JP2655956B2 - Manufacturing method of low yield ratio refractory steel sheet for building structure - Google Patents

Manufacturing method of low yield ratio refractory steel sheet for building structure

Info

Publication number
JP2655956B2
JP2655956B2 JP3244232A JP24423291A JP2655956B2 JP 2655956 B2 JP2655956 B2 JP 2655956B2 JP 3244232 A JP3244232 A JP 3244232A JP 24423291 A JP24423291 A JP 24423291A JP 2655956 B2 JP2655956 B2 JP 2655956B2
Authority
JP
Japan
Prior art keywords
temperature
yield ratio
steel sheet
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3244232A
Other languages
Japanese (ja)
Other versions
JPH0559433A (en
Inventor
清 内田
裕 岡
正徳 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3244232A priority Critical patent/JP2655956B2/en
Publication of JPH0559433A publication Critical patent/JPH0559433A/en
Application granted granted Critical
Publication of JP2655956B2 publication Critical patent/JP2655956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建築構造物に使用され
る50キロ級鋼板の製造方法に関し、とくに常温(室
温)における強度、靭性および溶接性においてJIS規
格構造用鋼(例えばSM50)と同等の特性値を維持し
た上で、常温における降伏比の低下、および高温におけ
る耐力の一層の向上を図った建築構造用低降伏比耐火鋼
板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a 50 kg class steel sheet used for a building structure, and particularly to a JIS standard structural steel (for example, SM50) in strength, toughness and weldability at room temperature (room temperature). The present invention relates to a method for producing a low yield ratio refractory steel plate for a building structure in which a yield ratio is reduced at ordinary temperature and a yield strength at high temperature is further improved while maintaining equivalent characteristic values.

【0002】[0002]

【従来の技術】従来から建築構造用鋼材としては、JI
SG−3106「溶接構造用圧延鋼材」などに規定され
ている鋼材が使用されている。しかし、この種の鋼材は
350℃以上の高温にさらされると、耐力が著しく低下
するので、例えば火災等の場合でも鋼材の温度が350
℃を超えないように耐火被覆を施して使用するように法
律によって義務づけられている。このような耐火被覆を
施工すると、建築コストを大幅に上昇させるだけでな
く、支柱などの占有面積の増大を招き、居住空間の有効
利用を大きく阻害する要因となる。以上のような事情に
かんがみ、従来から、耐火被覆処理を軽減または削減す
るため、高温においても高い耐力を有する鋼材およびそ
の製造方法については、種々の検討がなされている。
2. Description of the Related Art Conventionally, steel materials for building structures have been JI.
Steel materials specified in SG-3106 “Rolled steel materials for welded structures” and the like are used. However, when this kind of steel is exposed to a high temperature of 350 ° C. or more, the proof stress is significantly reduced.
It is required by law to use fireproof coatings that do not exceed ° C. When such a fireproof coating is applied, not only does construction cost increase significantly, but also the occupied area of pillars and the like increases, which is a factor that greatly impairs the effective use of living space. In view of the circumstances described above, various studies have been made on steel materials having high proof stress even at high temperatures and methods of manufacturing the same in order to reduce or reduce the refractory coating treatment.

【0003】例えば、特開平2−77523号公報など
で、高温においても常温においても高い耐力を有し、し
かも常温特性はJIS規格構造用鋼(SM50)と同一
である建築構造用低降伏比耐火鋼が提案されている。し
かし、これらの鋼、特に50キロ級の鋼はいずれも高M
o含有を特徴としているため、焼き入れ性が良好であ
り、したがって、熱間圧延後の冷却を空冷で行ってもベ
イナイト単相組織になってしまう。その結果、常温にお
ける降伏比が高くなり、塑性変形能が低下するという欠
点がしばしば発生する。
[0003] For example, Japanese Unexamined Patent Publication No. 2-77523 discloses a low yield ratio refractory for architectural structures which has a high proof stress both at high temperatures and ordinary temperatures, and has the same ordinary temperature characteristics as JIS standard structural steel (SM50). Steel has been proposed. However, these steels, especially those of the 50 kg class, all have high M
Since it is characterized by containing o, the quenchability is good, and therefore, even if cooling after hot rolling is performed by air cooling, it becomes a bainite single phase structure. As a result, a drawback that the yield ratio at room temperature increases and the plastic deformability decreases often occurs.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の高温
用低合金鋼に比べて、溶接性に優れ、また、従来の溶接
構造用鋼よりも高温強度(特に降伏強さまたは耐力)が
高く、かつ、常温の降伏比が低く、しかも常温強度、靭
性などは同等の特性を有する建築構造用低降伏比耐火鋼
板の製造方法を提案することを課題とするものである。
DISCLOSURE OF THE INVENTION The present invention is superior in weldability to conventional low-alloy steels for high temperatures, and has higher high-temperature strength (particularly, yield strength or proof stress) than conventional welded structural steels. It is an object of the present invention to propose a method for producing a refractory steel sheet having a low yield ratio for a building structure, which has a high yield ratio at room temperature and a low strength at room temperature, and has the same properties as room temperature strength and toughness.

【0005】[0005]

【課題を解決するための手段】本発明は、重量%で、
C:0.02〜0.15%、Si:0.40%以下、M
n:0.80〜2.00%、P:0.020%以下、
S:0.015%以下を含み、かつ、Mo:0.15〜
0.80%、V:0.005〜0.30%、Nb:0.
005〜0.10%、Ti:0.005〜0.250%
のうちの1種以上を含有する鋼スラブを、1000℃以
上に加熱し、ついで熱間圧延を900℃以上の温度で終
了し、空冷した後、AC1〜AC3点間の2相域温度に再加
熱し、ついで冷却する2相域再加熱焼き入れ法で処理す
ることを特徴とする建築構造用低降伏比耐火鋼板の製造
方法であり、また、前記鋼スラブが、さらに重量%でC
u:0.50%以下、Ni:1.00%以下およびB:
0.0003〜0.0030%のうちの1種以上を含有
してもよい。
SUMMARY OF THE INVENTION The present invention provides, in weight percent,
C: 0.02 to 0.15%, Si: 0.40% or less, M
n: 0.80 to 2.00%, P: 0.020% or less,
S: 0.015% or less, and Mo: 0.15%
0.80%, V: 0.005 to 0.30%, Nb: 0.
005 to 0.10%, Ti: 0.005 to 0.250%
2-phase region temperature between a steel slab containing one or more, is heated to above 1000 ° C., then terminated at a temperature of at least 900 ° C. The hot rolling, after cooling, A C1 to A C3 point of And then subjecting the steel slab to reheating and then cooling by a two-phase region reheating quenching method, wherein the steel slab further comprises C by weight%.
u: 0.50% or less, Ni: 1.00% or less, and B:
One or more of 0.0003 to 0.0030% may be contained.

【0006】[0006]

【作用】発明者等は、前述の課題を解決すべく種々研究
および実験を進めた結果、大略以下のような知見をえる
にいたった。 Mo、V、NbおよびTiの炭化物の析出強化を活用
することによって高温耐力を高めることができる。 (α+γ)2相域で再加熱処理を施すことによって前
記析出強化鋼においても常温の降伏比を著しく低下する
ことができる。 (α+γ)2相域で再加熱処理した鋼材の高温強度
は、再加熱処理前の組織をベイナイトもしくはマルテン
サイトを含む微細基地組織とすることによって著しく向
上することができる。 本発明は、前記、およびの知見を総合的に活用す
ることによって、常温における低降伏比と、高温強度と
を両立させて、建築構造用低降伏比耐火鋼板の製造に成
功したものである。
The present inventors have conducted various studies and experiments to solve the above-mentioned problems, and as a result, have obtained the following findings. By utilizing the precipitation strengthening of carbides of Mo, V, Nb and Ti, the high temperature proof stress can be increased. By performing the reheating treatment in the (α + γ) two-phase region, the yield ratio at room temperature can be significantly reduced even in the precipitation-strengthened steel. The high-temperature strength of the steel material reheated in the (α + γ) two-phase region can be significantly improved by changing the structure before the reheat treatment to a fine matrix structure containing bainite or martensite. The present invention has succeeded in producing a low-yield-ratio fire-resistant steel sheet for building structures by achieving a balance between a low yield ratio at normal temperature and high-temperature strength by comprehensively utilizing the above findings.

