JP2008214653A - High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same - Google Patents

High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same Download PDF

Info

Publication number
JP2008214653A
JP2008214653A JP2007049380A JP2007049380A JP2008214653A JP 2008214653 A JP2008214653 A JP 2008214653A JP 2007049380 A JP2007049380 A JP 2007049380A JP 2007049380 A JP2007049380 A JP 2007049380A JP 2008214653 A JP2008214653 A JP 2008214653A
Authority
JP
Japan
Prior art keywords
thickness
less
brittle crack
plate thickness
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007049380A
Other languages
Japanese (ja)
Other versions
JP5181496B2 (en
Inventor
Kimihiro Nishimura
公宏 西村
Shinichi Suzuki
伸一 鈴木
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007049380A priority Critical patent/JP5181496B2/en
Publication of JP2008214653A publication Critical patent/JP2008214653A/en
Application granted granted Critical
Publication of JP5181496B2 publication Critical patent/JP5181496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength thick steel plate for structural purpose with a plate thickness of ≥50 mm having excellent brittle crack arrest properties, and used for large structure such as vessels, marine structures, low temperature storage tanks, building-civil engineering structures, and to provide a method for producing the high strength thick steel plate. <P>SOLUTION: The thick steel plate has a texture where the X-ray intensity ratio in the (100) plane at the rolling face in the central part of the plate thickness is ≥1.5, and also, the X-ray intensity ratio in the (100) plane at the rolling face in the 1/4 part of the plate thickness is ≥1.5, and Charpy fracture transition temperature in the 1/4 part of the plate thickness is ≤-40°C. The steel plate has a steel composition comprising, by mass, 0.03 to 0.20% C, 0.03 to 0.5% Si, 0.5 to 2.0% Mn, 0.005 to 0.08% Al, ≤0.03% P, ≤0.01% S and ≤0.0050% N. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物に使用される脆性亀裂伝播停止特性に優れた、板厚50mm以上の構造用高強度厚鋼板およびその製造方法に関する。   The present invention is a structural high-strength steel plate having a thickness of 50 mm or more and excellent in brittle crack propagation stopping characteristics used for large structures such as ships, offshore structures, low-temperature storage tanks, and construction / civil engineering structures. It relates to a manufacturing method.

船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物においては、脆性破壊に伴う事故が経済や環境に及ぼす影響が大きいため、安全性の向上が常に求められている。   In large structures such as ships, offshore structures, low-temperature storage tanks, and construction / civil engineering structures, accidents associated with brittle fractures have a large impact on the economy and the environment, and therefore safety is always required to be improved.

従って、この様な構造物に使用される鋼材に対しては、低温靭性が要求されることが多く、最近では、不慮の事故等で構造物に亀裂が発生した場合においても破壊に至ることを防止する観点から、低温における脆性亀裂伝播停止特性が要求されている。   Therefore, steel materials used in such structures are often required to have low temperature toughness, and recently, even if a crack occurs in the structure due to an accident, etc. From the viewpoint of prevention, brittle crack propagation stop characteristics at low temperatures are required.

鋼材の脆性亀裂伝播停止特性を向上させる手段として、従来からNi含有量を増加させる方法が知られており、液化天然ガス(LNG)の貯槽タンクにおいては、9%Ni鋼が商業規模で使用されている。しかし、Ni量の増加はコストの大幅な上昇を余儀なくさせるため、LNG貯槽タンク以外の用途には適用が難しい。   As a means of improving the brittle crack propagation stopping characteristics of steel materials, a method of increasing the Ni content has been conventionally known. In a LNG storage tank, 9% Ni steel is used on a commercial scale. ing. However, an increase in the amount of Ni necessitates a significant increase in cost, so it is difficult to apply to applications other than the LNG storage tank.

一方、LNGのような極低温まで至らない、船舶やラインパイプに使用される鋼板の板厚が50mm未満の比較的薄手の鋼材に対しては、TMCP法により細粒化を図り、低温靭性を向上させて、優れた脆性亀裂伝播停止特性を付与することができる。   On the other hand, for thin steel materials with a plate thickness of less than 50 mm, such as LNG, which does not reach extremely low temperatures and are used for ships and line pipes, fine graining is performed by the TMCP method to achieve low temperature toughness. It can be improved to give excellent brittle crack propagation stopping properties.

近年、合金コストを上昇させることなく、鋼材の表層部の組織を超微細化する技術が、脆性亀裂伝播停止特性を向上させる手段として提案されている。例えば、特許文献1では、脆性亀裂が伝播する際に、鋼材表層部に発生するシアリップ(塑性変形領域)が脆性亀裂伝播停止特性の向上に効果があることに着目し、シアリップ部分の結晶粒を微細化させて、伝播する脆性亀裂が有する伝播エネルギーを吸収させる方法が開示されている。   In recent years, a technique for making the structure of the surface layer portion of a steel material ultrafine without increasing the alloy cost has been proposed as a means for improving the brittle crack propagation stop characteristic. For example, in Patent Document 1, when a brittle crack propagates, the shear lip (plastic deformation region) generated in the steel surface layer portion is effective in improving the brittle crack propagation stop characteristic, and the crystal grains of the shear lip portion are changed. A method is disclosed in which the propagation energy possessed by the brittle cracks that are propagated by miniaturization is absorbed.

熱間圧延後の制御冷却により表層部分をAr変態点以下に冷却し、その後制御冷却を停止して表層部分を変態点以上に復熱させる工程を1回以上繰り返して行い、この間に鋼材に圧下を加えて、繰り返し変態又は加工再結晶させることにより、表層部分に超微細なフェライト組織又はベイナイト組織を生成させる。 The process of cooling the surface layer portion below the Ar 3 transformation point by controlled cooling after hot rolling, and then stopping the controlled cooling to reheat the surface layer portion above the transformation point is repeated one or more times. An ultrafine ferrite structure or a bainite structure is generated in the surface layer portion by applying transformation and repeatedly transforming or processing recrystallization.

さらに、特許文献2では、フェライト−パーライトを主体のミクロ組織とする鋼材において脆性亀裂伝播停止特性を向上させるには、両表面部は円相当粒径:5μm以下、アスペクト比:2以上のフェライト粒を有するフェライト組織を50%以上有する層で構成し、フェライト粒径のバラツキを抑えることが重要であることが開示されている。   Further, in Patent Document 2, in order to improve the brittle crack propagation stop property in a steel material mainly composed of ferrite-pearlite, both surface portions have ferrite grains having a circle-equivalent grain size of 5 μm or less and an aspect ratio of 2 or more. It is disclosed that it is important to configure a layer having a ferrite structure having 50% or more to suppress variation in ferrite grain size.

バラツキを抑える方法として仕上げ圧延中の1パス当りの最大圧下率を12%以下にすることで局所的な再結晶現象が抑制されるとしている。   As a method for suppressing variation, the local recrystallization phenomenon is suppressed by setting the maximum rolling reduction per pass during finish rolling to 12% or less.

しかし、上述の発明は、鋼材表層部のみを一旦冷却した後に復熱させ、かつ復熱中に加工を加えることによって、脆性亀裂伝播停止特性を向上させた組織を得るものであり、複雑なプロセスのため実生産規模への展開は容易でなく、また、板厚が50mm以上の厚肉材での記載もないため、厚肉材への適用可能性は不明である。   However, the above-mentioned invention obtains a structure with improved brittle crack propagation stop characteristics by cooling only the steel surface layer part and then recovering it, and adding processing during the recovery process. Therefore, it is not easy to expand to the actual production scale, and since there is no description with a thick material having a plate thickness of 50 mm or more, the applicability to a thick material is unknown.

特許文献3は、圧延ままでなく、塑性変形を受けた後の脆性亀裂伝播特性を向上させるため、フェライト結晶粒の微細化のみならずフェライト結晶粒内にサブグレインを形成させるTMCP法を発展させた技術が提供されている。   Patent Document 3 has developed a TMCP method for forming subgrains in ferrite crystal grains as well as miniaturization of ferrite grains in order to improve brittle crack propagation characteristics after being subjected to plastic deformation as it is not rolled. Technology is provided.

具体的には、板厚30〜40mmにおいて、鋼板表層の冷却および復熱などの複雑な温度制御を必要とせずに、(a)微細なフェライト結晶粒を確保する圧延条件、(b)鋼材板厚の5%以上の部分に微細フェライト組織を生成する圧延条件、(c)微細フェライトに集合組織を発達させるとともに加工(圧延)により導入した転位を熱的エネルギーにより再配置しサブグレインを形成させる圧延条件、(d)形成した微細なフェライト結晶粒と微細なサブグレイン粒の粗大化を抑制する冷却条件、によって、塑性変形を受けた後の脆性亀裂伝播停止特性を向上させる方法を提供している。   Specifically, in a plate thickness of 30 to 40 mm, without requiring complicated temperature control such as cooling and recuperation of the steel sheet surface layer, (a) rolling conditions for securing fine ferrite crystal grains, (b) steel plate Rolling conditions for generating a fine ferrite structure in a portion of 5% or more of the thickness, (c) A texture is developed in the fine ferrite, and dislocations introduced by processing (rolling) are rearranged by thermal energy to form subgrains. Providing a method for improving brittle crack propagation stop characteristics after undergoing plastic deformation by rolling conditions and (d) cooling conditions that suppress coarsening of the formed fine ferrite crystal grains and fine subgrain grains Yes.

しかし、最大板厚は板厚40mmで、板厚50mmを超える厚肉材において所望の脆性亀裂伝播停止特性が得られるかどうか不明である。   However, the maximum plate thickness is 40 mm, and it is unclear whether a desired brittle crack propagation stop characteristic can be obtained in a thick material exceeding 50 mm.

一方、制御圧延において、変態したフェライトに圧下を加えて集合組織を発達させることにより、脆性亀裂伝播停止特性を向上させる方法も知られている。鋼材の破壊面上にセパレーションを板厚方向と平行な方向に生ぜしめ、脆性亀裂先端の応力を緩和させることにより、脆性破壊に対する抵抗を高める。   On the other hand, in controlled rolling, there is also known a method of improving brittle crack propagation stop characteristics by developing a texture by reducing the transformed ferrite. Separation occurs on the fracture surface of the steel material in a direction parallel to the plate thickness direction to relieve stress at the tip of the brittle crack, thereby increasing resistance to brittle fracture.

例えば、特許文献4では、制御圧延により(110)面X線強度比を2以上とし、かつ円相当径20μm以上の粗大粒を10%以下とすることにより、耐脆性破壊特性を向上させている。   For example, in Patent Document 4, the brittle fracture resistance is improved by controlling the rolling to have a (110) plane X-ray intensity ratio of 2 or more and coarse grains having an equivalent circle diameter of 20 μm or more to 10% or less. .

また、特許文献5では継手部の脆性亀裂伝播停止性能の優れた溶接構造用鋼として、板厚内部においての圧延面での(100)面のX線面強度比が1.5以上を有することを特徴とする鋼板が開示されている。集合組織の発達により、応力負荷方向と亀裂伝播方向との間にずれが生じることを利用している。   Moreover, in patent document 5, as a steel for welded structures excellent in the brittle crack propagation stop performance of a joint part, the X-ray surface strength ratio of the (100) plane at the rolled surface in the plate thickness has 1.5 or more. A steel sheet featuring the above is disclosed. It utilizes the fact that a shift occurs between the stress loading direction and the crack propagation direction due to the development of the texture.

しかし、本技術においても、適用対象の最大板厚は50mmで、50mmを超える板厚の記載はなく、より厚肉材への適用可能性および得られる特性は不明である。
特開平4−141517号公報 特開2002−256375号公報 特許第3467767号公報 特許第3548349号公報 特開平6−207241号公報
However, also in this technique, the maximum thickness of the object to be applied is 50 mm, and there is no description of the thickness exceeding 50 mm, and applicability to thicker materials and the obtained characteristics are unknown.
JP-A-4-141517 JP 2002-256375 A Japanese Patent No. 3467767 Japanese Patent No. 3548349 JP-A-6-207241

ところで、鋼板の脆性亀裂伝播停止特性は高強度あるいは厚肉材ほど劣化する傾向がある。   By the way, the brittle crack propagation stop characteristic of a steel plate tends to deteriorate as the strength or thickness of the steel plate increases.

例えば、最近の6,000TEUを越える大型コンテナ船では鋼板の板厚は50mm以上であるが、板厚65mmの造船用鋼板の脆性亀裂伝播停止性能を、大型脆性亀裂伝播停止試験で評価すると、脆性亀裂が停止しない結果が得られている(井上ら「厚手造船用鋼における長大脆性亀裂伝播挙動」日本船舶海洋工学会講演論文集第3号2006pp359〜362)。   For example, in a recent large container ship exceeding 6,000 TEU, the plate thickness of the steel plate is 50 mm or more. However, when the brittle crack propagation stopping performance of the steel plate for shipbuilding having a plate thickness of 65 mm is evaluated by a large brittle crack propagation stop test, it is brittle. The result that the crack does not stop has been obtained (Inoue et al., “Long Brittle Crack Propagation Behavior in Thick Shipbuilding Steel”, Japanese Society of Marine Science and Technology, No. 3 2006pp 359-362).

また、供試材のESSO試験では使用温度−10℃におけるKcaは3000N/mm3/2に満たない結果が得られ、これらの結果は、コンテナ船やバルクキャリアーなど船体外板に板厚50mmを超える高強度鋼板を用いる船体構造の安全性評価に影響を与えるものとして議論されている。 In addition, in the ESSO test of the test material, the Kca at a use temperature of −10 ° C. was less than 3000 N / mm 3/2 . These results show that the plate thickness of the hull such as a container ship or a bulk carrier is 50 mm. It has been discussed as influencing the safety evaluation of hull structures using high strength steel plates that exceed.

そこで本発明は、コンテナ船やバルクキャリヤーなどの船体外板として好適な板厚が50mmを超える、脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法を提供することを目的とする。   Therefore, the present invention has an object to provide a structural high-strength thick steel plate excellent in brittle crack propagation stopping characteristics and a method for producing the same, with a plate thickness suitable as a hull outer plate of a container ship or a bulk carrier exceeding 50 mm. To do.

本発明者らは、上記課題の達成に向け、厚肉材を対象に集合組織と脆性亀裂伝播停止特性の関係について鋭意研究を重ね、以下の知見を得た。   In order to achieve the above-mentioned problems, the present inventors have earnestly studied the relationship between the texture and the brittle crack propagation stop property for thick-walled materials, and obtained the following knowledge.

(1)二相域圧延で、変態したフェライトを圧下して集合組織を発達させ、脆性亀裂伝播停止特性を向上させる方法を厚肉材に適用すると、脆性亀裂伝播特性の向上に有効な(100)面は板厚中央部付近だけに集積される。   (1) When a method of improving the brittle crack propagation stop characteristic by applying a method of reducing the transformed ferrite in two-phase rolling to develop a texture and improving the brittle crack propagation stop characteristic is effective for improving the brittle crack propagation characteristic (100 ) The surface is accumulated only near the center of the plate thickness.

すなわち、集合組織が板厚方向に分布する際、板厚が薄い場合には板厚内部のほぼ全域に亘って(100)面が発達するが、板厚が増大するにつれて、(100)面は板厚中央部にのみ集積するようになり、脆性亀裂伝播停止特性は板厚が薄い場合と比較して劣化する。   That is, when the texture is distributed in the plate thickness direction, if the plate thickness is thin, the (100) plane develops over almost the entire area inside the plate thickness, but as the plate thickness increases, the (100) plane becomes Accumulation occurs only in the central part of the plate thickness, and the brittle crack propagation stop characteristic deteriorates as compared with the case where the plate thickness is thin.

図1は、二相域圧延材について板厚方向における集合組織の分布状態に及ぼす板厚の影響を調査した結果を示し、板厚1/2部では板厚によらず(100)面が発達しているが、板厚の増大につれ、板厚1/4部での(100)面の集積度が低下するようになることが認められる。   FIG. 1 shows the results of investigating the influence of sheet thickness on the distribution of texture in the sheet thickness direction for a two-phase zone rolled material, and the (100) plane develops regardless of the sheet thickness at 1/2 sheet thickness. However, it is recognized that as the plate thickness increases, the degree of integration of the (100) plane at the 1/4 thickness portion decreases.

(2)このような現象は、板厚の増大につれ、板厚内部での剪断歪が大きくなるためで、単に従来技術の延長での制御圧延では板厚が50mm超えとなる厚肉材の脆性亀裂伝播停止特性の向上は困難である。   (2) This phenomenon is because the shear strain inside the plate thickness increases as the plate thickness increases, and the brittleness of the thick-walled material whose plate thickness exceeds 50 mm in the controlled rolling simply by extension of the prior art. It is difficult to improve the crack propagation stop characteristics.

(3)板厚50mm以上の厚鋼板の場合、板厚中央部と板厚1/4部における圧延面での(100)面X線強度比を一定値以上とすると、優れた脆性亀裂伝播停止特性が得られこと及び当該組織を有する鋼板は、板厚中央部に特定の温度域で特定の累積圧下率を付与することで得られることを見出した。   (3) In the case of a thick steel plate having a thickness of 50 mm or more, excellent brittle crack propagation is stopped when the (100) plane X-ray intensity ratio at the rolling surface in the central portion of the plate thickness and the 1/4 thickness portion is a certain value or more. It has been found that the characteristics are obtained and that the steel sheet having the structure is obtained by applying a specific cumulative rolling reduction in a specific temperature range to the central part of the plate thickness.

本発明はこれらの知見に基づき、更に検討を加えてなされたもので、すなわち、本発明は、
1.板厚中央部における圧延面での(100)面X線強度比が1.5以上、かつ板厚1/4部における圧延面での(100)面X線強度比が1.5以上の集合組織を有することを特徴とする脆性亀裂伝播停止特性に優れた、板厚1/4部におけるシャルピー破面遷移温度が−40℃以下である板厚50mm超えの構造用高強度厚鋼板。
2.鋼組成が、質量%で、C:0.03〜0.20%、Si:0.03〜0.5%、Mn:0.5〜2.0%、Al:0.005〜0.08%、P:0.03%以下,S:0.01%以下、N:0.0050%以下を含有し、残部がFeおよび不可避的不純物からなる請求項1に記載の脆性亀裂伝播停止特性に優れた、板厚1/4部におけるシャルピー破面遷移温度が−40℃以下である板厚50mm超えの構造用高強度厚鋼板。
3.鋼組成が、更に、質量%で、Ti:0.005〜0.03%、Nb:0.005〜0.05%、Cu:0.01〜0.5%、Ni:0.01〜1.0%、Cr:0.01〜0.5%、Mo:0.01〜0.5%、V:0.001〜0.1%、B:0.003%以下、Ca:0.005%以下、REM:0.01%以下のいずれか1種、または2種以上を含有することを特徴とする2に記載の脆性亀裂伝播停止特性に優れた、板厚1/4部におけるシャルピー破面遷移温度が−40℃以下である板厚50mm超えの構造用高強度厚鋼板。
4.2または3に記載の組成を有する鋼素材を、900〜1200℃の温度に加熱し、熱間圧延における板厚中央部の温度がAr点以上の温度で累積圧下率30%以上、板厚中央部の温度がAr点−10℃以下、Ar点−50℃以上の温度域において累積圧下率30%以上かつ平均パス圧下率8%以上の圧延を行った後、2℃/s以上の冷却速度にて600℃以下まで冷却することを特徴とする脆性亀裂伝播停止特性に優れた板厚1/4部におけるシャルピー破面遷移温度が−40℃以下である板厚50mm超えの構造用高強度厚鋼板の製造方法。
The present invention has been made based on these findings and further studies, that is, the present invention,
1. Aggregation in which the (100) plane X-ray intensity ratio at the rolled surface in the central portion of the plate thickness is 1.5 or more and the (100) plane X-ray intensity ratio in the rolled surface at the 1/4 thickness portion is 1.5 or more A structural high-strength thick steel plate having a structure having a brittle crack propagation stopping characteristic and having a brittle crack propagation stopping property and having a Charpy fracture surface transition temperature at ¼ part of a thickness of −40 ° C. or less and exceeding 50 mm.
2. Steel composition is mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.0%, Al: 0.005-0.08 %, P: 0.03% or less, S: 0.01% or less, N: 0.0050% or less, with the balance consisting of Fe and unavoidable impurities. An excellent structural high-strength thick steel plate having a thickness of more than 50 mm and having a Charpy fracture surface transition temperature of -40 ° C. or lower at a thickness of 1/4 part.
3. Steel composition is further mass%, Ti: 0.005-0.03%, Nb: 0.005-0.05%, Cu: 0.01-0.5%, Ni: 0.01-1 0.0%, Cr: 0.01-0.5%, Mo: 0.01-0.5%, V: 0.001-0.1%, B: 0.003% or less, Ca: 0.005 % Or less, REM: 0.01% or less of any one kind, or two kinds or more A structural high-strength thick steel plate having a surface transition temperature of −40 ° C. or lower and a plate thickness exceeding 50 mm.
The steel material having the composition described in 4.2 or 3 is heated to a temperature of 900 to 1200 ° C., and the temperature at the center of the plate thickness in hot rolling is 3 points or more at an Ar 3 point or more, and the cumulative reduction rate is 30% or more. After rolling at a central thickness of 3 to −10 ° C. or lower and an Ar 3 to −50 ° C. or higher temperature at a cumulative reduction rate of 30% or more and an average pass reduction rate of 8% or more, 2 ° C. / The Charpy fracture surface transition temperature at ¼ part of the plate thickness excellent in brittle crack propagation stopping characteristics characterized by cooling to 600 ° C. or less at a cooling rate of s or more is a plate thickness exceeding 50 mm, which is −40 ° C. or less. A manufacturing method for structural high-strength thick steel plates.

本発明によれば、板厚50mm以上の厚板において板厚方向の脆性亀裂伝播停止特性に優れ、例えば、造船分野ではコンテナ船、バルクキャリアーの強力甲板部構造においてハッチサイドコーミングに接合される甲板部材へ本鋼板を適用することにより船舶の安全性向上に寄与するところ大で産業上極めて有用である。   According to the present invention, a thick plate having a thickness of 50 mm or more is excellent in brittle crack propagation stopping characteristics in the thickness direction. For example, in a shipbuilding field, a deck joined to hatch side combing in a strong deck structure of a container ship or a bulk carrier. By applying this steel plate to the member, it contributes to the improvement of ship safety and is extremely useful in industry.

本発明では、1.板厚内部の集合組織、2.鋼の組成、3.製造条件を規定する。
1.板内部および板表層部の集合組織
圧延方向または圧延直角方向など水平方向に進展する亀裂に対して亀裂伝播停止特性を向上させるため、その板厚中央部と板厚の1/4の位置に、圧延面に平行に(100)面を発達させ、それらの位置における圧延面での(100)面X線強度比を1.5以上の集合組織とする。
In the present invention, 1. Texture inside the plate thickness; 2. steel composition; Define manufacturing conditions.
1. In order to improve the crack propagation stop characteristics for cracks that propagate in the horizontal direction, such as the rolling direction or the direction perpendicular to the rolling direction, in the center of the plate thickness and the 1/4 of the plate thickness, The (100) plane is developed in parallel with the rolled surface, and the (100) plane X-ray intensity ratio at the rolled surface at those positions is set to a texture of 1.5 or more.

板厚内で(100)面を発達させると、亀裂進展に先立ち微視的なクラックが発生し、亀裂進展の抵抗となるからである。   This is because when the (100) plane is developed within the plate thickness, a microscopic crack is generated prior to the crack progress, and resistance to the crack progress.

脆性亀裂先端にクラックが発生すると、クラックが破壊の抵抗となる。脆性亀裂がクラックに合体する過程では、脆性亀裂の破壊駆動力(エネルギー開放率)は大きくなるが、合体後に大幅に低下するため脆性亀裂が停止する。   When a crack occurs at the tip of a brittle crack, the crack becomes a resistance to destruction. In the process in which the brittle crack merges with the crack, the fracture driving force (energy release rate) of the brittle crack increases, but the brittle crack stops because it significantly decreases after coalescence.

ここで、(100)面X線強度比とは、対象材の(100)結晶面の集積度を表す数値で、対象材の(200)反射のX線回折強度と集合組織のないランダムな標準試料からの(200)反射のX線回折強度の比を指す。   Here, the (100) plane X-ray intensity ratio is a numerical value indicating the degree of integration of the (100) crystal plane of the target material, and is a random standard having no (200) reflection X-ray diffraction intensity and texture of the target material. It refers to the ratio of the X-ray diffraction intensity of (200) reflection from the sample.

母材靭性が、良好な特性を有することが亀裂の進展を抑制するための前提となるので、本発明に係る鋼板では板厚1/4部におけるシャルピー破面遷移温度は−40℃以下と規定する。   Since the base metal toughness has good characteristics is a precondition for suppressing the progress of cracks, in the steel sheet according to the present invention, the Charpy fracture surface transition temperature at ¼ part of the sheet thickness is defined as −40 ° C. or less. To do.

シャルピー破面遷移温度の低下は、破面単位の微細化によって達成されるが、後述する成分、圧延条件等の調整によってその特性を得ることが可能である。   The reduction of the Charpy fracture surface transition temperature is achieved by making the fracture surface unit finer, but it is possible to obtain the characteristics by adjusting the components, rolling conditions and the like described later.

上述した集合組織は、鋼の化学成分と製造条件を適切に選択した場合に得られる。以下、本発明における好ましい、鋼の化学成分と製造条件について説明する。   The above-described texture can be obtained when the chemical components and production conditions of steel are appropriately selected. Hereinafter, preferable chemical components and production conditions of steel in the present invention will be described.

2.化学成分
説明において%は質量%とする。
2. In the description of chemical components,% is mass%.

C:0.03〜0.20%
Cは鋼の強度を向上する元素であり、本発明では、所望の強度を確保するためには0.03%以上の含有を必要とするが、0.20%を超えると、溶接性が劣化するばかりか靭性にも悪影響がある。このため、Cは、0.03〜0.20%の範囲に規定した。なお、好ましくは0.05〜0.15%である。
C: 0.03-0.20%
C is an element that improves the strength of steel. In the present invention, it is necessary to contain 0.03% or more in order to ensure a desired strength, but if it exceeds 0.20%, the weldability deteriorates. As well as adversely affecting toughness. For this reason, C was specified in the range of 0.03 to 0.20%. In addition, Preferably it is 0.05 to 0.15%.

Si:0.03〜0.5%
Siは脱酸元素として、また、鋼の強化元素として有効であるが、0.03%未満の含有量ではその効果がない。一方、0.5%を越えると鋼の表面性状を損なうばかりか靭性が極端に劣化する。従ってその添加量を0.03%以上、0.5%以下とする。
Si: 0.03-0.5%
Si is effective as a deoxidizing element and as a strengthening element for steel, but if its content is less than 0.03%, it has no effect. On the other hand, if it exceeds 0.5%, not only the surface properties of the steel are impaired, but also the toughness is extremely deteriorated. Therefore, the addition amount is set to 0.03% or more and 0.5% or less.

Mn:0.5〜2.0%
Mnは、強化元素として添加する。0.5%より少ないとその効果が十分でなく、2.0%を超えると溶接性が劣化し、鋼材コストも上昇するため、0.5%以上、2.0%以下とする。
Mn: 0.5 to 2.0%
Mn is added as a strengthening element. If the content is less than 0.5%, the effect is not sufficient. If the content exceeds 2.0%, the weldability deteriorates and the steel material cost increases, so the content is made 0.5% or more and 2.0% or less.

Al:0.005〜0.08%
Alは、脱酸剤として作用し、このためには0.005%以上の含有を必要とするが、0.08%を超えて含有すると、靭性を低下させるとともに、溶接した場合に、溶接金属部の靭性を低下させる。このため、Alは、0.005〜0.08%の範囲に規定した。なお、好ましくは、0.02〜0.04%である。
Al: 0.005 to 0.08%
Al acts as a deoxidizer, and for this purpose, it needs to contain 0.005% or more. However, if it contains more than 0.08%, it reduces the toughness and, when welded, weld metal Reduce the toughness of the part. For this reason, Al was specified in the range of 0.005 to 0.08%. In addition, Preferably, it is 0.02 to 0.04%.

N:0.0050%以下
Nは、鋼中のAlと結合し、圧延加工時の結晶粒径を調整し、鋼を強化するが、0.0050%を超えると靭性が劣化するため、0.0050%以下とする。
N: 0.0050% or less N combines with Al in the steel, adjusts the crystal grain size at the time of rolling, and strengthens the steel. However, if it exceeds 0.0050%, the toughness deteriorates. 0050% or less.

P,S
P,Sは、鋼中の不可避不純物であるが、Pは0.03%を超え、Sは0.01%を超えると靭性が劣化するため、それぞれ、0.03%以下、0.02%以下が望ましい。
P, S
P and S are unavoidable impurities in the steel, but P exceeds 0.03%, and if S exceeds 0.01%, the toughness deteriorates. Therefore, 0.03% or less and 0.02%, respectively. The following is desirable.

以上が本発明の基本成分組成であるが、更に特性を向上させるため、Nb,Ti,Cu,Ni,Cr,Mo,V,B,Ca,REMの一種または二種以上を含有することが可能である。   The above is the basic component composition of the present invention. In order to further improve the characteristics, it is possible to contain one or more of Nb, Ti, Cu, Ni, Cr, Mo, V, B, Ca, and REM. It is.

Nb:0.005〜0.05%
Nbは、NbCとしてフェライト変態時あるいは再加熱時に析出し、高強度化に寄与する。また、オーステナイト域の圧延において未再結晶域を拡大させる効果をもち、フェライトの細粒化に寄与するので、靭性の改善にも有効である。その効果を得るためには0.005%以上の添加が必要であるが0.05%を超えて添加すると、粗大なNbCが析出し逆に、靭性の低下を招くのでその上限は0.05%とするのが好ましい。
Nb: 0.005 to 0.05%
Nb precipitates as NbC at the time of ferrite transformation or reheating, and contributes to the increase in strength. In addition, it has the effect of expanding the non-recrystallized region in rolling in the austenite region, and contributes to the refinement of ferrite, so it is also effective in improving toughness. In order to obtain the effect, 0.005% or more of addition is necessary, but if added over 0.05%, coarse NbC precipitates and conversely causes a decrease in toughness, so the upper limit is 0.05. % Is preferable.

Ti:0.005〜0.03%、
Tiは微量の添加により、窒化物、炭化物、あるいは炭窒化物を形成し、結晶粒を微細化して母材靭性を向上させる効果を有する。その効果は0.005%以上の添加によって得られるが、0.03%を超える含有は、母材および溶接熱影響部の靭性を低下させるので、Tiは、0.005〜0.03%の範囲にするのが好ましい。
Ti: 0.005 to 0.03%,
Ti has the effect of forming nitrides, carbides, or carbonitrides by adding a small amount, and refining crystal grains to improve the base material toughness. The effect is obtained by addition of 0.005% or more, but the content exceeding 0.03% lowers the toughness of the base metal and the weld heat affected zone, so Ti is 0.005 to 0.03%. The range is preferable.

Cu,Ni、Cr、Mo
Cu,Ni、Cr、Moはいずれも鋼の焼入れ性を高める元素である。圧延後の強度アップに直接寄与するとともに、靭性、高温強度、あるいは耐候性などの機能向上のために添加するが、過度の添加は靭性や溶接性を劣化させるため、それぞれ上限を0.5%、1.0%、0.5%、0.5%とする。逆に添加量が0.01%未満であるとその効果が現れないため、0.01%以上の添加とする。
Cu, Ni, Cr, Mo
Cu, Ni, Cr, and Mo are all elements that enhance the hardenability of steel. It contributes directly to strength improvement after rolling, and is added to improve functions such as toughness, high-temperature strength, or weather resistance, but excessive addition degrades toughness and weldability, so the upper limit is 0.5% respectively. 1.0%, 0.5%, 0.5%. On the contrary, if the addition amount is less than 0.01%, the effect does not appear, so 0.01% or more is added.

V:0.001〜0.1%
Vは、V(CN)として析出強化により、鋼の強度を向上する元素であり、0.001%以上含有してもよいが、0.10%を超えて含有すると、靭性を低下させる。このため、Vは、0.001〜0.10%の範囲の添加する。
V: 0.001 to 0.1%
V is an element that improves the strength of the steel by precipitation strengthening as V (CN), and may be contained in an amount of 0.001% or more, but if it exceeds 0.10%, the toughness is lowered. For this reason, V is added in the range of 0.001 to 0.10%.

B:0.003%以下
Bは微量で鋼の焼き入れ性を高める元素として添加してもよい。しかし、0.003%を超えて含有すると溶接部の靭性を低下させるので、Bは0.003%以下の添加とする。
B: 0.003% or less B may be added as an element that enhances the hardenability of steel in a small amount. However, if contained over 0.003%, the toughness of the welded portion is lowered, so B is added at 0.003% or less.

Ca:0.005%以下、REM:0.01%以下
Ca,REMは溶接熱影響部の組織は微細化し靭性を向上させる、添加しても本発明の効果が損なわれることはないので必要に応じて添加してもよい。しかし、過度に添加すると、粗大な介在物を形成し母材の靭性を劣化させるので、添加量の上限をそれぞれ0.005%、0.01%とするのが好ましい。
Ca: 0.005% or less, REM: 0.01% or less Ca, REM is necessary because the structure of the weld heat-affected zone is refined to improve toughness, and even if added, the effect of the present invention is not impaired. It may be added accordingly. However, if added excessively, coarse inclusions are formed and the toughness of the base material is deteriorated. Therefore, it is preferable to set the upper limit of the addition amount to 0.005% and 0.01%, respectively.

3.製造条件
上記の化学成分と集合組織を有する厚鋼板は、優れた脆性亀裂伝播停止特性を有し、次に示す製造工程が適当である。
3. Manufacturing Conditions The steel plate having the above chemical components and texture has excellent brittle crack propagation stopping properties, and the following manufacturing process is appropriate.

まず、上記した組成の溶鋼を、転炉等で溶製し、連続鋳造等で鋼素材(スラブ)とする。
ついで、鋼素材を、900〜1200℃の温度に加熱してから熱間圧延を行う。
First, molten steel having the above composition is melted in a converter or the like, and is made into a steel material (slab) by continuous casting or the like.
Next, hot rolling is performed after the steel material is heated to a temperature of 900 to 1200 ° C.

加熱温度が900℃以下であると、圧延能率が低下し、加熱温度が1200℃以上であるとオーステナイト粒が粗大化し、靭性の低下を招くばかりか、酸化ロスが顕著となり、歩留が低下するので、加熱温度は900〜1200℃とする。   When the heating temperature is 900 ° C. or lower, the rolling efficiency is lowered, and when the heating temperature is 1200 ° C. or higher, the austenite grains are coarsened and the toughness is lowered, and the oxidation loss becomes remarkable and the yield is lowered. Therefore, heating temperature shall be 900-1200 degreeC.

靭性の観点から好ましい加熱温度の範囲は1000〜1150℃であり、より好ましくは1000〜1050℃である。   The range of preferable heating temperature from a viewpoint of toughness is 1000-1150 degreeC, More preferably, it is 1000-1050 degreeC.

熱間圧延はまず、板厚中央部の温度がAr点以上で累積圧下率を30%以上の圧延を行う。累積圧下率が30%未満であると、オーステナイトの細粒化が不十分で靭性が向上しない。 In the hot rolling, first, rolling is performed such that the temperature at the central portion of the plate thickness is Ar 3 point or higher and the cumulative rolling reduction is 30% or higher. If the cumulative rolling reduction is less than 30%, the austenite is not sufficiently refined and the toughness is not improved.

次に、板厚中央部の温度がAr点−10℃以下、Ar点−50℃以上の温度域において累積圧下率30%以上かつ平均パス圧下率8%以上の圧延を行う。 Next, rolling is performed with a cumulative reduction rate of 30% or more and an average pass reduction rate of 8% or more in a temperature range where the temperature at the center of the plate thickness is Ar 3 points −10 ° C. or lower and Ar 3 points −50 ° C. or higher.

本圧延により、板厚中央部と板厚の1/4の位置に、圧延面に平行に(100)面が発達し、それらの位置における圧延面での(100)面X線強度比が1.5以上の集合組織が得られる。   By this rolling, a (100) plane develops parallel to the rolling surface at a position that is ¼ of the central portion of the plate thickness and the plate thickness, and the (100) plane X-ray intensity ratio at the rolling surface at those positions is 1. More than 5 textures can be obtained.

すなわち、当該温度域での累積圧下率が30%以上で板厚中央部の(100)面X線強度比1.5が得られる。   That is, a (100) plane X-ray intensity ratio of 1.5 at the center of the plate thickness is obtained when the cumulative rolling reduction in the temperature range is 30% or more.

また、圧延のパス圧下率は本発明において重要な因子で、本発明では当該温度域での圧延のパス圧下率は高いほうが好ましく、平均パス圧下率は8%以上と規定する。8%未満の場合、板厚1/4部の(100)面X線強度比が1.5以上が得られない。   The rolling pass reduction ratio is an important factor in the present invention. In the present invention, it is preferable that the rolling pass reduction ratio is higher in the temperature range, and the average pass reduction ratio is defined as 8% or more. If it is less than 8%, the (100) plane X-ray intensity ratio of 1/4 part of the plate thickness cannot be 1.5 or more.

厚肉材の仕上げ圧延では、通常、小圧下多パス圧延で、板厚内部まで剪断歪が導入され、板厚1/4部における(100)面集積度の発達が妨げられる。   In finish rolling of thick materials, shear strain is usually introduced into the thickness of the plate by multi-pass rolling under a small reduction, and the development of the (100) plane integration degree at the 1/4 thickness portion is hindered.

尚、本発明は規定した温度域外での圧延を制限するものではない。上記規定する温度域で規定の累積圧下がおこなわれていれば本発明で規定する組織が得られる。   Note that the present invention does not limit rolling outside the specified temperature range. If the specified cumulative reduction is performed in the specified temperature range, the structure specified in the present invention can be obtained.

圧延が終了した鋼板は2℃/s以上の冷却速度にて600℃以下まで冷却する。2相域圧延によって導入された加工集合組織が再結晶するのを防ぐためであり、圧延後には鋼板を低温まで冷却する必要がある。   The rolled steel sheet is cooled to 600 ° C. or lower at a cooling rate of 2 ° C./s or higher. This is to prevent reworking of the work texture introduced by the two-phase rolling, and it is necessary to cool the steel sheet to a low temperature after rolling.

冷却速度が2℃/s未満では所望する集合組織が得られないばかりか、鋼板の強度も低下するので、冷却速度は2℃/s以上とする。冷却停止温度は600℃より高いと冷却停止後にも再結晶が進行して所望の集合組織が得られないので冷却停止温度は600℃以下とすることが好ましい。   If the cooling rate is less than 2 ° C./s, not only the desired texture is not obtained, but also the strength of the steel sheet is lowered, so the cooling rate is 2 ° C./s or more. If the cooling stop temperature is higher than 600 ° C., recrystallization proceeds even after the cooling stop and a desired texture cannot be obtained. Therefore, the cooling stop temperature is preferably 600 ° C. or lower.

表1に示す各組成の溶鋼を、転炉で溶製し、連続鋳造法で鋼素材(スラブ)とした(鋼記号A〜T)。これらスラブ(鋼素材:280mm厚)を用いて、熱間圧延後、冷却を行いNo.1〜31の供試鋼を得た。表2に圧延条件、冷却条件を示す。   Molten steel of each composition shown in Table 1 was melted in a converter and used as a steel material (slab) by a continuous casting method (steel symbols A to T). Using these slabs (steel material: 280 mm thick), after hot rolling, cooling is performed and Sample steels 1 to 31 were obtained. Table 2 shows rolling conditions and cooling conditions.

Figure 2008214653
Figure 2008214653

Figure 2008214653
Figure 2008214653

得られた厚鋼板の、板厚の1/4部よりΦ14のJIS14A号試験片を採取し、引張試験を行い、降伏点(YS)、引張強さ(TS)を測定した。また、板厚の1/4部よりJIS4号衝撃試験片を採取し、シャルピー試験を行い、破面遷移温度(vTrs)を求めた。板厚1/4部におけるシャルピー破面遷移温度がー40℃以下のものを本発明範囲内とした。   A JIS14A test piece of Φ14 was taken from 1/4 part of the plate thickness of the obtained thick steel plate, subjected to a tensile test, and a yield point (YS) and a tensile strength (TS) were measured. Further, a JIS No. 4 impact test piece was collected from 1/4 part of the plate thickness, and a Charpy test was performed to determine the fracture surface transition temperature (vTrs). The Charpy fracture surface transition temperature at ¼ part of the plate thickness was within the range of the present invention within the range of −40 ° C. or less.

また、鋼板の集合組織を評価するため、板厚中央部における圧延面での(100)面X線強度比と、板厚1/4部における圧延面での(100)面X線強度比を測定した。   Further, in order to evaluate the texture of the steel sheet, the (100) plane X-ray intensity ratio at the rolling surface at the center part of the sheet thickness and the (100) plane X-ray intensity ratio at the rolling surface at the ¼ part sheet thickness are It was measured.

次に、これらの厚鋼板の脆性亀裂伝播停止特性を評価するため、温度勾配型ESSO試験を行い、Kca−50℃を求めた。 Next, in order to evaluate the brittle crack propagation stop characteristics of these thick steel plates, a temperature gradient type ESSO test was performed to obtain K ca-50 ° C.

表3に引張試験結果、集合組織の評価結果およびESSO試験結果を示す。板厚中央部、板厚1/4部における集合組織および板厚1/4部におけるシャルピー破面遷移温度が本発明の規定を満足する供試鋼板の場合(本発明例:鋼板No.1〜16)、Kca−50℃が5000〜7000N/mm3/2と優れた脆性亀裂伝播停止性能を示した。 Table 3 shows the tensile test results, the texture evaluation results, and the ESSO test results. In the case of a test steel plate in which the texture at the center of the plate thickness, the texture at the 1/4 thickness, and the Charpy fracture surface transition temperature at the 1/4 thickness of the plate satisfy the provisions of the present invention (example of the present invention: steel plates No. 1 to No. 1) 16), K ca-50 ° C. was 5000 to 7000 N / mm 3/2 and showed excellent brittle crack propagation stopping performance.

板厚中央部、板厚1/4部における集合組織が本発明の規定を満足するが、板厚1/4部におけるシャルピー破面遷移温度がー40℃を超えるものは(比較例:鋼板No.17〜20)は、Kca−50℃が鋼板No.1〜16と比較してやや劣っていた。 The texture in the central part of the plate thickness and 1/4 part of the plate thickness satisfies the provisions of the present invention, but the Charpy fracture surface transition temperature in the plate thickness of 1/4 part exceeds -40 ° C (Comparative Example: Steel plate No. 17-20), K ca-50 ° C. is the steel plate No. It was a little inferior compared with 1-16.

製造条件が本発明の規定を満足しない、比較鋼のうち、鋼板No.21〜23は母材靭性、Kca−50℃が劣り、鋼板No.24〜31は母材靭性は本発明例と同等であったが、Kca−50℃が劣っていた。 Among the comparative steels whose manufacturing conditions do not satisfy the provisions of the present invention, steel plate No. Nos. 21 to 23 are poor in base material toughness, K ca-50 ° C. In 24-31, the base material toughness was equivalent to that of the example of the present invention, but Kca -50 ° C was inferior.

Figure 2008214653
Figure 2008214653

二相域圧延材の板厚方向における集合組織の分布状態に及ぼす板厚の影響を示す図。The figure which shows the influence of plate | board thickness on the distribution state of the texture in the plate | board thickness direction of a two-phase area rolling material.

Claims (4)

板厚中央部における圧延面での(100)面X線強度比が1.5以上、かつ板厚1/4部における圧延面での(100)面X線強度比が1.5以上の集合組織を有することを特徴とする脆性亀裂伝播停止特性に優れた、板厚1/4部におけるシャルピー破面遷移温度が−40℃以下である板厚50mm超えの構造用高強度厚鋼板。   Aggregation in which the (100) plane X-ray intensity ratio at the rolled surface in the central portion of the plate thickness is 1.5 or more and the (100) plane X-ray intensity ratio in the rolled surface at the 1/4 thickness portion is 1.5 or more A structural high-strength thick steel plate having a structure having a brittle crack propagation stopping characteristic and having a brittle crack propagation stopping property and having a Charpy fracture surface transition temperature at ¼ part of a thickness of −40 ° C. or less and exceeding 50 mm. 鋼組成が、質量%で、C:0.03〜0.20%、Si:0.03〜0.5%、Mn:0.5〜2.0%、Al:0.005〜0.08%、P:0.03%以下,S:0.01%以下、N:0.0050%以下を含有し、残部がFeおよび不可避的不純物からなる請求項1に記載の脆性亀裂伝播停止特性に優れた、板厚1/4部におけるシャルピー破面遷移温度が−40℃以下である板厚50mm超えの構造用高強度厚鋼板。   Steel composition is mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.0%, Al: 0.005-0.08 %, P: 0.03% or less, S: 0.01% or less, N: 0.0050% or less, with the balance consisting of Fe and unavoidable impurities. An excellent structural high-strength thick steel plate having a thickness of more than 50 mm and having a Charpy fracture surface transition temperature of -40 ° C. or lower at a thickness of 1/4 part. 鋼組成が、更に、質量%で、Ti:0.005〜0.03%、Nb:0.005〜0.05%、Cu:0.01〜0.5%、Ni:0.01〜1.0%、Cr:0.01〜0.5%、Mo:0.01〜0.5%、V:0.001〜0.1%、B:0.003%以下、Ca:0.005%以下、REM:0.01%以下のいずれか1種、または2種以上を含有することを特徴とする請求項2に記載の脆性亀裂伝播停止特性に優れた、板厚1/4部におけるシャルピー破面遷移温度が−40℃以下である板厚50mm超えの構造用高強度厚鋼板。   Steel composition is further mass%, Ti: 0.005-0.03%, Nb: 0.005-0.05%, Cu: 0.01-0.5%, Ni: 0.01-1 0.0%, Cr: 0.01-0.5%, Mo: 0.01-0.5%, V: 0.001-0.1%, B: 0.003% or less, Ca: 0.005 % Or less, REM: 0.01% or less of any one kind, or two or more kinds, characterized in having excellent brittle crack propagation stop property according to claim 2, at a thickness of 1/4 part A structural high-strength thick steel plate having a Charpy fracture surface transition temperature of −40 ° C. or less and a plate thickness exceeding 50 mm. 請求項2または3に記載の組成を有する鋼素材を、900〜1200℃の温度に加熱し、熱間圧延における板厚中央部の温度がAr点以上の温度で累積圧下率30%以上、板厚中央部の温度がAr点−10℃以下、Ar点−50℃以上の温度域において累積圧下率30%以上かつ平均パス圧下率8%以上の圧延を行った後、2℃/s以上の冷却速度にて600℃以下まで冷却することを特徴とする脆性亀裂伝播停止特性に優れた板厚1/4部におけるシャルピー破面遷移温度が−40℃以下である板厚50mm超えの構造用高強度厚鋼板の製造方法。 The steel material having the composition according to claim 2 or 3 is heated to a temperature of 900 to 1200 ° C., and the temperature of the central portion of the sheet thickness in hot rolling is Ar 3 or higher, and the cumulative reduction rate is 30% or more, After rolling at a central thickness of 3 to −10 ° C. or lower and an Ar 3 to −50 ° C. or higher temperature at a cumulative reduction rate of 30% or more and an average pass reduction rate of 8% or more, 2 ° C. / The Charpy fracture surface transition temperature at ¼ part of the plate thickness excellent in brittle crack propagation stopping characteristics characterized by cooling to 600 ° C. or less at a cooling rate of s or more is a plate thickness exceeding 50 mm, which is −40 ° C. or less. A manufacturing method for structural high-strength thick steel plates.
JP2007049380A 2007-02-28 2007-02-28 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same Active JP5181496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049380A JP5181496B2 (en) 2007-02-28 2007-02-28 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049380A JP5181496B2 (en) 2007-02-28 2007-02-28 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008214653A true JP2008214653A (en) 2008-09-18
JP5181496B2 JP5181496B2 (en) 2013-04-10

Family

ID=39835063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049380A Active JP5181496B2 (en) 2007-02-28 2007-02-28 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP5181496B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251104A (en) * 2008-04-02 2009-10-29 Hitachi Chem Co Ltd Method of manufacturing light adjusting particle
JP2010202931A (en) * 2009-03-04 2010-09-16 Jfe Steel Corp High-strength thick steel plate for structure excellent in brittle crack propagation arrest property, and method for producing the same
WO2013099177A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
WO2013099179A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High strength steel plate having excellent brittle crack arrestability and method for manufacturing same
JP2013136828A (en) * 2011-11-28 2013-07-11 Jfe Steel Corp Method for manufacturing high-strength thick steel plate for construction excellent in brittleness-cracking propagation-stopping characteristic
WO2013175745A1 (en) * 2012-05-21 2013-11-28 Jfeスチール株式会社 High-strength thick steel plate for structural use which has excellent brittle crack arrestability, and method for producing same
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet
WO2020116538A1 (en) * 2018-12-07 2020-06-11 Jfeスチール株式会社 Steel sheet and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125843A (en) * 1988-11-02 1990-05-14 Kawasaki Steel Corp Thick steel plate for uoe steel pipe
JPH10168542A (en) * 1996-12-12 1998-06-23 Nippon Steel Corp High strength steel excellent in low temperature toughness and fatigue strength and its production
JP2000256794A (en) * 1999-03-08 2000-09-19 Nippon Steel Corp High toughness high damping alloy and its production
JP2002020835A (en) * 2000-05-02 2002-01-23 Nippon Steel Corp Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125843A (en) * 1988-11-02 1990-05-14 Kawasaki Steel Corp Thick steel plate for uoe steel pipe
JPH10168542A (en) * 1996-12-12 1998-06-23 Nippon Steel Corp High strength steel excellent in low temperature toughness and fatigue strength and its production
JP2000256794A (en) * 1999-03-08 2000-09-19 Nippon Steel Corp High toughness high damping alloy and its production
JP2002020835A (en) * 2000-05-02 2002-01-23 Nippon Steel Corp Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251104A (en) * 2008-04-02 2009-10-29 Hitachi Chem Co Ltd Method of manufacturing light adjusting particle
JP2010202931A (en) * 2009-03-04 2010-09-16 Jfe Steel Corp High-strength thick steel plate for structure excellent in brittle crack propagation arrest property, and method for producing the same
JP2013136828A (en) * 2011-11-28 2013-07-11 Jfe Steel Corp Method for manufacturing high-strength thick steel plate for construction excellent in brittleness-cracking propagation-stopping characteristic
TWI504759B (en) * 2011-12-27 2015-10-21 Jfe Steel Corp High strength thick steel sheet with excellent brittle crack propagation stability and its manufacturing method
JPWO2013099179A1 (en) * 2011-12-27 2015-04-30 Jfeスチール株式会社 High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
KR101676710B1 (en) * 2011-12-27 2016-11-16 제이에프이 스틸 가부시키가이샤 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
CN104024456A (en) * 2011-12-27 2014-09-03 杰富意钢铁株式会社 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
KR20140113974A (en) * 2011-12-27 2014-09-25 제이에프이 스틸 가부시키가이샤 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
TWI504758B (en) * 2011-12-27 2015-10-21 Jfe Steel Corp High strength thick steel sheet and its manufacturing method with excellent brittle crack propagation characteristics
JPWO2013099177A1 (en) * 2011-12-27 2015-04-30 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
WO2013099179A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High strength steel plate having excellent brittle crack arrestability and method for manufacturing same
WO2013099177A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
CN104334762A (en) * 2012-05-21 2015-02-04 杰富意钢铁株式会社 High-strength thick steel plate for structural use which has excellent brittle crack arrestability, and method for producing same
WO2013175745A1 (en) * 2012-05-21 2013-11-28 Jfeスチール株式会社 High-strength thick steel plate for structural use which has excellent brittle crack arrestability, and method for producing same
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet
WO2020116538A1 (en) * 2018-12-07 2020-06-11 Jfeスチール株式会社 Steel sheet and production method therefor
JPWO2020116538A1 (en) * 2018-12-07 2021-02-15 Jfeスチール株式会社 Steel plate and its manufacturing method

Also Published As

Publication number Publication date
JP5181496B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5151090B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5434145B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5733425B2 (en) High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5304925B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP4946512B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5181496B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
CN108291287B (en) High strength steel having excellent embrittlement prevention and embrittlement initiation resistance of welded portion and method for producing the same
JP5304924B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5181460B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
WO2014155439A1 (en) High strength thick steel plate with superior brittle crack arrestability for high heat input welding and method for manufacturing same
JP2018024905A (en) Structural high strength thick steel plate excellent in brittle crack arrest property and production method thereof
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2009221585A (en) High strength steel plate having excellent high heat input weld zone toughness and brittle fracture propagation arresting property, and method for producing the same
JP5035199B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5034392B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5181461B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5061649B2 (en) Thick steel plate with a thickness of 50 mm or more with excellent brittle crack propagation stopping characteristics
JP5812193B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP6112265B2 (en) High-strength extra heavy steel plate and method for producing the same
JP6477743B2 (en) High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same
JP2009235458A (en) High strength thick steel plate having excellent high heat input weld zone toughness and brittle crack propagation stop property, and method for producing the same
JP6338022B2 (en) High-strength extra-thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5949114B2 (en) Manufacturing method of structural high strength thick steel plate with excellent brittle crack propagation stopping characteristics
JP6274375B1 (en) High strength thick steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R150 Certificate of patent or registration of utility model

Ref document number: 5181496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250