JP3371715B2 - Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance - Google Patents
Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistanceInfo
- Publication number
- JP3371715B2 JP3371715B2 JP25183296A JP25183296A JP3371715B2 JP 3371715 B2 JP3371715 B2 JP 3371715B2 JP 25183296 A JP25183296 A JP 25183296A JP 25183296 A JP25183296 A JP 25183296A JP 3371715 B2 JP3371715 B2 JP 3371715B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- hot
- strength
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、鉄塔、橋梁、建築
物などの防錆のために、溶接後、溶融亜鉛メッキを施さ
れる低合金高張力鋼に関する。
【0002】
【従来の技術】鉄塔、橋梁、建築物の防錆のため、それ
らに用いられる鋼材を構造部材に溶接した後、溶融亜鉛
メッキするという方法が広く使用されてきた。その際、
溶接熱影響部に割れが発生する場合がある。いわゆる、
液体金属脆化によるものである。
【0003】この割れを防止するために、精力的な研究
がなされてきた。それらの成果が鉄と鋼vol.79
(1993)p.1108−p.1114にまとめられ
ている。この文献はファブリケーターと鉄鋼4社で共同
執筆されたものであり、現在のところ公表された技術の
中で信頼がおける最先端のものと位置づけられている。
この論文では、鋼中の混入ボロンの影響について詳細に
述べており、Bは2ppm以下で、かつCEZmod=
C+Si/17+Mn/7.5+Cu/13+Ni/1
7+Cr/4.5+Mo/3+V/1.5+Nb/2+
Ti/4.5+420B≦0.44%を満たせば引張強
度(TS)590MPa級の鋼では、溶接後の溶融亜鉛
メッキ割れが発生しないということを明らかにしてい
る。
【0004】
【発明が解決しようとする課題】高張力鋼の成分設計で
は、一般に焼入性を高める元素や析出強化する元素が添
加されている。しかし、CEZmodの式でもわかるよ
うに、添加元素のほとんどすべては耐溶融亜鉛メッキ割
れ性を劣化させてしまうので、TS780MPa以上の
強度を確保し、且つ溶接部で亜鉛メッキ割れが発生しな
い鋼を開発するのは不可能視されてきた。
【0005】本発明の課題は、TS780MPa以上の
強度と溶接部で耐亜鉛メッキ割れ性が発生しない鋼の製
造方法を提供するものである。
【0006】
【課題を解決するための手段】本発明者は、上記の状況
を鑑み、耐溶融亜鉛メッキ割れ性を上昇させる添加元素
は無いか、また、TS780MPa以上の強度と耐亜鉛
メッキ割れ性を両立する成分設計・製造条件はいかなる
ものかと鋭意研究した。その結果、Ti−Ca添加によ
り耐溶融亜鉛メッキ割れ性が著しく改善され、両者を複
合添加し、且つ、Ceqm(=C+Mn/20+Si/
30+Cu/20+Ni/60+Cr/20+Mo/1
5+V/10+5B+1.0Nb)を0.23%以上
0.27%以下で成分設計し、適切な条件で直接焼き入
れ−焼き戻しすれば、TS780MPa以上の強度と耐
亜鉛メッキ割れ性を両立できることを発見した。
【0007】本発明は、重量%で、C:0.06%以上
0.12%以下、Si:0.1%以上0.6%以下、M
n:1.0%以上2.0%以下、P:0.02%以下、
S:0.002%以下、Nb:0.01%以上0.06
%以下、Ti:0.01%以上0.05%以下、Ca:
0.001%以上0.005%以下、N:0.002%
以上0.006%以下、Al:0.005%以上0.1
%以下、B:0.0002%以下、O:0.005%以
下、さらに、Cu:0.6%以下、Ni:1.0%以
下、Cr:1.0%以下、Mo:0.6%以下、V:
0.1%以下を1種または2種以上が添加され、残部が
鉄および不純物からなり、かつこれらの元素の組み合わ
せた値Ceqm=C+Mn/20+Si/30+Cu/
20+Ni/60+Cr/20+Mo/15+V/10
+5B+1.0Nbが、0.23%≦Ceqm≦0.2
7%の関係にある組成を有する連続鋳造スラブを、11
00℃以上に加熱し950℃以下720℃以上で圧延を
終了し、ただちに水冷し250℃以下で水冷を停止した
後、550℃以上650℃以下で焼き戻し処理すること
を特徴とする溶接熱影響部の耐溶融亜鉛メッキ割れ性に
優れた引張強度780MPa以上の高張力鋼の製造方法
である。
【0008】
【発明の実施の形態】以下に本発明の詳細を示す。ま
ず、成分範囲限定理由について述べる。
【0009】0.01%≦Nb≦0.06%
0.23%≦Ceqm
まず、本発明では、TS780MPa級の鋼を得ること
が第1課題である。Nbは少量添加で著しく強度上昇さ
せるに有効な元素であり、本発明では必須の元素であ
る。0.01%未満の添加では、780MPa以上の強
度を得るのが困難で、0.06%を超える添加は鋼の脆
化を招くので、0.01%以上0.06%以下に限定し
た。また、Nbは強度を上昇させる元素であるにもかか
わらず、C等量として示すのが困難な元素であった。そ
の理由は、圧延や熱処理条件に依存し、強度への寄与が
異なるためである。しかし、固溶Nbが十分に得られる
圧延加熱温度をとり圧延後直接焼き入れしその後焼き戻
す、いわゆるDQ−T処理する前提では、図1に示すよ
うに、Ceqm(=C+Mn/20+Si/30+Cu
/20+Ni/60+Cr/20+Mo/15+V/1
0+5B+1.0Nb)というC等量式で引張強度が整
理できることがわかった。Ceqmを0.23%以上に
制御すれば、板厚40mm以下の範囲においてTS78
0MPa以上が得られることが判明した。
【0010】0.01%≦Ti≦0.05%
0.001%≦Ca≦0.005%
Ceqm ≦0.27%
本発明の第2の課題は、溶接熱影響部で耐亜鉛メッキ割
れを防止することである。それは、Ti−Caの複合添
加とCeqmを0.27%以下に制御することで達成さ
れる。溶接部の亜鉛メッキ割れを防止するには、溶接加
熱時の熱影響部のオーステナイト粒径を細くし、溶接後
の冷却時、オーステナイト粒径にフェライトを析出させ
ることが重要である。CaとTiを複合添加すると、T
iNが著しく細くなり、溶接加熱時の溶接熱影響部のオ
ーステナイト粒の成長抑制し、溶接後の冷却時には、フ
ェライトの核生成サイトとして作用し、溶接熱影響部の
組織は粒界フェライトが析出した細い組織が得られるこ
とが判明した。その結果、図2に示すごとく、TiとC
aを複合添加すれば、Ceqmが0.23%以上0.2
7%以下の範囲で溶接部の亜鉛メッキ割れが防げること
がわかった。Tiが0.01%未満では上記のような溶
接熱影響部の組織が得るだけの十分な数のTiNがえら
れず、0.05%を超える添加をしてもTiNの数の増
加にはつながらずTiCを生成し溶接熱影響部の脆化を
招く。よって、Ti量を0.01%以上0.05%以下
に限定した。また、0.001%未満のCa添加では上
記TiNの微細化効果が十分でなく粒界フェライトが析
出した細い組織を有する熱影響部が得られない。また、
0.005%を超えるCaの添加は鋼の清浄度を低下さ
せ靱性劣化を招く。よって、Caは0.001%以上
0.005%以下に限定した。
【0011】0.06%≦C≦0.12%
Cは、強度を高めるのに必須の元素である。0.06%
未満では780MPa以上の強度を得るのが困難で、
0.12%を超えると鋼の靱性ならびに溶接性が著しく
劣化するため、0.06%以上0.12%以下に限定し
た。
【0012】0.1%≦Si≦0.6%
Siは、メッキ後の外観状況と関係しており、0.1%
未満0.6%超えではメッキ焼けが発生し易くなる。よ
って、0.1%以上0.6%以下に限定した。
【0013】1.0%≦Mn≦2.0%
Mnは強度、靱性の面から必須の元素であるが、1.0
%未満では780MPa以上の強度を得るのが困難で、
2.0%を超えると溶接性が著しく劣化するため、M
n:1.0%以上2.0%以下に限定した。
【0014】P≦0.02%
Pは溶接高温割れの発生を助長する元素であり、0.0
2%を超えて含有するとその危険性が著しく高まるので
0.02%以下に限定した。
【0015】S≦0.002%
SはCaと化合し、CaSを形成する。0.002%を
超えて含有しているとCaSのクラスターを形成し、鋼
の靱性、溶接性を著しく劣化させる。したがって,0.
002%以下に限定した。
【0016】0.002%≦N≦0.006%
Nは、溶接熱影響部でTiNを生成するのに必要な元素
である。0.002%未満の含有では粒界フェライトが
析出した細い組織を有する熱影響部を得るに十分な数の
TiNが得られない。また、0.006%を超えるNの
含有は、溶接部の靱性を劣化させてしまう。よって、N
含有量を0.002%以上0.006%以下に限定し
た。
【0017】0.005%≦Al≦0.1%
Alは脱酸のため必須の元素である。0.005%未満
では脱酸が不十分であり、0.1%を超えると多量のア
ルミナが発生し、鋼の清浄性を著しく劣化させる。した
がって、0.005%以上0.1%以下に限定した。
【0018】B≦0.0002%
Bは鋼の焼入性を著しく向上させる。0.0002%を
超えると耐溶融亜鉛メッキ割れ性が著しく劣化させるの
で、Bを0.0002%以下に限定した。
【0019】O≦0.005%
Oは鋼の清浄度を劣化させる。Ca添加の場合0.00
5%を超えるOを含有するとCa−O−S系介在物クラ
スターを生成しやすくなり鋼の靱性劣化を招くので、
0.005%以下に限定した。
【0020】Cu≦0.6%
Cuは鋼の強度を高めるのに有効な元素であるが、0.
6%を超えて添加した場合にはCu割れが発生し易い。
よって、0.6%以下に限定した。
【0021】Ni≦1.0%
Niは鋼の強度upならびに靱性向上に有効な元素であ
るが、経済性を考慮し、1.0%以下に限定した。
【0022】Cr≦1.0%
Crは鋼の強度を高めるのに有効な元素であるが、1.
0%を超えて添加すると鋼の靱性、溶接性を劣化させる
ため、1.0%以下に限定した。
【0023】Mo≦0.6%
Moは鋼の強度を高めるのに有効な元素であるが、0.
6%を超えて添加すると鋼の靱性、溶接性を著しく劣化
させるため、0.6%以下に限定した。
【0024】V≦0.1%
Vは微量の添加で析出強化により鋼の強度を高めるのに
有効な元素であるが、0.1%を超えて添加すると鋼の
靱性、溶接性を著しく劣化させるため、0.1%以下に
限定した。
【0025】次に、製造条件について述べる。
【0026】圧延加熱温度≧1100℃
圧延加熱温度を1100℃以上に限定した理由は、圧延
時にNbCNを固溶し、強度向上に寄与する固溶Nbを
確保するためである。本発明範囲の0.06〜0.12
%C、0.01〜0.06%Nbの場合、十分な固溶N
bを確保するためには1100℃以上の加熱が必要で、
それ未満の温度で780MPa以上の引張強度を得るの
が困難である。
【0027】720℃≦圧延仕上温度≦950℃
圧延仕上温度を950℃以下720℃以上に限定した理
由は以下のとおりである。950℃を超える温度で圧延
を仕上げると組織が粗粒となり優れた靱性が得られず、
720℃を下回る温度で圧延を仕上げるとその後DQ−
Tを行っても、十分に焼が入らず780MPa以上の引
張強度を得るのが困難なためである。
【0028】[直ちに水冷]その後、ただちにDQ処理
するのも、十分に焼を入れ780MPa以上の引張強度
を得るためである。もちろん、圧延仕上がり温度が高い
程、ただちにといっても、多少余裕があるのは、冶金原
理から言うまでもない。DQ処理の冷媒として水に限定
したのは、最も安価で冷却能が大きいためである。ま
た、熱処理を再加熱焼入とせず直接焼入に限定したの
は、再加熱焼入では通常900℃前後の加熱温度を設定
するためNbCNが固溶せず780MPa以上の引張強
度を得るのが困難なためである。
【0029】水冷停止温度≦250℃
DQ処理の水冷停止温度を250℃以下に限定した理由
もマルテンサイト変態を板厚中央まで起こさせ、780
MPa以上の引張強度を得るためである。
【0030】550℃≦焼戻し温度≦650℃
焼き戻し温度を550℃以上650℃以下に限定した理
由は以下のとおりである。550℃未満では優れた靱性
が得られず、650℃を越えると焼き戻し軟化が著しく
780MPa以上の引張強度を得るのが困難なためであ
る。
【0031】
【実施例】表1に示す化学組成の鋼を溶解し、連続鋳造
にて220〜300mmのスラブとした。表2には熱間
圧延条件、DQ−T条件を示している。表2の鋼板N
o.のアルファベットは表1の鋼No.と対応してい
る。たとえば、鋼板No.EP,EP1とも表1の鋼N
o.EPと同一の化学組成を有する。
【0032】これらの鋼板に対し、引張試験、拘束継手
亜鉛メッキ割れ試験を実施した。
【0033】拘束継手亜鉛メッキ割れ試験は、図3に示
す十字継手を作成後、470℃の亜鉛浴中に浸漬、メッ
キ後、試験ビード1のトウ部における割れの有無を調べ
る試験である。拘束ビード2のパス数は18パスであ
り、この拘束ビードにより、試験ビード1のトウ部に母
材の降伏応力相当の非常に高い残留応力が作用している
ことを確認している。したがって、この試験体で割れの
発生しない場合、実構造溶接部材の溶融亜鉛メッキにお
いても割れは発生しないと判断できる。
【0034】供試鋼の各試験結果を第2表に併記する。
Ti−Caが添加されていない従来鋼板B〜Iは拘束継
手亜鉛メッキ割れ試験で割れが発生している。従来鋼板
Aは拘束継手亜鉛メッキ割れ試験でも割れは発生しなか
ったものの、Ceqmが0.23%未満のため、780
MPa以上のTSが得られていない。従来鋼板HH〜I
IはTi−Caが添加されているものの、Ceqmが
0.27を超えるため、拘束継手亜鉛メッキ割れ試験で
割れが発生している。
【0035】Ga−Tiが添加され、Ceqmが0.2
3%以上0.27%以下の成分組成を有し、1100℃
以上の圧延加熱温度を設定し、950℃以下720℃以
上で圧延を仕上げただちに直接焼入、250℃以下まで
水冷し、その後550℃以上650℃以下で焼き戻し処
理を施したCP,DP,EP,FP,GP,JP,K
P,LPの開発鋼は、780MPa以上のTSを示し、
且つ拘束継手亜鉛メッキ割れ試験でも割れは発生しなか
った。また、発明鋼は、優れた靱性も有している。
【0036】しかし、Ca−Tiが添加され、Ceqm
が0.23%以上0.27%以下の成分組成を有してい
るにもかかわらず、本発明製造条件を満たしていない鋼
は、780MPa以上の強度が得られなかったり、靱性
が著しく低いことがわかる。
【0037】
【表1】【0038】
【表2】【0039】
【発明の効果】以上の説明から明らかなように、本発明
に従い成分設計しDQ−Tを施すと780MPa以上の
引張強度を有する鋼が得られ、鉄塔、橋梁、建築物など
の溶接構造物に使用され溶融亜鉛メッキが施されても、
割れを防止することができる。産業上、極めて大きな効
果を有する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-alloy, high-strength steel which is hot-dip galvanized after welding to prevent rust on steel towers, bridges, buildings and the like. About. 2. Description of the Related Art In order to prevent rust of steel towers, bridges and buildings, a method has been widely used in which steel used for them is welded to a structural member and then hot-dip galvanized. that time,
Cracks may occur in the heat affected zone. So-called,
This is due to liquid metal embrittlement. [0003] In order to prevent this cracking, intensive research has been made. Those achievements are iron and steel vol. 79
(1993) p. 1108-p. 1114. This document was co-authored by a fabricator and four steel companies and is currently considered the most reliable and cutting-edge technology published.
This paper describes in detail the effect of boron contamination in steel, B is less than 2 ppm, and CEZmod =
C + Si / 17 + Mn / 7.5 + Cu / 13 + Ni / 1
7 + Cr / 4.5 + Mo / 3 + V / 1.5 + Nb / 2 +
It has been clarified that, if Ti / 4.5 + 420B ≦ 0.44% is satisfied, hot-dip galvanizing cracking does not occur after welding in a steel having a tensile strength (TS) of 590 MPa. [0004] In the composition design of high-strength steels, elements that enhance hardenability and elements that strengthen precipitation are generally added. However, as can be seen from the CEZmod equation, almost all of the added elements deteriorate the hot-dip galvanizing cracking resistance, so a steel with a strength of at least TS780 MPa and no galvanizing cracking in the weld zone has been developed. It has been considered impossible to do so. [0005] An object of the present invention is to provide a method for producing steel which has a strength of TS780 MPa or more and does not cause galvanizing cracking resistance in a welded portion. [0006] In view of the above situation, the present inventor has determined that there is no additional element that enhances the hot-dip galvanizing cracking resistance, and that it has a strength of at least TS780 MPa and a galvanizing cracking resistance. We have intensively researched what component design and manufacturing conditions are compatible. As a result, the hot-dip galvanizing crack resistance was significantly improved by the addition of Ti—Ca, and both were added in combination, and Ceqm (= C + Mn / 20 + Si /
30 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 1
5 + V / 10 + 5B + 1.0Nb) was found to be able to achieve both strength of more than TS780MPa and resistance to galvanizing cracking by designing the composition of 0.23% or more and 0.27% or less and directly quenching and tempering under appropriate conditions. did. According to the present invention, C: 0.06% to 0.12%, Si: 0.1% to 0.6%, M
n: 1.0% or more and 2.0% or less, P: 0.02% or less,
S: 0.002% or less, Nb: 0.01% or more and 0.06
% Or less, Ti: 0.01% or more and 0.05% or less, Ca:
0.001% or more and 0.005% or less, N: 0.002%
Not less than 0.006% and Al: not less than 0.005% and 0.1
%, B: 0.0002% or less, O: 0.005% or less, Cu: 0.6% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 0.6 % Or less, V:
0.1% or less, one or more kinds are added, the balance is composed of iron and impurities, and the combined value of these elements Ceqm = C + Mn / 20 + Si / 30 + Cu /
20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10
+ 5B + 1.0Nb is 0.23% ≦ Ceqm ≦ 0.2
Continuous cast slabs having a composition of 7%
The effect of welding heat characterized in that the rolling was completed by heating at a temperature of at least 00 ° C and rolling at a temperature of at least 950 ° C and at a temperature of at least 720 ° C. This is a method for producing a high-strength steel having a tensile strength of 780 MPa or more, which is excellent in hot-dip galvanizing cracking resistance of a portion. The details of the present invention will be described below. First, the reasons for limiting the component ranges will be described. 0.01% ≦ Nb ≦ 0.06% 0.23% ≦ Ceqm First, in the present invention, it is a first object to obtain a TS780 MPa grade steel. Nb is an element effective for significantly increasing the strength when added in a small amount, and is an essential element in the present invention. If the addition is less than 0.01%, it is difficult to obtain a strength of 780 MPa or more, and if the addition exceeds 0.06%, the steel becomes brittle. Therefore, the addition is limited to 0.01% or more and 0.06% or less. Also, Nb is an element that is difficult to indicate as C equivalent, despite being an element that increases strength. The reason for this is that the contribution to strength differs depending on the rolling and heat treatment conditions. However, on the premise that the so-called DQ-T treatment is performed after the rolling heating temperature at which solid-solution Nb is sufficiently obtained and the steel is directly quenched after rolling and then tempered, as shown in FIG. 1, Ceqm (= C + Mn / 20 + Si / 30 + Cu)
/ 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 1
It was found that the tensile strength can be arranged by the C equivalent equation of 0 + 5B + 1.0Nb). If Ceqm is controlled to 0.23% or more, TS78 can be obtained in a range of a plate thickness of 40 mm or less.
It turned out that 0 MPa or more can be obtained. [0010] A second object of the present invention is to prevent galvanized cracks in the heat affected zone of the weld by 0.01% ≦ Ti ≦ 0.05% 0.001% ≦ Ca ≦ 0.005% Ceqm ≦ 0.27%. It is to prevent. This is achieved by controlling the combined addition of Ti—Ca and Ceqm to 0.27% or less. In order to prevent galvanized cracks in the weld, it is important to reduce the austenite grain size in the heat-affected zone during welding heating and to precipitate ferrite in the austenite grain size during cooling after welding. When Ca and Ti are added in combination, T
iN became remarkably thin and suppressed the growth of austenite grains in the weld heat affected zone during welding heating, and acted as a nucleation site for ferrite during cooling after welding, and grain boundary ferrite precipitated in the structure of the weld heat affected zone. It turned out that a thin tissue could be obtained. As a result, as shown in FIG.
When a is added in combination, Ceqm is 0.23% or more and 0.2% or more.
It was found that the galvanized crack in the welded portion could be prevented in the range of 7% or less. If Ti is less than 0.01%, a sufficient number of TiNs to obtain the above-described structure of the heat affected zone cannot be obtained. It generates TiC and leads to embrittlement of the heat affected zone. Therefore, the Ti content is limited to 0.01% or more and 0.05% or less. Further, if Ca is added in an amount of less than 0.001%, the effect of miniaturizing TiN is not sufficient, and a heat-affected zone having a fine structure in which grain boundary ferrite is precipitated cannot be obtained. Also,
Addition of Ca exceeding 0.005% lowers the cleanliness of the steel and causes deterioration of toughness. Therefore, Ca is limited to 0.001% or more and 0.005% or less. 0.06% ≦ C ≦ 0.12% C is an essential element for increasing the strength. 0.06%
If less than it is difficult to obtain a strength of 780 MPa or more,
If it exceeds 0.12%, the toughness and weldability of the steel are remarkably deteriorated, so the content is limited to 0.06% or more and 0.12% or less. 0.1% ≦ Si ≦ 0.6% Si is related to the appearance after plating, and is 0.1% ≦ Si ≦ 0.6%.
If it is less than 0.6% and the plating is burnt easily. Therefore, it is limited to 0.1% or more and 0.6% or less. 1.0% ≦ Mn ≦ 2.0% Mn is an essential element in view of strength and toughness.
%, It is difficult to obtain a strength of 780 MPa or more,
If the content exceeds 2.0%, the weldability is significantly deteriorated.
n: Limited to 1.0% or more and 2.0% or less. P ≦ 0.02% P is an element that promotes the occurrence of hot cracking in the weld.
When the content exceeds 2%, the danger is significantly increased, so that the content is limited to 0.02% or less. S ≦ 0.002% S combines with Ca to form CaS. If the content exceeds 0.002%, a CaS cluster is formed, and the toughness and weldability of the steel are significantly deteriorated. Therefore, 0.
002% or less. 0.002% ≦ N ≦ 0.006% N is an element necessary for generating TiN in the heat affected zone. If the content is less than 0.002%, TiN cannot be obtained in a sufficient number to obtain a heat-affected zone having a fine structure with grain boundary ferrite precipitated. Further, if the content of N exceeds 0.006%, the toughness of the welded portion is deteriorated. Therefore, N
The content was limited to 0.002% or more and 0.006% or less. 0.005% ≦ Al ≦ 0.1% Al is an essential element for deoxidation. If it is less than 0.005%, deoxidation is insufficient, and if it exceeds 0.1%, a large amount of alumina is generated, and the cleanliness of the steel is significantly deteriorated. Therefore, it is limited to 0.005% or more and 0.1% or less. B ≦ 0.0002% B remarkably improves the hardenability of steel. If it exceeds 0.0002%, the hot-dip galvanizing cracking resistance is significantly deteriorated, so B was limited to 0.0002% or less. O ≦ 0.005% O deteriorates the cleanliness of steel. 0.00 when Ca is added
If the content of O exceeds 5%, Ca-OS-based inclusion clusters are easily formed, and the toughness of steel is deteriorated.
It was limited to 0.005% or less. Cu ≦ 0.6% Cu is an effective element for increasing the strength of steel.
When added in excess of 6%, Cu cracks are likely to occur.
Therefore, it was limited to 0.6% or less. Ni ≦ 1.0% Ni is an element effective for improving the strength up and toughness of steel, but is limited to 1.0% or less in consideration of economic efficiency. Cr ≦ 1.0% Cr is an element effective for increasing the strength of steel.
If added in excess of 0%, the toughness and weldability of the steel deteriorate, so the content was limited to 1.0% or less. Mo ≦ 0.6% Mo is an effective element for increasing the strength of steel.
If added in excess of 6%, the toughness and weldability of the steel will be significantly deteriorated, so the content is limited to 0.6% or less. V ≦ 0.1% V is an element effective for increasing the strength of steel by precipitation strengthening when added in a small amount, but when added in excess of 0.1%, the toughness and weldability of the steel are significantly deteriorated. For this purpose, the content is limited to 0.1% or less. Next, the manufacturing conditions will be described. Rolling heating temperature ≧ 1100 ° C. The reason why the rolling heating temperature is limited to 1100 ° C. or more is to secure solid solution Nb which dissolves NbCN during rolling and contributes to strength improvement. 0.06 to 0.12 in the range of the present invention
% C, 0.01-0.06% Nb, sufficient solid solution N
In order to secure b, heating at 1100 ° C. or more is necessary,
It is difficult to obtain a tensile strength of 780 MPa or more at a temperature lower than that. 720 ° C. ≦ rolling finishing temperature ≦ 950 ° C. The reason for limiting the rolling finishing temperature to 950 ° C. or lower and 720 ° C. or higher is as follows. When rolling is completed at a temperature exceeding 950 ° C., the structure becomes coarse and excellent toughness cannot be obtained.
After rolling at temperatures below 720 ° C, DQ-
This is because even if T is performed, the steel is not sufficiently quenched and it is difficult to obtain a tensile strength of 780 MPa or more. [Immediate water cooling] The reason why the DQ treatment is performed immediately thereafter is to sufficiently sinter and obtain a tensile strength of 780 MPa or more. Of course, it goes without saying that the higher the finishing temperature of the rolling, the more room there is, even immediately, from the metallurgical principle. The reason why the refrigerant for the DQ treatment is limited to water is that it is the cheapest and has a large cooling capacity. The reason for limiting the heat treatment to direct quenching instead of reheating quenching is that in reheating quenching, a heating temperature of about 900 ° C. is usually set so that NbCN does not form a solid solution and a tensile strength of 780 MPa or more is obtained. Because it is difficult. Water cooling stop temperature ≦ 250 ° C. The reason why the water cooling stop temperature of the DQ treatment is limited to 250 ° C. or less is that martensitic transformation is caused to the center of the sheet thickness, and 780
This is for obtaining a tensile strength of not less than MPa. 550 ° C. ≦ tempering temperature ≦ 650 ° C. The reason for limiting the tempering temperature to 550 ° C. or more and 650 ° C. or less is as follows. If the temperature is lower than 550 ° C., excellent toughness cannot be obtained. If the temperature exceeds 650 ° C. , tempering softening is remarkable, and it is difficult to obtain a tensile strength of 780 MPa or more. EXAMPLE Steel having the chemical composition shown in Table 1 was melted and continuously cast to form a slab of 220 to 300 mm. Table 2 shows hot rolling conditions and DQ-T conditions. Steel plate N in Table 2
o. Are the steel No. in Table 1. It corresponds to. For example, the steel sheet No. For both EP and EP1, steel N in Table 1
o. It has the same chemical composition as EP. These steel sheets were subjected to a tensile test and a galvanizing crack test of a restraint joint. The galvanized crack test of the restraint joint is a test for preparing the cross joint shown in FIG. 3, immersing it in a zinc bath at 470 ° C., plating, and then examining the toe portion of the test bead 1 for cracks. The number of passes of the constraining bead 2 was 18 and it was confirmed that a very high residual stress equivalent to the yield stress of the base material was acting on the toe portion of the test bead 1 by the constraining bead. Therefore, when no crack occurs in this test piece, it can be determined that no crack occurs even in hot-dip galvanizing of the welded member having the actual structure. Table 2 shows the test results of the test steels.
Conventional steel sheets B to I to which Ti-Ca has not been added have cracks in the galvanization cracking test of restraint joints. Conventional steel sheet A did not crack even in the restraint joint galvanization cracking test, but since Ceqm was less than 0.23%, it was 780.
TS higher than MPa was not obtained. Conventional steel plate HH-I
For I, although Ti-Ca was added, since Ceqm exceeded 0.27, cracks occurred in the galvanization cracking test of the restricted joint. Ga—Ti is added, and Ceqm is 0.2
It has a component composition of 3% or more and 0.27% or less, and has a temperature of 1100 ° C.
The above-mentioned rolling heating temperature is set, and the roll is finished at 950 ° C or lower and 720 ° C or higher, immediately quenched, water-cooled to 250 ° C or lower, and then tempered at 550 ° C or higher and 650 ° C or lower, CP, DP, EP , FP, GP, JP, K
The developed steels of P and LP show TS of 780MPa or more,
No cracking occurred in the galvanized cracking test of the restraint joint. Further, the invention steel also has excellent toughness. However, Ca-Ti is added and Ceqm
Despite having a component composition of 0.23% or more and 0.27% or less, steel that does not satisfy the production conditions of the present invention cannot have a strength of 780 MPa or more or has extremely low toughness. I understand. [Table 1] [Table 2] As is apparent from the above description, when the components are designed and DQ-T is applied according to the present invention, a steel having a tensile strength of 780 MPa or more can be obtained, and welding of steel towers, bridges, buildings and the like can be obtained. Even if it is used for the structure and is subjected to hot-dip galvanization,
Cracks can be prevented. It has an extremely great effect on industry.
【図面の簡単な説明】
【図1】DQ−T処理された鋼板の引張強度とCeqm
の関係を示した図。供試鋼は第1表の鋼A〜Iである。
【図2】Ceqmの関係並びにTi−Ca添加の効果を
示した亜鉛メッキ拘束割れ試験結果の図。供試鋼は第1
表の鋼A〜G、鋼CP〜FPおよび鋼HH〜IIであ
る。
【図3】拘束割れ試験体の大きさ、構成について示した
図。
【符号の説明】
1…試験ビード、2…拘束ビード(18パス/1サイ
ド)、3…試験板。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the tensile strength and Ceqm of DQ-T treated steel sheet.
FIG. The test steels are steels A to I in Table 1. FIG. 2 is a view of a zinc plating restraint cracking test result showing the relationship between Ceqm and the effect of adding Ti—Ca. No. 1 for test steel
Steels A to G, steels CP to FP and steels HH to II in the table. FIG. 3 is a diagram showing the size and configuration of a restrained crack test specimen. [Description of Signs] 1 ... test bead, 2 ... restraint bead (18 passes / 1 side), 3 ... test plate.
フロントページの続き (56)参考文献 特開 平8−269545(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C22C 38/00 - 38/60 Continuation of front page (56) References JP-A-8-269545 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/00-8/10 C22C 38/00-38 / 60
Claims (1)
%以下、Si:0.1%以上0.6%以下、Mn:1.
0%以上2.0%以下、P:0.02%以下、S:0.
002%以下、Nb:0.01%以上0.06%以下、
Ti:0.01%以上0.05%以下、Ca:0.00
1%以上0.005%以下、N:0.002%以上0.
006%以下、Al:0.005%以上0.1%以下、
B:0.0002%以下、O:0.005%以下、さら
に、Cu:0.6%以下、Ni:1.0%以下、Cr:
1.0%以下、Mo:0.6%以下、V:0.1%以下
を1種または2種以上が添加され、残部が鉄および不純
物からなり、かつこれらの元素の組み合わせた値 Ceqm=C+Mn/20+Si/30+Cu/20+
Ni/60+Cr/20+Mo/15+V/10+5B
+1.0Nb が、0.23%≦Ceqm≦0.27%の関係にある組
成を有する連続鋳造スラブを、1100℃以上に加熱し
950℃以下720℃以上で圧延を終了し、ただちに水
冷し250℃以下で水冷を停止した後、550℃以上6
50℃以下で焼き戻し処理することを特徴とする溶接熱
影響部の耐溶融亜鉛メッキ割れ性に優れた引張強度78
0MPa以上の高張力鋼の製造方法(57) [Claims 1] C: 0.06% or more and 0.12% by weight
%, Si: 0.1% or more and 0.6% or less, Mn: 1.% or less.
0% or more and 2.0% or less, P: 0.02% or less, S: 0.
002% or less, Nb: 0.01% or more and 0.06% or less,
Ti: 0.01% or more and 0.05% or less, Ca: 0.00
1% or more and 0.005% or less, N: 0.002% or more.
006% or less, Al: 0.005% or more and 0.1% or less,
B: 0.0002% or less, O: 0.005% or less, Cu: 0.6% or less, Ni: 1.0% or less, Cr:
One or more of 1.0% or less, Mo: 0.6% or less, and V: 0.1% or less are added, and the balance consists of iron and impurities, and the value of the combination of these elements Ceqm = C + Mn / 20 + Si / 30 + Cu / 20 +
Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
+ 1.0Nb is a continuous cast slab having a composition of 0.23% ≦ Ceqm ≦ 0.27%, is heated to 1100 ° C. or more, finishes rolling at 950 ° C. or less and 720 ° C. or more, and immediately cooled with water. After stopping the water cooling below ℃,
Tensile strength 78 excellent in hot-dip galvanizing cracking resistance of the heat-affected zone of the weld characterized by tempering at 50 ° C. or less.
Method for producing high-strength steel of 0 MPa or more
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25183296A JP3371715B2 (en) | 1996-09-24 | 1996-09-24 | Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25183296A JP3371715B2 (en) | 1996-09-24 | 1996-09-24 | Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1096022A JPH1096022A (en) | 1998-04-14 |
JP3371715B2 true JP3371715B2 (en) | 2003-01-27 |
Family
ID=17228597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25183296A Expired - Fee Related JP3371715B2 (en) | 1996-09-24 | 1996-09-24 | Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3371715B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103320693B (en) * | 2013-06-19 | 2015-11-18 | 宝山钢铁股份有限公司 | Anti-zinc fracturing line steel plate and manufacture method thereof |
KR20170074319A (en) | 2015-12-21 | 2017-06-30 | 주식회사 포스코 | Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same |
-
1996
- 1996-09-24 JP JP25183296A patent/JP3371715B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1096022A (en) | 1998-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5277648B2 (en) | High strength steel sheet with excellent delayed fracture resistance and method for producing the same | |
KR101388334B1 (en) | High tensile steel products excellent in the resistance to delayed fracture and process for production of the same | |
KR100920536B1 (en) | High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof | |
JPH05186823A (en) | Production of cu-containing high tensile strength steel with high toughness | |
JP4310591B2 (en) | Method for producing high-strength steel sheet with excellent weldability | |
JP3602471B2 (en) | High tensile strength steel sheet excellent in weldability and method for producing the same | |
JP4344919B2 (en) | High strength steel plate excellent in weldability without preheating, its manufacturing method and welded steel structure | |
JPS60121228A (en) | Manufacture of tempered high tension steel plate | |
JP3371715B2 (en) | Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance | |
JP4655372B2 (en) | Method for producing high-tensile steel with high yield point | |
JP2671732B2 (en) | Manufacturing method of high strength steel with excellent weldability | |
JP3371714B2 (en) | Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance | |
JP2532176B2 (en) | Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties | |
JP3864880B2 (en) | Manufacturing method of high toughness and high yield point steel with excellent weldability | |
JPH05186820A (en) | Production of steel having high toughness and high strength and excellent in elongation characteristic | |
JP3956634B2 (en) | Steel sheet with excellent toughness and method for producing the same | |
JPH1096062A (en) | High strength and high tensile strength steel excellent in hot dip galvanizing plating resistance | |
JPH1096058A (en) | High tensile strength steel excellent in hot dip galvanizing cracking resistance | |
JP3428311B2 (en) | Method for producing TS780 MPa high strength steel excellent in hot-dip galvanizing crack resistance | |
JPH06158160A (en) | Production of high tensile strength heat treated steel excellent in cost effectiveness | |
JPH09227937A (en) | Manufacture of thick steel plate with high tensile strength | |
JP3428310B2 (en) | Method for producing TS780 MPa class high strength steel excellent in hot-dip galvanizing crack resistance | |
JPH0615691B2 (en) | Method for producing high strength steel having tensile strength of 58 to 85 ▲ kg ▼ f / ▲ mm2 | |
JPH0737649B2 (en) | Manufacturing method of fireproof steel plate for building with low yield ratio | |
JP3793294B2 (en) | Method for producing 780 MPa class high-tensile steel with excellent galvanization resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071122 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |