JP3864880B2 - Manufacturing method of high toughness and high yield point steel with excellent weldability - Google Patents

Manufacturing method of high toughness and high yield point steel with excellent weldability Download PDF

Info

Publication number
JP3864880B2
JP3864880B2 JP2002270655A JP2002270655A JP3864880B2 JP 3864880 B2 JP3864880 B2 JP 3864880B2 JP 2002270655 A JP2002270655 A JP 2002270655A JP 2002270655 A JP2002270655 A JP 2002270655A JP 3864880 B2 JP3864880 B2 JP 3864880B2
Authority
JP
Japan
Prior art keywords
steel
less
toughness
temperature
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002270655A
Other languages
Japanese (ja)
Other versions
JP2004107713A (en
Inventor
照輝 貞末
伸一 鈴木
豊久 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002270655A priority Critical patent/JP3864880B2/en
Publication of JP2004107713A publication Critical patent/JP2004107713A/en
Application granted granted Critical
Publication of JP3864880B2 publication Critical patent/JP3864880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶接構造物の主要部材を対象とする高い降伏点を有する高靭性高張力鋼材の製造方法に関する。より具体的には、橋梁に代表される溶接構造物を対象とする上降伏点もしくは0 . 2%耐力が521MPa以上であって優れた溶接性を有する高靭性鋼材の効率的な製造方法に関する。
【0002】
【従来の技術】
近年、橋梁に代表される溶接構造物の主要鋼材に高張力鋼が適用される事例が多くなってきている。これは高張力鋼材の使用による設計の合理化、例えば鋼材重量の低減、薄肉化、さらにはこれに伴う溶接における省力化が狙いである。このような高張力鋼材には、例えば、JIS G 3106および道路橋示法書に記載されているSM570鋼(8mm≦板厚≦100mm)があり、降伏強度が450MPa以上(降伏点一定鋼)、引張強度が570〜720MPa、マイナス5℃のシャルピー吸収エネルギーが47J以上、PCM(溶接割れ感受性指数)≦0.28%(板厚≦50mm),PCM≦0.30%(50mm<板厚≦100mm)と規定されている。また、この他にも耐候性を有するSMA570W鋼もあり、これについても強度、靭性についてSM570鋼と同様の規定がなされている。
【0003】
一方、米国では近年、従来の橋梁用鋼材より優れた性能を有するHigh Performance Steel(HPS)の開発がなされ、HPSの実橋への適用成果が報告されつつある。HPSは従来鋼よりも高強度、高靭性、高溶接性であり、かつ耐候性を有する鋼であり、溶接時の予熱省略、或いは予熱低減が可能とされている。例えばHPSは、強度に関してASTM A709 Gr.70W(板厚≦100mm)において降伏強度が485MPa以上、引張強度が620〜760MPaと規定され、低温靭性に関してASTM A709 Zone3でマイナス23℃の吸収エネルギーが48J以上と規定されている。このようなHPSを使用することにより、大幅な鋼材重量の低減や建設コストの削減が可能となったことが報告されている。
【0004】
このように、従来のSM570鋼或いはSMA570W鋼よりもさらに低コストで製造され、かつ改善された降伏強度、靭性、溶接施工性を有する鋼材が求められ、研究が進められている。
【0005】
これまで、SM570鋼或いはSMA570W鋼は焼入れ/焼戻しにより製造されてきた。このような技術は、例えば、特許文献1、特許文献2、特許文献3などに開示されている。
【0006】
上記の熱処理における焼戻しはオフラインで行われてきたが、製造コスト削減や納期短縮の観点からオンラインでの熱処理を用いることが望ましい。このような技術として、例えば、特許文献4には、圧延後さらに[Ar3点−30℃]〜[Ar3点−150℃]の温度域でレベラー掛けまたは軽圧下処理を施すことでNb,Vの析出を促進しつつ、その後、加速冷却することにより高降伏点鋼を得る手法が開示されている。また、特許文献5には、圧延後[Ar3点−70℃]〜[Ar3点−150℃]の温度範囲で2分間以上保持し、この間にNb,Vを析出させ、その後に加速冷却することにより高降伏点鋼板を得るプロセスが開示されている。また、特許文献6にはCu,Ni,Ti,REMを含有する鋼を圧延後、引き続き350〜500℃の温度域まで加速冷却することにより降伏強度46kgf/mm2以上を有する鋼材を得る技術が開示されている。
【0007】
特許文献7には加速冷却装置と同一の製造ライン上に設置された加熱装置を用い、圧延、冷却、焼戻しを連続的に行う方法が開示されている。この技術によれば、冷却により鋼組織をベイナイトまたはマルテンサイト組織とした後に、急速加熱焼戻しを行うことにより過飽和に固溶した炭素を微細なセメンタイトとして析出させることができる。このため、従来の焼入れ/焼戻しプロセスよりも効率的に鋼材を製造することが可能であり、かつ得られる鋼材を強度・靭性に優れたものとすることが可能となる。
【0008】
【特許文献1】
特開昭61−139627号公報
【0009】
【特許文献2】
特開2000−45044号公報
【0010】
【特許文献3】
特開2002−47532号公報
【0011】
【特許文献4】
特開昭62−89814号公報
【0012】
【特許文献5】
特開平4−221015号公報
【0013】
【特許文献6】
特開昭63−161119号公報
【0014】
【特許文献7】
特許3015923号公報
【0015】
【発明が解決しようとする課題】
しかし、上記した技術には以下のような問題点がある。
【0016】
例えば、オンラインでの製造法に関して、特許文献4〜6に開示されている技術はいずれも加速冷却ままで高降伏強度を有する鋼を得る手法であるが、このようにして得られた鋼は、焼入れ/焼戻しプロセスを用いて製造した鋼に比べて降伏強度が低い。これは、焼戻し時の析出強化による高降伏強度化を活用できないからである。例えば、特許文献6の実施例で示されている鋼の降伏比は平均で約81%である。また、特許文献4,5に開示されている技術は、Nb,Vの析出強化を活用することにより高降伏強度化することを狙いとして、Ar3点以下の温度域でレベラー掛け/軽圧下ならびに保持を行うものであるが、これらの公報の実施例で示されている鋼の降伏比は平均でそれぞれ83%、84%程度である。
【0017】
特許文献7に開示されている技術に基づけば、従来の焼入れ/焼戻しプロセスと同様に高降伏強度(降伏比≧約85%)の鋼を高効率に製造することができる可能性がある。ただし、この技術で得られる鋼の基本的な組織は焼き戻されたベイナイトまたはマルテンサイト組織である。したがって、その実施例が示すように大半の鋼は冷却停止温度が室温と低く、焼戻し時の温度差(焼戻し終了温度−焼戻し開始温度)が大きいために、消費電力などのコスト増に繋がる。
【0018】
本発明は上記課題を解決するためになされたものであり、521MPa以上の上降伏点もしくは0 . 2%耐力を有し、かつ靭性および溶接性に優れた鋼材を高効率かつ低コストで製造する方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明者らは、上記課題を解決するべく実験と検討を重ねた結果、高降伏強度化(高降伏比化)に対して最適な組織はフェライトを含むベイナイト組織であることを見出した。このような組織をライン上に配置された加速冷却、加熱設備を駆使して一連の工程で造りこむことにより、フェライト中に微細な析出物を分散させることが可能となり、この結果、高降伏強度化を図ることができ、さらに高靭性かつ溶接性に優れた鋼材が得られるのである。本発明は以上のような知見に基づいてなされたものである。
【0020】
本発明の優れた溶接性を有する高靭性高降伏点鋼材の製造方法は、質量%で、C:0.02〜0.15%、Si:0.01〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、Nb:0.005〜0.10%、V:0.005〜0.10%を含有し、かつPCM=C+Si/30+(Mn+Cu+Cr)/20+Mo/15+Ni/60+V/10+5Bで定義される溶接割れ感受性指数が0.25%以下であり、残部がFeおよび不可避不純物からなる鋼を、1000℃以上1300℃以下の温度範囲まで加熱し、Ar3点以上の温度域で累積圧下率が50%以上の圧延を行い、直ちにAr3点以上の温度域から冷却速度3℃/秒以上で300℃以上600℃以下の温度範囲まで加速冷却を行い、その後直ちに昇温速度0.5℃/秒以上で500℃以上Ac1点未満の温度範囲に再加熱し、フェライトを含むベイナイト組織とし、上降伏点もしくは0 . 2%耐力を521MPa以上とすることを特徴とする。
【0021】
前記鋼は、質量%で、Cu:1.0%以下、Ni:2.0%以下、Cr:1.0%以下、Mo:1.0%以下、Ti:0.1%以下、B:0.005%以下のうちのいずれか一種または二種以上をさらに含有することが好ましい。
【0022】
まず、本発明で用いる鋼材の化学成分の限定理由について説明する。以下の説明において「%」で示す単位は全て質量%である。
【0023】
(1)C:0.02〜0.15%
Cは強度確保のために0.02%以上添加する必要がある。一方、0.15%を超えて添加すると溶接性を阻害する。したがって、C含有量は0.02%以上0.15%以下に限定する。
【0024】
(2)Si:0.01〜0.50%
Siは脱酸剤として有効であるとともに高強度化にも寄与する。このような効果を得るためには0.01%以上の添加が必要である。一方、0.50%を超えて添加すると溶接性、靭性を劣化させる。したがってSi含有量は0.01%以上0.50%以下に限定する。
【0025】
(3)Mn:0.5〜2.0%
Mnは安価に焼入れ性の増加を通じて強度を高めるだけでなく、靭性向上にも寄与する。このような観点からMnは0.5%以上必要である。一方、Mnが2.0%を超えると溶接性の劣化に繋がる。したがってMn含有量は0.5%以上2.0%以下に限定する。
【0026】
(4)P:0.05%以下
Pは鋼の靭性を劣化させるため、その含有量はできるだけ低いことが望ましい。このためP含有量はその上限を0.05%、好ましくは0.03%とする。
【0027】
(5)S:0.02%以下
Sは多量に添加すると鋼の靭性を低下させるため極力低減することが望ましい。このためS含有量はその上限を0.02%、好ましくは0.01%とする。
【0028】
(6)Nb:0.005〜0.10%
Nbは本発明において非常に重要な働きをなす元素であり、再加熱時の析出強化を通じて高降伏強度化をもたらす。この効果を発揮させるためにはNbを0.005%以上添加する必要がある。一方、0.10%を超えて添加すると靭性が劣化する。したがってNb含有量は0.005%以上0.10%以下に限定する。
【0029】
(7)V:0.005〜0.10%
VもNbと同様、本発明において重要な働きをなす元素であり、再加熱時の析出強化を通じて高降伏強度化をもたらす。この効果を発揮させるためにはVを0.005%以上添加する必要がある。一方、0.10%を超えて添加すると溶接性および靭性の低下を招く。したがってV含有量は0.005%以上0.10%以下に限定する。
【0030】
(8)PCM:0.25%以下
溶接割れ感受性指数は、PCM=C+Si/30+(Mn+Cu+Cr)/20+Mo/15+Ni/60+V/10+5B(但し、元素記号は鋼材中の各元素の含有量(質量%)を表す)で定義される関係式を用いて鋼材の各成分の含有値を代入して導くことが出来る。
【0031】
溶接割れ感受性指数PCMを0.25%以下として、低合金化により溶接性を向上し、低温割れの抑制を図る。厚肉物ではさらにPCM≦0.22%とすることが好ましい。
【0032】
以上を本発明の基本成分とするが、強度、靭性や溶接性等の調整、耐候性の付与などを目的として、以下に示すCu,Ni,Cr,Mo,Ti,Bの元素のうち1種または2種以上を添加しても良い。
【0033】
(9)Cu:1.0%以下
Cuは固溶による強度上昇および耐候性確保のため必要に応じて添加する。しかし、その含有量が1.0%を超えると鋼材の溶接性を損なうとともに鋼材製造時に疵が生じやすくなる。したがって添加する場合は、Cu含有量の上限を1.0%とする。
【0034】
(10)Ni:2.0%以下
Niは低温靭性を向上させるとともに耐候性やCuを添加した場合に生ずる熱間脆性の改善に有効であるため必要に応じて添加する。しかし、その添加量が2.0%を超えると溶接性を阻害する上、コスト上昇に繋がる。したがって添加する場合は、Ni含有量の上限を2.0%とすることが好ましく、さらに1.0%とすることがより好ましい。
【0035】
(11)Cr:1.0%以下
Crは耐候性や強度の観点から必要に応じて添加されるが、その含有量が1.0%を超えると溶接性および靭性を損なう。したがって添加する場合は、Cr含有量の上限を1.0%とする。
【0036】
(12)Mo:1.0%以下
Moは強度上昇のために必要に応じて添加されるが、その含有量が1.0%を超えると溶接性および靭性の劣化が生じる。したがって添加する場合は、Mo含有量の上限を1.0%とすることが好ましく、さらに0.5%とすることがより好ましい。
【0037】
(13)Ti:0.1%以下
Tiは強度上昇と溶接部靭性の改善のために必要に応じて添加される。しかし、その含有量が0.1%を超えるとコスト上昇を招く傾向にある。したがって添加する場合は、Ti含有量の上限を0.1%とすることが好ましく、さらに0.05%とすることがより好ましい。
【0038】
(14)B:0.005%以下
Bは焼入れ性を高め強度上昇に寄与するため、必要に応じて添加する。しかし、その含有量が0.005%を超えると溶接性を害する。したがって添加する場合は、B含有量の上限を0.005%とすることが好ましく、さらに0.003%とすることがより好ましい。
【0039】
次に製造条件についての限定理由を述べる。
【0040】
本発明の製造方法は上記組成を有する鋼を(a)1000℃以上1300℃以下の温度範囲まで加熱する工程と、(b)Ar3点以上の温度域で累積圧下率50%以上の圧延を行う工程と、(c)直ちにAr3点以上の温度域から冷却速度3℃/秒以上で300℃以上600℃以下の温度範囲まで加速冷却を行う工程と、(d)その後直ちに昇温速度0.5℃/秒以上で500℃以上Ac1点未満の温度範囲に再加熱する工程とを具備する。
【0041】
なお、上記温度、冷却速度および昇温速度は鋼材表面から中央部にかけての平均温度とする。
【0042】
(a)加熱温度:1000℃以上1300℃以下の温度範囲
加熱温度が1000℃未満であるとNbおよびVの固溶が不十分となる。一方、加熱温度が1300℃を超えると鋼の結晶粒が粗大化するので靭性の確保が困難となる。したがって、加熱温度は1000℃以上1300℃以下に限定する。
【0043】
(b)圧延:Ar3点以上の温度域で累積圧下率50%以上
圧延によりオーステナイト粒を微細化させて靭性向上を図るとともに、下記の加速冷却におけるベイナイト変態の促進を図る。このために、Ar3点以上の累積圧下率が50%以上の圧延を行う。Ar3点以上の温度であればオーステナイト再結晶域あるいはオーステナイト未再結晶域のいずれで圧延を行っても構わない。但し、オーステナイト未再結晶域での過度の圧下は機械的特性に対して異方性が生じることから、オーステナイト未再結晶域での累積圧下率は50%以下とすることが望ましい。
【0044】
なお、Ar3点は例えば、Ar3(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo(但し、元素記号は鋼材中の各元素の含有量(質量%)を表す)で定義される関係式を用いて鋼材の各成分の含有値を代入して導くことが出来る。
【0045】
(c)加速冷却:Ar3点以上の温度域から冷却速度3℃/秒以上で300℃以上600℃以下の温度範囲
加速冷却により鋼組織を未変態オーステナイトとベイナイトの混合組織とする。したがって、フェライトの生成しない条件として、冷却開始温度:Ar3点以上、冷却速度:3℃/秒以上、冷却停止温度:600℃以下に規定する。さらに、冷却停止温度を300℃未満とした場合、ベイナイト変態がほぼ完了してしまうため、また靭性に有害な島状マルテンサイトが生成するために、冷却停止温度の下限を300℃とする。
【0046】
(d)再加熱:直ちに昇温速度0.5℃/秒以上で500℃以上Ac1点未満の温度範囲
加速冷却後直ちに再加熱を行い、未変態オーステナイトからフェライト変態させ、変態と同時にフェライト中にNb,Vの炭窒化物を微細析出させる。これにより析出強化およびこれに伴う高降伏強度化(高降伏比化)を達成する。さらに、この工程によりベイナイトの焼戻しがなされ、靭性の向上を図る。昇温速度が0.5℃/秒未満では、再加熱に時間がかかり製造効率の悪化を招くとともに、ベイナイトの過度の軟化や析出物の過剰な成長が生じ、強度低下や靭性劣化が生じる。再加熱温度が500℃未満ではフェライト変態およびNb,V炭窒化物の析出が十分でない。また、再加熱温度がAc1点以上であるとオーステナイト変態が生じ、組織が不均一となり強度低下や靭性劣化が生じる。したがって、昇温速度は0.5℃/秒以上とし、再加熱温度範囲は500℃以上Ac1点未満とする。
【0047】
Ac1点は例えば、Ac1(℃)=723−14Mn+22Si−14.4Ni+23.3Cr(但し、元素記号は鋼材中の各元素の含有量(質量%)を表す)で定義される関係式を用いて鋼材の各成分の含有値を代入して導くことが出来る。
【0048】
なお、所望の強度・靭性が得られる範囲内であれば、再加熱において目標温度範囲で等温保持を行っても良いし、行わなくても良い。さらに、再加熱後の冷却には、炉冷/放冷/急冷のいずれを選択しても構わない。
【0049】
本発明の根幹は加速冷却後に直ちに再加熱を行うことである。したがって、加速冷却装置と加熱装置は同一ライン上にレイアウトされていること、すなわちオンラインであることが好ましい。加熱方式は所定の昇温速度が達成されるものであればいかなるものを用いても良いが、例えば誘導加熱、雰囲気加熱等を用いることができる。
【0050】
【発明の実施の形態】
以下、本発明を実施例により詳細に説明するが、本発明はこれらに限られるものではない。
【0051】
供試鋼として表1に示す組成を有する鋼を用意した。これらの供試鋼を溶製し、得られた鋼片に所定の圧延、冷却、熱処理を施し、板厚12〜100mmの鋼板とした。このときの鋼板の製造条件として、加熱温度、Ar3点以上の累積圧下率、冷却開始温度、冷却速度、冷却停止温度、昇温速度、再加熱温度を表2、表3に示す。
【0052】
これらの鋼板について以下のように強度、靭性、溶接性、耐候性についての評価を行った。
【0053】
強度は、JIS Z 2241に規定されている引張強度試験方法に準拠して、板厚の1/4の位置(板厚25mm未満は板厚の1/2の位置)で圧延方向に対して直角方向に採取した丸棒試験片(14mmφ×GL50mmおよび10mmφ×GL35mm)を用いて評価した。ここでは、上降伏点(YS)もしくは0.2%耐力が521MPa以上となるものを合格とした。また、得られた降伏比(YR)が85%以上となるものを合格とした。
【0054】
靭性は、JIS Z 2202に規定されているVノッチ試験片を板厚の1/4の位置(板厚25mm未満は板厚の1/2の位置)で圧延方向と平行方向に採取して、シャルピー衝撃試験により評価した。ここでは、延性/脆性破面遷移温度(vTs)がマイナス30℃以下となるものを合格とした。
【0055】
溶接性は、JIS Z 3158の規定に準拠して、温度20℃、湿度60%の雰囲気下で予熱温度25℃としたy形溶接割れ試験を行い評価した。ここでは、割れの生じなかったものを合格とした。
【0056】
耐候性は、表1に示すD,F,Jの鋼種を用いて製造した鋼板に関して、板厚の1/4の位置より採取した幅100mm、長さ150mm、厚さ5mmの板状試験片を用い、国内臨界工業地域にて3年間の大気暴露試験を行い評価した。ここでは、片面腐食減量が0.3mm以下となるものを合格とした。
【0057】
以上の評価結果を表2、表3に併記する。
【0058】
【表1】

Figure 0003864880
【0059】
【表2】
Figure 0003864880
【0060】
【表3】
Figure 0003864880
【0061】
本発明に規定した範囲内の成分を有する鋼種を用い、本発明に従う熱処理を施した実施例1〜7および実施例20〜22の鋼板は、いずれも降伏点または0.2%耐力が521MPa以上、降伏比が85%以上、延性/脆性破面遷移温度がマイナス30℃以下であり、y形溶接割れ試験においても割れが認められなかった。加えて、実施例20〜22の鋼板は優れた耐候性も兼ね備えていた。なお、これらの実施例鋼板の組織は、いずれもフェライトとベイナイトとの混合組織であり、応力−歪曲線は降伏点型であった。
【0062】
このように本発明の製造方法に従えば、高降伏強度化(高降伏比)が達成され、かつ靭性および溶接性に優れた鋼材を製造することが可能である。また、必要に応じて耐候性も兼ね備えた鋼材を製造することも可能となる。
【0063】
これに対し、VとNbの添加を行わなかった鋼種Kを用いた比較例8の鋼板、Vのみを添加してNbを添加しなかった鋼種Lを用いた比較例9の鋼板は、いずれも本発明に従う熱処理を施しても析出強化が発揮されず、高降伏強度化および高降伏比化が達成されていなかった。
【0064】
C,Si含有量およびPCM値が本発明の上限を超える鋼種Mを用いた比較例10の鋼板は、適正な製造条件としても焼入れ性が高くベイナイト主体の組織となったため、降伏比が低く、応力−歪曲線がラウンドハウス型となり、靭性と溶接性がともに低かった。
【0065】
P,S含有量が本発明の上限を超える鋼種Nを用いた比較例11の鋼板は靭性が低かった。
【0066】
加熱温度が1300℃を超える比較例12の鋼板、Ar3点以上の累積圧下率が50%に満たない比較例23の鋼板は高降伏強度化が達成されているものの、靭性が低かった。
【0067】
冷却開始温度がAr3点未満の比較例13の鋼板、冷却速度が3℃/秒未満の比較例14の鋼板、冷却停止温度が600℃を超える比較例24の鋼板はフェライト主体の組織となり、降伏強度が低かった。
【0068】
冷却停止温度が300℃を下回る比較例15の鋼板、再加熱温度が0.5℃/秒を下回る比較例16の鋼板、冷却停止後に再加熱を行わなかった比較例17の鋼板、再加熱温度が500℃下回る比較例18の鋼板はいずれもベイナイト主体の組織であり、このため応力−歪曲線がラウンドハウス型となり、降伏強度および降伏比が低かった。また、比較例17、比較例18の鋼板に関してはベイナイトの焼戻しが不十分であったため靭性も低かった。
【0069】
再加熱温度がAc1点以上である比較例19の鋼板は一部オーステナイト化するため組織が不均一となり、降伏強度および降伏比が低く、靭性も劣化していた。
【0070】
【発明の効果】
以上示したように本発明の製造方法に従えば、特殊な工程や多量の合金元素の添加を必要とせずに、521MPa以上の上降伏点もしくは0.2%耐力を有する高張力鋼材を製造することが可能である。また、本発明により得られる鋼材は優れた靭性と溶接性をも兼ね備え得る。
【0071】
さらに、本発明の製造方法はオンラインでの加速冷却−再加熱プロセスであるため、効率的に上記鋼材を生産することが可能である。したがって、橋梁に代表されるような溶接構造物の主要部材に適用するために十分な機械的特性を有する鋼材を短納期で、安価に提供することが出来る。
【0072】
以上詳述したように本発明によれば、521MPa以上の上降伏点もしくは0.2%耐力を有し、かつ靭性および溶接性に優れた鋼材を高効率かつ低コストで製造する方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high toughness and high strength steel material having a high yield point for a main member of a welded structure. More particularly, to an efficient method of producing a high toughness steel material yield point or 0.2% proof stress has excellent weldability be more than 521MPa on that target welded structure represented by bridges.
[0002]
[Prior art]
In recent years, there are an increasing number of cases where high-tensile steel is applied to the main steel materials of welded structures represented by bridges. The aim is to rationalize the design by using high-tensile steel, for example, to reduce the weight of the steel, to reduce the thickness, and to save labor in welding. Such high-tensile steel materials include, for example, SM570 steel (8 mm ≦ plate thickness ≦ 100 mm) described in JIS G 3106 and road bridge specifications, and yield strength of 450 MPa or more (steel with a constant yield point), tensile strength 570~720MPa, minus 5 ° C. Charpy absorbed energy of not less than 47J, P CM (weld crack sensitivity index) ≦ 0.28% (thickness ≦ 50mm), P CM ≦ 0.30 % (50mm < thickness ≦ 100 mm). In addition to this, there is also SMA570W steel having weather resistance, which also has the same regulations as SM570 steel in terms of strength and toughness.
[0003]
On the other hand, in the United States, a high performance steel (HPS) having performance superior to conventional steel materials for bridges has been developed in recent years, and results of application of HPS to actual bridges are being reported. HPS is a steel having higher strength, higher toughness, higher weldability and weather resistance than conventional steel, and it is possible to omit preheating during welding or reduce preheating. For example, HPS has ASTM A709 Gr. At 70 W (plate thickness ≦ 100 mm), the yield strength is defined as 485 MPa or more and the tensile strength is defined as 620 to 760 MPa. With respect to low temperature toughness, the absorbed energy at minus 23 ° C. is defined as 48 J or more in ASTM A709 Zone3. It has been reported that the use of such HPS has made it possible to significantly reduce the weight of steel materials and the construction cost.
[0004]
Thus, a steel material that is manufactured at a lower cost than conventional SM570 steel or SMA570W steel and has improved yield strength, toughness, and weldability is being sought and researched.
[0005]
So far, SM570 steel or SMA570W steel has been produced by quenching / tempering. Such a technique is disclosed in, for example, Patent Document 1, Patent Document 2, and Patent Document 3.
[0006]
Tempering in the above heat treatment has been performed off-line, but it is desirable to use on-line heat treatment from the viewpoint of reducing manufacturing cost and delivery time. As such a technique, for example, in Patent Document 4, after rolling, a leveler application or a light reduction treatment is performed in a temperature range of [Ar 3 point −30 ° C.] to [Ar 3 point −150 ° C.]. A technique for obtaining a high yield point steel by accelerating and cooling thereafter while promoting precipitation is disclosed. Further, in Patent Document 5, after rolling, the temperature is maintained for 2 minutes or longer in the temperature range of [Ar3 point -70 ° C] to [Ar3 point -150 ° C], during which Nb and V are precipitated, and then accelerated cooling is performed. Discloses a process for obtaining a high yield point steel sheet. Patent Document 6 discloses a technique for obtaining a steel material having a yield strength of 46 kgf / mm 2 or more by rolling and subsequently cooling steel containing Cu, Ni, Ti, and REM to a temperature range of 350 to 500 ° C. It is disclosed.
[0007]
Patent Document 7 discloses a method in which rolling, cooling, and tempering are continuously performed using a heating device installed on the same production line as the accelerated cooling device. According to this technique, after the steel structure is changed to a bainite or martensite structure by cooling, carbon dissolved in supersaturation can be precipitated as fine cementite by rapid heating and tempering. For this reason, it is possible to produce a steel material more efficiently than the conventional quenching / tempering process, and it is possible to make the obtained steel material excellent in strength and toughness.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 61-139627
[Patent Document 2]
Japanese Patent Laid-Open No. 2000-45044
[Patent Document 3]
Japanese Patent Laid-Open No. 2002-47532
[Patent Document 4]
JP-A-62-89814 [0012]
[Patent Document 5]
JP-A-4-221015
[Patent Document 6]
JP-A-63-161119 [0014]
[Patent Document 7]
Japanese Patent No. 3015923 [0015]
[Problems to be solved by the invention]
However, the above technique has the following problems.
[0016]
For example, regarding the on-line manufacturing method, all of the techniques disclosed in Patent Documents 4 to 6 are methods for obtaining steel having high yield strength while being accelerated and cooled. Yield strength is low compared to steel produced using a quench / temper process. This is because high yield strength by precipitation strengthening during tempering cannot be utilized. For example, the yield ratio of steel shown in the example of Patent Document 6 is about 81% on average. In addition, the techniques disclosed in Patent Documents 4 and 5 aim at increasing the yield strength by utilizing the precipitation strengthening of Nb and V, and leveling / holding under light pressure and holding in a temperature range below the Ar3 point. However, the yield ratios of the steels shown in the examples of these publications are about 83% and 84% on average, respectively.
[0017]
Based on the technique disclosed in Patent Document 7, there is a possibility that steel with high yield strength (yield ratio ≧ about 85%) can be produced with high efficiency as in the conventional quenching / tempering process. However, the basic structure of steel obtained by this technique is a tempered bainite or martensite structure. Therefore, as shown in the examples, most steels have a low cooling stop temperature of room temperature and a large temperature difference during tempering (tempering end temperature-tempering start temperature), which leads to an increase in costs such as power consumption.
[0018]
The present invention has been made to solve the above problems, it has a yield point or 0.2% proof stress above the above 521MPa, and to produce a steel material superior in toughness and weldability with high efficiency and low cost It aims to provide a method.
[0019]
[Means for Solving the Problems]
As a result of repeated experiments and studies to solve the above problems, the present inventors have found that the optimum structure for increasing the yield strength (higher yield ratio) is a bainite structure containing ferrite. By creating such a structure in a series of processes using accelerated cooling and heating equipment arranged on the line, it becomes possible to disperse fine precipitates in the ferrite, resulting in high yield strength. Therefore, it is possible to obtain a steel material having high toughness and excellent weldability. The present invention has been made based on the above findings.
[0020]
The manufacturing method of the high toughness high yield point steel material which has the outstanding weldability of this invention is the mass%, C: 0.02-0.15%, Si: 0.01-0.50%, Mn: 0.00. 5 to 2.0%, P: 0.05% or less, S: 0.02% or less, Nb: 0.005 to 0.10%, V: 0.005 to 0.10%, and PCM = A steel having a weld cracking sensitivity index defined by C + Si / 30 + (Mn + Cu + Cr) / 20 + Mo / 15 + Ni / 60 + V / 10 + 5B of 0.25% or less and the balance of Fe and inevitable impurities is 1000 ° C. or higher and 1300 ° C. or lower. Heat to the temperature range, perform rolling with a cumulative rolling reduction of 50% or more in the temperature range of Ar3 point or higher, and immediately from the temperature range of Ar3 point or higher to the temperature range of 300 ° C or higher and 600 ° C or lower at a cooling rate of 3 ° C / second or higher. Accelerated cooling until Characterized in that reheated to a temperature range of less than Ac1 point 500 ° C. or higher at a heating rate of 0.5 ° C. / sec or more, and bainite structure containing ferrite, upper yield point or 0. 2% proof stress and least 521MPa to And
[0021]
The steel is in mass%, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Ti: 0.1% or less, B: It is preferable to further contain one or more of 0.005% or less.
[0022]
First, the reasons for limiting the chemical components of the steel material used in the present invention will be described. In the following description, all units represented by “%” are mass%.
[0023]
(1) C: 0.02 to 0.15%
C needs to be added in an amount of 0.02% or more to ensure strength. On the other hand, if added over 0.15%, weldability is impaired. Therefore, the C content is limited to 0.02% or more and 0.15% or less.
[0024]
(2) Si: 0.01 to 0.50%
Si is effective as a deoxidizer and contributes to high strength. In order to obtain such an effect, addition of 0.01% or more is necessary. On the other hand, if added over 0.50%, weldability and toughness are deteriorated. Therefore, the Si content is limited to 0.01% or more and 0.50% or less.
[0025]
(3) Mn: 0.5 to 2.0%
Mn not only increases strength through an increase in hardenability at low cost, but also contributes to improved toughness. From such a viewpoint, Mn needs to be 0.5% or more. On the other hand, if Mn exceeds 2.0%, it leads to deterioration of weldability. Therefore, the Mn content is limited to 0.5% or more and 2.0% or less.
[0026]
(4) P: 0.05% or less Since P deteriorates the toughness of steel, its content is preferably as low as possible. Therefore, the upper limit of the P content is 0.05%, preferably 0.03%.
[0027]
(5) S: not more than 0.02% It is desirable to reduce S as much as possible because, if S is added in a large amount, the toughness of the steel is lowered. For this reason, the upper limit of the S content is 0.02%, preferably 0.01%.
[0028]
(6) Nb: 0.005 to 0.10%
Nb is an element that plays a very important role in the present invention, and provides high yield strength through precipitation strengthening during reheating. In order to exhibit this effect, it is necessary to add 0.005% or more of Nb. On the other hand, if added over 0.10%, the toughness deteriorates. Therefore, the Nb content is limited to 0.005% or more and 0.10% or less.
[0029]
(7) V: 0.005 to 0.10%
V, like Nb, is an element that plays an important role in the present invention, and brings about high yield strength through precipitation strengthening during reheating. In order to exert this effect, it is necessary to add 0.005% or more of V. On the other hand, if it exceeds 0.10%, weldability and toughness are reduced. Therefore, the V content is limited to 0.005% or more and 0.10% or less.
[0030]
(8) P CM : 0.25% or less The weld cracking susceptibility index is P CM = C + Si / 30 + (Mn + Cu + Cr) / 20 + Mo / 15 + Ni / 60 + V / 10 + 5B (where the element symbol indicates the content (mass of each element in the steel) %) Can be derived by substituting the content value of each component of the steel material.
[0031]
The weld cracking sensitivity index P CM as 0.25% or less, to improve the weldability by low alloyed achieve suppression of cold cracking. It is preferable that P CM ≦ 0.22% for a thick product.
[0032]
Although the above is a basic component of the present invention, one of the following elements of Cu, Ni, Cr, Mo, Ti, and B is provided for the purpose of adjusting strength, toughness, weldability, etc., and imparting weather resistance. Or you may add 2 or more types.
[0033]
(9) Cu: 1.0% or less Cu is added as necessary to increase the strength due to solid solution and ensure weather resistance. However, if its content exceeds 1.0%, the weldability of the steel material is impaired and flaws are likely to occur during the manufacture of the steel material. Therefore, when adding, the upper limit of Cu content shall be 1.0%.
[0034]
(10) Ni: 2.0% or less Ni is added as necessary because it is effective for improving low temperature toughness and improving weather resistance and hot brittleness that occurs when Cu is added. However, if the added amount exceeds 2.0%, weldability is hindered and cost is increased. Therefore, when adding, it is preferable to make the upper limit of Ni content into 2.0%, and it is more preferable to set it as 1.0% further.
[0035]
(11) Cr: 1.0% or less Cr is added as necessary from the viewpoint of weather resistance and strength, but if its content exceeds 1.0%, weldability and toughness are impaired. Therefore, when adding, the upper limit of Cr content shall be 1.0%.
[0036]
(12) Mo: 1.0% or less Mo is added as necessary to increase the strength. However, if its content exceeds 1.0%, weldability and toughness deteriorate. Therefore, when adding, it is preferable to make the upper limit of Mo content into 1.0%, and it is more preferable to set it as 0.5% further.
[0037]
(13) Ti: 0.1% or less Ti is added as necessary to increase strength and improve weld toughness. However, when the content exceeds 0.1%, the cost tends to increase. Therefore, when adding, it is preferable to make the upper limit of Ti content into 0.1%, and it is more preferable to set it as 0.05% further.
[0038]
(14) B: 0.005% or less B is added as necessary because it enhances hardenability and contributes to an increase in strength. However, if its content exceeds 0.005%, weldability is impaired. Therefore, when adding, it is preferable to make the upper limit of B content 0.005%, and it is more preferable to set it as 0.003%.
[0039]
Next, the reasons for limiting the manufacturing conditions will be described.
[0040]
In the production method of the present invention, (a) a step of heating a steel having the above composition to a temperature range of 1000 ° C. to 1300 ° C., and (b) rolling at a cumulative reduction ratio of 50% or more in a temperature range of Ar 3 point or higher. (C) Immediate cooling from a temperature range of Ar 3 point or higher to a temperature range of 300 ° C. to 600 ° C. at a cooling rate of 3 ° C./second, and (d) Immediately thereafter, a heating rate of 0.5 And a step of reheating to a temperature range of 500 ° C. or more and less than Ac 1 point at a temperature of ° C./second or more.
[0041]
In addition, let the said temperature, a cooling rate, and a temperature increase rate be the average temperature from the steel material surface to a center part.
[0042]
(A) Heating temperature: Temperature range of 1000 ° C. or more and 1300 ° C. or less When the heating temperature is less than 1000 ° C., the solid solution of Nb and V becomes insufficient. On the other hand, when the heating temperature exceeds 1300 ° C., the crystal grains of the steel become coarse, and it becomes difficult to ensure toughness. Therefore, the heating temperature is limited to 1000 ° C. or higher and 1300 ° C. or lower.
[0043]
(B) Rolling: Austenite grains are refined by rolling at a cumulative reduction ratio of 50% or more in a temperature range of the Ar3 point or higher to improve toughness and promote bainite transformation in the following accelerated cooling. For this purpose, rolling is performed such that the cumulative reduction ratio at the Ar3 point or higher is 50% or higher. Rolling may be performed in either the austenite recrystallization region or the austenite non-recrystallization region as long as the temperature is at or above the Ar3 point. However, since excessive reduction in the austenite non-recrystallized region causes anisotropy with respect to mechanical properties, the cumulative reduction in the austenite non-recrystallized region is preferably 50% or less.
[0044]
The Ar3 point is defined by, for example, Ar3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (where the element symbol represents the content (% by mass) of each element in the steel material). Using the relational expression, the content value of each component of the steel material can be substituted and derived.
[0045]
(C) Accelerated cooling: The steel structure is made into a mixed structure of untransformed austenite and bainite by accelerated cooling in a temperature range of 300 ° C. or higher and 600 ° C. or lower at a cooling rate of 3 ° C./second or higher from a temperature range of Ar 3 or higher. Accordingly, the conditions under which ferrite is not generated are defined as the cooling start temperature: Ar 3 point or higher, the cooling rate: 3 ° C./second or higher, and the cooling stop temperature: 600 ° C. or lower. Furthermore, when the cooling stop temperature is less than 300 ° C., the bainite transformation is almost completed, and island martensite harmful to toughness is generated. Therefore, the lower limit of the cooling stop temperature is set to 300 ° C.
[0046]
(D) Reheating: Immediately after accelerated cooling at a temperature increase rate of 0.5 ° C / second or more at a temperature range of 500 ° C or more and less than the Ac1 point, reheating is performed immediately to transform the ferrite from untransformed austenite and into the ferrite simultaneously with the transformation. Nb and V carbonitrides are finely precipitated. This achieves precipitation strengthening and high yield strength (high yield ratio) associated therewith. Furthermore, the bainite is tempered by this process, and the toughness is improved. When the rate of temperature increase is less than 0.5 ° C./second, reheating takes time and production efficiency is deteriorated, and excessive softening of bainite and excessive growth of precipitates occur, resulting in strength reduction and toughness deterioration. When the reheating temperature is less than 500 ° C., ferrite transformation and precipitation of Nb and V carbonitrides are not sufficient. On the other hand, if the reheating temperature is equal to or higher than the Ac1 point, austenite transformation occurs, the structure becomes non-uniform, and the strength decreases and the toughness deteriorates. Therefore, the temperature increase rate is 0.5 ° C./second or more, and the reheating temperature range is 500 ° C. or more and less than the Ac 1 point.
[0047]
The Ac1 point is a steel material using a relational expression defined by, for example, Ac1 (° C.) = 723-14Mn + 22Si-14.4Ni + 13.3Cr (where the element symbol represents the content (mass%) of each element in the steel material). It can be derived by substituting the content value of each component.
[0048]
In addition, as long as it exists in the range in which desired intensity | strength and toughness are acquired, it may hold | maintain isothermal holding | maintenance in the target temperature range in reheating, and it is not necessary to carry out. Furthermore, any of furnace cooling / cooling / rapid cooling may be selected for cooling after reheating.
[0049]
The basis of the present invention is to perform reheating immediately after accelerated cooling. Therefore, the accelerated cooling device and the heating device are preferably laid out on the same line, that is, online. Any heating method may be used as long as a predetermined rate of temperature increase can be achieved. For example, induction heating, atmosphere heating, or the like can be used.
[0050]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
[0051]
Steel having the composition shown in Table 1 was prepared as the test steel. These test steels were melted, and the obtained steel pieces were subjected to predetermined rolling, cooling, and heat treatment to obtain steel plates having a thickness of 12 to 100 mm. Tables 2 and 3 show the heating temperature, the cumulative rolling reduction at the Ar3 point or higher, the cooling start temperature, the cooling rate, the cooling stop temperature, the heating rate, and the reheating temperature as the manufacturing conditions of the steel plate at this time.
[0052]
These steel plates were evaluated for strength, toughness, weldability, and weather resistance as follows.
[0053]
In accordance with the tensile strength test method specified in JIS Z 2241, the strength is perpendicular to the rolling direction at a position 1/4 of the sheet thickness (less than 25 mm is a position 1/2 of the sheet thickness). It evaluated using the round bar test piece (14 mmphi * GL50mm and 10mmphi * GL35mm) extract | collected to the direction. Here, the one having an upper yield point (YS) or 0.2% proof stress of 521 MPa or more was regarded as acceptable. Moreover, the thing whose yield ratio (YR) obtained was 85% or more was set as the pass.
[0054]
Toughness is obtained by taking a V-notch test piece defined in JIS Z 2202 at a position 1/4 of the sheet thickness (less than 25 mm is a position 1/2 of the sheet thickness) in a direction parallel to the rolling direction, Evaluation was made by Charpy impact test. Here, a ductile / brittle fracture surface transition temperature (vTs) of −30 ° C. or lower was regarded as acceptable.
[0055]
Weldability was evaluated by performing a y-type weld cracking test at a preheating temperature of 25 ° C. in an atmosphere of a temperature of 20 ° C. and a humidity of 60% in accordance with the provisions of JIS Z 3158. Here, the thing which did not produce a crack was set as the pass.
[0056]
For the weather resistance, a plate-shaped test piece having a width of 100 mm, a length of 150 mm, and a thickness of 5 mm collected from a position of ¼ of the plate thickness with respect to a steel plate manufactured using the steel types D, F, and J shown in Table 1. It was used and evaluated in a domestic critical industry area for 3 years. Here, the one with a one-side corrosion weight loss of 0.3 mm or less was accepted.
[0057]
The above evaluation results are shown in Tables 2 and 3.
[0058]
[Table 1]
Figure 0003864880
[0059]
[Table 2]
Figure 0003864880
[0060]
[Table 3]
Figure 0003864880
[0061]
Each of the steel plates of Examples 1 to 7 and Examples 20 to 22 subjected to the heat treatment according to the present invention using a steel type having a component within the range defined in the present invention has a yield point or 0.2% proof stress of 521 MPa or more. The yield ratio was 85% or more, the ductile / brittle fracture surface transition temperature was −30 ° C. or less, and no crack was observed in the y-type weld cracking test. In addition, the steel plates of Examples 20 to 22 also had excellent weather resistance. In addition, all of the structures of these Example steel sheets were a mixed structure of ferrite and bainite, and the stress-strain curve was a yield point type.
[0062]
Thus, according to the production method of the present invention, it is possible to produce a steel material that achieves high yield strength (high yield ratio) and is excellent in toughness and weldability. Moreover, it is also possible to manufacture a steel material having weather resistance as required.
[0063]
On the other hand, the steel plate of Comparative Example 8 using the steel type K to which V and Nb were not added, and the steel plate of Comparative Example 9 using the steel type L to which only V was added and Nb was not added were both. Even when the heat treatment according to the present invention was performed, precipitation strengthening was not exhibited, and high yield strength and high yield ratio were not achieved.
[0064]
C, the steel sheet of comparative example 10 in which Si content and P CM value using steel type M exceeds the upper limit of the present invention, since became even hardenability high bainite main tissue as an appropriate manufacturing conditions, low yield ratio The stress-strain curve became a round house type, and both toughness and weldability were low.
[0065]
The steel plate of Comparative Example 11 using steel type N having P and S contents exceeding the upper limit of the present invention had low toughness.
[0066]
The steel plate of Comparative Example 12 having a heating temperature exceeding 1300 ° C. and the steel plate of Comparative Example 23 having a cumulative reduction ratio of Ar3 or higher of less than 50% achieved high yield strength, but had low toughness.
[0067]
The steel plate of Comparative Example 13 having a cooling start temperature of less than Ar 3 point, the steel plate of Comparative Example 14 having a cooling rate of less than 3 ° C./sec, and the steel plate of Comparative Example 24 having a cooling stop temperature of more than 600 ° C. have a microstructure mainly composed of ferrite. The strength was low.
[0068]
Steel plate of Comparative Example 15 having a cooling stop temperature of less than 300 ° C., Steel plate of Comparative Example 16 having a reheating temperature of less than 0.5 ° C./second, Steel plate of Comparative Example 17 having not been reheated after cooling stopped, Reheating temperature All of the steel plates of Comparative Example 18 having a temperature of 500 ° C. lower than that of bainite had a bainite-based structure, and therefore the stress-strain curve was a round house type, and yield strength and yield ratio were low. Moreover, regarding the steel plates of Comparative Examples 17 and 18, the toughness was low because the tempering of bainite was insufficient.
[0069]
The steel sheet of Comparative Example 19 having a reheating temperature of Ac1 or higher was partially austenitic, so that the structure became non-uniform, yield strength and yield ratio were low, and toughness was also deteriorated.
[0070]
【The invention's effect】
As described above, according to the production method of the present invention, a high-strength steel material having an upper yield point of 521 MPa or more or 0.2% proof stress is produced without the need for a special process or the addition of a large amount of alloy elements. It is possible. Moreover, the steel material obtained by this invention can have the outstanding toughness and weldability.
[0071]
Furthermore, since the manufacturing method of the present invention is an online accelerated cooling-reheating process, it is possible to efficiently produce the steel material. Therefore, it is possible to provide a steel material having sufficient mechanical characteristics to be applied to a main member of a welded structure represented by a bridge with a short delivery time and at a low cost.
[0072]
As described above in detail, according to the present invention, there is provided a method for producing a steel material having an upper yield point or 0.2% proof stress of 521 MPa or more and excellent in toughness and weldability at high efficiency and at low cost. be able to.

Claims (2)

質量%で、C:0.02〜0.15%、Si:0.01〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、Nb:0.005〜0.10%、V:0.005〜0.10%を含有し、かつPCM=C+Si/30+(Mn+Cu+Cr)/20+Mo/15+Ni/60+V/10+5Bで定義される溶接割れ感受性指数が0.25%以下であり、残部がFeおよび不可避不純物からなる鋼を、1000℃以上1300℃以下の温度範囲まで加熱し、Ar3点以上の温度域で累積圧下率が50%以上の圧延を行い、直ちにAr3点以上の温度域から冷却速度3℃/秒以上で300℃以上600℃以下の温度範囲まで加速冷却を行い、その後直ちに昇温速度0.5℃/秒以上で500℃以上Ac1点未満の温度範囲に再加熱し、フェライトを含むベイナイト組織とし、上降伏点もしくは0 . 2%耐力を521MPa以上とすることを特徴とする優れた溶接性を有する高靭性高降伏点鋼材の製造方法。In mass%, C: 0.02 to 0.15%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02 %, Nb: 0.005 to 0.10%, V: 0.005 to 0.10%, and welding defined by PCM = C + Si / 30 + (Mn + Cu + Cr) / 20 + Mo / 15 + Ni / 60 + V / 10 + 5B A steel having a cracking sensitivity index of 0.25% or less and the balance of Fe and inevitable impurities is heated to a temperature range of 1000 ° C. to 1300 ° C., and the cumulative rolling reduction is 50% or more in a temperature range of Ar 3 or higher. Immediately, accelerated cooling from a temperature range of Ar 3 point or higher to a temperature range of 300 ° C. to 600 ° C. at a cooling rate of 3 ° C./second or more, and immediately followed by 500 ° C. at a temperature increase rate of 0.5 ° C./second or more. ℃ or more and less than Ac1 point Reheated to enclose, and bainite structure containing ferrite, upper yield point or 0. The method of producing a high toughness high yield point steel with excellent weldability, wherein a 2% yield strength and higher 521MPa. 前記鋼は、質量%で、Cu:1.0%以下、Ni:2.0%以下、Cr:1.0%以下、Mo:1.0%以下、Ti:0.1%以下、B:0.005%以下のうちのいずれか一種または二種以上をさらに含有することを特徴とする請求項1記載の方法。  The steel is in mass%, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Ti: 0.1% or less, B: The method according to claim 1, further comprising any one or more of 0.005% or less.
JP2002270655A 2002-09-17 2002-09-17 Manufacturing method of high toughness and high yield point steel with excellent weldability Expired - Fee Related JP3864880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270655A JP3864880B2 (en) 2002-09-17 2002-09-17 Manufacturing method of high toughness and high yield point steel with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270655A JP3864880B2 (en) 2002-09-17 2002-09-17 Manufacturing method of high toughness and high yield point steel with excellent weldability

Publications (2)

Publication Number Publication Date
JP2004107713A JP2004107713A (en) 2004-04-08
JP3864880B2 true JP3864880B2 (en) 2007-01-10

Family

ID=32268218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270655A Expired - Fee Related JP3864880B2 (en) 2002-09-17 2002-09-17 Manufacturing method of high toughness and high yield point steel with excellent weldability

Country Status (1)

Country Link
JP (1) JP3864880B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6897449B2 (en) * 2017-09-21 2021-06-30 日本製鉄株式会社 High-strength thick steel sheet and its manufacturing method
CN114395691A (en) * 2021-12-16 2022-04-26 南阳汉冶特钢有限公司 Production method of low-welding-crack-sensitivity crack arrest steel SX780CF for hydroelectric engineering

Also Published As

Publication number Publication date
JP2004107713A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP5277672B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
KR20090098909A (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
WO2003106723A1 (en) High strength cold rolled steel plate and method for production thereof
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JP2011001620A (en) High strength thick steel plate combining excellent productivity and weldability and having excellent drop weight characteristic after pwht, and method for producing the same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP3879639B2 (en) High toughness and high yield point steel with excellent weldability and method for producing the same
JP3864880B2 (en) Manufacturing method of high toughness and high yield point steel with excellent weldability
JPS5952687B2 (en) Manufacturing method of tempered high-strength steel plate with excellent low-temperature toughness
JP2828754B2 (en) Manufacturing method of low yield ratio 70kg / fmm / mm2 upper grade steel sheet with excellent weldability
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH0826395B2 (en) 80 kgf / mm with excellent weldability (2) High-strength steel manufacturing method
JP3371715B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JP6519025B2 (en) Low alloy high strength seamless steel pipe for oil well
JPS63179019A (en) Manufacture of high tension steel plate having low yield ratio

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees