JP3497250B2 - Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability - Google Patents

Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability

Info

Publication number
JP3497250B2
JP3497250B2 JP23148094A JP23148094A JP3497250B2 JP 3497250 B2 JP3497250 B2 JP 3497250B2 JP 23148094 A JP23148094 A JP 23148094A JP 23148094 A JP23148094 A JP 23148094A JP 3497250 B2 JP3497250 B2 JP 3497250B2
Authority
JP
Japan
Prior art keywords
steel
less
temperature
yield ratio
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23148094A
Other languages
Japanese (ja)
Other versions
JPH0892639A (en
Inventor
譲 吉田
直己 土井
征司 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23148094A priority Critical patent/JP3497250B2/en
Publication of JPH0892639A publication Critical patent/JPH0892639A/en
Application granted granted Critical
Publication of JP3497250B2 publication Critical patent/JP3497250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶接性の優れた低降伏
比590N/mm2 級高張力鋼の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low yield ratio 590 N / mm 2 class high strength steel having excellent weldability.

【0002】[0002]

【従来の技術】従来、厚手(板厚50mm以上)の590
N/mm2 級高張力鋼(以下HT60という)は、B添加
あるいは各種合金の多量添加による高焼入性の鋼を、焼
入焼戻処理することによって製造していた。しかし、こ
のようにB添加や合金の多量添加では、その溶接性が著
しく劣り、現場溶接施工時には溶接割れ防止の観点から
100℃以上の予熱が必要とされ、施工能率の著しい低
下及び作業環境の悪化を招いていた。
2. Description of the Related Art Conventionally, a thick (sheet thickness of 50 mm or more) 590
N / mm 2 class high-strength steel (hereinafter referred to as HT60) was manufactured by quenching and tempering steel having high hardenability by adding B or adding a large amount of various alloys. However, as described above, with the addition of B and the addition of a large amount of alloy, the weldability is remarkably inferior, and at the time of on-site welding, preheating of 100 ° C. or more is required from the viewpoint of welding crack prevention, and the work efficiency is significantly reduced and the work environment is reduced. It was getting worse.

【0003】一方で、溶接性の良好なHT60として析
出硬化を利用した鋼が知られている。しかし、高層建築
用鋼では地震時にそのエネルギーを吸収し建物の倒壊を
防ぐため、降伏比(YR)の低い鋼(YR≦80%)が
要求されるが、析出硬化を利用した鋼では降伏比が高
く、耐震性が劣っていた。
On the other hand, steel utilizing precipitation hardening is known as HT60 having good weldability. However, for high-rise building steel, a steel with a low yield ratio (YR) (YR ≤ 80%) is required to absorb the energy during an earthquake and prevent the building from collapsing. Was high and the earthquake resistance was poor.

【0004】[0004]

【発明が解決しようとする課題】本発明は建築用HT6
0の安価な製造技術を提供するものである。本発明法に
基づいて製造した板厚50mm〜100mmのHT60は、
小入熱溶接や拘束溶接においても溶接割れが発生しに
くく、溶接施工において予熱を軽減あるいは省略するこ
とが可能であること、本HT60を用いた建築物は地
震のエネルギーを吸収し優れた耐震性を有すること、な
どの特徴を持つ。
SUMMARY OF THE INVENTION The present invention is an HT6 for construction.
It provides a low cost manufacturing technology. The HT60 having a plate thickness of 50 mm to 100 mm manufactured based on the method of the present invention is
Weld cracks are less likely to occur even in small heat input welding or restraint welding, and preheating can be reduced or omitted during welding work. Buildings using this HT60 absorb earthquake energy and have excellent earthquake resistance. It has features such as having.

【0005】[0005]

【課題を解決するための手段】本発明は、前述の課題を
克服し目的を達成するもので、その具体的手段を下記
(1)、(2)に示す。
Means for Solving the Problems The present invention overcomes the above-mentioned problems and achieves the object, and its concrete means are shown in (1) and (2) below.

【0006】(1)重量比で、 C :0.04〜0.11%、 Si:0.5%以下、 Mn:0.9〜1.6%、 P :0.03%以下、 S :0.01%以下、 Nb:0.01〜0.05%、 V :0.01〜0.06%、 Ti:0.005〜0.025%、 Al:0.018〜0.1%、 N :0.006%以下、 且つ、次式で示すDiの範囲で Cr:0.05〜0.50%、 Mo:0.05〜0.30%、 Ni:0.05〜2.0%、 Cu:0.05〜0.47% の1種または2種以上を含有し、残部が鉄および不可避
的不純物からなる実質的にBを含有しない鋼を1100
℃以上1250℃以下の温度範囲に再加熱して、900
℃以下の累積圧下量が30%以上となるように圧延を行
った後、750℃以上の温度から直ちに常温まで焼入れ
し、720〜850℃の温度範囲に再加熱、焼入れし、
Ac1 変態点以下の温度範囲で焼戻処理することを特徴
とする溶接性の優れた低降伏比590N/mm2 級高張力
鋼の製造方法。
(1) By weight ratio, C: 0.04 to 0.11%, Si: 0.5% or less, Mn: 0.9 to 1.6%, P: 0.03% or less, S: 0.01% or less, Nb: 0.01 to 0.05%, V: 0.01 to 0.06 %, Ti: 0.005 to 0.025 %, Al: 0.018 to 0.1 %, N: 0.006% or less, and in the range of Di shown by the following formula: Cr: 0.05 to 0.50%, Mo: 0.05 to 0.30%, Ni: 0.05 to 2.0% , Cu: 0.05 to 0.47 % 1 type or 2 types or more, and the balance is steel containing iron and unavoidable impurities and containing substantially no B 1100.
Reheat to the temperature range above 1250 ℃, 900
After rolling such that the cumulative rolling reduction of 30 ° C or less is 30% or more, quenching is immediately performed from a temperature of 750 ° C or more to room temperature, and reheating and quenching is performed in a temperature range of 720 to 850 ° C.
A method for producing a low yield ratio 590 N / mm 2 class high-strength steel with excellent weldability, which comprises performing tempering treatment in a temperature range not higher than the Ac 1 transformation point.

【数式】[Formula]

(2)さらに重量比でCa:0.001〜0.006%
を含有することを特徴とする厚み50mm以上100mm以
下の溶接性の優れた低降伏比590N/mm2 級高張力鋼
の製造方法。
(2) Further, by weight ratio, Ca: 0.001 to 0.006%
And a low yield ratio of 590 N / mm 2 class high-strength steel having excellent weldability and having a thickness of 50 mm or more and 100 mm or less.

【0007】[0007]

【作用】以下、本発明について説明する。発明者らの研
究によれば、厚手(板厚50mm以上)HT60の優れた
溶接性と低降伏比を同時に実現させるにはB無添加鋼、
析出硬化とさらに鋼の成分を適切な焼入性に調整するこ
とが必要であることを見いだした。また微量Ti添加、
プロセス条件の最適化により結晶粒を微細化した鋼で
は、析出硬化を行っても優れた低温靭性を示すことがわ
かった。HT60としての特性を得るために必要な最低
のNb、V量はそれぞれ0.01%である。しかし、そ
れぞれ0.05%、0.06%を超えるとYRを十分に
低下させることが困難となるため、これを上限とした。
The present invention will be described below. According to the research conducted by the inventors, in order to simultaneously realize excellent weldability and low yield ratio of thick (sheet thickness 50 mm or more) HT60, B-free steel,
It was found that it is necessary to control the precipitation hardening and further the composition of the steel to an appropriate hardenability. In addition, small amount of Ti addition,
It was found that the steel with the refined crystal grains by optimizing the process conditions exhibits excellent low temperature toughness even when precipitation hardening is performed. The minimum amounts of Nb and V required to obtain the characteristics of HT60 are 0.01% each. However, if it exceeds 0.05% and 0.06%, respectively, it becomes difficult to sufficiently reduce YR, so this was made the upper limit.

【0008】また、YRを所定の値(80%)以下にす
るためには、鋼の焼入性を適切な範囲に調整することが
必要で、次式で示すDiで表される指標にて1.5から
3.0の範囲に調整する必要がある。その理由は、1.
5未満では後述の2相組織化熱処理にてYRが十分に低
下せず、3.0を超えるとHT60として強度オーバー
が起こり、さらには溶接性も劣化するためである。
Further, in order to keep YR below a predetermined value (80%), it is necessary to adjust the hardenability of steel to an appropriate range, and the index represented by Di shown in the following equation is used. It is necessary to adjust it in the range of 1.5 to 3.0. The reason is 1.
This is because if it is less than 5, YR is not sufficiently reduced by the two-phase structured heat treatment described later, and if it exceeds 3.0, HT60 is over-strength and weldability is deteriorated.

【0009】次に前述のような析出硬化を十分に発揮さ
せ、YRを十分に低めるためには、製造法が適切でなけ
ればならない。再加熱温度を1100℃以上1250℃
以下の温度範囲に限定した理由は、加熱時のオーステナ
イト粒を小さく保ち圧延組織の細粒化を図るためであ
る。1250℃は加熱時のオーステナイト粒が極端に粗
大化しない上限温度であって、加熱温度がこれを超える
とオーステナイト粒が粗大混粒化し、変態後の組織が粗
大なベイナイト組織となるため鋼の靭性が著しく劣化す
る。上述のような条件で加熱したスラブを、900℃以
下の未再結晶域での累積圧下量を30%以上となるよう
に圧延する。これは未再結晶域での圧延を行うことによ
ってオーステナイト粒の細粒化を図るためである。
Next, in order to sufficiently exert the precipitation hardening as described above and sufficiently lower YR, the manufacturing method must be appropriate. Reheating temperature is 1100 ° C or more and 1250 ° C
The reason for limiting the temperature range to the following is to keep the austenite grains during heating small and to make the rolling structure finer. 1250 ° C is the upper limit temperature at which the austenite grains do not become extremely coarse during heating, and if the heating temperature exceeds this temperature, the austenite grains become coarse mixed grains and the structure after transformation becomes a coarse bainite structure, so the toughness of the steel is increased. Is significantly deteriorated. The slab heated under the conditions as described above is rolled so that the cumulative reduction amount in the unrecrystallized region of 900 ° C. or less is 30% or more. This is because the austenite grains are made finer by rolling in the unrecrystallized region.

【0010】次に圧延後の冷却条件であるが、圧延終了
後鋼板温度が750℃以上の温度から常温まで焼入れす
る。これは圧延終了後の焼入温度が750℃未満では変
態が進み所定の強度が得られないためである。続いて7
20〜850℃に再加熱後、焼入れし、Ac1 以下の温
度に再加熱して焼戻処理する。720〜850℃に再加
熱・焼入れする理由は、降伏比の低減のためである。一
般に析出硬化した鋼はYRが著しく高い。そこで720
〜850℃の(γ+α)2相域に再加熱・焼入を行う。
部分的にγ変態させることによって未変態の領域は軟
化、γ変態領域は硬化してミクロ組織が2相化(軟らか
い相と硬い相)し、降伏比の低減が可能となる。再加熱
温度が720℃以下では、γに変態する領域が小さいた
めに前述の効果が得られない。しかし、850℃を超え
ると大部分がγ変態し目的とする2相組織が得られず低
YR化が達成できない。
Next, regarding the cooling conditions after rolling, after completion of rolling, the steel sheet is quenched from a temperature of 750 ° C. or higher to room temperature. This is because if the quenching temperature after completion of rolling is less than 750 ° C, transformation proceeds and predetermined strength cannot be obtained. Then 7
After reheating to 20 to 850 ° C., quenching, reheating to a temperature of Ac 1 or lower, and tempering treatment. The reason for reheating and quenching to 720 to 850 ° C. is to reduce the yield ratio. Generally, precipitation hardened steel has a significantly high YR. Then 720
Reheat and quench in the (γ + α) two-phase region at 850 ° C.
By partially γ-transforming, the untransformed region is softened, the γ-transformed region is hardened, and the microstructure is made into a two-phase (soft phase and hard phase), and the yield ratio can be reduced. When the reheating temperature is 720 ° C. or lower, the above-described effect cannot be obtained because the region that transforms to γ is small. However, if the temperature exceeds 850 ° C., most of the γ-transformation occurs and the desired two-phase structure cannot be obtained, so that low YR cannot be achieved.

【0011】焼戻処理は析出硬化を発揮させるために必
須である。しかし、その温度がAc1 点を超えると強度
が著しく低下するので、Ac1 点以下としなければなら
ない(望ましい焼戻温度は450〜650℃である)。
しかし、Nb、Vの添加量や製造法が適切であっても、
基本成分が適当でないとHT60としての優れた特性が
得られない。
The tempering treatment is essential for exerting precipitation hardening. However, if the temperature exceeds the Ac 1 point, the strength is remarkably reduced, so the temperature must be set to the Ac 1 point or lower (the desirable tempering temperature is 450 to 650 ° C.).
However, even if the amount of Nb and V added and the manufacturing method are appropriate,
If the basic components are not suitable, excellent properties as HT60 cannot be obtained.

【0012】以下、この点について説明する。Cの下限
0.04%は、母材および溶接部の強度確保ならびにN
b、V添加時に、これらの効果を発揮させるための最少
量である。しかしC量が多すぎると溶接性の著しい劣化
を招くので、上限を0.1%とした。Siは多く添加す
ると溶接性、HAZ靭性を劣化させるため、上限を0.
5%とした。鋼の脱酸はAl、Tiのみでも十分であ
り、Siは必ずしも添加する必要はない。
Hereinafter, this point will be described. The lower limit of 0.04% of C is to secure the strength of the base metal and the welded portion and N
It is the minimum amount for exerting these effects when b and V are added. However, if the amount of C is too large, the weldability is significantly deteriorated, so the upper limit was made 0.1%. Addition of a large amount of Si deteriorates the weldability and HAZ toughness, so the upper limit is set to 0.
It was set to 5%. Only Al and Ti are sufficient for deoxidizing steel, and Si is not necessarily added.

【0013】Mnは強度、靭性を確保する上で不可欠な
元素であり、その下限は0.9%である。しかしMn量
が多すぎると焼入性が増加して溶接性、HAZ靭性を劣
化させるので上限を1.6%とした。本発明鋼において
不純物であるP、Sをそれぞれ0.03%、0.01%
以下とした理由は、母材、溶接部の低温靭性をより一層
向上させるためである。Pの低減は粒界破壊を防止し、
S量の低減はMnSによる靭性の劣化を防止する。好ま
しいP、S量はそれぞれ0.01%、0.005%以下
である。
Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.9%. However, if the Mn content is too large, the hardenability increases and the weldability and HAZ toughness deteriorate, so the upper limit was made 1.6%. In the steel of the present invention, P and S, which are impurities, are 0.03% and 0.01%, respectively.
The reason for the following is to further improve the low temperature toughness of the base material and the welded portion. Reduction of P prevents grain boundary destruction,
Reduction of the amount of S prevents deterioration of toughness due to MnS. The preferred P and S contents are 0.01% and 0.005% or less, respectively.

【0014】Crは母材、溶接部の強度を高める元素で
最低でも0.05%以上が必要である。しかし、多すぎ
ると溶接性やHAZ靭性を劣化させるので、その上限を
0.50%とした。Moは強度、靭性を共に向上させる
元素で、HT60には0.05%以上が必須である。し
かし多すぎると溶接性、HAZ靭性上好ましくなく、そ
の上限は0.30%である。Niは溶接性、HAZ靭性
に悪影響を及ぼすことなく、母材の強度、靭性を向上さ
せるが、0.05%未満では効果が薄く、2.0%を超
えると極めて高価になるため経済性を失うので、上限は
2.0%とした。
Cr is an element that enhances the strength of the base material and the welded portion, and is required to be at least 0.05% or more. However, if too large, the weldability and HAZ toughness are deteriorated, so the upper limit was made 0.50%. Mo is an element that improves both strength and toughness, and 0.05% or more is essential for HT60. However, if it is too large, it is not preferable in terms of weldability and HAZ toughness, and its upper limit is 0.30%. Ni improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness, but the effect is weak at less than 0.05% and exceeds 2.0% .
Since obtain lose economical to become very expensive, the upper limit was set at 2.0%.

【0015】CuはNiとほぼ同様な効果を持つほか、
Cuによる強度の増加や耐食性、耐候性の向上にも効果
を有する。この場合Cu量が0.47%を超えるとその
効果が飽和し、また0.05%未満では効果がないの
で、Cu量は0.05〜0.47%に限定する。Tiは
炭窒化物を形成してHAZ靭性を向上させる。Al量が
少ない場合、Tiの酸化物を形成しHAZ靭性を向上さ
せるが、0.005%未満では効果がなく、0.025
%を超えるとHAZ靭性に好ましくない影響があるた
め、0.005〜0.025%に限定する。
Cu has almost the same effect as Ni,
Growth and corrosion resistance of the strength by Cu, to improved weather resistance has an effect. In this case, if the Cu content exceeds 0.47 %,
The effect is saturated, and if less than 0.05%, there is no effect, so the Cu content is limited to 0.05 to 0.47 %. Ti forms a carbonitride and improves HAZ toughness. When the amount of Al is small, an oxide of Ti is formed to improve the HAZ toughness, but if it is less than 0.005%, it has no effect, and 0.025%.
%, There is an unfavorable effect on the HAZ toughness, so the content is limited to 0.005-0.025%.

【0016】Alは一般に脱酸上鋼に含まれる元素で
下限は0.018%とする。しかしAl量が多くなると
鋼の清浄度が悪くなり溶接部の靭性が劣化するので、上
限を0.1%とした。Nは一般に不可避的不純物として
鋼中に含まれるものであるが、Nb、Vと結合して炭窒
化物を形成して強度を増加させ、またTiNを形成して
前述のようにHT60の性質を高める。このためN量と
して最低0.001%が必要である。しかしながらN量
が多くなるとHAZ靭性の劣化や連続鋳造スラブの表面
キズの発生等を助長するので、その上限を0.006%
とした。
Al is an element generally contained in deoxidized upper steel ,
The lower limit is 0.018% . However, if the amount of Al increases, the cleanliness of the steel deteriorates and the toughness of the welded portion deteriorates, so the upper limit was made 0.1%. N is generally contained in steel as an unavoidable impurity, but it is combined with Nb and V to form a carbonitride to increase strength, and TiN is formed to improve the properties of HT60 as described above. Increase. Therefore, the N content must be at least 0.001%. However, if the amount of N increases, the HAZ toughness deteriorates and the surface defects of the continuous cast slab are generated, so the upper limit is 0.006%.
And

【0017】本発明鋼の基本成分は以上のとおりであ
り、十分に目的を達成できるが、さらに目的に対し特性
を高めるため、以下に述べる元素即ちCaを選択的に添
加すると強度、靭性の向上について、さらに好ましい結
果が得られる。次に、前記添加元素とその添加量につい
て説明する。
The basic components of the steel of the present invention are as described above, and the object can be sufficiently achieved. However, in order to further improve the characteristics for the object, the following element, that is, Ca, is selectively added to improve the strength and toughness. With respect to, more preferable results are obtained. Next, the additional element and the amount of addition will be described.

【0018】Caは硫化物(MnS)の形態を制御し、
シャルピー吸収エネルギーを増加させ低温靭性を向上さ
せる効果がある。しかしCa量は0.001%未満では
実用上効果がなく、0.006%を超えるとCaO、C
aSが多量に生成して大型介在物となり、鋼の靭性のみ
ならず清浄度も害し溶接性、耐ラメラテア性にも悪影響
を与えるので、Ca添加量の範囲を0.001〜0.0
06%とする。本発明の方法は厚板ミルに適用すること
が最も好ましいが、ホットコイル、形鋼等にも適用でき
る。
Ca controls the morphology of sulfide (MnS),
It has the effect of increasing Charpy absorbed energy and improving low temperature toughness. However, if the amount of Ca is less than 0.001%, there is no practical effect, and if it exceeds 0.006%, CaO, C
A large amount of aS is generated and becomes large inclusions, which not only impairs the toughness of steel but also the cleanliness and adversely affects the weldability and lamella tear resistance. Therefore, the range of Ca addition amount is 0.001 to 0.0
It is set to 06%. The method of the present invention is most preferably applied to a thick plate mill, but can also be applied to hot coils, shaped steel and the like.

【0019】[0019]

【実施例】周知の転炉、連続鋳造、厚板工程により鋼板
を製造し、その強度、靭性、溶接性(yスリット割れ
性)などを調査した。表1の1〜6に本発明鋼、7〜1
7に比較鋼の化学成分を示す。表2に本発明鋼と比較鋼
の鋼板製造条件とその機械的性質、溶接性を示す。
EXAMPLE A steel plate was manufactured by a well-known converter, continuous casting, and thick plate process, and its strength, toughness, weldability (y-slit cracking property) and the like were investigated. Inventive steels 7-1 in Tables 1-6
7 shows the chemical composition of comparative steel. Table 2 shows the steel sheet manufacturing conditions of the present invention steel and the comparative steel, and their mechanical properties and weldability.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】表2の本発明鋼1〜4,6は、母材の強
度、YR、靭性ならびに溶接性がバランスよく達成でき
ている。これに対し比較鋼7ではDi値が低いため、Y
Rが高くなっている。比較鋼8はC量が高く、yスリッ
ト割れ停止温度が非常に高くなっている。比較鋼9では
Bが添加されているため、yスリット割れ停止温度が非
常に高くなっている。比較鋼10ではNb量が低く、強
度不足となっている。比較鋼11ではV量が低く、強度
不足となっている。また比較鋼12ではDi値が高すぎ
るため、強度が非常に高くなりHT60の規格強度をオ
ーバーしている。
In the steels 1 to 4 and 6 of the present invention shown in Table 2, the strength, YR, toughness and weldability of the base material can be achieved in a well-balanced manner. In contrast, Comparative Steel 7 has a low Di value, so Y
R is high. Comparative Steel 8 has a high C content, and the y slit crack stop temperature is extremely high. In Comparative Steel 9, since B is added, the y slit crack stop temperature is extremely high. Comparative steel 10 has a low Nb content and lacks strength. Comparative steel 11 has a low V content and lacks strength. Further, in Comparative Steel 12, since the Di value is too high, the strength is extremely high and exceeds the standard strength of HT60.

【0023】比較鋼13では2相域焼入時の再加熱温度
が700℃と低く、γ化が不十分でYRが高くなってお
り、さらにyスリット割れ停止温度も非常に高くなって
いる。比較鋼14ではスラブの加熱温度が1280℃と
高く結晶粒が粗大化したため、母材靭性が不良である。
比較鋼15では900℃以下の累積圧下量が低く母材靭
性が不良である。比較鋼16では圧延直後の水冷開始温
度が低く強度不足が生じている。比較鋼17では2相域
焼入時の再加熱温度が870℃と高いため、殆どがγ化
されたためYRが高くなっている。
In Comparative Steel 13, the reheating temperature during quenching in the two-phase region is as low as 700 ° C., the γ conversion is insufficient, YR is high, and the y slit crack stop temperature is also very high. In Comparative Steel 14, the heating temperature of the slab was as high as 1280 ° C. and the crystal grains were coarsened, so the base material toughness was poor.
In Comparative Steel 15, the cumulative rolling reduction at 900 ° C. or lower is low and the base material toughness is poor. In Comparative Steel 16, the water cooling start temperature immediately after rolling is low and the strength is insufficient. In Comparative Steel 17, the reheating temperature at the time of quenching in the two-phase region is as high as 870 ° C., so that most of it was converted to γ and the YR was high.

【0024】[0024]

【発明の効果】本発明の化学成分及び製造法で製造した
厚鋼板、形鋼、ホットコイルなどの鋼材は、溶接性に優
れた低降伏比HT60である。その結果、現場での溶接
施工能率や安全性が著しく向上し、建築物などの安全性
を大きく高めることができる。
EFFECTS OF THE INVENTION Steel materials such as thick steel plates, shaped steels and hot coils manufactured by the chemical composition and manufacturing method of the present invention have a low yield ratio HT60 excellent in weldability. As a result, the welding work efficiency and safety at the site are significantly improved, and the safety of buildings and the like can be greatly enhanced.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−242941(JP,A) 特開 平6−10043(JP,A) 特開 平2−205626(JP,A) 特開 平2−282418(JP,A) 特開 平5−179343(JP,A) 特許3007246(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 6/00 C21D 8/00 - 8/10 C21D 9/00 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-242941 (JP, A) JP-A-61-10043 (JP, A) JP-A-2-205626 (JP, A) JP-A-2- 282418 (JP, A) JP-A-5-179343 (JP, A) Patent 3007246 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 6/00 C21D 8/00-8 / 10 C21D 9/00 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で C :0.04〜0.11%、 Si:0.5%以下、 Mn:0.9〜1.6%、 P :0.03%以下、 S :0.01%以下、 Nb:0.01〜0.05%、 V :0.01〜0.06%、 Ti:0.005〜0.025%、 Al:0.018〜0.1%、 N :0.006%以下、 且つ、次式で示すDiの範囲で Cr:0.05〜0.50%、 Mo:0.05〜0.30%、 Ni:0.05〜2.0%、 Cu:0.05〜0.47% の1種または2種以上を含有し、残部が鉄および不可避
的不純物からなる実質的にBを含有しない鋼を1100
℃以上1250℃以下の温度範囲に再加熱して、900
℃以下の累積圧下量が30%以上となるように圧延を行
った後、750℃以上の温度から直ちに常温まで焼入れ
し、720〜850℃の温度範囲に再加熱、焼入れし、
Ac1 変態点以下の温度範囲で焼戻処理することを特徴
とする溶接性の優れた低降伏比590N/mm2 級高張力
鋼の製造方法。 【数式】
1. A weight ratio of C: 0.04 to 0.11%, Si: 0.5% or less, Mn: 0.9 to 1.6%, P: 0.03% or less, S: 0.0. 01% or less, Nb: 0.01 to 0.05%, V: 0.01 to 0.06 %, Ti: 0.005 to 0.025 %, Al: 0.018 to 0.1 %, N: 0.006% or less, and within the range of Di shown by the following formula: Cr: 0.05 to 0.50%, Mo: 0.05 to 0.30%, Ni: 0.05 to 2.0%, Cu : it contains one or more from 0.05 to 0.47%, the steel containing substantially no B and the balance being iron and unavoidable impurities 1100
Reheat to the temperature range above 1250 ℃, 900
After rolling so that the cumulative rolling reduction of 30 ° C or less is 30% or more, immediately quenching from a temperature of 750 ° C or more to room temperature, reheating to a temperature range of 720 to 850 ° C, quenching,
A method for producing a low yield ratio 590 N / mm 2 class high-strength steel with excellent weldability, which comprises performing tempering treatment in a temperature range not higher than the Ac 1 transformation point. [Formula]
【請求項2】 さらに重量比で Ca:0.001〜0.006% を含有することを特徴とする請求項1記載の溶接性の優
れた低降伏比590N/mm2 級高張力鋼の製造方法。
2. The production of a low yield ratio 590 N / mm 2 class high strength steel with excellent weldability according to claim 1, further containing Ca: 0.001 to 0.006% by weight. Method.
JP23148094A 1994-09-27 1994-09-27 Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability Expired - Lifetime JP3497250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23148094A JP3497250B2 (en) 1994-09-27 1994-09-27 Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23148094A JP3497250B2 (en) 1994-09-27 1994-09-27 Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability

Publications (2)

Publication Number Publication Date
JPH0892639A JPH0892639A (en) 1996-04-09
JP3497250B2 true JP3497250B2 (en) 2004-02-16

Family

ID=16924160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23148094A Expired - Lifetime JP3497250B2 (en) 1994-09-27 1994-09-27 Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability

Country Status (1)

Country Link
JP (1) JP3497250B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338352B1 (en) * 1997-12-24 2002-08-22 주식회사 포스코 Structural steel with low yield strength ratio and manufacture method thereof

Also Published As

Publication number Publication date
JPH0892639A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
JPH07109521A (en) Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming
JP3497250B2 (en) Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability
JP3245224B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2529044B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH0826395B2 (en) 80 kgf / mm with excellent weldability (2) High-strength steel manufacturing method
JPH07150247A (en) Production of steel tube with high strength and low yield ratio for construction use
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP3007247B2 (en) Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JP3212363B2 (en) Manufacturing method of low yield ratio 600N / mm2 class steel sheet for building with excellent heat input zone toughness of large heat input welding
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JPH06104861B2 (en) Manufacturing method of V added high toughness high strength steel sheet
JPH09165621A (en) Production of building use thick fire resistant steel tube having low yield ratio
JP2528561B2 (en) Low yield ratio 70kgf / mm2 class high strength steel with excellent weldability
JP3426047B2 (en) Method for producing low yield ratio 590 N / mm2 class high strength steel with excellent weldability
JP3007246B2 (en) Method for producing 590 N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JP3208495B2 (en) Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability
JP3245223B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JPH06248336A (en) Production of 780n/mm2 class high tensile strength steel excellent in weldability and reduced in yield ratio
JP2529045B2 (en) Manufacturing method of low yield ratio 60kgf / mm2 grade steel pipe for construction by cold forming
JPH06264144A (en) Production of steel tube with low yield ratio for construction use by cold forming
JPH06128641A (en) Production of steel tube with low yield ratio for construction use by cold forming
JPH07242941A (en) Production of low yield ratio 590n/mm2 class high tensile strength steel excellent in weldability
JPH06248337A (en) Production of 780n/mm2 class high tensile strength steel excellent in weldability and reduced in yield ratio

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term