JP3793294B2 - Method for producing 780 MPa class high-tensile steel with excellent galvanization resistance - Google Patents

Method for producing 780 MPa class high-tensile steel with excellent galvanization resistance Download PDF

Info

Publication number
JP3793294B2
JP3793294B2 JP28163596A JP28163596A JP3793294B2 JP 3793294 B2 JP3793294 B2 JP 3793294B2 JP 28163596 A JP28163596 A JP 28163596A JP 28163596 A JP28163596 A JP 28163596A JP 3793294 B2 JP3793294 B2 JP 3793294B2
Authority
JP
Japan
Prior art keywords
less
steel
strength
temperature
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28163596A
Other languages
Japanese (ja)
Other versions
JPH10110214A (en
Inventor
幸男 冨田
俊永 長谷川
直樹 斎藤
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28163596A priority Critical patent/JP3793294B2/en
Publication of JPH10110214A publication Critical patent/JPH10110214A/en
Application granted granted Critical
Publication of JP3793294B2 publication Critical patent/JP3793294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶接後に溶融亜鉛めっきされる鋼構造物(鉄塔、橋梁、建築物等)に使用される鋼材の製造方法に関し、特に溶接部耐溶融亜鉛めっきわれ特性優れた780MPa級高張力鋼の製造方法に関するものである。
【0002】
【従来の技術】
従来より鉄塔、橋梁、建築物等の鋼構造物は、耐食性の観点から溶融亜鉛めっきされることが多い。しかし、これらの構造物では、その部材を溶融亜鉛めっきする際に、主として溶接部にわれが発生する場合があり、構造物の安全上からその防止対策が求められている。
【0003】
このわれは、液体金属脆化に基づく亜鉛めっきわれとして公知の現象であり、また、当該業界では鋼材の強度が高くなるほどわれが発生し易くなることも経験的に知られている。この亜鉛めっきわれを防止する対策として、これまでにいくつかの提案がなされている。
【0004】
例えば、特開昭59−50157号公報では、鋼中のS量を0.030〜0.060%に規制することによる対策、特開昭61−133363号公報、特開昭61−231141号公報、特開昭62−50448号公報等では鋼材の合金元素量に特定の関係を満足させることによる対策が提案されている。
【0005】
しかし、提案技術は鋼材強度としては、60キロ級(590MPa級)高張力鋼までの鋼材を対象とするものであり、更に強度の高い鋼材に関しては、めっきわれを完全に防止する点で必ずしも充分でなく、特に80キロ級(780MPa級)鋼においてはわれ防止技術は皆無に等しく、新たなる技術が求められている。
【0006】
その後、特開平3−229817号公報では、圧延に際し圧延条件を狭い範囲に規制しその後直接焼入れすることで、80キロ級(780MPa級)鋼を製造する方法が提案された。
【0007】
しかし、この提案は限られた製造方法であると同時に圧延条件の範囲が狭く、板内、板厚方向の材質バラツキの大きい、非常に圧延効率の悪い製造方法であるという欠点を有する。
【0008】
【発明が解決しようとする課題】
前記したとおり、溶接組立後に防錆を目的として、溶融亜鉛めっきされる鋼構造物においては、めっき時に溶接止端部に亜鉛脆化われが発生する場合があり、構造物の安全上からも防止対策の確立が望まれている。
【0009】
この亜鉛脆化われは溶接止端部近傍の組織因子に基づく亜鉛脆化感受性の大小及び、当該部分に作用する溶接残留応力と、めっき時の熱応力に支配されるものと考えられている。
【0010】
従来より、高強度鋼ほど合金元素含有量が高くなることは公知であり、これに伴う亜鉛脆化感受性の増大は必然である。また、われ支配要因である溶接残留応力は、溶接部を加熱することにより減少することがしられており、めっき工程においても同様の現象が起こることも確認されている。しかし、この溶接残留応力の大小は、母材の降伏強度に支配されるため、降伏強度の高い鋼ほど、めっき中に高い溶接残留応力が残存し、亜鉛脆化われは発生し易い。
【0011】
以上述べた要因は、全てが80キロ級(780MPa級)鋼については不利であり、80キロ級(780MPa級)鋼の亜鉛脆化われを防止することは非常に困難であると考えられている。
【0012】
本発明はこのような現状に鑑み、溶融亜鉛めっきわれを完全に防止し得る80キロ級( 780MPa級)鋼の圧延効率がよく、製造範囲の広い製造方法を提供するものである。
【0013】
【課題を解決するための手段】
本発明は、上記課題を解決すべくなされたもので、その要旨とするところは下記の通りである。
【0014】
(1)質量%で、
C:0.20%以下
Si:0.35%以下
Mn:1.7%以下
Al:0.005〜0.10%
を含み、更に、
Cr、Moの1種または2種の合計で1.0%以下を含み、
更に、強度靭性の要求に応じて、
Cu:1.0%以下
Ni:1.0%以下
V:0.2%以下
Nb:0.05%以下
Ti:0.03%以下
を1種または2種以上を含み、残部Feおよび不純物からなり、同時に
Ceq(Z)=C+Si/32+Mn/4+Cu/6+Ni/10+Cr/3.5+Mo/3.5+V/2+Nb/2≦0.58
を満足する鋼材を、熱間圧延後、再加熱焼入処理を施すに際して、該再加熱による昇温後120分以内に加熱炉から出し、鋼板の表面と中心部との温度勾配を2℃/mm以下に維持し、910℃以上の焼入温度より焼入れ、焼入れままとする、あるいは、必要に応じて450〜650℃の温度範囲で焼戻し熱処理することを特徴とする耐亜鉛めっきわれ特性に優れた780MPa級高張力鋼の製造方法。
【0015】
(2)質量%で、
C:0.20%以下
Si:0.35%以下
Mn:1.7%以下
Al:0.005〜0.10%
を含み、更に、
Cr、Moの1種または2種の合計で1.0%以下を含み、
更に、強度靭性の要求に応じて、
Cu:1.0%以下
Ni:1.0%以下
V:0.2%以下
Nb:0.05%以下
Ti:0.03%以下
を1種または2種以上を含み、残部Feおよび不純物からなり、同時に
Ceq(Z)=C+Si/32+Mn/4+Cu/6+Ni/10+Cr/3.5+Mo/3.5+V/2+Nb/2≦0.58
を満足する鋼材を、900℃以上で圧延した後、圧延後3分以内に、鋼板の表面と中心部との温度勾配を2℃/mm以下に維持し、750℃以上の温度領域から直接焼入れすることを特徴とする耐亜鉛めっきわれ特性に優れた780MPa級高張力鋼の製造方法。
【0016】
本発明の限定要件は上記した通り、各種合金元素の個々の含有量と、これらの組み合わせによるCeq(Z)%の制限、及び製造条件の限定にあり、本発明の効果はこれらの要件を全て満足して初めて発揮されるもので、いずれかの要件を満たさない時にはその効果は発揮されない。
【0017】
まず、個々の合金元素含有量を前記範囲に限定した理由を述べる。
【0018】
Cは強度確保のために添加するが、0.20%を超えると鋼材の靭性と溶接性を損なうばかりでなく、耐亜鉛めっきわれを著しく損なうので0.20%を上限とした。
【0019】
Siは強度確保と脱酸のために添加するが、0.35%を超えると靭性が劣化すると共に、めっき面の健全性を損なうので、これを上限とした。
【0020】
Mnは強度確保のために添加するが、1.7%を超えて添加すると溶接性及び耐亜鉛めっきわれ性を著しく損なうので、これを上限とした。
【0021】
Cr、Moは微量の添加で焼入れ性を高め、強度確保のために極めて有効な元素である。しかし、1種または2種の合計で、1.0%を越えて添加すると、耐亜鉛めっきわわれ性を著しく損なうので、これを上限とした。
【0022】
Alは通常脱酸元素として用いられている範囲である0.005〜0.100%に限定した。
【0023】
Cu,Ni,V,Nb,Tiは各々強度・靭性向上を目的として添加される元素であるが、上記限定範囲を越えて添加すると、溶接性及び耐亜鉛めっきわせ性が損なわれるのでこれを上限とした。
【0024】
本発明では上記したごとく、個々の元素添加量を制限すると共に、これらを組み合わせた総合的添加量が、特定の式を満足するときに初めてその効果を発揮するものであり、この点について以下に実験結果を持って説明する。
【0025】
使用鋼材の化学組成を総合的添加量としてCeq(Z)=C+Si/32+Mn/4+Cu/6+Ni/10+Cr/3.5+Mo/3.5+V/2+Nb/2≦0.58からなる式で限定した理由であるが、該炭素当量式は、溶接熱影響部の亜鉛脆化に及ぼす各種合金元素の影響を定量化し成したもので、この値が低いほど前記した溶接始止端分近傍の組織要因に基づく亜鉛脆化が起こり難い。
【0026】
従って、鋼材成分は母材強度を満足する範囲内で、Ceq(Z)値を低くすることが望ましい。
【0027】
この新たなる知見を得た実験方法及び実験結果を図1、図2に示す。
【0028】
図1において1は試験板、2は試験ビード、3は試験ビードに残留応力を付与するための拘束ビードである。
【0029】
本実験は拘束ビード3により、試験ビード2止端部に応力を付与した後、同試験片を亜鉛浴中に浸漬し、試験ビード止端部における亜鉛めっきわれ発生の有無により、鋼材の耐亜鉛めっきわれ性を評価するものである。
【0030】
なお、亜鉛めっきわれは同一鋼材であれば付与する応力が高いほど発生しやすい。
【0031】
本実験方法によれば、拘束ビード数5パスで試験ビード止端部近傍に、試験板の室温での降伏強度に相当する残留応力の付与が可能であるため、本実験での拘束ビード数はすべて5パスとした。
【0032】
試験、拘束ビードの溶接条件は表1の通りである。
【0033】
【表1】

Figure 0003793294
以上の条件下で、各種合金元素添加量の異なった鋼材により試験片を製作し、これを亜鉛浴中に浸漬した後、試験ビード止端部におけるわれ発生の有無を調査した。
【0034】
実験結果をCeq(Z)との関係で図2に示す。
【0035】
図から明らかな通り、各種合金元素含有量が前記した限定成分範囲にあり、Ceq(Z)%が0.58%以下であれば亜鉛めっきわれの発生を完全に防止できることが確認された。
【0036】
次に、製造条件の限定理由について述べる。
【0037】
以上述べた通り、亜鉛めっきわれ防止のためにはCeq(Z)を0.58%以下にすることが必要であるが、この条件を満たす鋼材は、従来の80キロ級(780MPa級)鋼に比べ低成分鋼となるため、焼入れ処理による強度確保が必然となる。
【0038】
本発明鋼では、通常の焼入れ、焼戻しだけでなく、焼戻し熱処理として、溶融亜鉛めっき時の加熱を利用した低温焼戻しにより、焼戻し熱処理が省略でき、より経済的な製造が可能となった。焼入れ温度は板内、板厚方向各部分が全てAr3点以上となる910℃以上とし、また、加熱炉からは昇温後120分以内に取出し、さらに、焼入れ時の鋼材の表面と中心部との温度勾配を2℃/mm以内に維持することで、板内、板厚方向各部分の材質バラツキを小さく押さえることが可能となる。
【0039】
次に、焼戻し温度としては、溶融亜鉛めっき時の加熱温度である450℃を下限とし、650℃超では強度が確保できないため、この温度を上限とする。
【0040】
また、直接焼入れにより、再加熱の焼入れ熱処理が省略でき、より経済的であるが、直接焼入れ前の熱間圧延条件として、オーステナイト未再結晶域での圧下を行うと急激に圧延効率が低下するため、900℃以上で圧延を終了する。また、圧延後3分以内に焼入れ、かつ、直接焼入れ時の鋼材の表面と中心部との温度勾配を2℃/mm以内に維持することで、板内、板厚方向各部分の材質バラツキを小さく押さえることが可能となる。さらに、焼入れ開始温度が750℃未満になると、強度を確保できないため、この値を下限とする。
【0041】
本発明は主として、厚板、熱延鋼板についてであるが、山形鋼、H形鋼等の形鋼、線・棒鋼、鋼管等としても製造可能である。
【0042】
【実施例】
以下実施例により本発明の効果を具体的に示す。
【0043】
なお、耐亜鉛めっきわれ性は図1に示した試験方法によった。
【0044】
表2に供試した鋼の組成、Ceq(Z)を,また、表3に製造条件、母材強度、靭性、及び耐亜鉛めっきわれ性評価試験結果をそれぞれ示す。
【0045】
【表2】
Figure 0003793294
【0046】
【表3】
Figure 0003793294
本発明鋼A1〜A4は、成分および圧延条件を全て満足しており、母材強度は822〜851MPa、靭性もvE0で175J以上と良好であり、また、材質のバラツキも10℃以下に抑えられ、さらに、全てZnめっきわれは発生しなかった(◎印)。
【0047】
一方、比較例では、B1〜B5までは成分上は問題ないが、B1は直接焼入れが開始温度が低く、B2は圧延仕上げ〜焼入れ開始までの時間が3分を越えており、B3は温度勾配が2℃/mmを越えている。また、B4は保持時間後120分を越え、B5は温度勾配が2℃/mmを越え、B6はC%が多く、B7はCeq(Z)が0.58を越えている。この結果、B1は母材強度が693MPaと低く、B2〜B5までは材質のバラツキが大きくなっており、Znめっきわれが発生する場合があった(○印)。B6とB7は靭性が低く、Znめっきわれが発生した。
【0048】
本発明限定要件を満足する鋼は、構造用80キロ級(780MPa級)鋼として充分な強度・靭性と優れた耐亜鉛めっきわれ性を有することが明らかである。
【0049】
【発明の効果】
以上の説明から明らかなように、個々の合金元素添加量とこれらの総合的添加量を制限すると共に、製造条件を限定することにより、優れた耐亜鉛めっきわれ性を有する80キロ級(780MPa級)高張力鋼の経済的な製造が可能である。
【0050】
従って、本発明は産業上、大きな効果を有するものであるといえる。
【図面の簡単な説明】
【図1】 鋼材の亜鉛めっきわれ性評価の実験方法を示した図である。
【図2】 鋼材の亜鉛めっきわれ性評価の実験結果を示した図である。
【符号の説明】
1 試験板
2 試験ビード
3 拘束ビード[0001]
BACKGROUND OF THE INVENTION
The present invention, steel structures are galvanized after welding (towers, bridges, buildings, etc.) relates to a manufacturing method of the steel used for, 780 MPa grade high-tensile particularly excellent in resistance to hot-dip galvanizing cracking characteristics of the weld The present invention relates to a method for manufacturing steel.
[0002]
[Prior art]
Conventionally, steel structures such as steel towers, bridges, and buildings are often hot dip galvanized from the viewpoint of corrosion resistance. However, in these structures, when the member is hot dip galvanized, cracks may occur mainly in the welded portion, and countermeasures for preventing the structure are required for safety of the structure.
[0003]
This crack is a phenomenon known as galvanized crack based on liquid metal embrittlement, and it is also empirically known in the industry that cracks are more likely to occur as the strength of the steel material increases. Several proposals have been made so far to prevent the galvanized crack.
[0004]
For example, Japanese Patent Laid-Open No. 59-50157 discloses a countermeasure by restricting the amount of S in steel to 0.030 to 0.060%, Japanese Patent Laid-Open No. 61-133363, Japanese Patent Laid-Open No. 61-231141. JP-A-62-50448 proposes a countermeasure by satisfying a specific relationship with the amount of alloying elements in steel.
[0005]
However, the proposed technology targets steel materials up to 60 kg class (590 MPa class) high-tensile steel, and the steel materials with higher strength are not necessarily sufficient to completely prevent plating. In particular, in the 80 kg class (780 MPa class) steel, there is no crack prevention technique, and a new technique is required.
[0006]
Thereafter, Japanese Patent Application Laid-Open No. 3-229817 proposed a method of manufacturing 80 kg class (780 MPa class) steel by restricting rolling conditions to a narrow range upon rolling and then directly quenching.
[0007]
However, this proposal has a drawback that it is a limited manufacturing method and has a narrow rolling condition range, a large variation in material in the plate and in the plate thickness direction, and a very low rolling efficiency.
[0008]
[Problems to be solved by the invention]
As described above, in steel structures that are hot dip galvanized for the purpose of rust prevention after welding assembly, zinc embrittlement may occur at the weld toes during plating, which is also prevented from the safety of the structure. Establishment of measures is desired.
[0009]
This zinc embrittlement is considered to be governed by the degree of zinc embrittlement susceptibility based on the structure factor in the vicinity of the weld toe, the welding residual stress acting on the part, and the thermal stress during plating.
[0010]
Conventionally, it has been known that the higher the strength of steel, the higher the alloying element content, and the accompanying increase in zinc embrittlement susceptibility is unavoidable. Further, the welding residual stress, which is a crack-dominating factor, is reduced by heating the welded portion, and it has been confirmed that the same phenomenon occurs in the plating process. However, since the magnitude of this welding residual stress is governed by the yield strength of the base metal, the higher the yield strength, the higher the residual welding stress remains during plating, and the easier the zinc embrittlement occurs.
[0011]
Factors mentioned above are all 80-kilogram (780 MPa class) is disadvantageous for steel 80 kilogram (780 MPa class) are believed to prevent zinc embrittlement cracking of steel is very difficult .
[0012]
In view of such a current situation, the present invention provides a production method with a high rolling efficiency and a wide production range of 80 kg class ( 780 MPa class) steel capable of completely preventing hot dip galvanization.
[0013]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and the gist thereof is as follows.
[0014]
(1) In mass%,
C: 0.20% or less ,
Si: 0.35% or less ,
Mn: 1.7% or less ,
Al: 0.005-0.10%
In addition,
Including 1.0% or less in total of one or two of Cr and Mo ,
Furthermore, according to the requirements of strength toughness,
Cu: 1.0% or less ,
Ni: 1.0% or less ,
V: 0.2% or less ,
Nb: 0.05% or less ,
Ti: 0.03% or less containing 1 type or 2 types or more, comprising the balance Fe and impurities ,
Ceq (Z) = C + Si / 32 + Mn / 4 + Cu / 6 + Ni / 10 + Cr / 3.5 + Mo / 3.5 + V / 2 + Nb / 2 ≦ 0.58
When a steel material satisfying the above conditions is subjected to a reheating and quenching treatment after hot rolling , the steel material is taken out of the heating furnace within 120 minutes after the temperature rise due to the reheating, and a temperature gradient between the surface and the central portion of the steel plate is 2 ° C / maintained mm or less, quenching from 910 ° C. or more quenching temperature, the as quenched, or characterized by tempering at a temperature range of 450 to 650 ° C. if necessary, the resistance to galvanizing crack properties A method for producing an excellent 780 MPa class high strength steel.
[0015]
(2) In mass%,
C: 0.20% or less ,
Si: 0.35% or less ,
Mn: 1.7% or less ,
Al: 0.005-0.10%
In addition,
Including 1.0% or less in total of one or two of Cr and Mo ,
Furthermore, according to the requirements of strength toughness,
Cu: 1.0% or less ,
Ni: 1.0% or less ,
V: 0.2% or less ,
Nb: 0.05% or less ,
Ti: 0.03% or less containing 1 type or 2 types or more, comprising the balance Fe and impurities ,
Ceq (Z) = C + Si / 32 + Mn / 4 + Cu / 6 + Ni / 10 + Cr / 3.5 + Mo / 3.5 + V / 2 + Nb / 2 ≦ 0.58
After rolling a steel material satisfying the above conditions at 900 ° C. or higher, within 3 minutes after rolling, maintain the temperature gradient between the surface and the center of the steel sheet at 2 ° C./mm or lower and directly quench from a temperature range of 750 ° C. or higher. A method for producing a 780 MPa class high-strength steel having excellent galvanized cracking characteristics.
[0016]
As described above, the limitation requirements of the present invention are the individual contents of various alloy elements, the limitation of Ceq (Z)% by a combination thereof, and the limitation of the production conditions. The effects of the present invention are all these requirements. It can only be demonstrated when you are satisfied, and if you do not meet any of the requirements, it will not be effective.
[0017]
First, the reason why the individual alloy element contents are limited to the above ranges will be described.
[0018]
C is added to ensure strength, when it exceeds 0.20%, not only impair the toughness and weldability of the steel was made the upper limit 0.20% because significantly impair the cracking resistance galvanized.
[0019]
Si is added for securing the strength and deoxidation, but if it exceeds 0.35%, the toughness deteriorates and the soundness of the plated surface is impaired, so this was made the upper limit.
[0020]
Mn is added for securing strength, because significant loss of weldability and resistance to galvanizing crack resistance and addition of more than 1.7%, so this was made the upper limit.
[0021]
Cr and Mo are elements that are extremely effective for increasing the hardenability by adding a small amount and ensuring the strength. However, if the total of one or two types exceeds 1.0%, the resistance to galvanization resistance is significantly impaired, so this was made the upper limit.
[0022]
Al was limited to 0.005 to 0.100 percent in the range of usually used as a deoxidizing element.
[0023]
Cu, Ni, V, Nb, and Ti are elements added for the purpose of improving strength and toughness , respectively, but if added beyond the above-mentioned limited ranges, weldability and galvanizing resistance are impaired. The upper limit.
[0024]
In the present invention, as described above, the addition amount of each element is limited, and the total addition amount combining them exhibits its effect for the first time when a specific formula is satisfied. Explain with experimental results.
[0025]
This is the reason why the chemical composition of the steel used is limited by the formula of Ceq (Z) = C + Si / 32 + Mn / 4 + Cu / 6 + Ni / 10 + Cr / 3.5 + Mo / 3.5 + V / 2 + Nb / 2 ≦ 0.58 However, the carbon equivalent formula quantifies the effect of various alloy elements on the zinc embrittlement of the heat affected zone of the weld. The lower the value, the higher the zinc based on the structure factor in the vicinity of the weld start end. Brittleness is unlikely to occur.
[0026]
Therefore, it is desirable that the steel component has a low Ceq (Z) value within a range that satisfies the base material strength.
[0027]
The experimental method and experimental results obtained from this new finding are shown in FIGS.
[0028]
In FIG. 1, 1 is a test plate, 2 is a test bead, and 3 is a restraining bead for imparting residual stress to the test bead.
[0029]
In this experiment , after applying stress to the toe end of the test bead 2 with the restraint bead 3, the test piece was immersed in a zinc bath, and the resistance of the steel material was determined depending on whether or not galvanized cracking occurred at the toe end of the test bead. It evaluates the galvanization cracking property.
[0030]
In addition, galvanization will be easy to generate | occur | produce, so that the stress to provide will be high if it is the same steel material.
[0031]
According to this experimental method, it is possible to apply a residual stress corresponding to the yield strength at room temperature of the test plate in the vicinity of the test bead toe at a limit of 5 passes, so the number of bead in this experiment is All 5 passes.
[0032]
Table 1 shows the welding conditions for the test and restraint beads.
[0033]
[Table 1]
Figure 0003793294
Under the above conditions, test pieces were made of steel materials having different amounts of various alloying elements, immersed in a zinc bath, and then examined for cracking at the test bead toe.
[0034]
The experimental results are shown in FIG. 2 in relation to Ceq (Z).
[0035]
As is apparent from the figure, it was confirmed that the occurrence of galvanized cracks can be completely prevented when the content of various alloy elements is in the limited component range described above and Ceq (Z)% is 0.58% or less.
[0036]
Next, the reasons for limiting the manufacturing conditions will be described.
[0037]
As described above, Ceq (Z) needs to be 0.58% or less in order to prevent galvanization cracking, but steel materials that satisfy this condition are the conventional 80 kg class (780 MPa class) steel. Compared to low-component steel, it is inevitable to ensure strength by quenching.
[0038]
In the steel according to the present invention, not only normal quenching and tempering but also tempering heat treatment can be omitted by low-temperature tempering using heating at the time of hot dip galvanizing, and more economical production becomes possible. The quenching temperature is 910 ° C. or more in which all the parts in the plate and in the plate thickness direction are at least Ar3 point. Also, the quenching temperature is taken out from the heating furnace within 120 minutes after the temperature rise. By keeping the temperature gradient within 2 ° C./mm, it is possible to reduce the material variation in each part in the plate and in the plate thickness direction.
[0039]
Next, as the tempering temperature, the lower limit is 450 ° C., which is the heating temperature at the time of hot dip galvanizing , and the strength cannot be ensured at temperatures exceeding 650 ° C., so this temperature is the upper limit.
[0040]
In addition, by direct quenching, the reheating quenching heat treatment can be omitted, and it is more economical, but as the hot rolling conditions before direct quenching, rolling in the austenite non-recrystallized region rapidly reduces the rolling efficiency. Therefore, the rolling is finished at 900 ° C. or higher. In addition, by maintaining the temperature gradient between the surface and the center of the steel material within 3 minutes after rolling and maintaining the temperature gradient within 2 ° C / mm during direct quenching, material variations in each part in the sheet thickness direction can be achieved. It becomes possible to hold down small. Furthermore, when the quenching start temperature is less than 750 ° C., the strength cannot be secured, so this value is set as the lower limit.
[0041]
The present invention mainly relates to thick plates and hot-rolled steel plates, but can also be manufactured as section steels such as angle steels and H-shaped steels, wires / bars, steel pipes and the like.
[0042]
【Example】
The effects of the present invention are specifically shown below by examples.
[0043]
In addition, the resistance to galvanizing was based on the test method shown in FIG.
[0044]
The composition of this was subjected steel in Table 2, Ceq a (Z), also shows produced in Table 3 condition, the base material strength, toughness, and resistance to galvanizing cracking resistance evaluation test results, respectively.
[0045]
[Table 2]
Figure 0003793294
[0046]
[Table 3]
Figure 0003793294
The invention steels A1 to A4 satisfy all the components and rolling conditions, the base material strength is 822 to 851 MPa, the toughness is vE0 as good as 175 J or more, and the material variation is also suppressed to 10 ° C. or less. In addition, no Zn plating cracks occurred (◎ marks).
[0047]
On the other hand, in the comparative example, B1 to B5 have no problem in terms of components, but B1 has a low start temperature for direct quenching, B2 has a time from rolling finish to start of quenching exceeding 3 minutes, and B3 has a temperature gradient. Exceeds 2 ° C./mm. Further, B4 exceeds 120 minutes after the holding time, B5 has a temperature gradient exceeding 2 ° C./mm, B6 has a large C%, and B7 has a Ceq (Z) exceeding 0.58. As a result, the base material strength of B1 is as low as 693 MPa, the material variation is large from B2 to B5, and Zn plating may occur (circle mark). B6 and B7 had low toughness, and Zn plating cracks occurred.
[0048]
It is apparent that steel satisfying the requirements of the present invention has sufficient strength and toughness and excellent galvanization resistance as structural 80 kg class (780 MPa class) steel.
[0049]
【The invention's effect】
As is clear from the above explanation, by limiting the addition amount of individual alloy elements and the total addition amount thereof, and by limiting the production conditions, the 80 kg class (780 MPa class) having excellent resistance to galvanization. ) Economical production of high strength steel is possible.
[0050]
Therefore, it can be said that the present invention has a great effect in the industry.
[Brief description of the drawings]
FIG. 1 is a diagram showing an experimental method for evaluating the galvanizing cracking property of a steel material.
FIG. 2 is a diagram showing experimental results of evaluation of galvanization cracking property of steel materials.
[Explanation of symbols]
1 Test plate 2 Test bead 3 Restraint bead

Claims (2)

質量%で、
C:0.20%以下
Si:0.35%以下
Mn:1.7%以下
Al:0.005〜0.10%
を含み、更に、
Cr、Moの1種または2種の合計で1.0%以下を含み、
更に、強度靭性の要求に応じて、
Cu:1.0%以下
Ni:1.0%以下
V:0.2%以下
Nb:0.05%以下
Ti:0.03%以下
を1種または2種以上を含み、残部Feおよび不純物からなり、同時に
Ceq(Z)=C+Si/32+Mn/4+Cu/6+Ni/10+Cr/3.5+Mo/3.5+V/2+Nb/2≦0.58
を満足する鋼材を、熱間圧延後、再加熱焼入処理を施すに際して、該再加熱による昇温後120分以内に加熱炉から出し、鋼板の表面と中心部との温度勾配を2℃/mm以下に維持し、910℃以上の焼入温度より焼入れ、焼入れままとする、あるいは、必要に応じて450〜650℃の温度範囲で焼戻し熱処理することを特徴とする耐亜鉛めっきわれ特性に優れた780MPa級高張力鋼の製造方法。
% By mass
C: 0.20% or less ,
Si: 0.35% or less ,
Mn: 1.7% or less ,
Al: 0.005-0.10%
In addition,
Including 1.0% or less in total of one or two of Cr and Mo ,
Furthermore, according to the requirements of strength toughness,
Cu: 1.0% or less ,
Ni: 1.0% or less ,
V: 0.2% or less ,
Nb: 0.05% or less ,
Ti: 0.03% or less containing 1 type or 2 types or more, comprising the balance Fe and impurities ,
Ceq (Z) = C + Si / 32 + Mn / 4 + Cu / 6 + Ni / 10 + Cr / 3.5 + Mo / 3.5 + V / 2 + Nb / 2 ≦ 0.58
When a steel material satisfying the above conditions is subjected to a reheating and quenching treatment after hot rolling , the steel material is taken out of the heating furnace within 120 minutes after the temperature rise due to the reheating, and a temperature gradient between the surface and the central portion of the steel plate is 2 ° C / maintained mm or less, quenching from 910 ° C. or more quenching temperature, the as quenched, or characterized by tempering at a temperature range of 450 to 650 ° C. if necessary, the resistance to galvanizing crack properties A method for producing an excellent 780 MPa class high strength steel.
質量%で、
C:0.20%以下
Si:0.35%以下
Mn:1.7%以下
Al:0.005〜0.10%
を含み、更に、
Cr、Moの1種または2種の合計で1.0%以下を含み、
更に、強度靭性の要求に応じて、
Cu:1.0%以下
Ni:1.0%以下
V:0.2%以下
Nb:0.05%以下
Ti:0.03%以下
を1種または2種以上を含み、残部Feおよび不純物からなり、同時に
Ceq(Z)=C+Si/32+Mn/4+Cu/6+Ni/10+Cr/3.5+Mo/3.5+V/2+Nb/2≦0.58
を満足する鋼材を、900℃以上で圧延した後、圧延後3分以内に、鋼板の表面と中心部との温度勾配を2℃/mm以下に維持し、750℃以上の温度領域から直接焼入れすることを特徴とする耐亜鉛めっきわれ特性に優れた780MPa級高張力鋼の製造方法。
% By mass
C: 0.20% or less ,
Si: 0.35% or less ,
Mn: 1.7% or less ,
Al: 0.005-0.10%
In addition,
Including 1.0% or less in total of one or two of Cr and Mo ,
Furthermore, according to the requirements of strength toughness,
Cu: 1.0% or less ,
Ni: 1.0% or less ,
V: 0.2% or less ,
Nb: 0.05% or less ,
Ti: 0.03% or less containing 1 type or 2 types or more, comprising the balance Fe and impurities ,
Ceq (Z) = C + Si / 32 + Mn / 4 + Cu / 6 + Ni / 10 + Cr / 3.5 + Mo / 3.5 + V / 2 + Nb / 2 ≦ 0.58
After rolling a steel material satisfying the above conditions at 900 ° C. or higher, within 3 minutes after rolling, maintain the temperature gradient between the surface and the center of the steel sheet at 2 ° C./mm or lower and directly quench from a temperature range of 750 ° C. or higher. method for producing characterized, 780 MPa grade high-tensile steel having excellent galvanized We characteristics to.
JP28163596A 1996-10-04 1996-10-04 Method for producing 780 MPa class high-tensile steel with excellent galvanization resistance Expired - Fee Related JP3793294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28163596A JP3793294B2 (en) 1996-10-04 1996-10-04 Method for producing 780 MPa class high-tensile steel with excellent galvanization resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28163596A JP3793294B2 (en) 1996-10-04 1996-10-04 Method for producing 780 MPa class high-tensile steel with excellent galvanization resistance

Publications (2)

Publication Number Publication Date
JPH10110214A JPH10110214A (en) 1998-04-28
JP3793294B2 true JP3793294B2 (en) 2006-07-05

Family

ID=17641866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28163596A Expired - Fee Related JP3793294B2 (en) 1996-10-04 1996-10-04 Method for producing 780 MPa class high-tensile steel with excellent galvanization resistance

Country Status (1)

Country Link
JP (1) JP3793294B2 (en)

Also Published As

Publication number Publication date
JPH10110214A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US7608155B2 (en) High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
KR100697905B1 (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and stability of material properties and manufacturing method thereof
US11155902B2 (en) High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
JP2011508085A (en) High strength thin steel sheet with excellent weldability and method for producing the same
KR20110127283A (en) A steel composition for the production of cold rolled multiphase steel products
JP2002206139A (en) High strength galvannealed steel sheet and high strength galvanized steel sheet having excellent plating adhesion and press formability and production method therefor
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JP3793294B2 (en) Method for producing 780 MPa class high-tensile steel with excellent galvanization resistance
KR20220013553A (en) Method for manufacturing welded parts made of molded high-strength steel and parts manufactured in this way
JP3895002B2 (en) Non-tempered high-tensile steel with excellent resistance to hot-dip galvanizing cracking
RU2790144C1 (en) Method for manufacture of welded part of molded high-strength steel and part made by such a method
JP2002241895A (en) Thin steel sheet having excellent ductility and strength stability after heat treatment
US6645320B2 (en) Steel sheet excellent in ductility and strength stability after heat treatment
JP3371715B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JP2573109B2 (en) Method for producing high-strength steel for Zn plating crack resistant structure
JP3371714B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JP2832070B2 (en) Manufacturing method of steel sheet with excellent galvanizing property
JP2986989B2 (en) Method for producing high-strength steel for Zn-Al plating
JP3336875B2 (en) Tempered high-strength steel excellent in hot-dip galvanizing crack resistance and method for producing the same
JPH10102193A (en) Heat treated high tensile strength steel excellent in weldability and resistance to hot dip galvanizing crack, and its production
JPH10102195A (en) Heat treated high tensile strength steel excellent in resistance to hot dip galvanizing crack, and its production
JPH0757883B2 (en) Method for producing 80 kg high-strength steel with excellent galvanizing resistance in weld heat-affected zone
JPH10102197A (en) High strength, high tensile strength steel excellent in resistance to hot dip galvanizing crack
JPH0448844B2 (en)
JPH10102196A (en) High strength, high tensile strength steel excellent in resistance to hot dip galvanizing crack

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees