JP2002020835A - Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method - Google Patents

Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method

Info

Publication number
JP2002020835A
JP2002020835A JP2001067396A JP2001067396A JP2002020835A JP 2002020835 A JP2002020835 A JP 2002020835A JP 2001067396 A JP2001067396 A JP 2001067396A JP 2001067396 A JP2001067396 A JP 2001067396A JP 2002020835 A JP2002020835 A JP 2002020835A
Authority
JP
Japan
Prior art keywords
thickness direction
steel
less
crack propagation
brittle crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001067396A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shirahata
浩幸 白幡
Toshihiko Koseki
敏彦 小関
Jun Otani
潤 大谷
Takehiro Inoue
健裕 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001067396A priority Critical patent/JP2002020835A/en
Publication of JP2002020835A publication Critical patent/JP2002020835A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide steel improved in arrest performance while securing rupture characteristics in the sheet thickness direction by performing the modification of the structure at least in the surface layer of the steel and to provide its production method. SOLUTION: In this steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in the sheet thickness direction, as to steel having prescribed components, in a region of at least >=5% of the sheet thickness from the surface layer, a texture colony with the average minor axis grain size of 2 to 5 μm containing equi-axed ferritic grains with the average grain size of <=3 μm in >=20% by area ratio and further consisting essentially of elongated ferritic grains is present, and also, the (100) face intensity ratio is controlled to 1.5 to 4.0. In its production method, a slab heated at Ac3 to 1,200 deg.C is cooled at a cooling rate of >=2 deg.C/s till the temperature of the surface layer region of at least >=5% of the slab thickness in the central direction of the slab thickness from the surface reaches <=Ar3, and after that, in a process in which the surface layer region is recuperated, rolling in which the cumulative draft in the temperature region of Ac1 to Ac1+70 deg.C is controlled to 30 to 70%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、脆性破壊が生じた
場合のき裂伝播停止特性が優れた鋼材とその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material having excellent crack propagation stopping characteristics when brittle fracture occurs, and a method for producing the same.

【0002】[0002]

【従来の技術】近年の鋼構造物の大型化に伴って、使用
される鋼材に対する要求は一段と厳しくなっている。そ
のため強度・靱性と共に、脆性き裂伝播停止(アレス
ト)特性を併せもつことが強く望まれ、種々の技術が提
案されているが、必ずしも期待に応えられていないのが
実状である。アレスト特性を向上させる手段として、特
開昭59−47323号公報等に記載されているよう
に、未再結晶域で十分に圧下する製造方法、あるいは積
極的に脆性破壊を生じやすい第二相粒子を微細分散させ
て脆性き裂先端にマイクロクラックを多数発生せしめ、
き裂先端の応力状態を緩和させ、かつマイクロクラック
と主き裂間の合体時に生じる延性破壊により、き裂停止
を容易にさせる方法が提案されている。
2. Description of the Related Art With the recent increase in the size of steel structures, requirements for steel materials to be used have become more severe. For this reason, it is strongly desired to have brittle crack propagation arrest characteristics together with strength and toughness, and various technologies have been proposed, but in reality, they have not always met expectations. As means for improving the arrest property, as described in JP-A-59-47323, etc., a production method in which the material is sufficiently reduced in an unrecrystallized region, or a second-phase particle which is apt to cause brittle fracture positively Disperse finely and generate many micro cracks at the brittle crack tip,
A method has been proposed in which the state of stress at the tip of a crack is alleviated, and the termination of the crack is facilitated by ductile fracture that occurs when the microcrack and the main crack are united.

【0003】この技術は、全厚にわたる組織改質によっ
てアレスト特性を確保するものである。しかるに、適用
板厚に関する記述はないものの、組織を微細なフェライ
ト(α)とマルテンサイト(M)にすることことから、
相当の低温強圧下・強水冷が必要であり、おのずと板厚
の上限があることが推定される。すなわち、現状の設備
では厚手材の板厚中心部のαを微細化しつつ、微細Mを
確保することは困難であるため、アレスト性能向上にも
限度がある。
This technique is to secure arrest characteristics by modifying the structure over the entire thickness. However, although there is no description about the applicable plate thickness, since the structure is made of fine ferrite (α) and martensite (M),
It is presumed that considerable low-temperature strong-pressure and strong water-cooling is necessary, and there is naturally an upper limit of the sheet thickness. That is, it is difficult to secure the fine M while minimizing [alpha] at the center of the thickness of the thick material with the current equipment, and there is a limit to the improvement of the arrest performance.

【0004】また特開平06−88161号公報には、
集合組織の発達によるアレスト性向上が記載されてお
り、集合組織コロニーの平均短軸径が5μm以下で、圧
延面に平行な集合組織の(100)面強度比が1.5以
上と規定している。この方法によれば、圧延方向に直角
な方向(幅方向)の脆性き裂に対しては良好なアレスト
性能を示すものの、建築構造物の柱材における柱梁接合
部のように、板厚方向に大きな力が加わって圧延面に平
行な脆性き裂が発生した場合のアレスト性能は不十分で
ある。したがって、適用部位はおのずと限定されてしま
う。
Japanese Patent Application Laid-Open No. 06-88161 discloses that
Improvement of arrestability due to development of texture is described, in which the average minor axis diameter of the texture colonies is 5 μm or less, and the (100) plane strength ratio of the texture parallel to the rolling surface is 1.5 or more. I have. According to this method, while exhibiting good arrest performance against brittle cracks in the direction perpendicular to the rolling direction (width direction), the thickness direction is the same as in the beam-column joints of building materials. Arrest performance when brittle cracks parallel to the rolling surface are generated by applying a large force to the rolling surface. Therefore, the application site is naturally limited.

【0005】[0005]

【発明が解決しようとする課題】本発明は、少なくとも
鋼材表層領域の組織改質を行って、板厚方向の破壊特性
を確保しつつアレスト性能を向上させることを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to improve the arrest performance while ensuring the fracture characteristics in the thickness direction by modifying the structure of at least the surface layer region of the steel material.

【0006】[0006]

【課題を解決するための手段】本発明は上記のような従
来の欠点を有利に排除しうる、脆性き裂伝播停止特性と
板厚方向の破壊特性の優れた鋼材に関するものであり、
その要旨とするところは次の通りである。 (1) 質量%で、 C :0.02〜0.2%、 Si:0.01〜1.0%、 Mn:0.30〜2.0%、 Al:0.002〜0.10%、 N :0.001〜0.01%、 P :0.01%以下、 S :0.01%以下 を含有し、残部がFeおよび不可避的不純物よりなる鋼
材で、表層から板厚の少なくとも5%以上の領域におい
て、平均粒径3μm以下の等軸フェライト粒が面積率に
して20%以上有し、しかも伸長フェライト粒を主体と
し、平均短軸粒径が2〜5μmの集合組織コロニーを有
し、かつ(100)面強度比が1.5〜4.0を有する
脆性き裂伝播停止特性と板厚方向破壊特性の優れた鋼
材。
SUMMARY OF THE INVENTION The present invention relates to a steel material excellent in brittle crack propagation arresting property and breaking property in the thickness direction, which can advantageously eliminate the above-mentioned conventional disadvantages.
The summary is as follows. (1) In mass%, C: 0.02-0.2%, Si: 0.01-1.0%, Mn: 0.30-2.0%, Al: 0.002-0.10% , N: 0.001 to 0.01%, P: 0.01% or less, S: 0.01% or less, the balance being Fe and unavoidable impurities. % Or more, equiaxed ferrite grains having an average grain size of 3 μm or less have an area ratio of 20% or more, and further, textured colonies mainly composed of elongated ferrite grains and having an average short axis grain size of 2 to 5 μm. And a steel material having a (100) plane strength ratio of 1.5 to 4.0 and excellent in brittle crack propagation arrestability and thickness direction fracture characteristics.

【0007】(2) 質量%でさらに、 Cu:0.01〜2.0%、 Ni:0.01〜10.0%、 Cr:0.01〜10.0%、 Mo:0.01〜3.0%、 B :0.0002〜0.0030% の1種または2種以上を含有する前記(1)記載の脆性
き裂伝播停止特性と板厚方向破壊特性の優れた鋼材。 (3) 質量%でさらに、 Ti:0.002〜0.10%、 Nb:0.002〜0.05%、 V :0.005〜0.20% の1種または2種以上を含有する前記(1)または
(2)記載の脆性き裂伝播停止特性と板厚方向破壊特性
の優れた鋼材。 (4) 質量%でさらに、Mg:0.0004〜0.0
1%を含有する前記(1)〜(3)のいずれか1項に記
載の脆性き裂伝播停止特性と板厚方向破壊特性の優れた
鋼材。 (5) 質量%でさらに、Rem:0.002〜0.1
0%、Ca:0.0002〜0.0030%の1種また
は2種を含有する前記(1)〜(4)のいずれか1項に
記載の脆性き裂伝播停止特性と板厚方向破壊特性の優れ
た鋼材。
(2) In mass%, Cu: 0.01 to 2.0%, Ni: 0.01 to 10.0%, Cr: 0.01 to 10.0%, Mo: 0.01 to The steel material according to the above (1), which has one or more of 3.0% and B: 0.0002 to 0.0030%, and has excellent brittle crack propagation arrestability and thickness direction fracture characteristics. (3) In mass%, one or more of Ti: 0.002 to 0.10%, Nb: 0.002 to 0.05%, V: 0.005 to 0.20% The steel material according to the above (1) or (2), which has excellent brittle crack propagation arrestability and thickness direction fracture characteristics. (4) Mg: 0.0004-0.0% by mass.
The steel material according to any one of the above (1) to (3), which contains 1% and has excellent brittle crack propagation arrestability and thickness direction fracture characteristics. (5) Rem: 0.002 to 0.1% by mass.
The brittle crack propagation arresting property and the thickness direction fracture property according to any one of the above (1) to (4), containing one or two of 0% and Ca: 0.0002 to 0.0030%. Excellent steel material.

【0008】(6) 前記(1)〜(5)のいずれか1
項に記載の成分からなる鋼片を、Ac3 〜1200℃に
加熱した後、表面より鋼片厚中心方向に鋼片厚の少なく
とも5%以上の表層領域がAr3 以下となるまで2℃/
s以上の冷却速度で冷却した後、該表層領域を復熱させ
る過程において、Ac1 〜Ac1 +70℃の温度域での
累積圧下率が30〜70%となる圧延を施す脆性き裂伝
播停止特性と板厚方向破壊特性の優れた鋼材の製造方
法。 (7) 圧延終了後、引き続き板厚平均で2℃/s以上
の冷却速度で加速冷却を行う前記(6)記載の脆性き裂
伝播停止特性と板厚方向破壊特性の優れた鋼材の製造方
法。 (8) 加速冷却終了後、Ac1以下の温度で焼戻しす
る前記(7)記載の脆性き裂伝播停止特性と板厚方向破
壊特性の優れた鋼材の製造方法。
(6) Any one of the above (1) to (5)
After heating the steel slab comprising the components described in the above section to Ac3 to 1200 DEG C., the surface area of at least 5% or more of the steel slab thickness from the surface to the center of the steel slab thickness becomes 2 DEG C./sec.
After cooling at a cooling rate of s or more, in the process of reheating the surface layer region, the brittle crack propagation arresting property of performing rolling at which the cumulative draft in the temperature range of Ac1 to Ac1 + 70 ° C. becomes 30 to 70% is obtained. A method for producing steel with excellent fracture characteristics in the thickness direction. (7) The method for producing a steel material having excellent brittle crack propagation arrestability and thickness direction fracture characteristics according to (6), wherein after the rolling is completed, accelerated cooling is performed at a cooling rate of 2 ° C./s or more on average in the thickness of the sheet. . (8) The method for producing a steel material having excellent brittle crack propagation arrestability and thickness direction fracture characteristics according to the above (7), wherein tempering is performed at a temperature of Ac1 or less after the completion of the accelerated cooling.

【0009】[0009]

【発明の実施の形態】以下、本発明について詳細に説明
する。前記特開平06−88161号公報に示されてい
るように、集合組織を発達させた鋼材ではセパレーショ
ンという圧延面に平行な割れが生じるために、脆性き裂
先端の応力状態が緩和され、伝播を抑制することができ
る。このセパレーションは、(100)および(11
1)集合組織が発達している鋼に応力が負荷された場
合、それに応じた歪みが結晶方位により異なるため、
(100)と(111)集合組織コロニーの界面でずれ
が生じ、き裂の芽が発生した結果生成されることが知ら
れている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. As shown in the above-mentioned Japanese Patent Application Laid-Open No. 06-88161, in a steel material with developed texture, a crack called separation is generated parallel to the rolled surface, so that the stress state at the tip of the brittle crack is alleviated, and the propagation of the crack is reduced. Can be suppressed. This separation consists of (100) and (11)
1) When stress is applied to a steel with a developed texture, the corresponding strain varies depending on the crystal orientation.
It is known that a shift occurs at the interface between the (100) and (111) textured colonies, and is generated as a result of the occurrence of crack buds.

【0010】しかしながら、集合組織を過度に発達させ
ると、板厚方向に応力が負荷された場合のように、圧延
面に平行なき裂に対してはほとんど伝播抵抗となり得な
い。このように、アレスト性能と板厚方向破壊特性は両
立し得ないものであったため、高アレスト性能を有する
鋼材の用途は極めて限られたものであった。
[0010] However, if the texture is excessively developed, the propagation resistance can hardly be obtained for a crack parallel to the rolling surface, such as when stress is applied in the thickness direction. As described above, the arrest performance and the fracture property in the thickness direction were incompatible with each other, so that the use of the steel material having the high arrest performance was extremely limited.

【0011】そこで本発明者らはこの課題を解決すべ
く、アレスト性能と板厚方向破壊特性を両立するための
必要組織について、実験を通じて鋭意検討してきた。そ
の結果、鋼材表層部の混粒組織化が有効であることを明
らかにした。すなわち、集合組織を適度に発達させた伸
長α粒(本質的には同一結晶方位を有するコロニー)に
よってアレスト性能を確保すると共に、結晶方位のラン
ダムな等軸微細α粒を一定量以上混在させることで、板
厚方向に力が加わったときの破壊特性を大幅に改善する
ものである。
In order to solve this problem, the inventors of the present invention have intensively studied through experiments the necessary structure for achieving both the arrest performance and the breaking property in the thickness direction. As a result, it was clarified that the mixed grain structure of the steel surface layer was effective. In other words, the arrest performance is ensured by elongated α grains (a colony having essentially the same crystal orientation) with a moderately developed texture, and a certain amount or more of equiaxed fine α grains with random crystal orientations are mixed. This significantly improves the breaking characteristics when a force is applied in the thickness direction.

【0012】ここで、アレスト性能については、従来の
ESSO試験で評価することができるが、板厚方向の破
壊特性については適切な評価手法がなかった。そのため
本発明者らは、図5に示すような建築柱材の柱梁接合部
を模擬した広幅引張試験を考案した。即ち、中心に柱材
となる供試鋼1を立てて、その両側に裏当て金3を置い
て、梁フランジに相当する板2を溶接する。4は溶接部
を示している。裏当て金3は梁フランジ2に全面隅肉溶
接する。5がその溶接部である。梁フランジ2として
は、供試鋼1と同等の強度を有する板を使用する。
Here, the arrest performance can be evaluated by a conventional ESSO test, but there is no appropriate evaluation method for the fracture characteristics in the thickness direction. Therefore, the present inventors have devised a wide-width tensile test simulating a beam-column joint of a building column material as shown in FIG. That is, a test steel 1 serving as a column material is erected at the center, a backing metal 3 is placed on both sides thereof, and a plate 2 corresponding to a beam flange is welded. Reference numeral 4 denotes a weld. The backing metal 3 is entirely fillet welded to the beam flange 2. 5 is the weld. As the beam flange 2, a plate having the same strength as the test steel 1 is used.

【0013】試験温度は0℃とし、図5に示す太線矢印
の方向に引張応力を負荷する。裏当て金3と供試鋼1の
間がノッチとなっているため、そこに応力が集中し、き
裂が発生する。破断したときの荷重と梁断面積から応力
σを算出し、供試鋼の通常の引張試験(圧延方向と直角
に試験片採取)から求めた引張強度TSで除した値(σ
/TS)にて板厚方向破壊特性を評価する。σ/TSが
1に近い値であれば梁の降伏が先に起こるため問題ない
が、σ/TSが0.7以下であると梁降伏の前に柱が破
壊することになり、柱材への適用はできない。
The test temperature is set at 0 ° C., and a tensile stress is applied in the direction of the thick arrow shown in FIG. Since there is a notch between the backing metal 3 and the test steel 1, stress concentrates there and a crack occurs. The stress (σ) was calculated from the load at the time of fracture and the beam cross-sectional area, and the value (σ) obtained by dividing by the tensile strength TS obtained from a normal tensile test (test piece taken at right angles to the rolling direction) of the test steel
/ TS) to evaluate the fracture characteristics in the thickness direction. If σ / TS is close to 1, there is no problem because the yield of the beam occurs first, but if σ / TS is 0.7 or less, the column will break before the beam yields, and Cannot be applied.

【0014】種々の表層部組織を有する鋼材を製造し、
広幅引張試験と温度勾配型ESSO試験を実施した。E
SSO試験の結果は0℃におけるKca(Kca(0℃)
)の値で表す。試験結果を図1〜4に基づいて説明す
る。図1は(100)面強度比とσ/TS、Kca(0
℃) の関係である。(100)面強度比が1.5未満で
あるとKca(0℃) が低く、十分なアレスト性が確保で
きない。一方、(100)面強度比が4.0超になる
と、広幅引張試験では極めて低い応力(σ/TSが0.
4程度)で脆性破壊してしまう。従って、アレスト性と
板厚方向破壊特性を両立させるためには、(100)面
強度比を1.5〜4.0とする必要がある。
Producing steel materials having various surface layer structures,
A wide tensile test and a temperature gradient type ESSO test were performed. E
The result of the SSO test was Kca at 0 ° C (Kca (0 ° C)
). The test results will be described with reference to FIGS. FIG. 1 shows the (100) plane intensity ratio and σ / TS, Kca (0
° C). If the (100) plane strength ratio is less than 1.5, Kca (0 ° C.) is low and sufficient arrestability cannot be secured. On the other hand, when the (100) plane strength ratio exceeds 4.0, extremely low stress (σ / TS is in the range of 0.
4) and brittle fracture. Therefore, in order to achieve both arrestability and fracture characteristics in the thickness direction, the (100) plane strength ratio needs to be 1.5 to 4.0.

【0015】図2は、集合組織コロニーの短軸径とσ/
TS、Kca(0℃) の関係であり、やはりアレスト性と
板厚方向破壊特性両立のためには、短軸径を2〜5μm
とする必要がある。一般に集合組織コロニーの短軸径
は、集合組織の発達度(X線回折により測定した面強
度)とある程度相関があり、独立には変化しない。しか
しながら、短軸径が2μm未満になると、集合組織形成
過程で導入される転位によってαの塑性変形能自体が顕
著に低下するために、板厚方向の応力により発生したセ
パレーションが容易に脆性き裂に転化してしまい、板厚
方向の破壊特性が低下してしまう。一方、短軸径が5μ
mを超えると実質的に集合組織が形成されず、さらに脆
性破壊の基本的単位が大きくなるために、き裂に対する
抵抗が小さくなり、アレスト性が劣化する。
FIG. 2 shows the minor axis diameter and σ /
The relationship between TS and Kca (0 ° C.) is also required. In order to achieve both arrestability and fracture properties in the thickness direction, the minor axis diameter must be 2 to 5 μm.
It is necessary to Generally, the minor axis diameter of a textured colony has some correlation with the degree of texture development (surface intensity measured by X-ray diffraction) and does not independently change. However, when the minor axis diameter is less than 2 μm, the plastic deformation ability of α is remarkably reduced by dislocations introduced during the texture formation process, so that separation caused by stress in the thickness direction easily causes brittle cracks. And the fracture characteristics in the thickness direction are reduced. On the other hand, the minor axis diameter is 5μ.
If it exceeds m, a texture is not substantially formed, and the basic unit of brittle fracture is increased, so that resistance to cracks is reduced and arrestability is deteriorated.

【0016】図3、4は等軸α粒径、等軸α面積率とσ
/TSの関係であり、板厚方向の破壊特性を満足させる
ためには粒径3μm以下、面積率20%以上とする必要
がある。これは(100)および(111)集合組織コ
ロニーの間に存在する様々な結晶方位の等軸微細α粒
が、板厚方向に力が加わった場合の局所的な塑性変形を
緩和することにより、集合組織の塑性異方性に起因する
脆性き裂の芽の発生を抑制するためであると考えられ
る。
3 and 4 show the equiaxed α particle size, the equiaxed α area ratio and the σ
/ TS, it is necessary that the grain size is 3 μm or less and the area ratio is 20% or more in order to satisfy the breaking characteristics in the thickness direction. This is because the equiaxed fine α grains having various crystal orientations existing between the (100) and (111) texture colonies alleviate local plastic deformation when a force is applied in the thickness direction. This is presumably because the generation of brittle crack buds caused by the plastic anisotropy of the texture is suppressed.

【0017】以上から、(100)面強度比を1.5〜
4.0、集合組織コロニーの平均短軸径を2〜5μm、
かつ平均粒径3μm以下の等軸α面積率を20%以上と
することが必要と判明した。
As described above, the (100) plane strength ratio is set to 1.5 to
4.0, the average minor axis diameter of the textured colonies is 2 to 5 μm,
In addition, it has been found that the equiaxed α area ratio having an average particle diameter of 3 μm or less needs to be 20% or more.

【0018】次に、表層部組織の必要厚みについて説明
する。実際に脆性き裂アレストに大きな影響を及ぼすの
は、板厚表層部の組織状態である。これは、脆性き裂伝
播時に板厚表層部はシアリップと呼ばれる塑性変形を示
し、伝播する脆性き裂が有する運動エネルギーを吸収す
るため、特に板厚表層部の結晶粒の微細化、あるいは集
合組織の形成によって優れたアレスト性を示すものであ
る。そこで表層部組織の厚みを変化させてシアリップ形
成挙動を調査した結果、板厚の5%以上の厚みがあれば
シアリップが形成されることがわかった。表層部組織の
厚みの上限は特に規定する必要はない。
Next, the required thickness of the surface layer structure will be described. What actually has a great influence on the brittle crack arrest is the structure state of the surface layer portion of the sheet thickness. This is because the surface layer of the plate shows plastic deformation called shear lip during the propagation of a brittle crack, and absorbs the kinetic energy of the brittle crack that propagates. Shows excellent arrestability due to the formation of Therefore, as a result of investigating the shear lip formation behavior by changing the thickness of the surface layer structure, it was found that a shear lip was formed if the thickness was 5% or more of the plate thickness. It is not necessary to particularly define the upper limit of the thickness of the surface layer structure.

【0019】本発明鋼の製造方法および原理は次の通り
である。Ac3 〜1200℃の温度範囲にある鋼片の表
層部をAr3 以下になるまで冷却し、表層領域を復熱さ
せる過程において、Ac1 〜Ac1 +70℃の温度域で
の累積圧下率が30〜70%となる圧延を施す。これに
より冷却過程と比べてαが高温でも安定化することに加
えて、オーステナイトが少量存在する状態で加工を受け
るため、αへの歪み集中、γ/α界面積増加により適度
に回復・再結晶が進行する。その結果、所定のサイズ、
分率の伸長αと等軸αの混粒組織化が達成され、所定の
集合組織が得られる。
The manufacturing method and principle of the steel of the present invention are as follows. In the process of cooling the surface layer portion of the billet in the temperature range of Ac3 to 1200 ° C. until it becomes Ar3 or less and reheating the surface layer region, the cumulative rolling reduction in the temperature range of Ac1 to Ac1 + 70 ° C. is 30 to 70%. Is applied. This stabilizes α even at high temperatures compared to the cooling process. In addition, since it is processed in the presence of a small amount of austenite, it is moderately recovered and recrystallized by strain concentration on α and an increase in the γ / α interfacial area. Progresses. As a result, the predetermined size,
A mixed grain structure of the fractional extension α and the equiaxed α is achieved, and a predetermined texture is obtained.

【0020】以下に、各製造条件の限定理由を詳細に述
べる。本発明では鋼片または鋼板の初期温度をAc3 〜
1200℃とした。これは、鋼片を加熱する場合、その
温度がAc3 以下では溶体化が十分に行われず、120
0℃を超えると加熱γ粒径が極端に粗大になって、その
後の圧延でもαの微細化が困難になるおそれがあるから
である。この鋼片は、γ単相状態であるならば、鋳造ま
まであってもかまわない。加熱した鋼片または熱片まま
の鋼片は、γの細粒化を目的にγ高温域での再結晶域圧
延を行ってもよいが、圧延なしのままでもかまわない。
Hereinafter, the reasons for limiting the manufacturing conditions will be described in detail. In the present invention, the initial temperature of the billet or steel plate is set to Ac3 to
The temperature was set to 1200 ° C. This is because when the slab is heated, if the temperature is lower than Ac3, the solution is not sufficiently formed, and
If the temperature exceeds 0 ° C., the heated γ particle size becomes extremely coarse, and it may be difficult to reduce α in the subsequent rolling. This billet may be as cast as long as it is in a γ single phase state. A heated slab or a hot slab may be subjected to recrystallization zone rolling in a γ high temperature range for the purpose of refining γ, but may be left unrolled.

【0021】引き続き行う冷却から復熱段階での仕上圧
延が、本発明の最も重要な部分である。すなわち、鋼片
表面から鋼片厚の少なくとも5%以上の領域がAr3 以
下となるまで2℃/s以上の冷却速度で冷却してから、
復熱過程においてAc1 〜Ac1 +70℃の温度域での
累積圧下率が30〜70%となる圧延を施す。
The subsequent rolling from the cooling to the recuperation stage is the most important part of the present invention. That is, after cooling at a cooling rate of 2 ° C./s or more until a region of at least 5% or more of the slab thickness from the slab surface becomes Ar 3 or less,
In the recuperation process, rolling is performed so that the cumulative draft in the temperature range of Ac1 to Ac1 +70 DEG C. becomes 30 to 70%.

【0022】冷却時の停止温度がAr3 よりも高い場合
には、表層部でもフェライトが生成しないため通常の二
相域圧延組織となり、等軸フェライト分率20%以上を
確保できず、板厚方向破壊特性が劣化してしまう。冷却
速度が2℃/s未満では、表層部と内部の温度差が小さ
くなり、αの回復・再結晶に必要なAc1 以上の温度域
まで復熱させることができなくなるため、等軸フェライ
ト分率20%以上を確保できない可能性があることに加
えて、集合組織コロニーの短軸径が2μm未満、または
(100)面強度比が4.0超となり、板厚方向の破壊
特性が劣化してしまう。
When the cooling stop temperature is higher than Ar3, ferrite is not generated even in the surface layer, so that a normal two-phase region rolling structure is obtained, and a fraction of equiaxed ferrite of 20% or more cannot be ensured. The destruction characteristics deteriorate. If the cooling rate is less than 2 ° C./s, the temperature difference between the surface layer and the inside becomes small, and it becomes impossible to recover the temperature to the temperature range of Ac1 or more necessary for α recovery and recrystallization. In addition to the possibility of securing 20% or more, the short axis diameter of the textured colony is less than 2 μm or the (100) plane strength ratio exceeds 4.0, and the fracture characteristics in the thickness direction deteriorate. I will.

【0023】表層冷却領域を5%以上と規定するのは、
冷却時にAr3 になった部分が、復熱・圧延過程を経て
最終的に本発明で規定した組織状態になるためである。
復熱過程における圧延ではAc1 〜Ac1 +70℃の圧
下が本質的に重要であり、圧下率30%未満では集合組
織コロニーの短軸径が5μm超、あるいは(100)面
強度比が1.5未満となり、アレスト特性が向上しな
い。一方、圧下率が70%超になると過度の集合組織発
達により、短軸径が2μm未満、または(100)面強
度比が4.0超となり、板厚方向破壊特性が劣化する。
30〜70%の圧下率で圧延しても、圧延温度がAc1
未満であればオーステナイトが存在しないために回復・
再結晶が不十分で、前述した通り板厚方向破壊特性が劣
化してしまう。
The reason that the surface cooling area is defined as 5% or more is as follows.
This is because the portion that has become Ar3 during cooling finally undergoes the recuperation / rolling process to finally reach the microstructure specified by the present invention.
In rolling in the recuperation process, reduction of Ac1 to Ac1 + 70 ° C. is essentially important. If the reduction is less than 30%, the minor axis diameter of the textured colonies exceeds 5 μm or the (100) plane strength ratio is less than 1.5. And the arrest characteristics are not improved. On the other hand, when the rolling reduction exceeds 70%, the short axis diameter becomes less than 2 μm or the (100) plane strength ratio becomes more than 4.0 due to excessive texture development, and the fracture properties in the thickness direction deteriorate.
Even when rolling at a rolling reduction of 30 to 70%, the rolling temperature is Ac1
If it is less than 10%, austenite does not exist.
Insufficient recrystallization causes the destruction characteristics in the thickness direction to deteriorate as described above.

【0024】圧延温度がAc1 +70℃超の場合は、等
軸フェライト粒が3μm超に粗大化すると同時に、(1
00)面強度比1.5以上を確保するのが困難となるた
め、アレスト特性、板厚方向破壊特性ともに劣化する。
なお、圧延開始温度はAc1未満でも構わないが、Ac1
〜Ac1 +70℃での累積圧下率30〜70%とする
ために、通常Ac1 −30℃以上から行う。
When the rolling temperature is higher than Ac 1 + 70 ° C., the equiaxed ferrite grains are coarsened to more than 3 μm and simultaneously (1
00) Since it is difficult to secure a surface strength ratio of 1.5 or more, both the arrest characteristics and the thickness direction fracture characteristics are deteriorated.
Although the rolling start temperature may be lower than Ac1,
In order to obtain a cumulative rolling reduction of 30 to 70% at .about.Ac1 + 70.degree.

【0025】仕上圧延が終了した後は空冷してもよい
が、板厚中心部の強度・靭性を高めるため、引き続き2
℃/s以上の冷却速度で水冷してもよい。また水冷後は
Ac1以下の温度まで焼戻してもよい。上記の製造方法
によれば、圧延途中に外部から加熱するような煩雑な工
程なく、アレスト性と板厚方向破壊特性に優れた鋼材を
効率的かつ確実に提供することが可能となる。
After the finish rolling is completed, air cooling may be performed.
Water cooling may be performed at a cooling rate of not less than ° C / s. After water cooling, tempering may be performed to a temperature equal to or lower than Ac1. According to the above-described manufacturing method, it is possible to efficiently and reliably provide a steel material having excellent arrestability and thickness-direction fracture characteristics without a complicated step of externally heating during rolling.

【0026】次に、本発明の成分限定理由について説明
する。Cは安価に強度を向上する有効な成分として0.
02%以上添加するが、0.20%を超えると溶接部の
靭性が損なわれる。
Next, the reasons for limiting the components of the present invention will be described. C is inexpensive as an effective component for improving strength.
When added in an amount of at least 0.20%, the toughness of the welded portion is impaired.

【0027】Siは安価な脱酸元素であり、強度を向上
するのに効果的な元素であるので0.01%以上添加す
るが、1.0%を超えると溶接性を劣化させ鋼の表面性
状を損なう。
Since Si is an inexpensive deoxidizing element and is an effective element for improving the strength, it is added in an amount of 0.01% or more. Impair the properties.

【0028】Mnは母材の強度・靭性を向上させる元素
として有効であるが、0.30%未満の含有量では十分
な効果が得られない。一方、2.0%超添加すると溶接
割れ性を促進させるおそれがある。
Although Mn is effective as an element for improving the strength and toughness of the base material, a sufficient effect cannot be obtained with a content of less than 0.30%. On the other hand, if added in excess of 2.0%, there is a possibility that weld cracking properties may be promoted.

【0029】Alは脱酸元素として有効であり、γ粒の
微細化にも有効であるため添加する。0.002%未満
の含有量ではその効果がなく、0.10%を超えると材
質にとって有害な介在物を生成する。
Al is added as it is effective as a deoxidizing element and is also effective in refining γ grains. If the content is less than 0.002%, there is no effect, and if it exceeds 0.10%, inclusions harmful to the material are generated.

【0030】NはAlと共に窒化物を生成しγ粒の微細
化に有効であるが、過量に添加すると溶接部靭性が損な
われるので0.001〜0.01%に限定する。
N forms a nitride together with Al and is effective in refining the γ grains. However, if added in an excessive amount, the toughness of the welded portion is impaired, so the content is limited to 0.001 to 0.01%.

【0031】PおよびSは、母材の靭性と板厚方向の破
壊特性確保のため、ともに0.01%以下とする。
Both P and S are set to 0.01% or less in order to secure the toughness of the base material and the fracture characteristics in the thickness direction.

【0032】選択的に添加するCu,Ni,Cr,M
o,B,Ti,Nb,V,Mg,Rem,Caは、下記
の理由により添加することが好ましい。Cu,Ni,C
r,Moは、いずれも焼入れ性を向上させる元素として
知られており、鋼の強度を上昇させることができるが、
過度の添加は効果が飽和しコスト上昇につながるばかり
でなく溶接性を損なうため、Cuは2.0%以下、Ni
およびCrは10.0%以下、Moは3.0%以下に限
定する。また添加量が少なすぎると効果がないため、添
加量の下限をいずれの元素についても0.01%とす
る。
Cu, Ni, Cr, M selectively added
o, B, Ti, Nb, V, Mg, Rem, and Ca are preferably added for the following reasons. Cu, Ni, C
Both r and Mo are known as elements that improve hardenability and can increase the strength of steel.
Excessive addition not only saturates the effect and leads to an increase in cost, but also impairs the weldability.
And Cr are limited to 10.0% or less, and Mo is limited to 3.0% or less. Further, if the addition amount is too small, there is no effect, so the lower limit of the addition amount is set to 0.01% for any element.

【0033】Bは焼入れ性を向上させる元素であり、そ
の添加により鋼の強度を高めるのに有効であるが、過度
の添加はBの析出物を増加させ鋼の靭性を損ねるので、
その含有量の上限を0.0030%とする。また添加量
が少なすぎると効果がないため、下限を0.0002%
とする。
B is an element that improves the hardenability and is effective in increasing the strength of steel by its addition. However, excessive addition increases the precipitation of B and impairs the toughness of the steel.
The upper limit of the content is 0.0030%. If the amount is too small, there is no effect, so the lower limit is 0.0002%.
And

【0034】Ti、Nbは、いずれも微量の添加により
再加熱γ粒の粗大化抑制、圧延・冷却時の析出強化の面
で有効に機能する。しかし過量に添加すると溶接部靭性
が劣化するので、Tiは0.10%以下、Nbは0.0
5%以下とする。また両者とも添加量が少なすぎると効
果がないため、その下限を0.002%とする。
Both Ti and Nb function effectively in terms of suppressing coarsening of reheated γ grains and strengthening precipitation during rolling and cooling when added in trace amounts. However, if added in an excessive amount, the toughness of the weld zone deteriorates, so that Ti is 0.10% or less and Nb is 0.0% or less.
5% or less. Also, in both cases, if the added amount is too small, there is no effect, so the lower limit is made 0.002%.

【0035】Vは析出強化による強度上昇に有効である
ため、0.005%以上添加するが、0.20%超添加
すると溶接部の靭性が損なわれる。
Since V is effective in increasing the strength by precipitation strengthening, V is added in an amount of 0.005% or more, but if added in an amount exceeding 0.20%, the toughness of the welded portion is impaired.

【0036】Mgは溶鋼段階で微細な酸化物を形成し、
大入熱溶接時のHAZ靭性を向上させるため、0.00
04%以上添加する。一方、過量の添加は溶接性や低温
靭性を損なうため、0.01%以下に制限する。
Mg forms a fine oxide in the molten steel stage,
In order to improve the HAZ toughness during large heat input welding, 0.00
Add at least 04%. On the other hand, excessive addition impairs weldability and low-temperature toughness, and is therefore limited to 0.01% or less.

【0037】RemとCaはSの無害化に有効である
が、添加量が少ないとSが有害のまま残り、過度の添加
は靭性を損なうため、Rem:0.002〜0.10
%、Ca:0.0002〜0.0030%の範囲で添加
する。
Rem and Ca are effective in detoxifying S. However, if the added amount is small, S remains harmful, and excessive addition impairs toughness.
%, Ca: 0.0002 to 0.0030%.

【0038】[0038]

【実施例】実施例に用いた供試鋼の化学成分を表1、製
造条件を表2、供試鋼の表層部組織状態、及び機械的性
質を表3に示す。なお等軸αの平均粒径、面積率は鋼板
断面のSEM写真、光学顕微鏡写真を用いて測定し、集
合組織コロニーの平均短軸径はテンパーカラー法により
現出させた組織の光学顕微鏡写真から測定した。集合組
織の(100)面強度は、表層部から圧延面に平行に採
取したサンプルを用いて、X線正極点図法及び逆極点図
法により求めた。板厚方向の破壊特性は、広幅引張試験
における破断応力を供試鋼の引張強度で除した値(σ/
TS)で表し、アレスト性能は温度勾配型ESSO試験
における0℃での値(Kca(0℃) )で表した。
EXAMPLES Table 1 shows the chemical composition of the test steel used in the examples, Table 2 shows the production conditions, and Table 3 shows the surface layer structure and mechanical properties of the test steel. The average particle diameter and area ratio of the equiaxed α were measured using a SEM photograph and an optical micrograph of the cross section of the steel sheet, and the average minor axis diameter of the textured colonies was obtained from the optical micrograph of the structure revealed by the temper color method. It was measured. The (100) plane strength of the texture was determined by an X-ray positive pole figure and an inverse pole figure using a sample taken from the surface layer in parallel with the rolled surface. The fracture characteristic in the thickness direction is a value obtained by dividing the fracture stress in the wide tensile test by the tensile strength of the test steel (σ /
TS), and the arrest performance was represented by a value (Kca (0 ° C.)) at 0 ° C. in a temperature gradient type ESSO test.

【0039】実施例番号1〜8は本発明例であり、成
分、製造条件、表層部組織が所定の条件を満足している
ため、優れたアレスト性能と板厚方向破壊特性を示す。
Examples Nos. 1 to 8 are examples of the present invention, and exhibit excellent arrest performance and sheet thickness direction fracture characteristics because the components, manufacturing conditions and surface layer structure satisfy predetermined conditions.

【0040】一方、番号9〜16は比較例であり、表の
下線部が本発明範囲を満足していないため、アレスト性
能と板厚方向破壊特性の少なくともどちらかが劣下して
いる。すなわち、比較例9、15は圧延温度が低いか圧
下率が過大であるため、集合組織が過度に発達し、板厚
方向破壊特性が劣下する。比較例10は表層部組織の厚
みが不足しているためアレスト性能が劣る。比較例11
は冷却停止温度が高く板厚方向の温度差が小さいため、
通常の二相域圧延のように等軸α面積率が小さく、板厚
方向特性が劣下している。比較例12,13,14は圧
延温度が高いか、所定の温度域での圧下率が小さいため
に、等軸α粒径が大きいか、または集合組織の発達が不
十分であり、アレスト性能が劣る。比較例16はCが本
発明の範囲から外れているため、両特性ともに劣ってい
る。
On the other hand, Nos. 9 to 16 are comparative examples. Since the underlined portions in the table do not satisfy the range of the present invention, at least one of the arrest performance and the breaking property in the thickness direction is inferior. That is, in Comparative Examples 9 and 15, since the rolling temperature is low or the rolling reduction is excessive, the texture is excessively developed, and the fracture properties in the thickness direction deteriorate. In Comparative Example 10, the arrest performance was inferior because the thickness of the surface layer structure was insufficient. Comparative Example 11
Because the cooling stop temperature is high and the temperature difference in the thickness direction is small,
As in ordinary two-phase zone rolling, the equiaxed α area ratio is small, and the properties in the thickness direction are inferior. In Comparative Examples 12, 13, and 14, the rolling temperature is high, or the rolling reduction in a predetermined temperature range is small, so that the equiaxed α-particle size is large, or the texture is insufficiently developed, and the arrest performance is poor. Inferior. Comparative Example 16 is inferior in both properties because C is out of the range of the present invention.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】本発明によれば、優れたアレスト特性と
板厚方向破壊特性を有する鋼材を効率的かつ確実に提供
することができる。その結果、高アレスト鋼の建築、橋
梁、海洋構造物等への適用拡大が可能となる。また、本
発明で得られた鋼板を用いた鋼管、コラム等の二次加工
品、あるいは形鋼への適用も可能である。さらに、適用
される大型鋼構造物の安全性の向上等、産業上の効果は
極めて大きい。
According to the present invention, it is possible to efficiently and reliably provide a steel material having excellent arrest characteristics and fracture characteristics in the thickness direction. As a result, it is possible to expand the application of high arrest steel to buildings, bridges, offshore structures, and the like. Further, the present invention can also be applied to a secondary processed product such as a steel pipe or a column using the steel sheet obtained in the present invention, or a shaped steel. Furthermore, industrial effects such as improvement in safety of large steel structures to be applied are extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(100)面強度比とアレスト特性、板厚方向
破壊特性との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a (100) plane strength ratio, an arrest property, and a fracture property in a thickness direction.

【図2】集合組織コロニーの平均短軸径とアレスト特
性、板厚方向破壊特性との関係を示す図である。
FIG. 2 is a graph showing the relationship between the average minor axis diameter of a textured colony, arrest characteristics, and plate thickness direction fracture characteristics.

【図3】平均等軸α粒径と板厚方向破壊特性との関係を
示す図である。
FIG. 3 is a diagram showing a relationship between an average equiaxed α-particle diameter and a fracture characteristic in a thickness direction.

【図4】等軸α面積率と板厚方向破壊特性との関係を示
す図である。
FIG. 4 is a diagram illustrating a relationship between an equiaxed α area ratio and a fracture characteristic in a thickness direction.

【図5】板厚方向破壊特性を評価するための広幅引張試
験体の形状、寸法を示す図である。
FIG. 5 is a diagram showing the shape and dimensions of a wide tensile test specimen for evaluating the thickness direction fracture characteristics.

フロントページの続き (72)発明者 大谷 潤 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐵所内 (72)発明者 井上 健裕 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA12 AA14 AA15 AA16 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 AA40 CA01 CA02 CB01 CB02 CC02 CC03 CD02 CF01 CF02 Continuing from the front page (72) Inventor Jun Otani Oishi, Oita-shi 1st place in Oita Works Nippon Steel Corporation (72) Inventor Takehiro Inoue 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division F term (reference) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA12 AA14 AA15 AA16 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 AA40 CA01 CA02 CB01 CB02 CC02 CC02 CF01 CF02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.02〜0.2%、 Si:0.01〜1.0%、 Mn:0.30〜2.0%、 Al:0.002〜0.10%、 N :0.001〜0.01%、 P :0.01%以下、 S :0.01%以下 を含有し、残部がFeおよび不可避的不純物よりなる鋼
材で、表層から板厚の少なくとも5%以上の領域におい
て、平均粒径3μm以下の等軸フェライト粒が面積率に
して20%以上有し、しかも伸長フェライト粒を主体と
し、平均短軸粒径が2〜5μmの集合組織コロニーを有
し、かつ(100)面強度比が1.5〜4.0を有する
ことを特徴とする脆性き裂伝播停止特性と板厚方向破壊
特性の優れた鋼材。
C .: 0.02 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.002 to 0. 10%, N: 0.001 to 0.01%, P: 0.01% or less, S: 0.01% or less, the balance being Fe and unavoidable impurities. Textured colonies having at least 5% or more of equiaxed ferrite grains having an average grain size of 3 μm or less in an area ratio of 20% or more, and mainly composed of elongated ferrite grains and having an average short axis grain size of 2 to 5 μm. And a (100) plane strength ratio of 1.5 to 4.0, which is excellent in brittle crack propagation arrestability and thickness direction fracture characteristics.
【請求項2】 質量%でさらに、 Cu:0.01〜2.0%、 Ni:0.01〜10.0%、 Cr:0.01〜10.0%、 Mo:0.01〜3.0%、 B :0.0002〜0.0030% の1種または2種以上を含有することを特徴とする請求
項1記載の脆性き裂伝播停止特性と板厚方向破壊特性の
優れた鋼材。
2. In mass%, Cu: 0.01 to 2.0%, Ni: 0.01 to 10.0%, Cr: 0.01 to 10.0%, Mo: 0.01 to 3% 2. The steel material according to claim 1, wherein the steel material has one or more of B: 0.0002 to 0.0030%. .
【請求項3】 質量%でさらに、 Ti:0.002〜0.10%、 Nb:0.002〜0.05%、 V :0.005〜0.20% の1種または2種以上を含有することを特徴とする請求
項1または2記載の脆性き裂伝播停止特性と板厚方向破
壊特性の優れた鋼材。
3. In mass%, one or more of Ti: 0.002 to 0.10%, Nb: 0.002 to 0.05%, V: 0.005 to 0.20% The steel material according to claim 1 or 2, wherein the steel material has excellent brittle crack propagation arrestability and thickness direction fracture characteristics.
【請求項4】 質量%でさらに、 Mg:0.0004〜0.01% を含有することを特徴とする請求項1〜3のいずれか1
項に記載の脆性き裂伝播停止特性と板厚方向破壊特性の
優れた鋼材。
4. The method according to claim 1, further comprising Mg: 0.0004 to 0.01% by mass%.
A steel material excellent in brittle crack propagation arrestability and plate thickness direction fracture characteristics as described in the item.
【請求項5】 質量%でさらに、 Rem:0.002〜0.10%、 Ca:0.0002〜0.0030% の1種または2種を含有することを特徴とする請求項1
〜4のいずれか1項に記載の脆性き裂伝播停止特性と板
厚方向破壊特性の優れた鋼材。
5. The composition according to claim 1, further comprising one or more of Rem: 0.002 to 0.10% and Ca: 0.0002 to 0.0030% by mass%.
5. A steel material excellent in brittle crack propagation arrestability and thickness direction fracture characteristics according to any one of the above items 4 to 4.
【請求項6】 請求項1〜5のいずれか1項に記載の成
分からなる鋼片を、Ac3 〜1200℃に加熱した後、
表面より鋼片厚中心方向に鋼片厚の少なくとも5%以上
の表層領域がAr3 以下となるまで2℃/s以上の冷却
速度で冷却した後、該表層領域を復熱させる過程におい
て、Ac1 〜Ac1 +70℃の温度域での累積圧下率が
30〜70%となる圧延を施すことを特徴とする脆性き
裂伝播停止特性と板厚方向破壊特性の優れた鋼材の製造
方法。
6. A steel slab comprising the components according to claim 1 is heated to Ac3 to 1200 ° C.
After cooling at a cooling rate of 2 ° C./s or more until the surface layer region of at least 5% or more of the slab thickness from the surface to the center of the slab thickness becomes Ar3 or less, in the process of reheating the surface layer region, Ac1 to A method for producing a steel material having excellent brittle crack propagation arrestability and thickness direction fracture characteristics, characterized in that rolling is performed so that the cumulative rolling reduction in the temperature range of Ac1 + 70 ° C is 30 to 70%.
【請求項7】 圧延終了後、引き続き板厚平均で2℃/
s以上の冷却速度で加速冷却を行うことを特徴とする請
求項6記載の脆性き裂伝播停止特性と板厚方向破壊特性
の優れた鋼材の製造方法。
7. After the end of rolling, the average of the thickness is 2 ° C. /
The method according to claim 6, wherein accelerated cooling is performed at a cooling rate of not less than s.
【請求項8】 加速冷却終了後、Ac1 以下の温度で焼
戻しすることを特徴とする請求項7記載の脆性き裂伝播
停止特性と板厚方向破壊特性の優れた鋼材の製造方法。
8. The method according to claim 7, wherein tempering is performed at a temperature of Ac1 or less after the completion of the accelerated cooling.
JP2001067396A 2000-05-02 2001-03-09 Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method Withdrawn JP2002020835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067396A JP2002020835A (en) 2000-05-02 2001-03-09 Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-133833 2000-05-02
JP2000133833 2000-05-02
JP2001067396A JP2002020835A (en) 2000-05-02 2001-03-09 Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method

Publications (1)

Publication Number Publication Date
JP2002020835A true JP2002020835A (en) 2002-01-23

Family

ID=26591451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067396A Withdrawn JP2002020835A (en) 2000-05-02 2001-03-09 Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method

Country Status (1)

Country Link
JP (1) JP2002020835A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241581A (en) * 2005-03-07 2006-09-14 Asahi Kasei Construction Materials Co Ltd Pillar-beam joining hardware made of cast steel having excellent weldability and impact resistance
JP2007098441A (en) * 2005-10-05 2007-04-19 Nippon Steel Corp Welded structure excellent in brittle crack propagation resistance
JP2007327137A (en) * 2006-05-12 2007-12-20 Jfe Steel Kk Thick steel plate having excellent brittle crack propagation stopping property in fillet and cross weld zone and its production method
JP2008111167A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Thick steel plate with excellent brittle crack propagation-arresting property, and its manufacturing method
JP2008179878A (en) * 2006-12-28 2008-08-07 Jfe Steel Kk High-strength thick steel plate superior in brittle crack propagation preventing characteristic, and its manufacturing method
JP2008214653A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same
JP2008214652A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk High strength thick steel plate for structural purpose having excellent brittle crack propagation arrest property, and method for producing the same
CN105385947A (en) * 2015-11-26 2016-03-09 河北钢铁股份有限公司承德分公司 Steel for vanadium-microalloying 600 MPa high-strength packing belt and production method
WO2019124809A1 (en) 2017-12-24 2019-06-27 주식회사 포스코 Structural steel having excellent brittle crack propagation resistance, and manufacturing method therefor
KR20190077785A (en) 2017-12-26 2019-07-04 주식회사 포스코 High strength steel for structure having excellent fatigue crack arrestability and manufacturing method thereof
CN110387504A (en) * 2019-07-23 2019-10-29 舞阳钢铁有限责任公司 A kind of thickness limit faces hydrogen chrome molybdenum steel plate and its production method
WO2020130515A2 (en) 2018-12-19 2020-06-25 주식회사 포스코 Structural steel having excellent brittle fracture resistance and method for manufacturing same
WO2020130436A2 (en) 2018-12-19 2020-06-25 주식회사 포스코 High-strength structural steel having excellent cold bendability, and manufacturing method therefor
CN111349850A (en) * 2018-12-24 2020-06-30 宝山钢铁股份有限公司 High-corrosion-resistance weather-resistant steel and manufacturing method thereof
WO2022149365A1 (en) * 2021-01-07 2022-07-14 Jfeスチール株式会社 Steel sheet pile and manufacturing method therefor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241581A (en) * 2005-03-07 2006-09-14 Asahi Kasei Construction Materials Co Ltd Pillar-beam joining hardware made of cast steel having excellent weldability and impact resistance
JP2007098441A (en) * 2005-10-05 2007-04-19 Nippon Steel Corp Welded structure excellent in brittle crack propagation resistance
JP2007327137A (en) * 2006-05-12 2007-12-20 Jfe Steel Kk Thick steel plate having excellent brittle crack propagation stopping property in fillet and cross weld zone and its production method
JP2008111167A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Thick steel plate with excellent brittle crack propagation-arresting property, and its manufacturing method
JP2008179878A (en) * 2006-12-28 2008-08-07 Jfe Steel Kk High-strength thick steel plate superior in brittle crack propagation preventing characteristic, and its manufacturing method
JP2008214652A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk High strength thick steel plate for structural purpose having excellent brittle crack propagation arrest property, and method for producing the same
JP2008214653A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same
CN105385947A (en) * 2015-11-26 2016-03-09 河北钢铁股份有限公司承德分公司 Steel for vanadium-microalloying 600 MPa high-strength packing belt and production method
WO2019124809A1 (en) 2017-12-24 2019-06-27 주식회사 포스코 Structural steel having excellent brittle crack propagation resistance, and manufacturing method therefor
KR20190077183A (en) 2017-12-24 2019-07-03 주식회사 포스코 Steel for structure having superior resistibility of brittle crack arrestability and manufacturing method thereof
US11572600B2 (en) 2017-12-24 2023-02-07 Posco Co., Ltd Structural steel having excellent brittle crack propagation resistance, and manufacturing method therefor
KR20190077785A (en) 2017-12-26 2019-07-04 주식회사 포스코 High strength steel for structure having excellent fatigue crack arrestability and manufacturing method thereof
WO2019132262A1 (en) 2017-12-26 2019-07-04 주식회사 포스코 High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor
US11591677B2 (en) 2017-12-26 2023-02-28 Posco Co., Ltd High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor
EP3901306A4 (en) * 2018-12-19 2021-10-27 Posco Structural steel having excellent brittle fracture resistance and method for manufacturing same
KR20200076804A (en) 2018-12-19 2020-06-30 주식회사 포스코 High strength steel for a structure having excellent cold bendability and manufacturing method for the same
KR20200076791A (en) 2018-12-19 2020-06-30 주식회사 포스코 High strength steel for a structure having excellent resistance to brittle fracture and manufacturing method for the same
WO2020130436A2 (en) 2018-12-19 2020-06-25 주식회사 포스코 High-strength structural steel having excellent cold bendability, and manufacturing method therefor
EP3901305A4 (en) * 2018-12-19 2021-10-27 Posco High-strength structural steel having excellent cold bendability, and manufacturing method therefor
WO2020130515A2 (en) 2018-12-19 2020-06-25 주식회사 포스코 Structural steel having excellent brittle fracture resistance and method for manufacturing same
CN111349850A (en) * 2018-12-24 2020-06-30 宝山钢铁股份有限公司 High-corrosion-resistance weather-resistant steel and manufacturing method thereof
CN110387504A (en) * 2019-07-23 2019-10-29 舞阳钢铁有限责任公司 A kind of thickness limit faces hydrogen chrome molybdenum steel plate and its production method
WO2022149365A1 (en) * 2021-01-07 2022-07-14 Jfeスチール株式会社 Steel sheet pile and manufacturing method therefor
JPWO2022149365A1 (en) * 2021-01-07 2022-07-14
JP7323056B2 (en) 2021-01-07 2023-08-08 Jfeスチール株式会社 Steel sheet pile and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4252949B2 (en) Low yield ratio high-tensile steel sheet with small acoustic anisotropy and excellent weldability, and method for producing the same
JP2002020835A (en) Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method
JP3499084B2 (en) Low yield ratio high tensile strength steel for construction with excellent brittle crack arrestability and method of manufacturing the same
JP4630158B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2003119543A (en) Steel material for welded structure with little degradation of toughness caused by plastic strain, and manufacturing method therefor
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP2003221619A (en) Method for manufacturing thick steel plate superior in arresting characteristics and ductile-fracture property
JPS5952687B2 (en) Manufacturing method of tempered high-strength steel plate with excellent low-temperature toughness
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same
JP2000192140A (en) Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH10147845A (en) Steel plate with high fatigue strength, and its production
JP2003277829A (en) Method of producing high toughness, high tensile strength steel
JP2002363642A (en) Method for producing rolled wide flange shape having low yield ratio and excellent toughness
JP2001294984A (en) Fire resistant rolled steel and its producing method
JP2655956B2 (en) Manufacturing method of low yield ratio refractory steel sheet for building structure
JP3475866B2 (en) Architectural steel with excellent earthquake resistance and method of manufacturing the same
JPH0734123A (en) Production of steel excellent in fire resistance and small in ultrasonic wave anisotopy
JPH07286233A (en) Low yield ratio steel for building excellent in fire resistance and its production
JP3526702B2 (en) Steel plate for high tensile welded structure excellent in fatigue strength of welded joint and method for producing the same
JPH07207336A (en) Production of refractory steel products for building structural purpose
JP2000336428A (en) Manufacture of steel plate excellent in brittle fracture arrest characteristic
JP3911834B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513