 Method for producing hot-rolled steel sheet with excellent surface quality and ductile crack propagation characteristics
US20090301613A1 (en) 2007-08-30 2009-12-10 Jayoung Koo Low Yield Ratio Dual Phase Steel Linepipe with Superior Strain Aging Resistance
JP5375933B2 (en) * 2011-12-01 2013-12-25 Jfeスチール株式会社 Thick steel plate with excellent brittle crack propagation stop properties
KR101482359B1 (en) 2012-12-27 2015-01-13 주식회사 포스코 Method for manufacturing high strength steel plate having excellent toughness and low-yield ratio property
US10036079B2 (en) 2013-03-12 2018-07-31 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
CN105008574B (en) * 2013-03-12 2018-05-18 杰富意钢铁株式会社 The steel plate and its manufacturing method of multi-layer welding connector CTOD characteristic goods
JP6398585B2 (en) * 2014-10-15 2018-10-03 新日鐵住金株式会社 Steel pipe manufacturing method and steel pipe
KR101778398B1 (en) 2015-12-17 2017-09-14 주식회사 포스코 Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same
JP2022074057A (en) * 2020-10-29 2022-05-17 Jfeスチール株式会社 Projecting h-beam and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230167417A (en) 2021-07-08 2023-12-08 닛폰세이테츠 가부시키가이샤 hot rolled steel plate

Also Published As

Publication number Publication date
JPH1017982A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
JP3526576B2 (en) Manufacturing method of high-strength steel with excellent weld strength and weld strength
JP3499085B2 (en) Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof
JP3499084B2 (en) Low yield ratio high tensile strength steel for construction with excellent brittle crack arrestability and method of manufacturing the same
US5634988A (en) High tensile steel having excellent fatigue strength at its weld and weldability and process for producing the same
JPH09176782A (en) Building use high tensile strength steel excellent in fracture resistance and its production
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JPH08188847A (en) Steel plate with composite structure, excellent in fatigue characteristic, and its production
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3569314B2 (en) Steel plate for welded structure excellent in fatigue strength of welded joint and method of manufacturing the same
JP3390596B2 (en) Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same
JP3255790B2 (en) Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same
JP2688312B2 (en) High strength and high toughness steel plate
JPH0941077A (en) High tensile strength steel plate excellent in crack propagating arrest characteristic and its production
JP3434378B2 (en) Thick steel plate with low fatigue crack propagation speed in thickness direction and method of manufacturing the same
JP3462943B2 (en) Steel sheet having high fatigue strength at welded portion and method for producing the same
JP3462922B2 (en) Manufacturing method of high strength steel sheet with excellent strength and toughness
JP6327186B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JP3255004B2 (en) High strength steel material for welding excellent in toughness and arrestability and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees