JPH06104861B2 - Manufacturing method of V added high toughness high strength steel sheet - Google Patents

Manufacturing method of V added high toughness high strength steel sheet

Info

Publication number
JPH06104861B2
JPH06104861B2 JP1075799A JP7579989A JPH06104861B2 JP H06104861 B2 JPH06104861 B2 JP H06104861B2 JP 1075799 A JP1075799 A JP 1075799A JP 7579989 A JP7579989 A JP 7579989A JP H06104861 B2 JPH06104861 B2 JP H06104861B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel
rolling
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1075799A
Other languages
Japanese (ja)
Other versions
JPH02254119A (en
Inventor
博 為広
力雄 千々岩
潔 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1075799A priority Critical patent/JPH06104861B2/en
Publication of JPH02254119A publication Critical patent/JPH02254119A/en
Publication of JPH06104861B2 publication Critical patent/JPH06104861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶接性の優れた引張強さ60kgf/mm2級V添加高
靭性高張力鋼板の製造法に関するもので、板厚20mm以下
の鋼板を対象とする。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a method for producing a tensile strength 60 kgf / mm 2 grade V-added high toughness high strength steel sheet having excellent weldability, and a steel sheet having a thickness of 20 mm or less. Target.

本発明は厚板ミルに適用することが最も好ましいが、ホ
ットコイル,形鋼などにも適用できる。また、この方法
で製造した厚鋼板はラインパイプ,鉄塔用などの構造用
鋼管に用いることができ、特に溶融亜鉛メッキされる鋼
管用に適する。
The present invention is most preferably applied to thick plate mills, but can also be applied to hot coils, shaped steel and the like. The thick steel plate produced by this method can be used for structural steel pipes such as line pipes and steel towers, and is particularly suitable for hot-dip galvanized steel pipes.

[従来の技術] 鋼の母材、溶接熱影響部(HAZ)の強度,靭性や溶接性
を改善するためには、低C化(低炭素当量化)、微量Ti
添加(Tiの窒化物、酸化物の利用)などが効果的である
が(例えば特開昭52−128821号公報,特開昭55−131125
号公報参照)、これらはいずれも強度低下を招く。特に
Nb,Vなど析出硬化元素を利用する場合、C,N量の減少に
よって強度低下が著しくなる(Tiを添加するとTiNとし
てNが強力に固定さフリーNが減少)。このため鋼板の
製造では、制御圧延あるいは制御圧延+加速冷却によっ
て高強度化を図るのが一般的である。しかし板厚が薄く
なると、加速冷却では水冷開始までの温度低下や冷却後
の形状不良などの問題があった。また制御圧延で引張強
さ60kgf/mm2級(以下HT60という)の高強度を得るには
さらに合金元素量を増加しなければならず、高強度と優
れた低温靭性、溶接性(以下、溶接部靭性を含む)を同
時に得ることは不可能であった。
[Prior Art] In order to improve the strength, toughness and weldability of the base metal of steel and the heat affected zone (HAZ), low C (low carbon equivalent), small amount of Ti
Addition (use of nitride and oxide of Ti) is effective (for example, JP-A-52-128821 and JP-A-55-131125).
However, all of them lead to a reduction in strength. In particular
When precipitation hardening elements such as Nb and V are used, the decrease in the amount of C and N causes a remarkable decrease in strength (when Ti is added, N is strongly fixed as TiN and the free N decreases). For this reason, in the production of steel sheets, it is general to increase the strength by controlled rolling or controlled rolling + accelerated cooling. However, when the plate thickness becomes thin, accelerated cooling has problems such as a decrease in temperature before the start of water cooling and a defective shape after cooling. Further, in order to obtain high strength of tensile strength 60 kgf / mm 2 class (hereinafter referred to as HT60) by controlled rolling, it is necessary to further increase the amount of alloying elements, and high strength and excellent low temperature toughness and weldability (hereinafter, welding) It was impossible to simultaneously obtain the toughness).

[発明が解決しようとする課題] 本発明は低温靭性、溶接性の優れたHT60の安価な製造技
術を提供するものである。本発明に基づいて製造したHT
60合金コストが安く、かつ低温靭性,溶接性が良好なこ
とから溶接施工において予熱を軽減あるいは省略でき、
溶接構造物の安全性が向上するなどの利点を有する。
[Problems to be Solved by the Invention] The present invention provides an inexpensive manufacturing technique of HT60 excellent in low temperature toughness and weldability. HT manufactured according to the present invention
60 alloy cost is low, and low temperature toughness and weldability are good, so preheating can be reduced or omitted in welding work.
It has advantages such as improved safety of the welded structure.

[課題を解決するための手段] 本発明の要旨とするところは、C:0.03〜0.09%,Si:0.5
%以下,Mn:1.4〜1.9%,P:0.02%以下,S:0.003%以下,N
b:0.005〜0.03%,V:0.03〜0.08%,Ti:0.005〜0.02%,A
l:0.06%以下,N:0.001〜0.003%,O:0.002〜0.004%に、
必要に応じてNi:0.05〜1.0%,Cu:0.05〜0.6%,Ca:0.001
〜0.005%の1種または2種以上を含有し、残部が鉄お
よび不可避的不純物からなる鋼を1100〜1250℃の温度範
囲に加熱して950℃以下、Ar3変態点以上の累積圧下量が
40%以上、Ar3変態点未満の累積圧下量が20%以上、か
つ圧延終了温度が690℃以下、630℃以上となるように圧
延を行うことを特徴とする引張強さ60kgf/mm2級V添加
高靭性高張力鋼板の製造方法にある。
[Means for Solving the Problems] The gist of the present invention is that C: 0.03 to 0.09%, Si: 0.5
% Or less, Mn: 1.4 to 1.9%, P: 0.02% or less, S: 0.003% or less, N
b: 0.005-0.03%, V: 0.03-0.08%, Ti: 0.005-0.02%, A
l: 0.06% or less, N: 0.001-0.003%, O: 0.002-0.004%,
As necessary Ni: 0.05-1.0%, Cu: 0.05-0.6%, Ca: 0.001
~ 0.005% of one or more kinds of steel, with the balance being iron and unavoidable impurities, the steel is heated to a temperature range of 1100 to 1250 ° C, and the cumulative reduction amount of 950 ° C or less and the Ar 3 transformation point or more is obtained.
Tensile strength of 60kgf / mm 2 grade, characterized by rolling at 40% or more, cumulative reduction below Ar 3 transformation point of 20% or more, and rolling end temperature of 690 ° C or less, 630 ° C or more It is in a method for manufacturing a V-added high toughness high strength steel sheet.

[作用] 以下、本発明について詳細に説明する。[Operation] Hereinafter, the present invention will be described in detail.

HT60の低温靭性や溶接性を画期的に改善するには、まず
成分元素の制限が必須である。このためC量を低減する
とともに、特に析出硬化能が大きく溶接性に有害なNb添
加量を低減した。また微量Ti添加はTiNやTi2O3を主体と
する酸化物によるHAZ靭性の改善のためであり、かつそ
の効果を十分に得るためにN,O量を制限した。さらに溶
接性を劣化させずにHT60の高強度を確保するために、V
添加を行なった。しかしVをただ単に添加しただけで
は、その効果は発揮されない。これはC量の低減やTi添
加によるフリーN量の低下によってV4C3,VNによる析出
硬化が十分に得られないからである。
In order to dramatically improve the low temperature toughness and weldability of HT60, it is essential to limit the constituent elements. Therefore, the amount of C was reduced, and the amount of Nb added, which had a particularly large precipitation hardening ability and was detrimental to weldability, was reduced. The addition of a small amount of Ti was to improve the HAZ toughness due to the oxides mainly composed of TiN and Ti 2 O 3 , and the N and O contents were limited to obtain the effect sufficiently. In order to secure the high strength of HT60 without deteriorating the weldability, V
An addition was made. However, the effect is not exhibited by simply adding V. This is because the precipitation hardening due to V 4 C 3 and VN cannot be sufficiently obtained due to the decrease of the C amount and the decrease of the free N amount by the addition of Ti.

このため本発明者らはその製造法について鋭意研究の結
果、低C、低N鋼においてV添加による高強度化にはAr
3点以下、(γ+α)2相域圧延が有効であることを確
かめた。すなわち適切な(γ+α)2相域圧延を上記の
鋼に加えることによってフェライト地の微細なV析出が
著しく促進され、強度が大幅に向上することを見出し
た。このようなV添加の効果を十分に得るためには鋼
(スラブ)の再加熱,圧延条件を以下のように限定する
必要がある。まず再加熱温度を1100〜1250℃の範囲に限
定する。再加熱温度はNb,Vなどの析出物を固溶させ、高
強度を確保するために1100℃以上としなければならない
(望ましくは1150℃以上)。この温度未満では、Nbがほ
とんど固溶せず十分な強度が得られない。しかし再加熱
温度が1250℃を越えると、オーステナイト粒(γ粒)が
著しく粗大化し、圧延によっても完全に微細化できない
ため、優れた低温靭性が得られない。従って再加熱温度
は1250℃以下とする必要がある。次に950℃以下、Ar3
上の累積圧下量を40%以上としなければならない。これ
はγ組織を微細化して低温靭性を改善するためである。
γ組織を微細化しフェライト粒径を小さくしないと、続
く(γ+α)2相域圧延によるVの析出硬化によって低
温靭性が著しく劣化するからである。さらに、十分なV
の析出硬化を得るためには2相域の累積圧下量と圧延終
了温度をそれぞれ20%以上、690〜630℃に制限しなけれ
ばならない。(γ+α)2相域の圧下量が20%未満であ
るとVの析出が不足する。また圧延終了温度が690℃越
えるとV析出物のサイズが大きく析出硬化能が弱くな
り、630℃未満では圧延を行なってもVが十分に析出し
ない。
Therefore, as a result of earnest research on the manufacturing method, the present inventors have found that Ar in order to increase the strength by adding V in low C and low N steels.
It was confirmed that (γ + α) 2 phase rolling is effective for 3 points or less. That is, it has been found that fine V precipitation in the ferrite base is remarkably promoted by adding appropriate (γ + α) two-phase region rolling to the above steel, and the strength is significantly improved. In order to obtain such an effect of V addition sufficiently, it is necessary to limit the reheating and rolling conditions of steel (slab) as follows. First, the reheating temperature is limited to the range of 1100 to 1250 ° C. The reheating temperature must be 1100 ° C or higher (desirably 1150 ° C or higher) in order to form a solid solution with precipitates such as Nb and V and to secure high strength. Below this temperature, Nb hardly forms a solid solution and sufficient strength cannot be obtained. However, when the reheating temperature exceeds 1250 ° C., the austenite grains (γ grains) are remarkably coarsened and cannot be completely refined even by rolling, so that excellent low temperature toughness cannot be obtained. Therefore, the reheating temperature must be 1250 ° C or lower. Next, the cumulative reduction of 950 ° C or less and Ar 3 or more must be 40% or more. This is to refine the γ structure and improve the low temperature toughness.
This is because unless the γ structure is refined and the ferrite grain size is not reduced, the low temperature toughness is significantly deteriorated due to the precipitation hardening of V by the subsequent (γ + α) two-phase rolling. In addition, enough V
In order to obtain the precipitation hardening, the cumulative reduction amount in the two-phase region and the rolling end temperature must be limited to 20% or more and 690 to 630 ° C, respectively. If the reduction amount in the (γ + α) two-phase region is less than 20%, the precipitation of V will be insufficient. On the other hand, if the rolling end temperature exceeds 690 ° C, the size of V precipitates will be large and the precipitation hardening ability will be weak.

以上のように、たとえ製造法が適切であっても基本成分
が適当でないとHT60としての優れた特性が得られない。
以下、この点について説明する。
As described above, even if the manufacturing method is suitable, if the basic components are not suitable, excellent properties as HT60 cannot be obtained.
Hereinafter, this point will be described.

Cの下限0.03%は、母材および溶接部の強度確保ならび
にNb,Vなどの添加時に、これらの効果を発揮させるため
の最小量である。しかしC量が多過ぎると溶接性の著し
い劣化を招くので、上限を0.09%とした。
The lower limit of 0.03% of C is the minimum amount for ensuring the strength of the base material and the welded portion and exerting these effects when Nb, V and the like are added. However, if the C content is too large, the weldability is significantly deteriorated, so the upper limit was made 0.09%.

Siは多く添加すると溶接性、HAZ靭性を劣化させるた
め、上限を0.5%とした。鋼の脱酸はAl,Tiのみでも十分
であり、Siは必ずしも添加する必要はない。
Addition of a large amount of Si deteriorates weldability and HAZ toughness, so the upper limit was made 0.5%. Deoxidation of steel is sufficient only with Al and Ti, and Si is not necessarily added.

Mnは強度、靭性を確保する上で不可欠な元素であり、そ
の下限は1.4%である。しかしMn量が多過ぎると焼入性
が増加して溶接性、HAZ靭性を劣化させるだけでなく、
連続鋳造スラブの中心偏析を助長するので上限を1.9%
とした。
Mn is an essential element for securing strength and toughness, and its lower limit is 1.4%. However, if the amount of Mn is too large, not only hardenability increases and weldability and HAZ toughness deteriorate, but
The upper limit is 1.9% because it promotes center segregation of continuous cast slabs.
And

本発明鋼において不純物であるP,Sをそれぞれ0.02%,0.
003%以下とした理由は、母材,HAZの低温靭性をより一
層向上させるためである。Pの低減は粒界破壊を防止
し、S量の低減はMnSによる靭性の劣化を防止する。特
に本発明鋼では(γ+α)2相域圧延よってシャルピー
衝撃破面にセパレーションが発生し、吸収エネルギーの
低下を招くので、低S化は必須である。好ましいP,S量
はそれぞれ0.01%以下,0.002%以下である。
In the steel of the present invention, P and S which are impurities are 0.02% and 0.
The reason why the content is 003% or less is to further improve the low temperature toughness of the base material and HAZ. Reduction of P prevents grain boundary fracture, and reduction of S content prevents deterioration of toughness due to MnS. In particular, in the steel of the present invention, the reduction of S is indispensable because the separation occurs on the Charpy impact fracture surface due to the (γ + α) two-phase rolling and the reduction of absorbed energy is caused. The preferred amounts of P and S are 0.01% or less and 0.002% or less, respectively.

Nbは本発明では母材の強度、低温靭性を得るために必須
の元素であり、その下限は0.005%である。しかしその
添加量が多過ぎるとHAZ靭性、溶接性を著しく害するの
で、その上限を0.03%とする。
In the present invention, Nb is an essential element for obtaining the strength and low temperature toughness of the base material, and its lower limit is 0.005%. However, if the addition amount is too large, the HAZ toughness and weldability are significantly impaired, so the upper limit is made 0.03%.

VはNbとほぼ同じ効果をもつ元素であるが、Nbに比較し
て析出硬化能はやや弱い。しかしHAZ靭性や溶接性に対
する害は少なく、析出硬化が有効に得られれば極めて貴
重な元素である。本発明ではVの析出硬化を十分に得る
ことが可能であり、Vは必須の元素である。しかし0.03
%未満では効果が少なく、上限は0.08%まで許容でき
る。
V is an element having almost the same effect as Nb, but its precipitation hardening ability is slightly weaker than that of Nb. However, it is a very valuable element if the precipitation hardening is effectively obtained with little harm to HAZ toughness and weldability. In the present invention, it is possible to obtain sufficient precipitation hardening of V, and V is an essential element. But 0.03
If it is less than%, the effect is small and the upper limit is 0.08%.

TiはAl量が少ないとき(例えば0.003%以下)、Oと結
合してTi2O3を主成分とする酸化物を形成してHAZ靭性を
向上させる。またNと結合してTiNを形成し、再加熱時
のγ粒相大化を抑制し、圧延後の組織を微細化する。こ
れらの効果を得るためにはTi最低0.005%必要である。
しかし多過ぎるとTiCを形成し低温靭性や溶接性を劣化
させるので、その上限は0.02%しする。
When the amount of Al is small (for example, 0.003% or less), Ti combines with O to form an oxide containing Ti 2 O 3 as a main component to improve HAZ toughness. Further, it combines with N to form TiN, suppresses γ grain phase enlargement at the time of reheating, and refines the structure after rolling. To obtain these effects, Ti must be at least 0.005%.
However, if too much, TiC is formed and the low temperature toughness and weldability are deteriorated, so the upper limit is made 0.02%.

Al、一般に脱酸上鋼に含まれる元素であるが、脱酸はSi
またはTiだけでも十分であり、本発明鋼においては、そ
の下限は限定しない。しかしAl量が多くなると鋼の清浄
度が悪くなるばかりでなく、溶接金属の靭性が劣化する
ので上限を0.06%とした。
Al, an element generally contained in deoxidized upper steel, but deoxidized is Si
Alternatively, Ti alone is sufficient, and in the steel of the present invention, the lower limit is not limited. However, if the amount of Al increases, not only the cleanliness of the steel deteriorates but also the toughness of the weld metal deteriorates, so the upper limit was made 0.06%.

Nは不可避的不純物として鋼中に含まれる元素である
が、TiNを形成して前述のようにHT60の性質を高める。
このためのN量として最低0.001%必要である。しかし
ながら過剰のNはHAZ靭性、溶接性に極めて有害であ
り、この影響は高強度鋼ほど著しい。HT60の場合、その
上限は0.003%である。
N is an element contained in steel as an unavoidable impurity, but it forms TiN and enhances the properties of HT60 as described above.
For this purpose, the minimum amount of N is 0.001%. However, excessive N is extremely harmful to HAZ toughness and weldability, and this effect is more remarkable in high strength steel. In the case of HT60, the upper limit is 0.003%.

OはNと同様に不純物として鋼中に含まれる元素である
が、Al量が少ない場合には、Tiと結合してTi2O3を形成
し、HAZ靭性を向上させる。このために必要な最少O量
は0.002%である。しかしO量が多過ぎると鋼の清浄度
が劣化し、靭性などに悪影響を与えるので、その上限は
0.004%とする。
O, like N, is an element contained in steel as an impurity, but when the amount of Al is small, it combines with Ti to form Ti 2 O 3 and improves the HAZ toughness. The minimum amount of O necessary for this is 0.002%. However, if the amount of O is too large, the cleanliness of the steel deteriorates and the toughness is adversely affected.
0.004%.

次にNi,Cu,Caを添加する理由について説明する。基本と
なる成分にさらに、これらの元素を添加する主たる目的
は本発明鋼の優れた特徴を損なうことなく、強度,靭性
などの特性向上を図るためである。従って、その添加量
は自ら制限される性質のものである。
Next, the reason for adding Ni, Cu and Ca will be explained. The main purpose of adding these elements to the basic components is to improve the properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount of addition is limited by itself.

Ni溶接性に悪影響をおよぼすことなく、強度、靭性を向
上させるほか、Cu−クラックの防止にも効果がある。し
かし1.0%を超えると溶接性に好ましくないため、上限
を1.0%とした。
It improves strength and toughness without adversely affecting Ni weldability, and is also effective in preventing Cu-cracks. However, if it exceeds 1.0%, the weldability is not preferable, so the upper limit was made 1.0%.

Cuも溶接性、HAZ靭性に悪影響を及ぼすことなく、強度
を向上させるほか、耐食性の向上にも効果を発揮する。
しかし0.6%を越えると溶接性を害するので、上限を0.6
%とした。
Cu also improves the strength without adversely affecting the weldability and HAZ toughness, and is also effective in improving the corrosion resistance.
However, if it exceeds 0.6%, the weldability is impaired, so the upper limit is 0.6.
%.

なおNi,Cu量の下限は、これらの元素による効果が得ら
れる最少量で、0.05%である。
The lower limit of the amounts of Ni and Cu is 0.05%, which is the minimum amount at which the effects of these elements can be obtained.

Caは硫化物の形態を制御し、低温靭性(シャルピー吸収
エネルギー)を向上させるほか、耐水素誘起割れ性の改
善にも効果を発揮する。しかしCa量0.001%未満では実
用上の効果がなく、また0.005%を越えて添加すると、C
aO,CaSが多量に生成して大型介在物となり、鋼の清浄度
を害して靭性を低下させる。また溶接性にも悪影響を与
える。このため添加量の範囲を0.001〜0.005%に制限し
た。
Ca controls the morphology of sulfides, improves low temperature toughness (Charpy absorbed energy), and is also effective in improving hydrogen-induced cracking resistance. However, if the amount of Ca is less than 0.001%, there is no practical effect, and if it is added over 0.005%,
A large amount of aO and CaS are generated and become large inclusions, which impairs the cleanliness of steel and reduces toughness. It also adversely affects the weldability. Therefore, the range of the added amount is limited to 0.001 to 0.005%.

[実施例] 次に本発明の実施例について述べる。転炉一連続鋳造−
厚板工程で種々の鋼成分の薄い鋼板(板厚10〜20mm)を
製造し、その強度、靭性などを調査した。表1に実施例
を示す。本発明に従って製造した鋼板(本発明鋼)はす
べて良好な特性を有する。これに対して本発明によらな
い比較鋼は、強度,低温靭性に劣る。鋼10,11はNbある
いはV無添加で強度不足であり、鋼12はTi無添加でHAZ
靭性が劣る。また鋼13〜16では、製造条件が適切でない
ために強度あるいは低温靭性が十分でない。
[Examples] Next, examples of the present invention will be described. Converter continuous casting-
In the thick plate process, thin steel plates with various steel components (plate thickness 10 to 20 mm) were manufactured, and their strength and toughness were investigated. Examples are shown in Table 1. The steel sheets produced according to the invention (invention steel) all have good properties. In contrast, the comparative steels not according to the present invention are inferior in strength and low temperature toughness. Steels 10 and 11 do not have Nb or V added and lack strength, and Steel 12 has no Ti added and HAZ.
Inferior toughness. Further, in Steels 13 to 16, the strength or low temperature toughness is not sufficient because the manufacturing conditions are not appropriate.

[発明の効果] 本発明により、低温靭性,溶接性の優れたHT60の製造が
可能となり、その結果、製造コストが低減するとともに
現場での溶接施工能率や溶接構造物の安全性を著しく向
上することができる。
[Effects of the Invention] The present invention makes it possible to manufacture HT60 having excellent low temperature toughness and weldability, resulting in a reduction in manufacturing cost and a marked improvement in on-site welding work efficiency and safety of welded structures. be able to.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.03〜0.09%,Si:0.5%以下,Mn:1.4〜1.
9%,P:0.02%以下,S:0.003%以下,Nb:0.005〜0.03%,V:
0.03〜0.08%,Ti:0.005〜0.02%,Al:0.06%以下,N:0.00
1〜0.003%,O:0.002〜0.004%で、残部が鉄および不可
避的不純物からなる鋼を1100〜1250℃の温度範囲に加熱
して950℃以下、Ar3変態点以上の累積圧下量が40%以
上、Ar3変態点未満の累積圧下量が20%以上、かつ圧延
終了温度が690℃以下、630℃以上となるように圧延を行
うことを特徴とする引張強さ60kgf/mm2級V添加高靭性
高張力鋼板の製造法。
1. C: 0.03 to 0.09%, Si: 0.5% or less, Mn: 1.4 to 1.
9%, P: 0.02% or less, S: 0.003% or less, Nb: 0.005 to 0.03%, V:
0.03 to 0.08%, Ti: 0.005 to 0.02%, Al: 0.06% or less, N: 0.00
Steel containing 1 to 0.003%, O: 0.002 to 0.004% and the balance iron and unavoidable impurities is heated to a temperature range of 1100 to 1250 ° C and the cumulative reduction amount of 950 ° C or less and the Ar 3 transformation point or more is 40% or less. %, Less than Ar 3 transformation point cumulative rolling amount is 20% or more, and rolling is performed such that the rolling end temperature is 690 ° C. or less, 630 ° C. or more, tensile strength 60 kgf / mm 2 class V Manufacturing method of added high toughness and high strength steel sheet.
【請求項2】C:0.03〜0.09%,Si:0.5%以下,Mn:1.4〜1.
9%,P:0.02%以下,S:0.003%以下,Nb:0.005〜0.03%,V:
0.03〜0.08%,Ti:0.005〜0.02%,Al:0.06%以下,N:0.00
1〜0.003%,O:0.002〜0.004%にNi:0.05〜1.0%,Cu:0.0
5〜0.6%,Ca:0.001〜0.005%の1種または2種以上を含
有し、残部が鉄および不可避的不純物からなる鋼を1100
〜1250℃の温度範囲に加熱して950℃以下、Ar3変態点以
上の累積圧下量が40%以上、Ar3変態点未満の累積圧下
量が20%以上、かつ圧延終了温度が690℃以下,630℃以
上となるように圧延を行うことを特徴とする引張強さ60
kgf/mm2級V添加高靭性高張力鋼板の製造法。
2. C: 0.03 to 0.09%, Si: 0.5% or less, Mn: 1.4 to 1.
9%, P: 0.02% or less, S: 0.003% or less, Nb: 0.005 to 0.03%, V:
0.03 to 0.08%, Ti: 0.005 to 0.02%, Al: 0.06% or less, N: 0.00
1 to 0.003%, O: 0.002 to 0.004%, Ni: 0.05 to 1.0%, Cu: 0.0
Steel containing 1 to 2 or more of 5 to 0.6% and Ca: 0.001 to 0.005% with the balance being iron and unavoidable impurities 1100
To 1250 950 ° C. by heating to a temperature range of ° C. or less, Ar 3 cumulative reduction ratio of more than the transformation point of 40% or more, Ar 3 cumulative reduction ratio of less than transformation point is 20% or more and the rolling finishing temperature is 690 ° C. or less Tensile strength of 60%, characterized by rolling to 630 ℃ or higher
kgf / mm 2 class V added high toughness high strength steel plate manufacturing method.
JP1075799A 1989-03-28 1989-03-28 Manufacturing method of V added high toughness high strength steel sheet Expired - Lifetime JPH06104861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075799A JPH06104861B2 (en) 1989-03-28 1989-03-28 Manufacturing method of V added high toughness high strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075799A JPH06104861B2 (en) 1989-03-28 1989-03-28 Manufacturing method of V added high toughness high strength steel sheet

Publications (2)

Publication Number Publication Date
JPH02254119A JPH02254119A (en) 1990-10-12
JPH06104861B2 true JPH06104861B2 (en) 1994-12-21

Family

ID=13586609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075799A Expired - Lifetime JPH06104861B2 (en) 1989-03-28 1989-03-28 Manufacturing method of V added high toughness high strength steel sheet

Country Status (1)

Country Link
JP (1) JPH06104861B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156525B2 (en) * 1994-09-09 2001-04-16 日本鋼管株式会社 Manufacturing method of steel plate for welded structure with excellent cross weld joint characteristics
CN100396809C (en) * 2005-09-12 2008-06-25 鞍钢股份有限公司 Thick steel plate with large heat input and low welding crack sensitivity and production method thereof
JP4946092B2 (en) * 2006-02-28 2012-06-06 Jfeスチール株式会社 High-strength steel and manufacturing method thereof
CN103602891B (en) * 2013-10-22 2015-11-18 内蒙古包钢钢联股份有限公司 The production method of the ductility steel plate of yield strength 460MPa level
CN105112810B (en) * 2015-09-07 2017-05-03 江阴兴澄特种钢铁有限公司 Steel for high heat input resisting welding and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558454A (en) * 1978-07-03 1980-01-22 Nippon Steel Corp Manufacture of v-type high toughness high tension steel of good weldability
JPS63210235A (en) * 1987-02-27 1988-08-31 Nippon Steel Corp Manufacture of steel excellent in toughness at low temperature in welding heat affected zone

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415321A (en) * 1987-07-08 1989-01-19 Nippon Steel Corp Production of steel for electron beam welding having excellent low-temperature toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558454A (en) * 1978-07-03 1980-01-22 Nippon Steel Corp Manufacture of v-type high toughness high tension steel of good weldability
JPS63210235A (en) * 1987-02-27 1988-08-31 Nippon Steel Corp Manufacture of steel excellent in toughness at low temperature in welding heat affected zone

Also Published As

Publication number Publication date
JPH02254119A (en) 1990-10-12

Similar Documents

Publication Publication Date Title
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JPH06104861B2 (en) Manufacturing method of V added high toughness high strength steel sheet
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JPH07109521A (en) Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JP3245224B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JPH0826395B2 (en) 80 kgf / mm with excellent weldability (2) High-strength steel manufacturing method
JP2529044B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JP3245223B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP3007247B2 (en) Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JP3497250B2 (en) Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability
JPH06128641A (en) Production of steel tube with low yield ratio for construction use by cold forming
JP3371715B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JPH0247525B2 (en)
JP3208495B2 (en) Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability
JP3426047B2 (en) Method for producing low yield ratio 590 N / mm2 class high strength steel with excellent weldability
JPS62256947A (en) Tempered high-phosphorus-type weather-resisting steel plate excellent in weldability and toughness at low temperature
JP2529045B2 (en) Manufacturing method of low yield ratio 60kgf / mm2 grade steel pipe for construction by cold forming
JP3371714B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 15