JP5375933B2 - Thick steel plate with excellent brittle crack propagation stop properties - Google Patents

Thick steel plate with excellent brittle crack propagation stop properties Download PDF

Info

Publication number
JP5375933B2
JP5375933B2 JP2011263163A JP2011263163A JP5375933B2 JP 5375933 B2 JP5375933 B2 JP 5375933B2 JP 2011263163 A JP2011263163 A JP 2011263163A JP 2011263163 A JP2011263163 A JP 2011263163A JP 5375933 B2 JP5375933 B2 JP 5375933B2
Authority
JP
Japan
Prior art keywords
ferrite
phase
steel plate
less
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011263163A
Other languages
Japanese (ja)
Other versions
JP2012082525A (en
Inventor
浩文 大坪
智之 横田
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011263163A priority Critical patent/JP5375933B2/en
Publication of JP2012082525A publication Critical patent/JP2012082525A/en
Application granted granted Critical
Publication of JP5375933B2 publication Critical patent/JP5375933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick steel plate which is excellent in characteristic of brittle crack propagation arrest. <P>SOLUTION: The thick steel plate has a microstrutcure which includes a ferrite phase as a main phase and one or more kinds of pearlite phase, bainitic phase and martensitic phase as a second phase. The ferrite phase with an average particle diameter of 3 &mu;m or less is formed in at least an area of 10-20% in plate thickness from the front and rear surfaces in the direction of the thick steel plate, and its area ratio to the total quantity of ferrite in the area is 30% or more. Also, it is formed in an area of less than 10% in plate thickness from the front and rear surfaces in the direction of the thick steel plate, and its area ratio to the total quantity of ferrite in the area is less than 30%. Thus, the characteristic in brittle crack propagation arrest can be greatly improved in the thick steel plate. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、船舶、海洋構造物、低温貯蔵タンク、ラインパイプ、建築物、土木構造物等の大型構造物用として好適な厚鋼板に係り、とくに該厚鋼板の脆性亀裂伝播停止特性の向上に関する。なお、ここでいう「厚鋼板」とは板厚:6mm以上の鋼板をいうものとする。   The present invention relates to a thick steel plate suitable for use in large structures such as ships, offshore structures, low-temperature storage tanks, line pipes, buildings, civil engineering structures, and the like, and more particularly to improvement of brittle crack propagation stopping characteristics of the thick steel plates. . The “thick steel plate” here refers to a steel plate having a thickness of 6 mm or more.

従来から、船舶、海洋構造物、低温貯蔵タンク、ラインパイプ、建築物、土木構造物等の大型構造物では、安全性の観点から脆性破壊の発生を防止することが強く要求されてきた。このため、大型構造物に使用される鋼材には、低温靭性に優れることが要求されている。特に、不慮の事故等で構造物に亀裂が発生した場合であっても、破壊に至ることを防止するという観点から、脆性亀裂伝播停止特性、いわゆるアレスト特性が要求される場合がある。例えば船舶においては、衝突事故後に船舶を再使用する場合の安全性確保の点から、使用する鋼材に対し、一段と優れた脆性亀裂伝播停止特性を具備することが要求されるようになってきた。   Conventionally, large structures such as ships, offshore structures, low-temperature storage tanks, line pipes, buildings, and civil engineering structures have been strongly required to prevent the occurrence of brittle fracture from the viewpoint of safety. For this reason, it is requested | required that the steel materials used for a large structure should be excellent in low temperature toughness. In particular, even when a crack occurs in a structure due to an unexpected accident or the like, a brittle crack propagation stop characteristic, so-called arrest characteristic, may be required from the viewpoint of preventing breakage. For example, in the case of a ship, it has been demanded that the steel material to be used has more excellent brittle crack propagation stopping characteristics from the viewpoint of ensuring safety when the ship is reused after a collision accident.

優れた低温靭性を有する鋼材として、従来から、一般鋼材に比べてNi含有量を増加させた9%Ni鋼が知られており、すでに液化天然ガス(LNG)貯槽タンク用として商業規模で使用されている。しかし、Niの多量含有は材料コストの高騰を招くため、LNG貯槽タンク用等の極低温用以外には適用が難しいという問題がある。このようなことから、多量の合金元素を含有することなく、低温靭性を向上することができる低温靭性向上策が要望されていた。   As a steel material with excellent low temperature toughness, 9% Ni steel with an increased Ni content compared to general steel materials has been known, and has already been used on a commercial scale for liquefied natural gas (LNG) tanks. ing. However, since a large amount of Ni causes a material cost increase, there is a problem that it is difficult to apply it except for cryogenic use such as for LNG storage tanks. For this reason, there has been a demand for a low-temperature toughness improvement measure that can improve low-temperature toughness without containing a large amount of alloy elements.

このような低温靭性向上策として、制御圧延と制御冷却とを組み合わせた加工熱処理(TMCP:Thermo−Mechanical Control Process)法がある。この方法は、(1)オーステナイト(γ)の再結晶を繰返し、オーステナイトの細粒化を図る、(2)オーステナイトの未再結晶域圧延における累積圧下率を大きくとり、オーステナイト粒の展伸を増大させ、多数の変形帯を導入し、その後のフェライト変態に際してフェライトの核発生サイトを増加させてフェライト(α)の細粒化を図る、(3)圧延後の制御冷却により、γ/α変換比を調整し、フェライトの細粒化と微細ベイナイトの導入を図る、ことを特徴とするものである。このTMCP法を適用した鋼材が、LNGのような極低温まで至らない、いわゆる寒冷地用として、広く用いられてきた。   As such a low temperature toughness improvement measure, there is a thermo-mechanical control process (TMCP) method in which controlled rolling and controlled cooling are combined. In this method, (1) recrystallization of austenite (γ) is repeated, and austenite is refined. (2) The cumulative rolling reduction in the non-recrystallization zone rolling of austenite is increased, and the expansion of austenite grains is increased. Introducing a large number of deformation bands and increasing the number of ferrite nucleation sites during the subsequent ferrite transformation to refine the ferrite (α). (3) γ / α conversion ratio by controlled cooling after rolling. To reduce the size of ferrite and introduce fine bainite. Steel materials to which this TMCP method is applied have been widely used for so-called cold districts that do not reach extremely low temperatures such as LNG.

しかし、このTMCP法は、板厚が40mm以下程度の薄手鋼材の脆性亀裂伝播停止特性を顕著に向上させることができるが、例えば板厚が40mmを超える厚手鋼材では、脆性亀裂伝播停止特性向上の程度は少ないという問題がある。
また、オーステナイトから変態したフェライトに圧下を加えて集合組織を発達させるTMCP法が知られている。この方法によれば、鋼材の破面上に集合組織に起因したセパレーションが生じて脆性亀裂先端(切欠き先端)の応力が緩和されるため、脆性破壊亀裂の伝播に対する抵抗が高くなり、鋼材の脆性亀裂伝播停止特性の向上を図ることができる。しかし、この方法では、鋼材の板厚が厚くなると、このようなTMCP効果を十分に発揮させることが困難となるという問題とともに、Ar3変態点以下の温度で過度の圧下を加えると、靭性が劣化するという問題がある。
However, this TMCP method can remarkably improve the brittle crack propagation stop property of thin steel materials with a plate thickness of about 40 mm or less. There is a problem that the degree is small.
In addition, the TMCP method is known in which a texture is developed by applying a reduction to ferrite transformed from austenite. According to this method, separation due to the texture occurs on the fracture surface of the steel material, and the stress at the brittle crack tip (notch tip) is relieved, so the resistance to the propagation of the brittle fracture crack is increased, and the steel material It is possible to improve the brittle crack propagation stop characteristics. However, with this method, when the steel plate becomes thicker, it becomes difficult to sufficiently exhibit such TMCP effect, and when excessive reduction is applied at a temperature below the Ar 3 transformation point, the toughness is increased. There is a problem of deterioration.

このような問題に対し、例えば特許文献1には、脆性亀裂伝播停止特性と低温靭性に優れた鋼板の製造方法が提案されている。特許文献1に記載された技術は、C:0.01〜0.30%を含む構造用鋼材の板厚の2〜33%に対応する上下各表層部の領域を、Ar3変態点以上の温度から2℃/s以上の冷却速度で冷却し、Ar3変態点以下まで冷却したのち、冷却を停止して復熱させる工程を1回以上行い、最後の冷却後の復熱が終了するまでの間に仕上圧延を施し、仕上圧延終了後の上下各表層部の領域をAc3変態点未満、Ac3変態点以上、Ac3変態点とその上下温度域のいずれかに復熱させる鋼板の製造方法である。これにより、1回以上の逆変態後の昇温中に圧延を行うため、繰返し変態と加工再結晶とにより、鋼板表層部の組織が微細化するため、鋼板表層部のシアリップ効果が増大し脆性亀裂伝播停止特性が向上するとともに、板厚中央部の低温靭性が向上するとしている。 For such a problem, for example, Patent Document 1 proposes a method for manufacturing a steel sheet having excellent brittle crack propagation stopping characteristics and low temperature toughness. The technique described in Patent Document 1 is such that the regions of the upper and lower surface layers corresponding to 2 to 33% of the thickness of the structural steel material including C: 0.01 to 0.30% are moved from the temperature above the Ar 3 transformation point to 2 ° C. After cooling at a cooling rate of at least / s and cooling to below the Ar 3 transformation point, the cooling is stopped and the process of reheating is performed at least once, and the finish is completed until the reheating after the last cooling is completed. subjected to rolling, less than the area of the upper and lower surface layer portion after the end of rolling finish Ac 3 transformation point, Ac 3 transformation point or more, the manufacturing method of the steel sheet for recuperation in any of Ac 3 transformation point and the upper and lower temperature range . As a result, rolling is performed during temperature rise after one or more reverse transformations, and the structure of the steel sheet surface layer portion is refined by repeated transformation and processing recrystallization, so that the shearing effect of the steel sheet surface layer portion is increased and brittle. It is said that the crack propagation stop property is improved and the low temperature toughness at the center of the plate thickness is improved.

また、特許文献2には、Ac3変態点以上の温度の鋼片を、表面から板厚方向に2%以上の表層領域を2℃/s以上の冷却速度でAr3変態点以下まで急冷し、その後、当該表層領域がAr1変態点以上の温度から圧延を開始し、Ac3変態点〜(Ac3変態点+60℃)の範囲の最高復熱温度に達するまでに圧延を終了し、その後、Ar1変態点までを1℃/s以上の冷却速度で冷却するアレスト性能の優れた構造用鋼板の製造方法が提案されている。特許文献2に記載された技術によれば、鋼板の表裏面から少なくとも板厚の2%以上の範囲にわたり、平均円相当径で3μm以下のフェライト組織またはベイナイト組織が30%以上を占める表層部組織を有し、かつその表層部組織の同一結晶方位を有する集合組織コロニーがアスペクト比4以上となる、アレスト性能の優れた構造用鋼板が得られるとしている。 In Patent Document 2, a steel slab having a temperature not lower than the Ac 3 transformation point is rapidly cooled to a temperature below the Ar 3 transformation point at a cooling rate of 2 ° C./s or more in a surface layer region of 2% or more in the thickness direction from the surface. After that, the surface region starts rolling from a temperature equal to or higher than the Ar 1 transformation point and finishes rolling until reaching the maximum recuperation temperature in the range of Ac 3 transformation point to (Ac 3 transformation point + 60 ° C.). A method for producing a structural steel sheet having excellent arrest performance that cools to the Ar 1 transformation point at a cooling rate of 1 ° C./s or more has been proposed. According to the technique described in Patent Document 2, a surface layer structure in which a ferrite structure or a bainite structure having an average equivalent circle diameter of 3 μm or less occupies 30% or more from the front and back surfaces of the steel sheet to a range of at least 2% of the plate thickness. It is said that a structural steel plate having excellent arrest performance is obtained in which the texture colonies having the same crystal orientation of the surface layer structure have an aspect ratio of 4 or more.

また、特許文献3には、仕上圧延開始前に、鋼板表層部にAr3変態点以上の温度で少なくとも0.3の累積相当塑性歪を付与したのち、650℃以下の温度域まで2℃/s以上の速度で冷却してから直ちに圧延を開始し、鋼板の内部潜熱および加工熱により表層部をAr3変態点以下の温度まで復熱させながら、仕上圧延を行う、アレスト特性に優れた鋼板の製法が提案されている。なお、特許文献3に記載された技術では、仕上圧延は、1パス当りの最大圧下率:12%以下、累積圧下率:30%以上の圧延としている。これにより、局所的再結晶現象が抑制され、粒径ばらつきが抑えられるとしている。特許文献3に記載された技術によれば、表面から少なくとも板厚の5%の表層領域が、円相当平均粒径:5μm以下、アスペクト比:2以上でかつ粒径ばらつきの標準偏差が3μm以下であるフェライトとパーライト主体の組織を有する、アレスト特性に優れた鋼板が得られるとしている。 In addition, Patent Document 3 discloses that at least 0.3 cumulative cumulative plastic strain is applied to the steel sheet surface layer at a temperature equal to or higher than the Ar 3 transformation point before finishing rolling, and then 2 ° C./s or higher up to a temperature range of 650 ° C. or lower. Rolling is started immediately after cooling at a speed of, and finish rolling is performed while the surface layer is reheated to a temperature below the Ar 3 transformation point by the internal latent heat and processing heat of the steel plate, and a method for producing a steel plate with excellent arrest properties Has been proposed. In the technique described in Patent Document 3, the finish rolling is rolling with a maximum reduction ratio per pass of 12% or less and a cumulative reduction ratio of 30% or more. Thereby, the local recrystallization phenomenon is suppressed and the particle size variation is suppressed. According to the technique described in Patent Document 3, the surface layer region at least 5% of the plate thickness from the surface has an equivalent circle average particle size of 5 μm or less, an aspect ratio of 2 or more, and a standard deviation of particle size variation of 3 μm or less. It is said that a steel sheet having a structure mainly composed of ferrite and pearlite and having excellent arrest properties can be obtained.

特許文献1〜特許文献3に記載された技術はいずれも、鋼板表層部のみを一旦冷却したのち、復熱させながら圧延を施し、表層部をとくに微細化組織とした脆性亀裂伝播停止特性向上に適した組織を得て、鋼板の脆性亀裂伝播停止特性を向上させようとする技術である。しかし、これらの技術を実生産規模に適用するには、加熱・冷却、復熱の温度制御が容易でないという問題があった。また、特許文献1〜特許文献3に記載された技術はいずれも、フェライトの加工再結晶を利用して組織を微細化しているが、加工再結晶により形成されたフェライトは、成長が起こり易く組織的な安定性に欠けるため、微妙な熱履歴の変動により組織や特性の不均一を生じやすいという問題がある。   In any of the techniques described in Patent Documents 1 to 3, after cooling only the steel plate surface layer part, the steel sheet is rolled while being reheated to improve the brittle crack propagation stopping property with the surface layer part being particularly refined. This is a technique for obtaining a suitable structure and improving the brittle crack propagation stopping characteristics of a steel sheet. However, in order to apply these technologies to the actual production scale, there is a problem that the temperature control of heating / cooling and recuperation is not easy. In addition, all of the techniques described in Patent Documents 1 to 3 refine the structure by utilizing the processing recrystallization of ferrite, but the ferrite formed by the processing recrystallization has a structure in which growth is likely to occur. In this case, there is a problem that the structure and characteristics are liable to be uneven due to slight fluctuations in thermal history.

このような問題に対し、例えば特許文献4には、フェライト結晶粒の微細化のみならずフェライト結晶粒内に形成されるサブグレイン組織を安定して形成するために、(a)Ar3点以上の温度で一旦圧延を中断する工程と、(b)Ae3点−20℃以下の温度域まで空冷し、その温度域に60s以上滞在させる工程と、(c)Ar3点以下Ar3点−100℃以上の温度域で累積圧下率50%以上の圧延を行う工程と、(d)その後直ちに冷却速度2℃/s以上で650℃以下の温度域まで制御冷却する工程からなる、塑性変形を受けて後にも優れた脆性亀裂伝播停止特性を有する厚鋼板の製造方法が開示されている。特許文献4に記載された技術によれば、フェライトを主組織とし、扁平率が2以上でかつ短軸径が5μm以下のフェライト結晶粒内に、最大径が5μm以下のサブグレインを含む組織が、板厚の5%以上の部分を占める厚鋼板が得られるとしている。 In order to solve such a problem, for example, in Patent Document 4, in order to stably form a subgrain structure formed in ferrite crystal grains as well as refinement of ferrite crystal grains, (a) Ar 3 points or more A step of temporarily suspending rolling at a temperature of (b) Ae 3 point −air cooling to a temperature range of −20 ° C. or lower and staying in that temperature range for 60 seconds or more; and (c) Ar 3 point or less Ar 3 point− Plastic deformation, comprising a step of rolling at a cumulative reduction ratio of 50% or higher in a temperature range of 100 ° C or higher, and (d) a step of controlled cooling to a temperature range of 650 ° C or lower immediately after a cooling rate of 2 ° C / s or higher. A method of manufacturing a thick steel plate having excellent brittle crack propagation stopping characteristics after receiving the steel sheet is disclosed. According to the technique described in Patent Document 4, a structure including ferrite as a main structure, a subgrain having a maximum diameter of 5 μm or less in a ferrite crystal grain having a flatness ratio of 2 or more and a minor axis diameter of 5 μm or less. It is said that a thick steel plate occupying a portion of 5% or more of the plate thickness is obtained.

特開平4−141517号公報JP-A-4-141517 特開平5−271863号公報JP-A-5-271863 特開2002−256375号公報JP 2002-256375 A 特許第3467767号公報Japanese Patent No. 3467767

特許文献4に記載された技術によれば、鋼板表層の冷却および復熱などの複雑な温度制御を必要とせずに、脆性亀裂伝播停止特性を有する厚鋼板を製造できる。しかし、特許文献4に記載された技術では、鋼片の圧延を中断し、所定の温度域で滞在させる必要があるため、圧延能率の低下が予想されるという問題がある。また、サブグレインの最大径が5μm以下であっても、扁平なフェライト粒の短軸径が5μmを超えると脆性亀裂伝播停止特性の向上が望めないため、特許文献4に記載された技術では、優れた脆性亀裂伝播停止特性を有する組織を安定して得ることは難しいという問題もある。   According to the technique described in Patent Document 4, a thick steel plate having brittle crack propagation stop characteristics can be manufactured without requiring complicated temperature control such as cooling and recuperation of the steel sheet surface layer. However, in the technique described in Patent Document 4, it is necessary to interrupt the rolling of the steel slab and make it stay in a predetermined temperature range, so that there is a problem that a reduction in rolling efficiency is expected. In addition, even if the maximum diameter of the subgrain is 5 μm or less, if the short axis diameter of the flat ferrite grains exceeds 5 μm, improvement in brittle crack propagation stop property cannot be expected, so in the technique described in Patent Document 4, There is also a problem that it is difficult to stably obtain a structure having excellent brittle crack propagation stopping characteristics.

このように、上記した、鋼材の最表層部に微細なフェライト組織を形成して脆性亀裂伝播停止特性を向上させることを意図した従来技術では、工業的な規模で、優れた脆性亀裂伝播停止特性を有する組織を安定して得ることは難しいと考えられる。
そこで、本発明は、上記した従来技術の問題点を解決し、脆性亀裂伝播停止特性に優れた厚鋼板を提供することを目的とする。また、本発明は、鋼板表層の冷却および復熱などの複雑な温度制御を必要とすることなく、工業的に簡易なプロセスで、従来以上に安定して、脆性亀裂伝播停止特性に優れた厚鋼板を製造できる、脆性亀裂伝播停止特性に優れた厚鋼板の製造方法を提供することをも目的とする。
As described above, the conventional technology intended to improve the brittle crack propagation stop property by forming a fine ferrite structure in the outermost layer of the steel material as described above has excellent brittle crack propagation stop property on an industrial scale. It is considered difficult to obtain a tissue having
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a thick steel plate having excellent brittle crack propagation stop characteristics. In addition, the present invention does not require complicated temperature control such as cooling and recuperation of the steel sheet surface layer, and is an industrially simple process that is more stable than before and has excellent brittle crack propagation stopping characteristics. It is another object of the present invention to provide a method for producing a thick steel plate that can produce a steel plate and has excellent brittle crack propagation stopping characteristics.

本発明者らは、上記した課題を達成するために、脆性亀裂伝播停止特性に及ぼすミクロ組織の影響について鋭意研究を重ねた。その結果、鋼板の表裏面近傍の所定領域の組織を、平均粒径3μm以下の超微細なフェライトが該領域のフェライト全量に対する面積率で30%以上を占める組織とすることにより、脆性亀裂伝播停止特性が顕著に向上することを見出した。また、本発明者らは、上記した組織を有する厚鋼板は、粗いフェライト+パーライト組織を有する鋼片に、二相温度域に加熱し、1パス当りの圧下率が平均で10%以下、累積圧下率70%以上、圧延終了温度550℃以上とする多パス圧延を施すことにより、鋼板表裏面近傍の所定領域に歪を集中させることができ、それにより該所定領域でフェライトの連続再結晶が促進され、工業的に極めて簡易的なプロセスで、上記した組織を有する厚鋼板を製造できることを見出した。   In order to achieve the above-described problems, the present inventors have made extensive studies on the influence of the microstructure on the brittle crack propagation stopping characteristics. As a result, the structure of a predetermined region near the front and back surfaces of the steel sheet is made a structure in which ultrafine ferrite having an average grain size of 3 μm or less accounts for 30% or more in terms of the area ratio with respect to the total amount of ferrite in the region, thereby stopping brittle crack propagation It has been found that the characteristics are remarkably improved. In addition, the inventors of the present invention found that a thick steel plate having the above structure is heated to a two-phase temperature range on a steel piece having a coarse ferrite + pearlite structure, and the average rolling reduction per pass is 10% or less. By applying multi-pass rolling with a rolling reduction of 70% or more and a rolling end temperature of 550 ° C. or more, strain can be concentrated in a predetermined region near the front and back surfaces of the steel sheet, whereby continuous recrystallization of ferrite occurs in the predetermined region. It has been found that a thick steel plate having the above-described structure can be produced by an accelerated and industrially very simple process.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)フェライト相を主相とし、第二相としてパーライト相、ベイナイト相およびマルテンサイト相のうちの1種以上を含む組織を有する厚鋼板であって、前記フェライト相が平均粒径3μm以下のフェライト相を、少なくとも前記厚鋼板の板厚方向で表裏面から板厚の10〜20%の範囲の領域で、該領域のフェライト全量に対する面積率で30%以上含み、前記厚鋼板の板厚方向で表裏面から板厚の10%未満の領域で、該領域のフェライト全量に対する面積率で30%未満とすることを特徴とする脆性亀裂伝播停止特性に優れた厚鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) A thick steel sheet having a structure including at least one of a pearlite phase, a bainite phase, and a martensite phase as a second phase, the ferrite phase being a main phase, and the ferrite phase having an average particle size of 3 μm or less Including at least 30% of the ferrite phase in an area in the range of 10 to 20% of the plate thickness from the front and back surfaces in the plate thickness direction of the thick steel plate, the area ratio with respect to the total amount of ferrite in the region, A steel plate having excellent brittle crack propagation stopping characteristics, characterized in that the area ratio is less than 30% in the region of less than 10% of the plate thickness from the front and back surfaces and the total amount of ferrite in the region.

(2)(1)において、質量%で、C:0.03〜0.3%、Si:0.03〜0.5%、Mn:0.1〜2.0%、Al:0.1%以下、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有することを特徴とする厚鋼板。
(3)(2)において、前記組成に加えてさらに、質量%で、Ti:0.001〜0.02%、Nb:0.001〜0.05%、V:0.001〜0.1%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする厚鋼板。
(2) In (1), by mass%, C: 0.03-0.3%, Si: 0.03-0.5%, Mn: 0.1-2.0%, Al: 0.1% or less, N: 0.01% or less, the balance being A thick steel plate having a composition comprising Fe and inevitable impurities.
(3) In (2), in addition to the above composition, in addition to mass, one or two selected from Ti: 0.001 to 0.02%, Nb: 0.001 to 0.05%, and V: 0.001 to 0.1% A thick steel plate characterized by having a composition containing the above.

(4)(2)または(3)において、前記組成に加えてさらに、質量%で、Cu:0.01〜0.2%、Ni:0.01〜0.1%、Cr:0.01〜2.0%、Mo:0.01〜1.0%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする厚鋼板。 (4) In (2) or (3), in addition to the above composition, Cu: 0.01-0.2%, Ni: 0.01-0.1%, Cr: 0.01-2.0%, Mo: 0.01-1.0% A thick steel plate characterized by having a composition containing one or more selected from among the above.

本発明によれば、脆性亀裂伝播停止特性に優れた厚鋼板を容易にしかも安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、鋼板表層の冷却および復熱などの複雑な温度制御を必要とすることなく、工業的に簡易なプロセスである小圧下多パス圧延により、鋼板表裏面近傍の所定領域でフェライトの連続再結晶を促進させることができ、平均粒径3μm以下の超微細なフェライトを安定して形成でき、従来以上に安定して、容易にしかも安価に、脆性亀裂伝播停止特性に優れた厚鋼板を製造できるという効果もある。   According to the present invention, it is possible to easily and inexpensively manufacture a thick steel plate having excellent brittle crack propagation stopping characteristics, and achieve a remarkable industrial effect. Further, according to the present invention, a predetermined region in the vicinity of the front and back surfaces of the steel sheet is obtained by multi-pass rolling which is an industrially simple process without requiring complicated temperature control such as cooling and recuperation of the steel sheet surface layer. Can promote continuous recrystallization of ferrite, can stably form ultrafine ferrite with an average grain size of 3 μm or less, and is more stable, easier and less expensive than conventional, and has excellent brittle crack propagation stopping characteristics There is also an effect that a thick steel plate can be manufactured.

本発明の厚鋼板の組織限定理由について説明する。
本発明の厚鋼板では、少なくとも板厚方向で表裏面から板厚の10〜20%の範囲の領域で、フェライト相が平均粒径3μm以下の超微細なフェライト相を、該領域のフェライト全量に対する面積率で30%以上含む組織とする。フェライト相が、超微細なフェライト相を含むことにより、脆性亀裂が有する伝播エネルギーの吸収能が増大するため、脆性亀裂伝播に対する抵抗が大きくなり、脆性亀裂の伝播を阻止する能力が向上する。フェライト相が、平均粒径で3μmを超えて粗大となると、粗大なフェライト相を起点として脆性破壊が発生しやすく、脆性亀裂伝播停止特性が低下する。このため、含まれる微細フェライト相の平均粒径を3μm以下に限定した。
The reason for limiting the structure of the thick steel plate of the present invention will be described.
In the thick steel plate of the present invention, an ultrafine ferrite phase having an average grain size of 3 μm or less in the region of 10 to 20% of the plate thickness from the front and back surfaces at least in the plate thickness direction with respect to the total amount of ferrite in the region. The organization should include 30% or more in area ratio. When the ferrite phase includes the ultrafine ferrite phase, the ability to absorb the propagation energy of the brittle crack increases, so the resistance to the propagation of the brittle crack increases, and the ability to prevent the propagation of the brittle crack is improved. When the ferrite phase becomes coarser with an average particle size exceeding 3 μm, brittle fracture is likely to occur starting from the coarse ferrite phase, and the brittle crack propagation stopping property is deteriorated. For this reason, the average particle diameter of the contained fine ferrite phase was limited to 3 μm or less.

表裏面から板厚の10〜20%の範囲の領域で含まれる超微細なフェライト相の量が、該領域のフェライト全量に対する面積率で30%未満では、超微細なフェライト相以外の伸展したフェライト相の比率が高くなり、加工硬化したフェライトの影響により靭性が大きく低下するうえ、所望の脆性亀裂伝播停止特性を確保することが困難となる。このようなことから、表裏面から板厚の10〜20%の範囲の領域で含まれる超微細なフェライト相の量を該領域のフェライト全量に対する面積率で30%以上に限定した。なお、好ましくは50%以上である。   If the amount of the ultrafine ferrite phase contained in the region of 10 to 20% of the plate thickness from the front and back surfaces is less than 30% in terms of the area ratio relative to the total amount of ferrite in the region, the extended ferrite other than the ultrafine ferrite phase The phase ratio becomes high, and the toughness is greatly lowered due to the influence of work-hardened ferrite, and it is difficult to secure desired brittle crack propagation stop characteristics. For this reason, the amount of the ultrafine ferrite phase contained in the region of 10 to 20% of the plate thickness from the front and back surfaces is limited to 30% or more in terms of the area ratio with respect to the total amount of ferrite in the region. In addition, Preferably it is 50% or more.

なお、超微細なフェライト相が30%以上含まれる領域を、少なくとも表裏面から板厚の10〜20%の領域とした理由はつぎのとおりである。超微細フェライト相が、表裏面から板厚の10%未満の領域にのみ存在する場合には、超微細フェライト相の延性破壊によるエネルギー吸収が小さいために、脆性亀裂の伝播を十分に阻止することができず、所望の脆性亀裂伝播停止特性を確保することができない。一方、超微細フェライト相が、表裏面から板厚の10%を超える領域で、板厚中心部まで存在すればするほど、脆性亀裂の伝播を十分に阻止することができて好ましいが、本発明の製造方法で所望の組織が得られるのは少なくとも20%までの領域である。このようなことから、超微細なフェライト相が30%以上含まれる領域を、少なくとも表裏面から板厚の10〜20%の領域とした。なお、表裏面から板厚の10%未満、あるいは20%を超える領域においても、超微細フェライト相を含んでもよいことはいうまでもない。   The reason why the region containing 30% or more of the ultrafine ferrite phase is at least 10 to 20% of the plate thickness from the front and back surfaces is as follows. When the ultrafine ferrite phase exists only in the region of less than 10% of the plate thickness from the front and back surfaces, the energy absorption due to ductile fracture of the ultrafine ferrite phase is small, so that the propagation of brittle cracks should be sufficiently prevented. The desired brittle crack propagation stop characteristic cannot be ensured. On the other hand, it is preferable that the ultrafine ferrite phase exists in the region exceeding 10% of the plate thickness from the front and back surfaces to the central portion of the plate thickness, which can sufficiently prevent the propagation of brittle cracks. In this manufacturing method, a desired structure is obtained in an area of at least 20%. For this reason, a region containing 30% or more of the ultrafine ferrite phase is defined as a region having a thickness of 10 to 20% from at least the front and back surfaces. Needless to say, an ultrafine ferrite phase may also be included in the region from the front and back surfaces of less than 10% or more than 20% of the plate thickness.

本発明の厚鋼板では、板厚方向で表裏面から板厚の10%未満の領域、すなわち最表面層における、平均粒径3μm以下のフェライト相の量は、該領域のフェライト全量に対する面積率で30%未満となる。というのは、厚板圧延による板厚方向の相当歪の分布は、FEM解析によれば、表裏面から板厚の15%近傍にピークを有するとされ、表裏面から板厚の10〜20%領域に比べて、表裏面から板厚の10%未満の領域である最表面層に付与される歪量は少なく、この領域での超微細フェライト相の生成は少なくなると考えられる。   In the thick steel plate of the present invention, the amount of the ferrite phase having an average grain size of 3 μm or less in the region less than 10% of the plate thickness from the front and back surfaces in the plate thickness direction, that is, the area ratio relative to the total amount of ferrite in the region. Less than 30%. This is because, according to FEM analysis, the distribution of equivalent strain in the thickness direction due to thick plate rolling has a peak in the vicinity of 15% of the plate thickness from the front and back surfaces, and 10 to 20% of the plate thickness from the front and back surfaces. Compared to the region, the amount of strain applied to the outermost surface layer, which is a region of less than 10% of the plate thickness from the front and back surfaces, is small, and it is considered that the generation of the ultrafine ferrite phase in this region is reduced.

つぎに、本発明厚鋼板の好ましい組成の限定理由について説明する。なお、以下、とくに断らないかぎり、質量%は、単に%で記す。
C:0.03〜0.3%
Cは、セメンタイトの形成を介してフェライトの連続再結晶を促進させる作用を有する元素であり、このような効果を得るためには0.03%以上の含有を必要とする。一方、0.3%を超える含有は、溶接性が低下する。このため、Cは0.03〜0.3%の範囲に限定した。なお、好ましくは0.03〜0.2%である。
Below, the reason for limitation of the preferable composition of this invention thick steel plate is demonstrated. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.03-0.3%
C is an element having an action of promoting continuous recrystallization of ferrite through formation of cementite, and in order to obtain such an effect, the content of 0.03% or more is required. On the other hand, if the content exceeds 0.3%, the weldability decreases. For this reason, C was limited to the range of 0.03-0.3%. In addition, Preferably it is 0.03-0.2%.

Si:0.03〜0.5%
Siは、脱酸剤として作用するとともに、固溶強化により鋼の強度を増加させる作用を有する有効な元素である。このような効果は、0.03%以上の含有で認められる。一方、0.5%を超える含有は、表面性状を損なううえ、靭性が極端に低下する。このため、Siは0.03〜0.5%の範囲に限定した。なお、好ましくは0.03〜0.35%である。
Si: 0.03-0.5%
Si is an effective element that acts as a deoxidizer and increases the strength of steel by solid solution strengthening. Such an effect is recognized when the content is 0.03% or more. On the other hand, if the content exceeds 0.5%, the surface properties are impaired and the toughness is extremely lowered. For this reason, Si was limited to the range of 0.03-0.5%. In addition, Preferably it is 0.03-0.35%.

Mn:0.1〜2.0%
Mnは、鋼中では強化元素として作用する。このような効果は0.1%以上の含有で認められる。一方、2.0%を超える多量の含有は、溶接性を低下させるとともに、材料コストの高騰を招く。このため、Mnは0.1〜2.0%の範囲に限定した。なお、好ましくは0.1〜1.5%である。
Mn: 0.1-2.0%
Mn acts as a strengthening element in steel. Such an effect is recognized when the content is 0.1% or more. On the other hand, a large content exceeding 2.0% lowers the weldability and causes an increase in material cost. For this reason, Mn was limited to the range of 0.1 to 2.0%. In addition, Preferably it is 0.1 to 1.5%.

Al:0.1%以下
Alは、脱酸剤として作用する元素であるが、このような効果を得るためには、0.001%以上含有することが望ましい。一方、0.1%を超える含有は、介在物量を増加させるとともに、靭性をも低下させる。このため、Alは0.1%以下に限定した。
N:0.01%以下
Nは、鋼中のAlと結合しAlNを形成し、圧延加工時の結晶粒の微細化を介して鋼の強化にも寄与する元素であり、このような効果を得るためには、0.001%以上含有することが望ましい。一方、0.01%を超える含有は、靭性を低下させる。このため、Nは0.01%以下に限定した。
Al: 0.1% or less
Al is an element that acts as a deoxidizer, but in order to obtain such an effect, it is desirable to contain 0.001% or more. On the other hand, the content exceeding 0.1% increases the amount of inclusions and also reduces toughness. For this reason, Al was limited to 0.1% or less.
N: 0.01% or less N is an element that combines with Al in steel to form AlN and contributes to strengthening of the steel through refinement of crystal grains during rolling. To obtain such an effect Is preferably contained in an amount of 0.001% or more. On the other hand, the content exceeding 0.01% lowers the toughness. For this reason, N was limited to 0.01% or less.

上記した成分が基本の組成であるが、本発明では基本の組成に加えてさらに、Ti:0.001〜0.02%、Nb:0.001〜0.05%、V:0.001〜0.1%のうちから選ばれた1種または2種以上、および/または、Cu:0.01〜0.2%、Ni:0.01〜0.1%、Cr:0.01〜2.0%、Mo:0.01〜1.0%のうちから選ばれた1種または2種以上、を必要に応じて選択して含有できる。
Ti:0.001〜0.02%、Nb:0.001〜0.05%、V:0.001〜0.1%のうちから選ばれた1種または2種以上、
Ti、Nb、Vはいずれも、少量の含有で、窒化物、炭化物、あるいは炭窒化物を形成し、結晶粒を微細化し、鋼を強化する効果を有する元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、Nb、V、Tiを、それぞれ0.001%以上含有することが望ましい。一方、Ti:0.02%、Nb:0.05%、V:0.1%をそれぞれ超えて多量に含有すると、鋳片に割れを生じるとともに、製造コストの高騰をも招く。このため、Ti:0.001〜0.02%、Nb:0.001〜0.05%、V:0.001〜0.1%の範囲にそれぞれ限定することが好ましい。
In the present invention, in addition to the basic composition, the above-described components are further selected from Ti: 0.001 to 0.02%, Nb: 0.001 to 0.05%, and V: 0.001 to 0.1%. Or two or more, and / or one or more selected from Cu: 0.01 to 0.2%, Ni: 0.01 to 0.1%, Cr: 0.01 to 2.0%, Mo: 0.01 to 1.0%, It can be selected and contained as necessary.
Ti: 0.001 to 0.02%, Nb: 0.001 to 0.05%, V: one or more selected from 0.001 to 0.1%,
Ti, Nb, and V are all contained in small amounts, and form nitrides, carbides, or carbonitrides, refine the crystal grains, and strengthen the steel. Select as needed. 1 type or 2 types or more can be contained. In order to obtain such an effect, it is desirable to contain Nb, V, and Ti in an amount of 0.001% or more. On the other hand, when Ti is contained in a large amount exceeding 0.02%, Nb: 0.05%, and V: 0.1%, the slab is cracked and the manufacturing cost is increased. For this reason, it is preferable to limit to Ti: 0.001 to 0.02%, Nb: 0.001 to 0.05%, and V: 0.001 to 0.1%, respectively.

Cu:0.01〜0.2%、Ni:0.01〜0.1%、Cr:0.01〜2.0%、Mo:0.01〜1.0%のうちから選ばれた1種または2種以上
Cu、Ni、Cr、Moはいずれも、鋼の焼入れ性を高め、強度向上に直接寄与するとともに、靭性、高温強度あるいは耐候性などをも向上させる元素であり、必要に応じて選択して1種または2種以上含有できる。このような効果は、Cu、Ni、Cr、Mo、それぞれ0.01%以上の含有で顕著となるが、Cu:0.2%、Ni:0.1%、Cr:2.0%、Mo:1.0%をそれぞれ超える過度の含有は、靭性、溶接性を低下させる。このため、Cuは0.01〜0.2%、Niは0.01〜0.1%、Crは0.01〜2.0%、Moは0.01〜1.0%の範囲に、それぞれ限定することが好ましい。
One or more selected from Cu: 0.01-0.2%, Ni: 0.01-0.1%, Cr: 0.01-2.0%, Mo: 0.01-1.0%
Cu, Ni, Cr, and Mo are all elements that increase the hardenability of steel and contribute directly to strength improvement, as well as toughness, high-temperature strength, and weather resistance. It can contain seeds or two or more. Such effects become remarkable when Cu, Ni, Cr, and Mo are each contained in an amount of 0.01% or more, but excessive amounts exceeding Cu: 0.2%, Ni: 0.1%, Cr: 2.0%, Mo: 1.0%, respectively. Inclusion reduces toughness and weldability. For this reason, it is preferable to limit Cu to 0.01 to 0.2%, Ni to 0.01 to 0.1%, Cr to 0.01 to 2.0%, and Mo to 0.01 to 1.0%, respectively.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、P:0.04%以下、S:0.02%以下がそれぞれ許容される。P:0.04%、S:0.02%を超える含有は、靭性を低下させるため、P:0.04%以下、S:0.02%以下に調整することが望ましい。
なお、本発明の効果が損なわれない限り、上記した成分以外に、B、REM、Zr、Ca、Mg等の元素を微量(0.01%以下程度)含有してもよい。
The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities are P: 0.04% or less and S: 0.02% or less, respectively. If the content exceeds P: 0.04% and S: 0.02%, the toughness is lowered. Therefore, it is desirable to adjust P: 0.04% or less and S: 0.02% or less.
As long as the effects of the present invention are not impaired, elements such as B, REM, Zr, Ca, and Mg may be contained in a trace amount (about 0.01% or less) in addition to the above-described components.

つぎに、上記した組成、組織を有する本発明厚鋼板の好ましい製造方法について説明する。
本発明では、鋼片を、加熱し、厚板圧延を施し、厚鋼板とする。
本発明で使用する鋼片は、上記した組成を有し、さらに比較的粗いフェライト+パーライト組織を有する鋼片とする。本発明で使用する鋼片の組織限定理由はつぎのとおりである。
Below, the preferable manufacturing method of this invention thick steel plate which has an above described composition and structure | tissue is demonstrated.
In the present invention, the steel slab is heated and subjected to thick plate rolling to obtain a thick steel plate.
The steel slab used in the present invention is a steel slab having the above-described composition and having a relatively coarse ferrite + pearlite structure. The reasons for limiting the structure of the steel slab used in the present invention are as follows.

鋼片の圧延前の組織(圧延前組織)を、粗大なフェライト+パーライト組織とすることにより、厚板圧延に際し、二相温度域に加熱すると、パーライト領域が逆変態してある程度粗大なオーステナイトとなる。この粗大なオーステナイトの影響で、その後に二相温度域で小圧下多パス圧延を施すと、とくに表層近傍で、フェライト粒に効果的に圧延による歪(圧延歪)を分配することができ、フェライトの連続再結晶が促進され、少なくとも表裏面から板厚の10〜20%の領域で、平均粒径で3μm以下の超微細なフェライト相を、当該領域全体に対する面積率で30%以上含む、フェライト相を主相とする組織を形成することができる。   By making the structure before rolling of the slab (pre-rolling structure) a coarse ferrite + pearlite structure, when the steel sheet is heated to a two-phase temperature range during the thick plate rolling, the pearlite region undergoes reverse transformation and a certain degree of coarse austenite Become. Due to the influence of this coarse austenite, if rolling is performed under small pressure in the two-phase temperature range, the strain (rolling strain) due to rolling can be effectively distributed to the ferrite grains, especially near the surface layer. Ferrite, which contains 30% or more of an ultrafine ferrite phase with an average grain size of 3 μm or less in an area of 10 to 20% of the plate thickness from at least the front and back surfaces in an area ratio with respect to the entire area. A structure having a phase as a main phase can be formed.

このようなことは、鋼片が平均粒径が40μm以上である粗大なフェライト+パーライト組織を有する場合に顕著となる。鋼片のフェライトの平均粒径を40μm以上とすると、パーライトの大きさもそれに応じて粗大となり、二相温度域加熱時にある程度粗大なオーステナイトに逆変態する。平均粒径が40μm未満のフェライト+パーライト組織では、その後に二相温度域圧延を施しても、上記したようなフェライトの連続再結晶を促進することはできず、少なくとも表裏面から板厚の10〜20%の領域で、超微細なフェライト相を多く含むフェライト相を主相とした組織を形成することができない。このようなことから、鋼片の圧延前組織における、フェライトの平均粒径を40μm以上に限定した。   This is remarkable when the steel slab has a coarse ferrite + pearlite structure having an average particle diameter of 40 μm or more. When the average grain size of ferrite in the steel slab is 40 μm or more, the size of pearlite also becomes coarse accordingly and reversely transforms to some coarse austenite during heating in the two-phase temperature range. In the ferrite + pearlite structure with an average particle size of less than 40 μm, the continuous recrystallization of the ferrite as described above cannot be promoted even if the two-phase temperature rolling is performed thereafter, and at least 10 mm of the plate thickness from the front and back surfaces. In the region of ˜20%, it is impossible to form a structure having a ferrite phase containing a large amount of ultrafine ferrite phase as a main phase. For this reason, the average grain size of ferrite in the structure before rolling of the steel slab was limited to 40 μm or more.

一方、鋼片の圧延前組織が、ベイナイトやマルテンサイト主体の組織である場合には、鋼片を二相温度域に加熱すると、微細に分散したセメンタイトを核生成サイトとして微細なオーステナイトが析出するとともに、ベイナイトやマルテンサイトが焼戻された組織となる。このような微細なオーステナイトが存在する組織に、二相温度域での圧延を施すと、フェライト相に効果的に圧延歪を分配することはできず、フェライトの連続再結晶が促進されず、超微細なフェライト相を形成させることができなくなる。   On the other hand, when the pre-rolled structure of the steel slab is a bainite or martensite-based structure, when the steel slab is heated to a two-phase temperature range, fine austenite precipitates with finely dispersed cementite as nucleation sites. At the same time, bainite and martensite are tempered. If rolling in a two-phase temperature range is applied to a structure in which such fine austenite exists, rolling strain cannot be effectively distributed to the ferrite phase, and continuous recrystallization of ferrite is not promoted. A fine ferrite phase cannot be formed.

このように、圧延前の鋼片の組織(圧延前組織)が、粗大なフェライト+パーライト組織でない場合には、その後に二相温度域で圧延を施しても、少なくとも表裏面から板厚の10〜20%の領域で、超微細なフェライト相を多く含むフェライト相を主相とする組織を得ることが困難である。
上記した組成および組織を有する鋼片の製造方法は、とくに限定する必要なく、公知の方法がいずれも適用できる。上記した組成の溶鋼を通常の溶製方法で溶製し、通常の鋳造方法で所定の寸法形状の鋼片とすることが好ましい。上記した組織を確保するために、鋳造のまま、あるいは鋳造後、オーステナイト再結晶域で圧延し、その後空冷とすることが好ましい。これにより、フェライト+パーライト組織でフェライト粒が40μm以上の粗大組織を得ることができる。
Thus, when the structure of the steel slab before rolling (the structure before rolling) is not a coarse ferrite + pearlite structure, at least 10 mm of the plate thickness from the front and back surfaces even if rolling is performed in the two-phase temperature range thereafter. It is difficult to obtain a structure whose main phase is a ferrite phase containing a large amount of ultrafine ferrite phase in a region of ˜20%.
The manufacturing method of the steel slab having the above composition and structure is not particularly limited, and any known method can be applied. It is preferable that the molten steel having the above composition is melted by a normal melting method to obtain a steel piece having a predetermined size and shape by a normal casting method. In order to secure the above-described structure, it is preferable to perform casting in an austenite recrystallization region as cast or after casting, and then air cooling. Thereby, a coarse structure having a ferrite grain of 40 μm or more in a ferrite + pearlite structure can be obtained.

ついで、上記した組成および組織を有する鋼片は、Ac1変態点〜Ac3変態点の二相温度域の温度に加熱される。鋼片の加熱は、Ac1変態点未満の温度から行い、加熱速度はとくに限定されない。二相温度域の温度に加熱され、鋼片の組織をフェライト+オーステナイトの二相組織とすることにより、圧延時にフェライトに効果的に圧延歪が導入でき、フェライトの連続再結晶を促進することができる。なお、二相組織のオーステナイト分率が面積率で5%未満と低いと、フェライトへの圧延歪の効果的な導入ができず、フェライトの連続再結晶を促進することができない。一方、オーステナイト分率が面積率で50%を超えて多くなると、圧延後の冷却条件によっては、パーライト、ベイナイト、マルテンサイト等の第二相の形成量が多くなり、靭性が低下する。このようなことから、鋼片の加熱温度は、Ac1変態点〜Ac3変態点の温度範囲のうち、とくにオーステナイト分率が面積率で5〜50%となる、(Ac1変態点+30℃)以上(Ac3変態点−40℃)以下とすることが好ましい。 Next, the steel slab having the composition and structure described above is heated to a temperature in the two-phase temperature range from the Ac 1 transformation point to the Ac 3 transformation point. The steel slab is heated from a temperature below the Ac 1 transformation point, and the heating rate is not particularly limited. When heated to a temperature in the two-phase temperature range and the steel slab has a two-phase structure of ferrite + austenite, rolling strain can be effectively introduced into the ferrite during rolling, and continuous recrystallization of ferrite can be promoted. it can. If the austenite fraction of the two-phase structure is as low as less than 5% in terms of area ratio, rolling strain cannot be effectively introduced into ferrite, and continuous recrystallization of ferrite cannot be promoted. On the other hand, if the austenite fraction exceeds 50% in terms of area ratio, the amount of second phase formed of pearlite, bainite, martensite, etc. increases depending on the cooling conditions after rolling, and the toughness decreases. For this reason, the heating temperature of the steel strip, of the temperature range of Ac 1 transformation point to Ac 3 transformation point, in particular the austenite fraction is 5-50% by area ratio, (Ac 1 transformation point + 30 ° C. ) Or more (Ac 3 transformation point −40 ° C.) or less.

上記した加熱温度に加熱された鋼片は、ついで、(γ+α)二相温度域で1パス当りの圧下率が平均で10%以下、累積圧下率70%以上、圧延終了温度550℃以上とする多パス圧延を施され、厚鋼板とされる。
ここで、加熱された鋼片は直ちに圧延されるため、鋼片の加熱温度と圧延開始温度はほぼ同等となる。また、ここでいう累積圧下率とは、圧延開始から圧延終了までの全圧下率を示す。
The steel slab heated to the above heating temperature is then set to an average reduction rate of 10% or less per pass in the (γ + α) two-phase temperature range, a cumulative reduction rate of 70% or more, and a rolling end temperature of 550 ° C or more. Multipass rolling is applied to make a thick steel plate.
Here, since the heated steel slab is immediately rolled, the heating temperature of the steel slab and the rolling start temperature are substantially equal. In addition, the cumulative reduction ratio here refers to the total reduction ratio from the start of rolling to the end of rolling.

本発明では、上記した温度に加熱された鋼片に、圧延終了温度が550℃以上である多パス圧延を施す。圧延温度は低温となるほど、連続再結晶したフェライト粒が微細になるが、圧延終了温度が550℃未満では、圧延設備への負荷が大きくなるうえ、フェライトの連続再結晶が生じにくくなり、単に加工を受けて展伸しただけのフェライトが増加し、靭性の低下を招く。このため、圧延終了温度は550℃以上に限定した。   In the present invention, the steel slab heated to the above temperature is subjected to multi-pass rolling with a rolling end temperature of 550 ° C. or higher. The lower the rolling temperature, the finer the recrystallized ferrite grains become. However, when the rolling end temperature is less than 550 ° C, the load on the rolling equipment increases and the continuous recrystallization of ferrite is less likely to occur. As a result, the ferrite just expanded is increased, leading to a decrease in toughness. For this reason, the rolling end temperature is limited to 550 ° C. or higher.

また、本発明では、上記した多パス圧延における、(γ+α)二相温度域での、累積圧下率を70%以上とする。累積圧下率が70%未満では、圧下量が少なく、フェライトの連続再結晶が十分に促進されないため、少なくとも表裏面から板厚の10〜20%の領域で、平均結晶粒径で3μm以下の超微細なフェライト相を該領域全体に対する面積率で30%以上を含む組織を形成することができなくなり、脆性亀裂伝播停止特性が低下する。このため、多パス圧延における累積圧下率を70%以上に限定した。   In the present invention, the cumulative rolling reduction in the (γ + α) two-phase temperature range in the above-described multi-pass rolling is set to 70% or more. If the cumulative rolling reduction is less than 70%, the rolling reduction is small and the continuous recrystallization of ferrite is not sufficiently promoted. Therefore, the average crystal grain size exceeds 3 μm or less in at least 10 to 20% of the plate thickness from the front and back surfaces. It becomes impossible to form a structure containing 30% or more of the fine ferrite phase in the area ratio with respect to the entire region, and the brittle crack propagation stop characteristic is deteriorated. For this reason, the cumulative rolling reduction in multi-pass rolling is limited to 70% or more.

また、本発明では、上記した多パス圧延における1パス当りの圧下率を平均で10%以下とする。圧下率の増加により、すなわち歪量の増加に応じて、フェライトに導入される転位の量も増加し、フェライトの連続再結晶の促進を図ることができる。1パス当りの圧下率を平均で10%以下とすることにより、厚鋼板表層近傍、とくに表裏面から板厚の10〜20%の領域での歪の集中が顕著になり、該領域におけるフェライトの連続再結晶が促進され、該領域の組織を平均結晶粒径で3μm以下の超微細なフェライト相を該領域全体に対する面積率で30%以上含む組織とすることができ、脆性亀裂伝播停止特性が顕著に向上する。一方、1パス当りの圧下率が平均で10%を超えて大きくなると、圧延荷重が増加し、圧延設備に対する負荷が大きくなる。このため、多パス圧延における1パス当りの圧下率を平均で10%以下に限定した。なお、好ましくは5〜7%である。1パス当りの圧下率が平均で5%未満では、抜熱による鋼板温度の低下が著しくなるとともに、圧延能率が低下する。   Moreover, in this invention, the rolling reduction per pass in the above-mentioned multipass rolling shall be 10% or less on average. As the rolling reduction increases, that is, the amount of dislocations introduced into the ferrite increases as the amount of strain increases, it is possible to promote continuous recrystallization of ferrite. By reducing the average rolling reduction per pass to 10% or less, the strain concentration in the vicinity of the surface layer of the thick steel plate, especially in the region of 10 to 20% of the plate thickness from the front and back surfaces, becomes significant. Continuous recrystallization is promoted, and the structure of the region can be made to have a structure containing an ultrafine ferrite phase with an average crystal grain size of 3 μm or less in an area ratio of 30% or more with respect to the entire region. Remarkably improved. On the other hand, when the rolling reduction per pass is greater than 10% on average, the rolling load increases and the load on the rolling equipment increases. For this reason, the rolling reduction per pass in multi-pass rolling is limited to 10% or less on average. In addition, Preferably it is 5 to 7%. When the rolling reduction per pass is less than 5% on average, the steel sheet temperature is significantly lowered due to heat removal, and the rolling efficiency is lowered.

なお、「1パス当たりの圧下率」が平均で10%以下とは、圧延開始から圧延終了までの各パスでの圧下率を加算して全パス回数で除した値が10%以下であることを意味する。
上記した圧延を施され厚鋼板は、圧延終了後、室温まで冷却される。冷却条件はとくに限定されないが、目標の強度レベルに応じて、空冷または水冷することが好ましい。
Note that the average "rolling rate per pass" is 10% or less means that the value obtained by adding the rolling reduction rate in each pass from the start of rolling to the end of rolling and dividing by the total number of passes is 10% or less. Means.
The above-described rolling and the thick steel plate are cooled to room temperature after the end of rolling. Although the cooling conditions are not particularly limited, it is preferable to cool by air or water according to the target strength level.

表1に示す組成の溶鋼を転炉を用いて溶製し、連続鋳造法により鋼スラブ(鋼片:肉厚:210mm)とした。
得られた鋼スラブの組織を表2に示す。
ついで、鋼スラブに、表2に示す条件で加熱したのち、熱間圧延設備で表2に示す条件の多パス圧延を施し、圧延終了後、表2に示す条件で冷却し、表2に示す板厚の厚鋼板とした。なお、参考として、小圧下多パス圧延の加熱時のオーステナイトの面積率を表2に併記した。加熱時のオーステナイト面積率は、圧延用とは別に同一鋼スラブを用意し、該鋼スラブを加熱した状態から水冷して組織を観察することにより求めた。
Molten steel having the composition shown in Table 1 was melted using a converter, and a steel slab (steel piece: wall thickness: 210 mm) was obtained by a continuous casting method.
Table 2 shows the structure of the obtained steel slab.
Next, the steel slab was heated under the conditions shown in Table 2 and then subjected to multi-pass rolling under the conditions shown in Table 2 with hot rolling equipment. After the rolling, the steel slab was cooled under the conditions shown in Table 2 and shown in Table 2. A thick steel plate was used. For reference, the area ratio of austenite at the time of heating in multipass rolling under small pressure is also shown in Table 2. The austenite area ratio at the time of heating was obtained by preparing the same steel slab separately from that for rolling, and cooling the steel slab from the heated state and observing the structure.

なお、各鋼スラブの変態点(Ac1、Ac3)は、次式から算出した。
Ac1(℃)=750.8−26.6C+17.6Si−11.6Mn−22.9Cu−23Ni+24.1Cr+22.5Mo−39.7V−5.7Ti+232.6Nb−169.4Al
Ac3(℃)=937.2−476.5C+56Si−19.7Mn−16.3Cu−26.6Ni−4.9Cr+38.1Mo
+124.8V+136.3Ti−19.1Nb+198.4Al
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、Nb、Al:元素含有量(質量%))
得られた厚鋼板について、組織観察、およびNRL落重試験を実施し、脆性亀裂伝播停止特性を評価した。
The transformation points (Ac 1 , Ac 3 ) of each steel slab were calculated from the following equations.
Ac 1 (° C) = 750.8-26.6C + 17.6Si-11.6Mn-22.9Cu-23Ni + 24.1Cr + 22.5Mo-39.7V-5.7Ti + 232.6Nb-169.4Al
Ac 3 (° C) = 937.2−476.5C + 56Si−19.7Mn−16.3Cu−26.6Ni−4.9Cr + 38.1Mo
+ 124.8V + 136.3Ti-19.1Nb + 198.4Al
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, Nb, Al: element content (mass%))
The obtained thick steel plate was subjected to a structure observation and an NRL drop weight test to evaluate the brittle crack propagation stop characteristics.

組織観察は、得られた厚鋼板から組織観察用試験片を採取し、圧延方向断面の表面から板厚中央部まで各1mmピッチの領域について、走査型電子顕微鏡(倍率:2000倍)を用いて撮像し、画像解析装置を用いて、それぞれの、伸展していない微細フェライト相の平均結晶粒径およびフェライト相の面積率、平均粒径3μm以下の粒径を有する微細フェライト相のフェライト相全量に対する面積率、および第二相の種類、面積率を測定した。なお、伸展していない微細フェライト相の平均結晶粒径は、伸展していな微細フェライト粒の面積を測定し、画像解析装置を用いて平均結晶粒径とした。   The structure observation is performed by taking a structure observation specimen from the obtained thick steel plate, and using a scanning electron microscope (magnification: 2000 times) for each 1 mm pitch area from the surface in the rolling direction to the center of the plate thickness. Using an image analyzer, the average crystal grain size of the unextended fine ferrite phase, the area ratio of the ferrite phase, and the total amount of the ferrite phase of the fine ferrite phase having an average grain size of 3 μm or less. The area ratio, the type of the second phase, and the area ratio were measured. The average crystal grain size of the fine ferrite phase that has not been extended was determined by measuring the area of the fine ferrite grains that had not been extended and using an image analyzer.

NRL落重試験は、得られた厚鋼板から、試験片長さ方向が圧延方向に一致するように、落重試験片を採取し、ASTM E208の規定に準拠し、落重試験を実施し、NDT温度を求めた。なお、使用した試験片はP−3試験片とした。
得られた結果を表3に示す。
In the NRL drop weight test, drop weight test specimens were collected from the obtained thick steel plate so that the length direction of the test pieces coincided with the rolling direction, and the drop weight test was conducted in accordance with ASTM E208 regulations. The temperature was determined. The test piece used was a P-3 test piece.
The obtained results are shown in Table 3.

Figure 0005375933
Figure 0005375933

Figure 0005375933
Figure 0005375933

Figure 0005375933
Figure 0005375933

本発明例はいずれも、少なくとも表裏面から板厚の10〜20%の領域で、平均結晶粒径で3μm以下の超微細なフェライト相を該領域のフェライト全量に対する面積率で30%以上を含む組織を有し、NDT温度が−80℃以下という優れた脆性亀裂伝播停止特性を示している。なお、最表層(表裏面から板厚の10%未満の領域)では、平均結晶粒径で3μm以下の超微細なフェライト相を該領域のフェライト全量に対する面積率で30%未満の、超微細なフェライト相の少ない組織となっていた。   In all of the examples of the present invention, an ultrafine ferrite phase having an average crystal grain size of 3 μm or less in an area of 10 to 20% of the plate thickness from at least the front and rear surfaces includes an area ratio of 30% or more with respect to the total amount of ferrite in the area. It has a microstructure and exhibits excellent brittle crack propagation stopping properties with an NDT temperature of -80 ° C or lower. In the outermost layer (region from the front and back surfaces of less than 10% of the plate thickness), an ultrafine ferrite phase having an average crystal grain size of 3 μm or less is less than 30% in area ratio with respect to the total amount of ferrite in the region. The structure had few ferrite phases.

一方、本発明範囲を外れる比較例は、NDT温度が−50℃以上となり、脆性亀裂伝播停止特性が低下している。鋼板No.14、No.15、No.18、No.19、No.20は、二相温度域での累積圧下率が本発明範囲を低く外れており、表層近傍での歪集中が十分でないため脆性亀裂伝播停止特性が低下している。また、鋼板No. 16、No.21、No.22は、加熱温度がAc3変態点を超えて高温のため、表層近傍への歪集中量が小さく、超微細なフェライト相の生成量が少なく、少なくとも表裏面から板厚の10〜20%の領域で、超微細なフェライト相を該領域全体に対する面積率で30%以上を含む組織を形成できず、脆性亀裂伝播停止特性が低下している。 On the other hand, in the comparative example that is outside the scope of the present invention, the NDT temperature is −50 ° C. or higher, and the brittle crack propagation stopping property is deteriorated. Steel plates No.14, No.15, No.18, No.19, No.20 have a cumulative rolling reduction in the two-phase temperature range that is outside the scope of the present invention, and strain concentration near the surface layer is not sufficient. For this reason, the brittle crack propagation stop characteristic is deteriorated. Steel plates No. 16, No. 21, and No. 22 have high heating temperatures exceeding the Ac 3 transformation point, so the amount of strain concentration near the surface layer is small and the amount of ultrafine ferrite phase produced is small. At least in the region of 10 to 20% of the plate thickness from the front and back surfaces, an ultrafine ferrite phase cannot form a structure containing 30% or more in terms of the area ratio with respect to the entire region, and the brittle crack propagation stopping property is deteriorated. .

鋼板No. 17は、加熱温度がAc1変態点未満で本発明範囲を低く外れており、累積圧下率80%の多パス圧延を施しているにもかかわらず、フェライトの連続再結晶が十分に誘起されず、少なくとも表裏面から板厚の10〜20%の領域で微細なフェライト相の形成が少なく、NDT温度も−40℃と低く、脆性亀裂伝播停止特性は十分ではない。
鋼板No.23、No.24は、1パス当りの圧下率が平均で20%と本発明範囲を高く外れ、表裏面近傍での歪の集中が顕著ではなくなるために、少なくとも表裏面から板厚の10〜20%の領域で微細なフェライト相の形成が少なく、脆性亀裂伝播停止特性が低下している。鋼板No.25、No.26は、圧延終了温度が550℃未満と本発明範囲を低く外れており、展伸したフェライト粒が増加し、超微細フェライト相量が少なくNDT温度が高温となり、脆性亀裂伝播停止特性が低下している。
Steel plate No. 17 has a heating temperature below the Ac 1 transformation point and is outside the scope of the present invention, and despite continuous multi-pass rolling with a cumulative rolling reduction of 80%, continuous recrystallization of ferrite is sufficient. There is little formation of a fine ferrite phase at least in the region of 10 to 20% of the plate thickness from the front and back surfaces, the NDT temperature is as low as −40 ° C., and the brittle crack propagation stop property is not sufficient.
Steel plates No. 23 and No. 24 have an average reduction rate of 20% per pass, which is far from the range of the present invention, and the concentration of strain in the vicinity of the front and back surfaces is not significant. In the range of 10 to 20%, the formation of a fine ferrite phase is small, and the brittle crack propagation stopping property is deteriorated. Steel plates No.25 and No.26 are outside the scope of the present invention, with the rolling end temperature being less than 550 ° C., the expanded ferrite grains increase, the amount of ultrafine ferrite phase is small, the NDT temperature is high, and brittleness The crack propagation stop property is degraded.

Claims (4)

フェライト相を主相とし、第二相としてパーライト相、ベイナイト相およびマルテンサイト相のうちの1種以上を含む組織を有する厚鋼板であって、前記フェライト相が平均粒径3μm以下のフェライト相を、少なくとも前記厚鋼板の板厚方向で表裏面から板厚の10〜20%の範囲の領域で、該領域のフェライト全量に対する面積率で30%以上含み、前記厚鋼板の板厚方向で表裏面から板厚の10%未満の領域で、該領域のフェライト全量に対する面積率で30%未満とすることを特徴とする脆性亀裂伝播停止特性に優れた厚鋼板。   A thick steel plate having a structure including a ferrite phase as a main phase and at least one of a pearlite phase, a bainite phase, and a martensite phase as a second phase, wherein the ferrite phase has a ferrite phase having an average particle size of 3 μm or less. Including at least 30% of the area ratio with respect to the total amount of ferrite in the region of 10 to 20% of the plate thickness from the front and back surfaces in the thickness direction of the thick steel plate, and in the thickness direction of the thick steel plate A thick steel plate excellent in brittle crack propagation stopping characteristics, characterized in that the area ratio relative to the total amount of ferrite in the region is less than 30% in a region less than 10% of the plate thickness. 質量%で、
C:0.03〜0.3%、 Si:0.03〜0.5%、
Mn:0.1〜2.0%、 Al:0.1%以下、
N:0.01%以下
を含有し、残部がFeおよび不可避的不純物からなる組成を有することを特徴とする請求項1に記載の厚鋼板。
% By mass
C: 0.03-0.3%, Si: 0.03-0.5%,
Mn: 0.1 to 2.0%, Al: 0.1% or less,
The thick steel plate according to claim 1, wherein N: 0.01% or less, and the balance is composed of Fe and inevitable impurities.
前記組成に加えてさらに、質量%で、Ti:0.001〜0.02%、Nb:0.001〜0.05%、V:0.001〜0.1%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項2に記載の厚鋼板。   In addition to the above composition, the composition further contains one or more selected from the group consisting of Ti: 0.001 to 0.02%, Nb: 0.001 to 0.05%, and V: 0.001 to 0.1%. The thick steel plate according to claim 2. 前記組成に加えてさらに、質量%で、Cu:0.01〜0.2%、Ni:0.01〜0.1%、Cr:0.01〜2.0%、Mo:0.01〜1.0%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項2または3に記載の厚鋼板。   In addition to the above-mentioned composition, in addition by mass, Cu: 0.01-0.2%, Ni: 0.01-0.1%, Cr: 0.01-2.0%, Mo: 0.01-1.0% The thick steel plate according to claim 2, wherein the steel plate has a composition containing
JP2011263163A 2011-12-01 2011-12-01 Thick steel plate with excellent brittle crack propagation stop properties Active JP5375933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011263163A JP5375933B2 (en) 2011-12-01 2011-12-01 Thick steel plate with excellent brittle crack propagation stop properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011263163A JP5375933B2 (en) 2011-12-01 2011-12-01 Thick steel plate with excellent brittle crack propagation stop properties

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006295602A Division JP4910638B2 (en) 2006-10-31 2006-10-31 Manufacturing method of thick steel plate with excellent brittle crack propagation stop properties

Publications (2)

Publication Number Publication Date
JP2012082525A JP2012082525A (en) 2012-04-26
JP5375933B2 true JP5375933B2 (en) 2013-12-25

Family

ID=46241697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011263163A Active JP5375933B2 (en) 2011-12-01 2011-12-01 Thick steel plate with excellent brittle crack propagation stop properties

Country Status (1)

Country Link
JP (1) JP5375933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527227A (en) * 2017-12-26 2020-08-11 株式会社Posco Steel material having excellent hydrogen-induced cracking resistance and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652744A (en) * 2019-01-03 2019-04-19 南京钢铁股份有限公司 A kind of crack arrest steel E47 peculiar to vessel and its Large Heat Input Welding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064903B2 (en) * 1985-04-09 1994-01-19 新日本製鐵株式会社 Steel plate with excellent brittle crack propagation arresting property and its manufacturing method
JP3499085B2 (en) * 1996-06-28 2004-02-23 新日本製鐵株式会社 Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof
JP4077167B2 (en) * 2001-02-28 2008-04-16 株式会社神戸製鋼所 Steel plate with excellent arrest properties and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527227A (en) * 2017-12-26 2020-08-11 株式会社Posco Steel material having excellent hydrogen-induced cracking resistance and method for producing same

Also Published As

Publication number Publication date
JP2012082525A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5871109B1 (en) Thick steel plate and manufacturing method thereof
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP5804229B1 (en) Abrasion-resistant steel plate and method for producing the same
JP4161935B2 (en) Hot-rolled steel sheet and manufacturing method thereof
TWI499676B (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
KR102051199B1 (en) High-strength, high-toughness steel plate, and method for producing the same
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
JP6641875B2 (en) Low yield ratio steel sheet and method of manufacturing the same
WO2016157862A1 (en) High strength/high toughness steel sheet and method for producing same
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP5181460B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
WO2015194619A1 (en) High-strength steel plate and process for producing same
JP2008214653A (en) High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same
JP2019196508A (en) Hot rolled steel sheet, rectangular steel tube, and manufacturing method therefor
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP5061649B2 (en) Thick steel plate with a thickness of 50 mm or more with excellent brittle crack propagation stopping characteristics
JP5034392B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP4910638B2 (en) Manufacturing method of thick steel plate with excellent brittle crack propagation stop properties
JP7372325B2 (en) High-strength steel plate with excellent low-temperature fracture toughness and elongation, and its manufacturing method
JP2008111166A (en) High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP4506985B2 (en) Extra heavy steel material and method for manufacturing the same
JP5375933B2 (en) Thick steel plate with excellent brittle crack propagation stop properties
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
WO2018168618A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250