JP3007247B2 - Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less - Google Patents

Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less

Info

Publication number
JP3007247B2
JP3007247B2 JP5274477A JP27447793A JP3007247B2 JP 3007247 B2 JP3007247 B2 JP 3007247B2 JP 5274477 A JP5274477 A JP 5274477A JP 27447793 A JP27447793 A JP 27447793A JP 3007247 B2 JP3007247 B2 JP 3007247B2
Authority
JP
Japan
Prior art keywords
less
steel
yield ratio
weldability
ts590n
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5274477A
Other languages
Japanese (ja)
Other versions
JPH07126743A (en
Inventor
譲 吉田
博 為広
征司 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5274477A priority Critical patent/JP3007247B2/en
Publication of JPH07126743A publication Critical patent/JPH07126743A/en
Application granted granted Critical
Publication of JP3007247B2 publication Critical patent/JP3007247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は溶接性の優れた降伏比8
0%以下のTS(引張強さ)590N/mm2 級高張力鋼の
製造法に関するもので、鉄鋼業においては厚板ミルに適
用することが最も好ましいが、ホットコイル、形鋼など
にも適用できる。
BACKGROUND OF THE INVENTION The present invention weldability excellent yield ratio 8
TS of 0% or less (tensile strength) 590N / mm This is related to the method of manufacturing high-grade steel of class 2 and is most preferably applied to thick plate mills in the steel industry, but also applicable to hot coils and section steels. it can.

【0002】[0002]

【従来の技術】従来、TS590N/mm2 級高張力鋼(以
下HT60と言う)は、B添加あるいは各種合金の多量
添加による高焼入性の鋼を、焼入焼戻処理することによ
って製造していた。しかし、このようにB添加や合金の
多量添加では、その溶接性が著しく劣り、現場溶接施工
時には溶接割れ防止の観点から、100℃以上の予熱が
必要とされ、施工能率の著しい低下および作業環境の悪
化を招いていた。一方で溶接性の良好なHT60として
ASTM A710鋼に代表されるCuの析出硬化を利
用した鋼が知られている。しかし、高層建築用鋼では地
震時にそのエネルギーを吸収し建物の倒壊を防ぐため降
伏比(YR)の低い鋼(YR≦80%)が要求される
が、Cu析出を利用した鋼では降伏比が高く、耐震性が
劣っていた。
2. Description of the Related Art Conventionally, TS590N / mm2 high-strength steel (hereinafter referred to as HT60) is manufactured by quenching and tempering a hardenable steel by adding B or adding a large amount of various alloys. I was However, the addition of B or the addition of a large amount of the alloy significantly deteriorates the weldability, and requires preheating of 100 ° C. or more from the viewpoint of preventing welding cracks at the time of on-site welding, resulting in a significant decrease in construction efficiency and work environment. Had worsened. On the other hand, a steel utilizing the precipitation hardening of Cu represented by ASTM A710 steel is known as HT60 having good weldability. However, high-rise building steel requires a low yield ratio (YR) steel (YR ≦ 80%) in order to absorb the energy during an earthquake and prevent the collapse of the building. High and poor earthquake resistance.

【0003】[0003]

【発明が解決しようとする課題】本発明は建築用HT6
0の安価な製造技術を提供するものである。本発明法に
基づいて製造したHT60は、小入熱溶接や拘束溶接
においても溶接割れが発生しにくく、溶接施工において
予熱を軽減あるいは省略することが可能であること、
本HT60を用いた建築物は地震のエネルギーを吸収し
優れた耐震性を有することなどの特徴を持つ。
SUMMARY OF THE INVENTION The present invention relates to an HT6 for architectural use.
0 inexpensive manufacturing technology. HT60 manufactured based on the method of the present invention is less likely to cause welding cracks even in small heat input welding and restraint welding, and can reduce or omit preheating in welding work.
A building using the HT60 has features such as absorbing earthquake energy and having excellent earthquake resistance.

【0004】[0004]

【課題を解決するための手段】本発明の具体的手段を下
記(1),(2)に示す。(1)重量比で C :0.04〜0.11%、 Si:0.5%以下、 Mn:0.6〜1.6%、 P :0.03%以下、 S :0.01%以下、 Cu:0.7〜1.2%、 Ni:0.30〜1.00%、 Cr:0.05〜0.50%、 Mo:0.05%以上0.20%未満、 Ti:0.005〜0.025%、Al:0.06%以下、 N :0.006%以下 を含有し、残部が鉄および不可避的不純物からなる実質
的にBを含有せず下記式1を満足する鋼を熱間圧延後、
750〜870℃の温度範囲に再加熱して焼入し、引き
続きAc1 変態点以下の温度範囲で焼戻処理することを
特徴とする厚み20mm以上75mm以下の溶接性の優れた
降伏比80%以下のTS590N/mm2 級高張力鋼の製造
法。
Means for Solving the Problems Specific means of the present invention are shown in the following (1) and (2). (1) C: 0.04 to 0.11%, Si: 0.5% or less, Mn: 0.6 to 1.6%, P: 0.03% or less, S: 0.01% by weight ratio Hereinafter, Cu: 0.7 to 1.2%, Ni: 0.30 to 1.00%, Cr: 0.05 to 0.50%, Mo: 0.05 % or more and less than 0.20% , Ti: 0.005 to 0.025%, Al: 0.06% or less, N: 0.006% or less, and the balance satisfies the following formula 1 without substantially containing B consisting of iron and unavoidable impurities. Hot rolling the steel to be
Excellent weldability with a thickness of 20 mm or more and 75 mm or less, characterized by being reheated to a temperature range of 750 to 870 ° C., quenched, and subsequently tempered in a temperature range of Ac 1 transformation point or less.
A method for producing TS590N / mm2 class 2 high strength steel with a yield ratio of 80% or less .

【0005】[0005]

【数2】 (Equation 2)

【0006】(2)前記(1)の成分に、重量比でさら
に、 Nb:0.01〜0.03%、 V :0.01〜0.05%、 Ca:0.001〜0.006% の1種または2種以上を含有することを特徴とする前記
(1)記載の厚み20mm以上75mm以下の溶接性の優れ
降伏比80%以下のTS590N/mm2 級高張力鋼の製
造法。
(2) Nb: 0.01 to 0.03%, V: 0.01 to 0.05%, Ca: 0.001 to 0.006 by weight ratio to the component (1). % Of one or more of the above
(1) preparation of TS590N / mm 2 class high strength steel of 20mm thick or more 75mm less weldability good yield ratio below 80%, wherein.

【0007】[0007]

【作用】以下、本発明について説明する。発明者らの研
究によれば、HT60の優れた溶接性と低降伏比を同時
に実現させるにはB無添加、焼入焼戻によるCuの析出
硬化とさらに鋼の成分を適切な焼入性に調整することが
必要であることを見いだした。また微量Ti添加、熱処
理条件の最適化により結晶粒を微細化した鋼では、Cu
による析出硬化を行っても、優れた低温靭性を示すこと
がわかった。
The present invention will be described below. According to the study of the inventors, in order to simultaneously realize the excellent weldability and low yield ratio of HT60, the addition of B, the precipitation hardening of Cu by quenching and tempering, and the further hardening of the steel components to appropriate hardenability. I found it necessary to adjust. Further, in steel in which crystal grains are refined by adding a small amount of Ti and optimizing heat treatment conditions, Cu
It was found that even when precipitation hardening was performed, excellent low-temperature toughness was exhibited.

【0008】HT60としての特性を得るために必要な
最低のCu量は0.7%である。しかし、1.2%を超
えるCuの添加ではYRを十分に低下させることが困難
となるため、その上限を1.2%とした。また、YR
80%以下にするためには鋼の焼入性を適切な範囲に調
整することが必要で、下記式1で示される指標にて1.
5〜2.5の範囲に調整する必要がある。
[0008] The minimum amount of Cu required for obtaining the characteristics as HT60 is 0.7%. However, since addition of Cu exceeding 1.2% makes it difficult to sufficiently lower YR, the upper limit is set to 1.2%. In addition, the YR
In order to reduce the hardness to 80% or less , it is necessary to adjust the hardenability of the steel to an appropriate range.
It is necessary to adjust to a range of 5 to 2.5.

【0009】[0009]

【数3】 その理由は、1.5未満では後述の2相組織化熱処理に
てYRが80%以下に低下せず、2.5を超えるとHT
60として強度オーバーが起こるためである。
(Equation 3) The reason is that if it is less than 1.5, the YR does not decrease to 80% or less by the two-phase structure heat treatment described below,
This is because the strength is over 60.

【0010】次に前述のようなCuの効果を十分に発揮
させ、YRを十分に低めるためには、製造法が適切でな
ければならない。このため熱間圧延後の熱処理条件を限
定する必要がある。まず熱間圧延後に750〜870℃
に再加熱後、焼入し、Ac1 以下の温度に再加熱して焼
戻処理する。750〜870℃に再加熱・焼入する理由
は、降伏比の低減のためである。一般にCuで析出硬化
した鋼はYRが著しく高い。そこで750〜870℃の
(γ+α)2相域に再加熱・焼入を行う。部分的にγ変
態させることによって未変態の領域は軟化、γ変態領域
は硬化してミクロ組織が2相化(軟らかい相と硬い相)
し、降伏比の低減が可能となる。再加熱温度が750℃
以下では、γに変態する領域が小さいために、前述の効
果が得られない。しかし、870℃を超えると大部分が
γ変態し目的とする2相組織が得られず低YR化が達成
できない。
Next, in order to sufficiently exert the effect of Cu as described above and sufficiently reduce YR, a manufacturing method must be appropriate. Therefore, it is necessary to limit the heat treatment conditions after hot rolling. 750-870 ° C after hot rolling
After the reheating, the steel is quenched, and reheated to a temperature of Ac 1 or less to perform a tempering treatment. The reason for reheating and quenching to 750 to 870 ° C. is to reduce the yield ratio. Generally, steel precipitation-hardened with Cu has a remarkably high YR. Therefore, reheating and quenching are performed in the (γ + α) two-phase region at 750 to 870 ° C. The untransformed region is softened by partial γ transformation, and the γ transformation region is hardened to form a two-phase microstructure (a soft phase and a hard phase).
Thus, the yield ratio can be reduced. Reheating temperature is 750 ℃
In the following, the above-mentioned effects cannot be obtained because the region transformed into γ is small. However, when the temperature exceeds 870 ° C., most of them undergo γ transformation, and the desired two-phase structure cannot be obtained, so that low YR cannot be achieved.

【0011】焼戻処理はCuの析出効果を発揮させるた
めに必須である。しかし、その温度がAc1 点を超える
と強度が著しく低下するので、Ac1 点以下としなけれ
ばならない(望ましい焼戻温度は450〜650℃であ
る)。しかし、Cuの添加量や製造法が適切であって
も、基本成分が適当でないとHT60としての優れた特
性が得られない。以下、この点について説明する。
The tempering treatment is indispensable for exhibiting the effect of depositing Cu. However, if the temperature exceeds the Ac 1 point, the strength is remarkably reduced. Therefore, the temperature must be lower than the Ac 1 point (a desirable tempering temperature is 450 to 650 ° C.). However, even if the addition amount of Cu and the production method are appropriate, excellent characteristics as HT60 cannot be obtained unless the basic components are appropriate. Hereinafter, this point will be described.

【0012】Cの下限0.04%は、母材および溶接部
の強度確保ならびにNb,Vなどの添加時に、これらの
効果を発揮させるための最小量である。しかしC量が多
すぎると溶接性の著しい劣化を招くので、上限を0.1
1%とした。Siは多く添加すると溶接性、HAZ靭性
を劣化させるため、上限を0.5%とした。鋼の脱酸は
Al,Tiのみでも十分であり、Siは必ずしも添加す
る必要はない。Mnは強度、靭性を確保する上で不可欠
な元素であり、その下限は0.6%である。しかしMn
量が多すぎると焼入性が増加して溶接性、HAZ靭性を
劣化させるだけでなく、連続鋳造スラブの中心偏析を助
長するので上限を1.6%とした。
The lower limit of 0.04% of C is a minimum amount for ensuring the strength of the base material and the welded portion and for exerting these effects when Nb, V and the like are added. However, if the amount of C is too large, the weldability is remarkably deteriorated.
1%. Since the addition of a large amount of Si deteriorates the weldability and the HAZ toughness, the upper limit is set to 0.5%. Al and Ti alone are sufficient for deoxidizing steel, and Si need not always be added. Mn is an element indispensable for securing strength and toughness, and its lower limit is 0.6%. But Mn
If the amount is too large, the hardenability increases and not only deteriorates the weldability and the HAZ toughness, but also promotes the center segregation of the continuously cast slab, so the upper limit was made 1.6%.

【0013】本発明鋼において不純物であるP,Sをそ
れぞれ0.03%,0.01%以下とした理由は、母
材、溶接部の低温靭性をより一層向上させるためであ
る。Pの低減は粒界破壊を防止し、S量の低減はMnS
による靭性の劣化を防止する。好ましいP,S量はそれ
ぞれ0.01%,0.005%以下である。Niは0.
30%以上で溶接性、HAZ靭性に悪影響を及ぼすこと
なく、母材の強度、靭性を向上させるほか、Cu−クラ
ックの防止にも効果がある。しかし、1.0%以上では
極めて高価になるため経済性を失うので、上限は1.0
%とした。Crは母材、溶接部の強度を高める元素で最
低でも0.05%以上が必要である。しかし、多すぎる
と溶接性やHAZ靭性を著しく劣化させるので、その上
限を0.50%とした。
The reason why the impurities P and S in the steel of the present invention are set to 0.03% and 0.01% respectively is to further improve the low-temperature toughness of the base material and the welded portion. The reduction of P prevents grain boundary destruction, and the reduction of S content is MnS
To prevent toughness degradation. Preferred P and S contents are 0.01% and 0.005% respectively. Ni is 0.
When it is 30% or more, it has the effect of improving the strength and toughness of the base material without adversely affecting the weldability and the HAZ toughness, and is also effective in preventing Cu-cracks. However, if it is 1.0% or more, it becomes extremely expensive and loses economy, so the upper limit is 1.0%.
%. Cr is an element that increases the strength of the base material and the welded portion, and requires at least 0.05% or more. However, if the content is too large, the weldability and the HAZ toughness are significantly deteriorated, so the upper limit is set to 0.50%.

【0014】Moは強度、靭性を共に向上させる元素
で、HT60には0.05%以上が必須である。しかし
多すぎると溶接性、HAZ靭性上好ましくなく、その上
限は0.20%未満である。Tiは炭窒化物を形成して
HAZ靭性を向上させる。Al量が少ない場合Tiの酸
化物を形成しHAZ靭性を向上させるが、0.005%
未満では効果がなく、0.025%を超えるとHAZ靭
性に好ましくない影響があるため、0.005〜0.0
25%に限定する。Alは一般に脱酸上鋼に含まれる元
素であるが、SiおよびTiによっても脱酸は行われる
ので本発明鋼については下限は限定しない。しかしAl
量が多くなると鋼の清浄度が悪くなり、溶接部の靭性が
劣化するので上限を0.06%とした。
Mo is an element that improves both strength and toughness, and HT60 must have 0.05% or more. However, if it is too large, it is not preferable in terms of weldability and HAZ toughness, and the upper limit is less than 0.20% . Ti forms a carbonitride to improve HAZ toughness. When the amount of Al is small, an oxide of Ti is formed to improve the HAZ toughness.
If it is less than 0.025%, there is no effect.
Limited to 25%. Al is generally an element contained in the deoxidized upper steel, but the lower limit is not limited for the steel of the present invention because deoxidation is also performed by Si and Ti. But Al
If the amount increases, the cleanliness of the steel deteriorates, and the toughness of the welded portion deteriorates. Therefore, the upper limit was made 0.06%.

【0015】Nは一般的に不可避的不純物として鋼中に
含まれるものであるが、Nb,Vと結合して炭窒化物を
形成して強度を増加させ、またTiNを形成して前述の
ようにHT60の性質を高める。このためN量として最
低0.001%が必要である。しかしながらN量が多く
なるとHAZ靭性の劣化や連続鋳造スラブの表面キズの
発生などを助長するので、その上限を0.006%とし
た。
N is generally contained in steel as an unavoidable impurity. However, N is combined with Nb and V to form carbonitride to increase the strength, and to form TiN to form N as described above. To enhance the properties of HT60. For this reason, at least 0.001% is required as the N amount. However, an increase in the amount of N promotes deterioration of HAZ toughness and generation of surface flaws in the continuously cast slab, so the upper limit is made 0.006%.

【0016】本発明鋼の基本成分は以上のとおりであ
り、十分に目的を達成できるが、さらに目的に対し特性
を高めるため、以下に述べる元素即ちNb,V,Caを
選択的に添加すると強度、靭性の向上について、さらに
好ましい結果が得られる。次に、前記添加元素とその添
加量について説明する。Nbは微細な炭窒化物を形成
し、強度を増加させ、またHAZ靭性を向上させる。し
かし0.01%以下では効果が少なく、0.03%を超
えるとYRを十分に低下させることが困難となる。
The basic components of the steel of the present invention are as described above, and the purpose can be sufficiently achieved. However, in order to further enhance the properties for the purpose, the elements described below, namely, Nb, V, and Ca are selectively added to increase the strength. As for the improvement in toughness, more preferable results are obtained. Next, the additional elements and the amounts of the elements will be described. Nb forms fine carbonitrides, increases strength, and improves HAZ toughness. However, if the content is less than 0.01%, the effect is small, and if it exceeds 0.03%, it becomes difficult to sufficiently lower the YR.

【0017】VはNbとほぼ同じ効果を持つ元素である
が、Nbに比較して析出硬化能はやや劣る。0.01%
以下では効果が少なく、0.05%を超えるとYRを十
分に低下させることが困難となる。Caは硫化物(Mn
S)の形態を制御し、シャルピー吸収エネルギーを増加
させ低温靭性を向上させる効果がある。しかしCa量は
0.001%未満では実用上効果がなく、0.006%
を超えるとCaO,CaSが多量に生成して大型介在物
となり、鋼の靭性のみならず清浄度も害し溶接性、耐ラ
メラテア性にも悪影響を与えるので、Ca添加量の範囲
を0.001〜0.006%とする。
V is an element having almost the same effect as Nb, but has a slightly lower precipitation hardening ability than Nb. 0.01%
Below, the effect is small, and if it exceeds 0.05%, it becomes difficult to sufficiently reduce YR. Ca is a sulfide (Mn
It has the effect of controlling the form of S), increasing the Charpy absorbed energy and improving the low-temperature toughness. However, if the Ca content is less than 0.001%, there is no practical effect, and 0.006%
If Ca is exceeded, CaO and CaS are generated in large amounts to form large inclusions, which impair not only the toughness of the steel but also the cleanliness and adversely affect the weldability and the lamella tear resistance. 0.006%.

【0018】[0018]

【実施例】周知の転炉、連続鋳造、厚板工程により鋼板
を製造し、その強度、靭性、溶接性(yスリット割れ
性)などを調査した。表1の1〜7に本発明鋼、8〜1
6に比較鋼の化学成分を示す。表2に本発明鋼と比較鋼
の鋼板製造条件とその機械的性質、溶接性を示す。
EXAMPLE A steel plate was manufactured by a well-known converter, continuous casting, and thick plate process, and its strength, toughness, weldability (y-slit cracking property) and the like were examined. Tables 1 to 7 show the steels of the present invention, 8 to 1
6 shows the chemical composition of the comparative steel. Table 2 shows the steel sheet production conditions of the steel of the present invention and the comparative steel, and their mechanical properties and weldability.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】表2の本発明鋼1〜7は、母材の強度、Y
R、靭性ならびに溶接性がバランスよく達成できてい
る。これに対し比較鋼8ではDi値が低いため、YRが
高くなっている。比較鋼9はC量が高く、yスリット割
れ停止温度が非常に高くなっている。比較鋼10ではB
が添加されているため、yスリット割れ停止温度が非常
に高くなっている。比較鋼11ではCu量が低く、強度
不足となっている。また比較鋼12ではCu量が高く、
YRが高くなっている。また比較鋼13ではDi値が高
すぎるため、強度が非常に高くなりHT60の規格強度
をオーバーしている。比較鋼14では2相域焼入時の再
加熱温度が720℃と低く、γ化が不十分でYRが高く
なっている。比較鋼15では2相域焼入時の再加熱温度
が880℃と高いため、殆どがγ化されていたためYR
が高くなっている。
The steels 1 to 7 of the present invention in Table 2 show the strength of the base material, Y
R, toughness and weldability can be achieved in a well-balanced manner. On the other hand, the comparative steel 8 has a low Di value, and thus has a high YR. Comparative steel 9 has a high C content and a very high y-slit crack stop temperature. In comparative steel 10, B
Is added, the y-slit crack stop temperature is extremely high. In Comparative Steel 11, the Cu content was low and the strength was insufficient. In Comparative Steel 12, the Cu content was high,
YR is high. In Comparative Steel 13, since the Di value was too high, the strength was extremely high and exceeded the standard strength of HT60. In Comparative Steel 14, the reheating temperature during the two-phase quenching was as low as 720 ° C., and γ was insufficient and YR was high. In Comparative Steel 15, since the reheating temperature at the time of quenching in the two-phase region was as high as 880 ° C., almost all of the steel was gamma-converted, so that YR
Is high.

【0023】[0023]

【発明の効果】本発明の化学成分および製造法で製造し
た厚鋼板、形鋼、ホットコイルなどの鋼材は溶接性に優
れた低降伏比HT60である。その結果、現場での溶接
施工能率や安全性が著しく向上し建築物などの安全性を
大きく高めることができる。
The steel materials such as thick steel plate, section steel, hot coil and the like manufactured by the chemical composition and manufacturing method of the present invention have a low yield ratio HT60 excellent in weldability. As a result, the efficiency and safety of welding work at the site are significantly improved, and the safety of buildings and the like can be greatly increased.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−179343(JP,A) 特開 昭62−142723(JP,A) 特開 平2−205626(JP,A) 特開 平7−90365(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-179343 (JP, A) JP-A-62-142723 (JP, A) JP-A-2-205626 (JP, A) JP-A 7-142 90365 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/00-8/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で C :0.04〜0.11%、 Si:0.5%以下、 Mn:0.6〜1.6%、 P :0.03%以下、 S :0.01%以下、 Cu:0.7〜1.2%、 Ni:0.30〜1.00%、 Cr:0.05〜0.50%、 Mo:0.05%以上0.20%未満、 Ti:0.005〜0.025%、 Al:0.06%以下、 N :0.006%以下、 残部が鉄および不可避的不純物からなる実質的にBを含
有せず下記式1を満足する鋼を熱間圧延後、750〜8
70℃の温度範囲に再加熱して焼入し、引き続きAc1
変態点以下の温度範囲で焼戻処理することを特徴とする
溶接性の優れた降伏比80%以下のTS590N/mm2
高張力鋼の製造法。 【数1】
1. C: 0.04 to 0.11%, Si: 0.5% or less, Mn: 0.6 to 1.6%, P: 0.03% or less, S: 0. 01% or less, Cu: 0.7 to 1.2%, Ni: 0.30 to 1.00%, Cr: 0.05 to 0.50%, Mo: 0.05 % to less than 0.20% , Ti: 0.005 to 0.025%, Al: 0.06% or less, N: 0.006% or less, the balance substantially does not contain B consisting of iron and unavoidable impurities and satisfies the following formula 1. 750-8 after hot rolling steel
Reheating to a temperature range of 70 ° C. and quenching, followed by Ac 1
Preparation of weldability excellent yield ratio of 80% or less TS590N / mm 2 class high strength steel, which comprises tempering at a temperature range of the transformation point. (Equation 1)
【請求項2】 請求項1の成分に、重量比でさらに、 Nb:0.01〜0.03%、 V :0.01〜0.05%、 Ca:0.001〜0.006% の1種または2種以上を含有することを特徴とする請求
項1記載の溶接性の優れた降伏比80%以下のTS59
0N/mm2 級高張力鋼の製造法。
The components of the claim 1, further a weight ratio, Nb: 0.01~0.03%, V: 0.01~0.05%, Ca: of from 0.001 to 0.006% The TS59 having excellent yieldability and a yield ratio of 80% or less according to claim 1, characterized in that it contains one or more kinds.
0N / mm A method for producing Class 2 high-strength steel.
JP5274477A 1993-11-02 1993-11-02 Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less Expired - Lifetime JP3007247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5274477A JP3007247B2 (en) 1993-11-02 1993-11-02 Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5274477A JP3007247B2 (en) 1993-11-02 1993-11-02 Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less

Publications (2)

Publication Number Publication Date
JPH07126743A JPH07126743A (en) 1995-05-16
JP3007247B2 true JP3007247B2 (en) 2000-02-07

Family

ID=17542243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5274477A Expired - Lifetime JP3007247B2 (en) 1993-11-02 1993-11-02 Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less

Country Status (1)

Country Link
JP (1) JP3007247B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105925895B (en) * 2016-06-23 2018-03-09 宝山钢铁股份有限公司 Strain resistant initial aging stage is with eliminating the special thick 600MPa levels hardened and tempered steel plate of residual stress Annealing Embrittlement and its manufacture method

Also Published As

Publication number Publication date
JPH07126743A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
EP0080809A1 (en) A method of making wrought high tension steel having superior low temperature toughness
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP2000319726A (en) Manufacture of high strength steel plate excellent in weldability
JPH07109521A (en) Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming
JP3007247B2 (en) Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JPH0826395B2 (en) 80 kgf / mm with excellent weldability (2) High-strength steel manufacturing method
JP3245224B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JP2529044B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JP3007246B2 (en) Method for producing 590 N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JP3497250B2 (en) Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH06104861B2 (en) Manufacturing method of V added high toughness high strength steel sheet
JP3426047B2 (en) Method for producing low yield ratio 590 N / mm2 class high strength steel with excellent weldability
JP3208495B2 (en) Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability
JP2634961B2 (en) Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability
JP2528561B2 (en) Low yield ratio 70kgf / mm2 class high strength steel with excellent weldability
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JP3245223B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JP3212337B2 (en) Production method of low yield ratio thick high strength steel with excellent weldability
JPH06248336A (en) Production of 780n/mm2 class high tensile strength steel excellent in weldability and reduced in yield ratio
JP2529045B2 (en) Manufacturing method of low yield ratio 60kgf / mm2 grade steel pipe for construction by cold forming

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991019