【0007】以下、本発明にかかる建築構造用低降伏比
耐火鋼板の各成分の限定理由およびその作用について詳
細に説明する。 C:0.02〜0.15% Cは所定の強度を確保するために添加するが、0.02
%未満ではその添加効果が小さく、一方、0.15%を
こえると溶接性、靭性の劣化を招く。したがってCの含
有量は0.02〜0.15%の範囲に限定した。 Si:0.40%以下 Siは、常温強度の向上のために添加する。しかし、
0.40%をこえると溶接熱影響部靱性が低下するので
0.40%以下に限定した。 Mn:0.80〜2.00% 本発明の2相域再加熱焼き入れ法では、高い高温強度を
確保するためには、再加熱処理前の組織をベイナイトも
しくはマルテンサイトを含む微細基地組織としておくこ
とが必要である。そのためにはMnは0.80%以上の
添加が必要となる。しかし、2.00%を超えると溶接
性の低下が著しくなる。したがってMnの含有量は0.
80〜2.00%に限定した。
Hereinafter, the reasons for limiting each component of the low yield ratio refractory steel sheet for a building structure according to the present invention and the operation thereof will be described in detail. C: 0.02 to 0.15% C is added to secure a predetermined strength.
%, The effect of addition is small. On the other hand, if it exceeds 0.15%, weldability and toughness are deteriorated. Therefore, the content of C is limited to the range of 0.02 to 0.15%. Si: 0.40% or less Si is added to improve the room temperature strength. But,
If it exceeds 0.40%, the toughness of the heat-affected zone of the weld decreases, so it was limited to 0.40% or less. Mn: 0.80 to 2.00% In the two-phase region reheating quenching method of the present invention, in order to ensure high high-temperature strength, the structure before the reheating treatment is defined as a fine matrix structure containing bainite or martensite. It is necessary to put. For that purpose, Mn needs to be added at 0.80% or more. However, when the content exceeds 2.00%, the weldability is significantly reduced. Therefore, the content of Mn is 0.1.
Limited to 80-2.00%.

【0008】 P:0.020%以下、S:0.015%以下 PおよびSは不可避的不純物として含有されるが、いす
れも鋼材の延性および靭性を低下させるので、その含有
量をそれぞれP:0.020%以下、S:0.015%
以下に限定した。 Mo:0.15〜0.80% Moは高温で安定な炭化物を析出し、析出強化による高
温強度の向上に極めて有効に作用する元素である。そし
て、高温の2相域再加熱焼き入れ処理後においても充分
な高温強度を確保するためには少なくとも0.15%の
添加が必要である。他方、0.80%をこえて添加する
と溶接性および靭性が著しく低下するので、その範囲を
0.15〜0.80%の範囲に限定した。
P: 0.020% or less, S: 0.015% or less P and S are contained as unavoidable impurities. However, since both decrease the ductility and toughness of steel materials, their contents are respectively P. : 0.020% or less, S: 0.015%
Limited to the following. Mo: 0.15 to 0.80% Mo is an element that precipitates carbides stable at high temperatures and acts extremely effectively to improve high-temperature strength by precipitation strengthening. In order to ensure sufficient high-temperature strength even after high-temperature two-phase region reheating quenching, addition of at least 0.15% is necessary. On the other hand, if added in excess of 0.80%, the weldability and toughness are significantly reduced, so the range was limited to the range of 0.15 to 0.80%.

【0009】V:0.005〜0.30% VもMo同様炭化物析出元素であり、析出強化による高
温強度の確保のためには少なくとも0.005%の添加
が必要である。他方、0.30%をこえて添加するとM
oと同様に溶接性および靭性が著しく低下するので、そ
の範囲を0.005〜0.30%の範囲に限定した。 Nb:0.005〜0.10% Nbも炭化物析出元素の1種であり、析出強化による高
温強度の確保のためには少なくとも0.005%の添加
が必要である。他方、0.10%をこえて添加すると溶
接性および靭性が著しく低下するので、その範囲を0.
005〜0.10%の範囲に限定した。 Ti:0.005〜0.250% Tiも炭化物析出元素の1種であり、析出強化による高
温強度の確保のためには少なくとも0.005%の添加
が必要である。他方、0.250%をこえて添加すると
溶接性および靭性が著しく低下するので、その範囲を
0.005〜0.250%の範囲に限定した。
V: 0.005 to 0.30% V is also a carbide precipitation element like Mo, and at least 0.005% must be added to secure high-temperature strength by precipitation strengthening. On the other hand, if added over 0.30%, M
Since the weldability and toughness are significantly reduced as in the case of o, the range is limited to the range of 0.005 to 0.30%. Nb: 0.005 to 0.10% Nb is also one of the carbide precipitation elements, and at least 0.005% of Nb is necessary to secure high-temperature strength by precipitation strengthening. On the other hand, if it is added in excess of 0.10%, the weldability and toughness are significantly reduced.
It was limited to the range of 005 to 0.10%. Ti: 0.005 to 0.250% Ti is also one of the carbide precipitation elements, and at least 0.005% of addition is necessary for securing high-temperature strength by precipitation strengthening. On the other hand, if added in excess of 0.250%, the weldability and toughness are significantly reduced, so the range was limited to the range of 0.005 to 0.250%.

【0010】Cu:0.50%以下、Ni:1.00%
以下、B:0.0003〜0.0030%の1種以上 Cu、NiおよびBはMnと同様に焼き入れ性の向上に
有効な元素であり、再加熱処理前の組織をベイナイトも
しくはマルテンサイトを含む微細基地組織とし、より高
い高温耐力を得るためにはCu、NiおよびBの1種以
上の添加は有効である。しかし、Cuは0.50%をこ
えて添加すると熱間加工性の劣化を招来するので、その
上限値を0.50%とした。Niは1.00%をこえて
添加すると、高価なものとなり、経済的に不利になるの
でその上限値を1.00%とした。Bは焼き入れ性向上
のためには、0.0003%以上の添加が必要である
が、0.0030%をこえて添加すると溶接性、延性お
よび靭性が著しく低下するので0.0003〜0.00
30%の範囲に限定した。
[0010] Cu: 0.50% or less, Ni: 1.00%
Hereinafter, B: at least one of 0.0003 to 0.0030% Cu, Ni and B are elements effective for improving hardenability similarly to Mn, and the structure before the reheating treatment is changed to bainite or martensite. It is effective to add one or more of Cu, Ni and B in order to obtain a fine base structure including and to obtain higher high temperature proof stress. However, if Cu is added in excess of 0.50%, the hot workability is degraded, so the upper limit is set to 0.50%. If Ni is added in excess of 1.00%, it becomes expensive and economically disadvantageous, so the upper limit was set to 1.00%. B is required to be added in an amount of 0.0003% or more in order to improve the hardenability. However, if added over 0.0030%, the weldability, ductility and toughness are significantly reduced. 00
The range was limited to 30%.

【0011】次にスラブ加熱温度等の製造条件の限定理
由およびその作用について詳細に説明する。 スラブ加熱温度:1000℃以上 Mo、V、NbおよびTiを充分に溶体化するにはスラ
ブ加熱温度は少なくとも1000℃以上が必要である。 熱間圧延終了温度:900℃以上 2相域再加熱前組織をベイナイトもしくはマルテンサイ
トを含む微細基地組織とするためには高温で圧延を終了
することが望ましい。900℃以下の温度域で強圧下を
加えると、圧延歪みの導入によってフェライト変態が促
進されるので高温強度の確保が困難になる。したがって
熱間圧延終了温度は900℃以上が必要である。
Next, the reasons for limiting the manufacturing conditions such as the slab heating temperature and the effects thereof will be described in detail. Slab heating temperature: 1000 ° C. or more To sufficiently form a solution of Mo, V, Nb and Ti, the slab heating temperature must be at least 1000 ° C. or more. Hot rolling end temperature: 900 ° C. or more In order to make the microstructure before reheating in the two-phase region into a fine matrix structure containing bainite or martensite, it is desirable to end rolling at a high temperature. When a strong pressure is applied in a temperature range of 900 ° C. or less, the transformation of ferrite is promoted by the introduction of rolling strain, so that it is difficult to secure high-temperature strength. Therefore, the hot rolling end temperature needs to be 900 ° C. or higher.

【0012】圧延後の冷却:空冷 圧延後の冷却は空冷とする。Cooling after rolling: air cooling The cooling after rolling is air cooling.

【0013】 熱処理:AC1〜AC3点間の2相域再加熱焼き入れ法 高温強度を確保し、かつ、常温引張における低降伏比を
確保するためには、圧延後、空冷し、さらに、AC1〜A
C3点間の2相域温度に再加熱し、冷却することが必要で
ある。すなわち、表1の鋼種Aの化学組成を有する連鑄
スラブを熱間圧延して製造した鋼板から試料を採取し
て、種々の温度に再加熱して30分保持後空冷し、常温
および600℃で引張強度試験を実施した。このときの
常温強度(YSRT、TSRT、YRRT)および高温強度
(YS600 )におよぼす再加熱温度の影響を図1にまと
めて示した。なお、このときの加熱、熱間圧延および冷
却条件は表2のA1に準じておこなった。
Heat treatment: Reheating and quenching in the two-phase region between A C1 and A C3 points In order to ensure high-temperature strength and a low yield ratio at room temperature tensile, air-cooling after rolling, and A C1 to A
It is necessary to reheat to the temperature in the two-phase region between points C3 and cool down. That is, samples were taken from a steel plate manufactured by hot rolling a continuous cast slab having the chemical composition of steel type A in Table 1, and reheated to various temperatures, held for 30 minutes, air-cooled, and then cooled to room temperature and 600 ° C. A tensile strength test was performed. The effects of the reheating temperature on the room temperature strength (YS RT , TS RT , YR RT ) and the high temperature strength (YS 600 ) are shown in FIG. The heating, hot rolling and cooling conditions at this time were performed according to A1 in Table 2.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】すなわち、常温において低YR値(≦80
%)が得られるのはAC1点以上の再加熱温度であり、6
00℃での高YS600 値(≧22kgf/mm2 )が得られる
のはAC3点以下の再加熱温度である。したがって、両者
を満足する再加熱温度は、AC1点以上AC3点以下の温度
に限定される。 冷却速度:空冷および水冷のいずれでもよいが、水冷に
よると、常温および高温強度を若干高める効果がえられ
る。 焼き戻し処理:2相域再加熱後、焼き戻し処理を施すこ
とによって常温におけるYS、YR値はわずかに上昇す
る。また、焼き戻し処理によって衝撃靭性が向上するが
600℃におけるYS値はほとんど変化しない。焼き
戻し温度は400〜600℃が好適である。
That is, at room temperature, a low YR value (≦ 80
%) Is obtained at a reheating temperature of A C1 or more,
A high YS 600 value at 00 ° C. (≧ 22 kgf / mm 2 ) is obtained at reheating temperatures below the A C3 point. Therefore, the reheating temperature that satisfies both conditions is limited to a temperature not lower than the AC1 point and not higher than the AC3 point. Cooling rate: Either air cooling or water cooling may be used, but water cooling has the effect of slightly increasing the room temperature and high temperature strength. Tempering process: After reheating in the two-phase region, by performing the tempering process, the YS and YR values at room temperature slightly increase. Further, the impact toughness is improved by the tempering treatment, but the YS value at 600 ° C. hardly changes. The tempering temperature is preferably from 400 to 600 ° C.

【0017】[0017]

【実施例】表1に示す種々の化学組成の鋼スラブを10
00℃以上に加熱し、厚板圧延によって板厚40〜60
mmの鋼板を900℃以上の温度で圧延を終了し、空冷
によって冷却した後、AC1点(本例では760℃)以
上、AC3点(本例では930℃)以下の温度に再加熱
し、30分保持後、空冷によって冷却した。以上のよう
にして調整した鋼板試料について常温および600℃に
おける引張特性を調査し、その結果を比較例とともに表
2にまとめて示した。ここで表2のA1〜A4は、表1
の化学組成表中の鋼種Aについて、加熱、圧延および再
加熱等の製造条件をかえたときの値である。鋼種A3、
A4、C2およびE2は、化学組成は本発明の範囲内に
あるが、A3は本発明による再加熱処理を施しておら
ず、そのために常温におけるYRRTが81%と高値を示
している例であり、またA4は再加熱温度が950℃と
不適切なため、YS600 値が20kgf/mm2 と低下した例
を示す。鋼種C2およびE2は圧延時の加熱温度および
圧延終了温度が低いためにYS600 値がそれぞれ17kg
f/mm2 、19kgf/mm2 と低下した例である。
EXAMPLE Steel slabs of various chemical compositions shown in Table 1 were
Heated to above 00 ° C and rolled to a plate thickness of 40-60
After rolling the steel sheet having a thickness of 900 mm or more at a temperature of 900 ° C. or more and cooling it by air cooling, it is reheated to a temperature of at least A C1 point (760 ° C. in this example) and at most A C3 point (930 ° C. in this example). After holding for 30 minutes, the mixture was cooled by air cooling. The tensile properties at room temperature and 600 ° C. were investigated for the steel sheet samples adjusted as described above, and the results are shown together with the comparative examples in Table 2. Here, A1 to A4 in Table 2 correspond to Table 1
Is a value obtained when manufacturing conditions such as heating, rolling, and reheating are changed for steel type A in the chemical composition table. Steel type A3,
A4, C2, and E2 are examples in which the chemical composition is within the scope of the present invention, but A3 has not been subjected to the reheating treatment according to the present invention, and as a result, the YR RT at room temperature shows a high value of 81%. In addition, A4 shows an example in which the YS 600 value was reduced to 20 kgf / mm 2 because the reheating temperature was 950 ° C., which was inappropriate. Steel types C2 and E2 have a YS 600 value of 17 kg each due to a low heating temperature during rolling and a low rolling end temperature.
This is an example in which f / mm 2 and 19 kgf / mm 2 are reduced.

【0018】鋼種GはMo、Cu、NiおよびB含有量
が低く、圧延後の焼き入れ性が不充分となり、高温強度
が著しく低下した例である。同様に鋼種Hは、Mn、C
u、NiおよびB含有量が極端に低いために、高温強度
が著しく低下した例である。また、鋼種Iは、Mo、
V、NbおよびTi含有量が低いため、高温強度が著し
く低下した例である。これに対して、鋼種A1,A2お
よびB,C1,D,E1,Fは、いずれもYS600 値が
22kgf/mm2 以上と高い高温強度を保持している。すな
わち、高温での耐力低下が小さく、YS600 /YSRT
60%以上に保持できている。また常温での引張特性は
現行のJIS G 3106に規定されているSM50
〜58級鋼の規格を満足すると同時に降伏比は75%以
下に抑えることができた。
Steel type G is an example in which the contents of Mo, Cu, Ni and B are low, the hardenability after rolling is insufficient, and the high-temperature strength is significantly reduced. Similarly, steel type H is Mn, C
This is an example in which the high-temperature strength is significantly reduced because the contents of u, Ni and B are extremely low. Steel type I is Mo,
This is an example in which the high-temperature strength is significantly reduced due to the low V, Nb and Ti contents. On the other hand, steel types A1 and A2 and B, C1, D, E1 and F all have high high-temperature strengths with YS 600 values of 22 kgf / mm 2 or more. That is, the decrease in proof stress at a high temperature is small, and YS 600 / YS RT can be maintained at 60% or more. The tensile properties at room temperature are the same as those of SM50 specified in the current JIS G 3106.
The yield ratio was able to be suppressed to 75% or less while satisfying the specifications of the ~ 58th grade steel.

【0019】[0019]

【発明の効果】本発明にかかる方法によって製造した建
築構造用低降伏比耐火鋼板は、常温での特性は従来の溶
接構造用圧延鋼板と同等であって、しかも高温での耐力
低下が少なく、高い高温強度を保持できる。したがっ
て、例えば建築施工時の耐火被覆の軽減または削減等の
大きな効果がえられる。
The low yield ratio refractory steel sheet for building structures manufactured by the method according to the present invention has the same properties at room temperature as a conventional rolled steel sheet for welded structures, and has a small decrease in proof stress at high temperatures. High high temperature strength can be maintained. Therefore, a great effect such as reduction or reduction of the fireproof coating at the time of building construction can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】常温および高温強度におよぼす再加熱処理温度
の影響を示すグラフである。
FIG. 1 is a graph showing the effect of reheating temperature on normal temperature and high temperature strength.

【符号の説明】[Explanation of symbols]

YS600 : 600℃における降伏強度(kgf/mm2) YSRT : 常温における降伏強度(kgf/mm2) TSRT : 常温における引張強度(kgf/mm2) YRRT : 常温における降伏比(%)YS 600 : Yield strength at 600 ° C. (kgf / mm 2 ) YS RT : Yield strength at normal temperature (kgf / mm 2 ) TS RT : Tensile strength at normal temperature (kgf / mm 2 ) YR RT : Yield ratio at normal temperature (%)

フロントページの続き (56)参考文献 特開 平5−339633(JP,A) 特開 平3−130319(JP,A)Continuation of the front page (56) References JP-A-5-339633 (JP, A) JP-A-3-130319 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.02〜0.15%、
Si:0.40%以下、Mn:0.80〜2.00%、
P:0.020%以下、S:0.015%以下を含み、
かつ、Mo:0.15〜0.80%、V:0.005〜
0.30%、Nb:0.005〜0.10%、Ti:
0.005〜0.250%のうちの1種以上を含有する
鋼スラブを、 1000℃以上に加熱し、ついで熱間圧延を900℃以
上の温度で終了し、空冷した後、AC1〜AC3点間の2相
域温度に再加熱し、ついで冷却する2相域再加熱焼き入
れ法で処理することを特徴とする建築構造用低降伏比耐
火鋼板の製造方法。
C .: 0.02 to 0.15% by weight,
Si: 0.40% or less, Mn: 0.80 to 2.00%,
P: 0.020% or less, S: 0.015% or less,
And Mo: 0.15 to 0.80%, V: 0.005 to
0.30%, Nb: 0.005 to 0.10%, Ti:
The steel slab containing one or more of 0.005 to 0.250%, heated above 1000 ° C., then exit the hot rolling at 900 ° C. or higher, after cooling, A C1 to A A method for producing a low yield ratio refractory steel sheet for a building structure, comprising reheating to a temperature in a two-phase region between the C3 points and then performing a two-phase reheating quenching method for cooling.
【請求項2】 前記鋼スラブが、さらに重量%でCu:
0.50%以下、Ni:1.00%以下およびB:0.
0003〜0.0030%のうちの1種以上を含有する
ことを特徴とする請求項1記載の建築構造用低降伏比耐
火鋼板の製造方法。
2. The steel slab further comprises Cu:
0.50% or less, Ni: 1.00% or less, and B: 0.
The method for producing a low yield ratio refractory steel sheet for building structures according to claim 1, wherein the steel sheet contains at least one of 0003 to 0.0030%.
JP3244232A 1991-08-30 1991-08-30 Manufacturing method of low yield ratio refractory steel sheet for building structure Expired - Fee Related JP2655956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3244232A JP2655956B2 (en) 1991-08-30 1991-08-30 Manufacturing method of low yield ratio refractory steel sheet for building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3244232A JP2655956B2 (en) 1991-08-30 1991-08-30 Manufacturing method of low yield ratio refractory steel sheet for building structure

Publications (2)

Publication Number Publication Date
JPH0559433A JPH0559433A (en) 1993-03-09
JP2655956B2 true JP2655956B2 (en) 1997-09-24

Family

ID=17115711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3244232A Expired - Fee Related JP2655956B2 (en) 1991-08-30 1991-08-30 Manufacturing method of low yield ratio refractory steel sheet for building structure

Country Status (1)

Country Link
JP (1) JP2655956B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305113A (en) * 1994-05-11 1995-11-21 Kobe Steel Ltd Production of low yield ratio thick fire resistant steel for building excellent in weldability
KR100605721B1 (en) * 2004-10-26 2006-08-01 주식회사 포스코 Method for manufacturing high strength low-alloy steel sheet by precipitation hardening

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737649B2 (en) * 1991-04-04 1995-04-26 新日本製鐵株式会社 Manufacturing method of fireproof steel plate for building with low yield ratio

Also Published As

Publication number Publication date
JPH0559433A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP3160329B2 (en) Manufacturing method of heat resistant high strength bolt
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JP2655956B2 (en) Manufacturing method of low yield ratio refractory steel sheet for building structure
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH07109521A (en) Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
KR100368553B1 (en) Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JP3126181B2 (en) Manufacturing method of steel for offshore structures with excellent fire resistance
JP2003160833A (en) Non-heat-treated thick steel plate with high toughness and high tension, and manufacturing method therefor
JP2002012939A (en) High tensile steel excellent in hot strength and its production method
JPH05125481A (en) High tensile strength steel material having high toughness and low yield ratio and its production
JP2546954B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JPH0756044B2 (en) Method for producing low yield ratio H-section steel with excellent fire resistance
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel
JP3127721B2 (en) Method for manufacturing low yield ratio steel for fire resistance
KR100370580B1 (en) Manufacturing method of steel sheet for constructing having high temperature strenth
JP2944806B2 (en) Low yield ratio refractory H-section steel excellent in base metal toughness and method for producing the same
JP2546953B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JP3007247B2 (en) Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JP3297090B2 (en) Processing method of high tensile strength steel with little increase in yield ratio

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees