JPH10102195A - Heat treated high tensile strength steel excellent in resistance to hot dip galvanizing crack, and its production - Google Patents

Heat treated high tensile strength steel excellent in resistance to hot dip galvanizing crack, and its production

Info

Publication number
JPH10102195A
JPH10102195A JP25992996A JP25992996A JPH10102195A JP H10102195 A JPH10102195 A JP H10102195A JP 25992996 A JP25992996 A JP 25992996A JP 25992996 A JP25992996 A JP 25992996A JP H10102195 A JPH10102195 A JP H10102195A
Authority
JP
Japan
Prior art keywords
less
steel
hot
dip galvanizing
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25992996A
Other languages
Japanese (ja)
Inventor
Toshimichi Omori
俊道 大森
Hisafumi Maeda
尚史 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25992996A priority Critical patent/JPH10102195A/en
Publication of JPH10102195A publication Critical patent/JPH10102195A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat treated high tensile strength steel, excellent in weldability, having a strength level regulated to 70-80kgf class by means of tempering, and also having superior resistance to hot dip galvanizing crack, and its production. SOLUTION: The heat treated high tensile strength steel, excellent in resistance to hot dip galvanizing crack, has a composition which contains, by weight, 0.08-0.12% C, <=0.25% Si, 0.8-1.6% Mn, 0.008-0.05% Nb, 0.02-0.1% V, 0.008-0.015% Ti, (0.0005+Ti/3.4) to 0.01% N, and <0.00016% B and in which the value of Z=Ceq+600×B, defined by Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 and B content, is regulated to <=0.40.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶接部及び母材の
耐溶融亜鉛メッキ割れ性に優れた70〜80キロ級以上
の強度を有する調質型高張力鋼及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tempered high-strength steel excellent in hot-dip galvanizing crack resistance of a weld portion and a base material and having a strength of 70 to 80 kg or more and a method for producing the same.

【0002】[0002]

【従来の技術】耐候性、耐食性を付与するため送電鉄塔
や橋梁に用いる鋼材に亜鉛メッキを施すと、いわゆる溶
融金属脆化による割れを発生することがある。この現象
は亜鉛メッキ割れと呼ばれ構造物の安全性を大きく損な
う。これまでの知見から、亜鉛メッキ割れは、溶融亜鉛
メッキ浴に浸した際、引張応力の存在した部位に発生す
ることがわかっており、従って割れが懸念される部位と
して曲げ加工などにより変形を受けた部位、高力ボルト
接合のための穴開け部や溶接接合部が挙げられる。特に
溶接接合部は、溶接熱サイクルによる熱歪に加えて材質
的にもメッキ割れを起こしやすくこの問題は深刻であ
る。そこで、溶接部の亜鉛メッキ割れが懸念される場合
は、高力ボルト接合により構造物を作製するが、上述の
ようにボルト穴加工部の亜鉛メッキ割れが次の懸念事項
として上がってくる。
2. Description of the Related Art When galvanizing steel materials used for power transmission towers and bridges in order to impart weather resistance and corrosion resistance, cracks due to so-called molten metal embrittlement may occur. This phenomenon is called galvanization crack and greatly impairs the safety of the structure. From the findings so far, it has been found that galvanizing cracks occur in areas where tensile stress is present when immersed in a hot-dip galvanizing bath. Parts, holes for welding high strength bolts and welded joints. In particular, a welded joint is liable to cause plating cracks in the material in addition to thermal strain due to a welding heat cycle, and this problem is serious. Therefore, when there is a concern about galvanized cracks in the welded portion, a structure is manufactured by high-strength bolt bonding. As described above, galvanized cracks in the bolted portion are raised as the next concern.

【0003】これらを防止するため、従来より溶接熱影
響部や母材の耐溶融亜鉛メッキ割れ性向上については数
多くの検討がなされ、鉄塔用鋼材を対象とした新HT60
開発委貫会が組織されるまでに至り基本的な解決手段が
示されたが現状の技術ではその適用強度レベルは60キ
ロ級に留まる。
[0003] In order to prevent these problems, many studies have been made on improving the hot-dip galvanized crack resistance of the heat affected zone and the base metal, and a new HT60 for steel materials for steel towers has been studied.
Although the basic solution was shown before the development committee was formed, the applied strength level of the current technology is only 60 kg.

【0004】その一方で、山間部を中心に設置される大
型送電鉄塔は、資材運搬に費やす費用が膨大となるため
軽量化を図るべく更なる高強度化が求められるが80キ
ロ級鋼材では高力ボルト接合のための穴開け部ですら亜
鉛メッキ割れを防止するのが難しく、更に溶接接合部で
亜鉛メッキ割れを防止することは極めて困難とされてき
た。
On the other hand, large power transmission towers, which are installed mainly in mountainous areas, require enormous costs for transporting materials, so that even higher strength is required to reduce the weight. It has been difficult to prevent galvanizing cracks even at the drilled portion for force bolting, and it has been extremely difficult to prevent galvanizing cracking at the welded joint.

【0005】[0005]

【発明が解決しようとする課題】このような状況の下、
特公平7-57883 号が80キロ級高張力鋼を対象に直接焼
入プロセスと亜鉛メッキ時の焼き戻しを組み含わせた技
術として開示されている。しかし、この技術では、最大
0.2%に達するCの含有から容易に類推されるように
溶接性が良好とはいえず、溶接施工に際して低温割れを
防止するため予熱を必要とする。また、強度が100キ
ロを越える焼き入れままの状態で、部材の加工に供され
るため、ガス切断による低温割れや加工が困難などの問
題に加え、焼入時に鋼板に導入された残留応力がボルト
穴加工部に集中し亜鉛メッキ割れを起こすことが懸念さ
れる。
SUMMARY OF THE INVENTION Under such circumstances,
Japanese Patent Publication No. 7-57883 discloses a technique which combines a direct quenching process and tempering at the time of galvanizing for 80 kg high strength steel. However, in this technique, the weldability is not good as easily inferred from the content of C reaching a maximum of 0.2%, and preheating is required to prevent low-temperature cracking during welding. In addition, since it is used for processing of the member in the as-quenched state where the strength exceeds 100 kg, in addition to problems such as low-temperature cracking due to gas cutting and difficulty in processing, residual stress introduced into the steel sheet during quenching There is a concern that galvanized cracks may occur at the bolt hole processing part.

【0006】本発明は上記に鑑みてなされたものであ
り、溶接性に優れ、かつ焼戻しを施し焼入時の残留応力
を除去することで母材の亜鉛メッキ割れをボルト穴加工
部のように応力集中部においても防止し、さらに溶接部
の耐溶融亜鉛メッキ割れにも優れた70〜80キロ級の
調質型鋼材とその製造方法を提供しようとするものであ
る。
The present invention has been made in view of the above, and has excellent weldability, and is subjected to tempering to remove residual stress at the time of quenching to thereby prevent galvanized cracks in a base material as in a bolted portion. It is an object of the present invention to provide a tempered steel material of 70-80 kg class which prevents the stress concentration portion and is excellent in hot-dip galvanizing cracking of a welded portion, and a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】従来の調質型80キロ級
鋼は、母材強度を確保するため Ceq=C+Mn/6+Si/24+Ni/40+Cr
/5十Mo/4+V/14 で定義される炭素等量がおおむね0.45%を越える高
合金成分にて提供されている。その結果、Pcm=C+
Si/30+Mn/20+Cu/20+Ni/60+C
r/20+Mo/15+V/10+5Bで定義される溶
接割れ感受性指数は0.22%を越え、溶接時には通常
少なくとも50℃以上の予熱を必要としている。また溶
接熱影響部のミクロ組織は亜鉛メッキ割れ感受性の高い
焼き人れ組織になるため、溶接構造物の亜鉛メッキは不
可能とされている。
Means for Solving the Problems Conventional tempered 80 kg class steel is made of Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr in order to secure base metal strength.
/ 50 Mo / 4 + V / 14 is provided in a high alloy component having a carbon equivalent of approximately 0.45% or more. As a result, Pcm = C +
Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + C
The weld crack susceptibility index defined by r / 20 + Mo / 15 + V / 10 + 5B exceeds 0.22%, and usually requires preheating of at least 50 ° C. or more during welding. Further, since the microstructure of the weld heat affected zone becomes a burnt-off structure having high susceptibility to galvanization cracking, it is considered impossible to galvanize a welded structure.

【0008】溶接性を改善する手段は、Pcm=C+S
i/30+Mn/20+Cu/20+Ni/60+Cr
/20+Mo/15+V/10+5Bで定義されるPc
mを低減することで達成できる。しかし、低Pcm化を
図るためにCを低減することは、80キロ級鋼としての
母材強度を確保するため、更なるMn.Cu.NiやM
o等の合金元素添加が必要になり、これはコスト高を招
くばかりかより溶接熱影響部のミクロ組織を焼き入れ組
織化する方向に作用し、亜鉛メッキ割れは発生しやすく
なる。
The means for improving the weldability is Pcm = C + S
i / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr
Pc defined by / 20 + Mo / 15 + V / 10 + 5B
This can be achieved by reducing m. However, reducing C in order to reduce the Pcm requires further increasing the Mn. In order to secure the base metal strength of an 80 kg class steel. Cu. Ni or M
It is necessary to add alloying elements such as o, which not only raises the cost but also acts in the direction of quenching the microstructure of the heat-affected zone of the weld, and tends to cause galvanization cracking.

【0009】母材の耐溶融亜鉛メッキ割れ性を確保する
ためには、母材のミクロ組織をフェライト−パーライト
組織のような不均質な組織ではなくベイナイトのように
均質な組織にしておくことが重要である。本発明が対象
とする調質型80キロ級鋼材では、ミクロ組織の均一化
は強度の確保の観点から必然的に達成できる。しかしこ
れのみでは不十分で、先述のように、焼入時に導入され
る歪み(残留応力)がボルト穴加工部に集中すると母材
部ですら亜鉛メッキ割れを発生することがある。
In order to ensure the hot-dip galvanizing cracking resistance of the base material, the base material should have a homogeneous structure such as bainite instead of a heterogeneous structure such as ferrite-pearlite structure. is important. In the tempered 80 kg steel material to which the present invention is directed, uniform microstructure can be inevitably achieved from the viewpoint of securing strength. However, this alone is not sufficient, and as described above, if the strain (residual stress) introduced during quenching is concentrated in the bolted portion, galvanizing cracks may occur even in the base material.

【0010】以上から、耐溶融亜鉛メッキ割れ性を有す
る溶接熱影響部性能と70〜80キロ級鋼としての強度
を優れた溶接性を確保しつつ如何に両立させるかが課題
であるといえる。
[0010] From the above, it can be said that the challenge is how to balance the performance of a weld heat-affected zone having resistance to hot-dip galvanizing cracking and the strength as a 70-80 kg class steel while ensuring excellent weldability.

【0011】本発明は、以下の知見を複合的に駆使する
ことでCeq値、Pcm値が低く、溶接熱影響部の耐溶
融亜鉛メッキ割れ性に優れた70〜80キロ級鋼材およ
びその製造方法を提供できることを見いだしたものであ
る。
According to the present invention, a 70-80 kg class steel material having a low Ceq value and a low Pcm value and having excellent hot-dip galvanized cracking resistance in a weld heat-affected zone by making full use of the following knowledge is provided. Have been found to be available.

【0012】(1) 直接焼き入れ焼き戻しブロセスの適用
を前提に、Nb,Vを複合的に添加することで飛躍的に
焼き戻しによる軟化を抑制できる。
(1) Assuming that the direct quenching and tempering process is applied, the softening due to tempering can be drastically suppressed by adding Nb and V in combination.

【0013】(2) その結果、従来より低いCeq値の調
質型鋼材でも70〜80キロ級の強度を確保できる。た
だし、そのためには直接焼入時の冷却速度は少なくとも
肉厚の中心で25℃/秒以上確保しなくてはならない。
(2) As a result, even a tempered steel material having a lower Ceq value than the conventional one can secure a strength of 70 to 80 kg class. However, for that purpose, the cooling rate at the time of direct quenching must be at least 25 ° C./sec at least at the center of the wall thickness.

【0014】(3) (1) 、(2) による鋼材で焼戻し温度を
500℃以上とすることにより、ボルト穴加工部に亜鉛
メッキ割れを発生させないための残留応力除去が可能と
なる。
(3) By setting the tempering temperature of the steel material according to (1) and (2) to 500 ° C. or higher, it is possible to remove residual stress in order to prevent galvanized cracks from occurring in bolted portions.

【0015】(4) 溶接性を確保する手段として、低C化
による高合金化は避けるべきであり、むしろ溶接性が確
保される範囲でCを添加し低合金化を図ることが溶接熱
影響部の耐溶融亜鉛メッキ割れ感受性確保に有効である
ことを見いだした。具体的にMn,Cu,Ni,Cr,
Moなどの合金元素の添加上限値を溶接熱影響部の耐溶
融亜鉛メッキ割れ性確保の観点から見いだした。
(4) As a means for securing weldability, it is necessary to avoid high alloying due to low C. Rather, it is necessary to add C to a low alloying range as long as the weldability is ensured to reduce the welding heat. Was found to be effective in ensuring the galvanized steel cracking susceptibility of the part. Specifically, Mn, Cu, Ni, Cr,
The upper limit of the addition of alloying elements such as Mo was found from the viewpoint of ensuring hot-dip galvanizing crack resistance of the heat affected zone.

【0016】(5) Tiを積極的に添加することで溶接熱
影響部の耐溶融亜鉛メッキ割れ性を改善できる。また、
必要によりCaやREMを添加することによりさらに溶
接熱影響部の耐溶融亜鉛メッキ割れ性を改善できる。た
だし、Nb,Vを複合添加する目的であるこれらの炭窒
化物の生成に必要なNを確保するため、意図的にNを含
有させなければならない。
(5) By actively adding Ti, the resistance to hot-dip galvanizing cracking of the heat affected zone can be improved. Also,
Addition of Ca or REM as needed can further improve the hot-dip galvanized crack resistance of the heat affected zone. However, in order to secure N necessary for the production of these carbonitrides for the purpose of adding Nb and V in a complex manner, N must be intentionally added.

【0017】即ち、本発明は、(1)重量%で、C:
0.08〜0.12%、Si:0.25%以下、Mn:
0.8〜1.6%、Nb:0.008〜0.05%、
V:0.02〜0.1%、Ti:0.008〜0.01
5%で、N:(0.0005+Ti/3.4)以上0.
01%以下、B:0.00016%未満を含み、Ceq
=C+Mn/6+Si/24+Ni/40+Cr/5十
Mo/4+V/14とB含有量で定義される、Z=Ce
q+600×Bの値が0.40以下である耐溶融溶融亜
鉛メッキ割れ性に優れた調質型高張力鋼、(2)鋼は、
さらにCu:0.5%以下、Ni:0.5%以下、C
r:0.5%以下、Mo:0.05%以下、Ca:0.
004%以下、Zr:0.001%以下、REM:0.
001%以下のー種以上を含む(1)に記載の耐溶融亜
鉛メッキ割れ性に優れた調質型高張力鋼、(3)、重量
%で、C:0.08〜0.12%、Si:0.25%以
下、Mn:0.8〜1.6%、Nb:0.008〜0.
05%、V:0.02〜0.1%、Ti:0.008〜
0.015%で、N:(0.0005+Ti/3.4)
以上0.01%以下、B:0.00016%未満を含
み、Ceq=C+Mn/6+Si/24+Ni/40+
Cr/5十Mo/4+V/14とB含有量で定義され
る、Z=Ceq+600×Bの値が0.40以下である
鋼片を1000〜1250℃に加熱し、熱間圧延後Ar
3変態温度以上の温度から板厚の中心部が25℃/秒以
上の冷却速度で常温まで冷却し、その後500℃以上A
cl変態温度以下の温度で焼き戻しを施すことを特徴と
する耐溶融亜鉛メッキ割れ性に優れた調質型高張力鋼の
製造方法 (4)鋼は、さらにCu:0.5%以下、Ni:0.5
%以下、Cr:0.5%以下、Mo:0.05%以下、
Ca:0.004%以下、Zr:0.001%以下、R
EM:0.001%以下のー種以上を含む(3)に記載
の耐溶融亜鉛メッキ割れ性に優れた調質型高張力鋼の製
造方法である。
That is, the present invention relates to (1) by weight of C:
0.08 to 0.12%, Si: 0.25% or less, Mn:
0.8 to 1.6%, Nb: 0.008 to 0.05%,
V: 0.02-0.1%, Ti: 0.008-0.01
At 5%, N: (0.0005 + Ti / 3.4) or more.
01% or less, B: contains less than 0.00016%, Ceq
= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 tens Mo / 4 + V / 14 and B content, Z = Ce
The tempered high-strength steel excellent in hot-dip galvanized cracking resistance with a value of q + 600 × B of 0.40 or less, (2) steel,
Further, Cu: 0.5% or less, Ni: 0.5% or less, C
r: 0.5% or less, Mo: 0.05% or less, Ca: 0.
004% or less, Zr: 0.001% or less, REM: 0.
A tempered high-strength steel excellent in hot-dip galvanizing crack resistance according to (1), containing 001% or less of -001% or more, (3), C: 0.08 to 0.12% by weight%, Si: 0.25% or less, Mn: 0.8-1.6%, Nb: 0.008-0.
05%, V: 0.02-0.1%, Ti: 0.008-
At 0.015%, N: (0.0005 + Ti / 3.4)
Not less than 0.01% and B: less than 0.00016%, Ceq = C + Mn / 6 + Si / 24 + Ni / 40 +
A steel slab having a value of Z = Ceq + 600 × B of 0.40 or less, defined by Cr / 50 Mo / 4 + V / 14 and B content, is heated to 1000 to 1250 ° C.
From the temperature of 3 transformation temperature or more, the center of the sheet thickness is cooled to room temperature at a cooling rate of 25 ° C./sec or more, and then 500 ° C. or more
Method for producing tempered high-strength steel excellent in hot-dip galvanizing crack resistance, characterized by performing tempering at a temperature equal to or lower than the cl transformation temperature. (4) Steel: Cu: 0.5% or less, Ni : 0.5
% Or less, Cr: 0.5% or less, Mo: 0.05% or less,
Ca: 0.004% or less, Zr: 0.001% or less, R
EM: The method for producing a tempered high-strength steel excellent in hot-dip galvanizing cracking resistance according to (3), which contains at least 0.001% or less of types.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

C Cは、母材の強度を合金元素の多量添加に頼らず確保す
るため0.08%以上添加する。しかし、0.12%以
上添加すると、溶接性や溶接熱影響部の耐溶融亜鉛メッ
キ割れ性を損なう。
C is added in an amount of 0.08% or more to ensure the strength of the base material without relying on the addition of a large amount of alloying elements. However, when added in an amount of 0.12% or more, the weldability and the galvanized crack resistance of the heat affected zone are impaired.

【0019】Si Siは、溶製時の脱酸に寄与するほか、母材の強度を高
める働きがあるため添加する。0.25%を越えると亜
鉛メッキによりいわゆるメッキ焼けを発生しやすくなる
ため上限を0.25%、好ましくは0.2%とする。
Si Si is added because it contributes to deoxidation during smelting and also has the function of increasing the strength of the base material. If it exceeds 0.25%, so-called galling will easily occur due to zinc plating, so the upper limit is made 0.25%, preferably 0.2%.

【0020】Mn Mnは、母材の強度を確保するため0.8%以上添加す
る。しかし、1.6%以上の添加は、溶接熱影響部の耐
溶融亜鉛メッキ割れ性と溶接性を損なうため上限を1.
6%、好ましくは1.5%とする。
Mn Mn is added in an amount of 0.8% or more to ensure the strength of the base material. However, the addition of 1.6% or more impairs the hot-dip galvanized crack resistance and weldability of the heat affected zone, so the upper limit is set to 1.
6%, preferably 1.5%.

【0021】Nb,V Nb,Vは、焼き戻しに際してこれらの炭窒化物を析出
させ軟化を抑制するために添加する。低Ceq化を図っ
た鋼材を熱間圧延後高冷速にて直接焼き入れする本発明
では、この焼き戻し軟化抑制効果は極めて重要であり、
Nb:0.008%以上、V:0.02%以上を複合し
て添加しなければならない。しかし、必要以上の添加は
母材と溶接継手の靭性を劣化させ、また溶接性を損なう
傾向もあることから、Nb:0.05%以下好ましくは
0.035%以下、V:0.1%以下好ましくは0.0
6%以下の範囲で複合して添加する。
Nb, V Nb, V is added to precipitate these carbonitrides during tempering and to suppress softening. In the present invention in which a steel material with low Ceq is directly quenched at a high cooling rate after hot rolling, the effect of suppressing temper softening is extremely important.
Nb: 0.008% or more and V: 0.02% or more must be added in combination. However, since excessive addition deteriorates the toughness of the base metal and the welded joint and also tends to impair the weldability, Nb: 0.05% or less, preferably 0.035% or less, and V: 0.1% Less than 0.0
The compound is added in a range of 6% or less.

【0022】尚、Nbの析出硬化作用は、熱間圧延時の
加熱段階にて固溶したNbによりもたらされる。本発明
で採用される加熱温度とC,N含有量の上限から導かれ
る固溶し得るNb量はおおむね0.05%である。他
方、Vの炭窒化物の固溶温度はNbと比べて低く、上記
の範囲を超えて添加しても全量が固溶する。しかし、V
の析出硬化による寄与は0.06%以上では小さく、ま
たコスト高につながる。すなわち、溶接性、母材と溶接
継手の靱性への悪影響を最小限にとどめて有効に焼戻し
時の軟化を抑制する方法としてNb,Vを複合して添加
する必要がある。
Incidentally, the precipitation hardening action of Nb is brought about by Nb dissolved in the heating stage during hot rolling. The amount of Nb capable of forming a solid solution derived from the heating temperature and the upper limits of the C and N contents employed in the present invention is approximately 0.05%. On the other hand, the solid solution temperature of the carbonitride of V is lower than that of Nb, and even if it is added beyond the above range, the entire amount is dissolved. But V
The contribution by precipitation hardening is small at 0.06% or more and leads to an increase in cost. That is, it is necessary to add Nb and V in combination as a method of effectively suppressing softening during tempering by minimizing adverse effects on weldability and toughness of the base material and the welded joint.

【0023】Ti TiはNと窒化物を形成し、溶接熱影響部の焼入性を低
下させることを通じて耐溶融亜鉛メッキ割れ性を向上さ
せるので、0.008%以上添加する。ただし、過剰な
Nb,Vが炭窒化物を生成する際必要なNを減少させる
方向に働き、また母材や溶接部の靱性を劣化させるため
上限を0.015%とする。
Ti Since Ti forms nitrides with N and reduces the hardenability of the heat affected zone by welding, thereby improving the hot-dip galvanizing cracking resistance, 0.008% or more is added. However, the upper limit is set to 0.015% because excessive Nb and V act in the direction of decreasing the necessary N when forming carbonitrides and degrade the toughness of the base material and the welded portion.

【0024】N Nは不純物として含有するが、上記のNb,Vと炭窒化
物を生成する際不可欠な元素である。またAlと窒化物
を生成し細粒化に寄与する。さらにTiと窒化物を形成
し、溶接熱影響部の焼入性を低下させることを通じて耐
溶融亜鉛メッキ割れ性を向上させるので、0.0005
+Ti/3.4以上好ましくは0.001+Ti/3.
4以上含有させる。ただし、過剰なNは母材と溶接部の
靭性を低下させるので、上限を0.01%、好ましくは
0.008%に留める。
Although NN is contained as an impurity, it is an indispensable element for producing Nb, V and carbonitride. In addition, it produces Al and nitrides and contributes to grain refinement. Furthermore, since Ti and nitride are formed and the hardenability of the heat affected zone is reduced to improve the hot-dip galvanizing cracking resistance, 0.0005
+ Ti / 3.4 or more, preferably 0.001 + Ti / 3.
4 or more. However, since excessive N reduces the toughness of the base metal and the welded portion, the upper limit is limited to 0.01%, preferably 0.008%.

【0025】B Bは溶接熱影響部の耐溶融亜鉛メッキ割れ性を著しく劣
化させるため不純物としてその上限を0.00016%
未満に規制する。
BB has an upper limit of 0.00016% as an impurity because it significantly deteriorates the hot-dip galvanized crack resistance of the heat affected zone.
Regulate to less than.

【0026】Cu、Ni、Cr、Mo Cu、Ni、Cr、Moは、母材の焼き入れ性を確保す
るため補助的に添加する。しかし、溶接熱影響部の耐溶
融亜鉛メッキ割れ性を損なうため、Cu、Ni、Crの
上限は0.5%とし、Moについては0.05%に留め
る。
Cu, Ni, Cr, Mo Cu, Ni, Cr, Mo are supplementarily added to ensure the hardenability of the base material. However, in order to impair the hot-dip galvanized cracking resistance of the heat affected zone, the upper limits of Cu, Ni, and Cr are set to 0.5%, and Mo is set to 0.05%.

【0027】Ca,Zr,REM Ca,Zr,REMは、Tiとの複合添加においてTi
系複合析出物を生成し溶接熱影響部の焼き入れ性を低減
し、耐溶融亜鉛メッキ割れ性を向上させるので必要によ
り添加する。しかし、過剰な添加は母材や溶接継手部の
靱性を低下させるので、上限をCaについては0.00
4%、好ましくは0.003%、Zr,REMについて
は0.001%とする。
Ca, Zr, REM Ca, Zr, REM is obtained by adding Ti in combination with Ti.
It is added as necessary because it forms a systemic composite precipitate, reduces the hardenability of the heat affected zone and improves the hot-dip galvanizing cracking resistance. However, excessive addition lowers the toughness of the base metal and the welded joint, so the upper limit of Ca is 0.00
4%, preferably 0.003%, and 0.001% for Zr and REM.

【0028】P,S P,Sは、いずれも不純物元素である。健全な母材およ
び溶接継手を得るためにはいずれも0.015%以下好
ましくは0.01%以下に規制されることが望ましい。
P, SP, and S are all impurity elements. In order to obtain a sound base metal and a welded joint, it is desirable that both are regulated to 0.015% or less, preferably 0.01% or less.

【0029】Al Alは鋼の脱酸のために添加され、通常0.005%以
上は含有する。また、ミクロ組織の微細化による母材靱
性の確保のために0.01%程度添加する。しかし、過
度の添加は、錆造時に発生する傷の原因になることがあ
るため0.05%以下に抑える。
Al Al is added for deoxidizing steel, and usually contains 0.005% or more. Also, about 0.01% is added in order to secure the base material toughness due to the refinement of the microstructure. However, excessive addition may cause scratches generated during rusting, so that the content is limited to 0.05% or less.

【0030】Z Z=Ceq+600×Bで定義される溶接熱影響部の耐
溶融亜鉛メッキ割れ性を表す指標である。
Z is an index indicating the hot-dip galvanizing resistance of the heat affected zone defined by ZZ = Ceq + 600 × B.

【0031】(ただし Ceq=C+Mn/6+Si/
24+Ni/40+Cr/5+Mo/4+V/14) Z値を0.40%以下に規制することで、60キロ級鋼
を対象に検討された溶接熱影響部の耐亜鉛メツキ割れ性
試験(鉄と鋼Vol.79(1993).No.9)で
得られるSLM−400値をおおむね50%以上に確保
できる。
(However, Ceq = C + Mn / 6 + Si /
24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14) By regulating the Z value to 0.40% or less, the zinc heat-cracked zinc-resistant test of the heat-affected zone of a 60 kg class steel (iron and steel Vol. .79 (1993), No. 9), the SLM-400 value obtained at about 50% or more can be secured.

【0032】なお、送電鉄塔用60キロ級鋼に要求され
るSLM−400値は42%以上であるが、本発明が対
象とする強度レベルは70〜80キロ級と高いため、溶
接部の残留応力は60キロ級鋼の場合より高い場合があ
り得る。そこで、本発明では、溶接熱影響部の耐溶融亜
鉛メッキ割れ性に必要なSLM−400値を50%以上
に設定した。
The SLM-400 value required for a 60-kilometer steel for power transmission towers is 42% or more. However, since the strength level targeted by the present invention is as high as 70 to 80 kilometers, the residual strength of the welded portion is high. The stress can be higher than for 60 kilo-grade steel. Therefore, in the present invention, the SLM-400 value required for the hot-dip galvanized crack resistance of the heat affected zone is set to 50% or more.

【0033】製造条件 加熱温度は、Nbの固溶を促すため1000℃以上とす
る。しかし、極端な高温加熱は、結晶組織の粗大化をも
たらし母材の靭性を損なうことから上限を1250℃と
する。
Manufacturing Conditions The heating temperature is set to 1000 ° C. or higher to promote solid solution of Nb. However, extreme high-temperature heating causes a coarsening of the crystal structure and impairs the toughness of the base material, so the upper limit is set to 1250 ° C.

【0034】熱間圧延は通常の方法によって差し支えな
い。ただし、母材の靭性及び耐溶融亜鉛メッキ割れ性を
より改善するため圧下率が10%以上のバスを少なくと
も1パス、または複数パス以上含むことが好ましい。
The hot rolling may be performed by a usual method. However, in order to further improve the toughness and hot-dip galvanizing crack resistance of the base material, it is preferable to include at least one pass or a plurality of passes having a rolling reduction of 10% or more.

【0035】圧延終了後Ar3変態温度以上の温度から
焼入を施す。焼入時の冷却速度は、本発明で規定したZ
値を満たす鋼材で焼戻し後に70〜80キロ級の強度を
確保するために肉厚の中央部にて少なくとも25℃/秒
以上でなければならない。
After the completion of rolling, quenching is performed at a temperature not lower than the Ar3 transformation temperature. The cooling rate at the time of quenching is determined by Z
In order to secure a strength of 70 to 80 kg class after tempering with a steel material satisfying the above value, it must be at least 25 ° C./sec or more at the center of the wall thickness.

【0036】焼き戻しは、焼き入れ時の残留応力除去の
ため実施する。470℃程度まで加熱される溶融亜鉛メ
ッキにて材質変化を起こさせないため、500℃以上A
cl変態点以下とする。
Tempering is performed to remove residual stress during quenching. 500 ° C or higher to prevent material change by hot-dip galvanizing heated to about 470 ° C
It is below the cl transformation point.

【0037】以上の製造条件で仕上板厚25mm以下と
した場合、本発明鋼は70〜80キロ級の強度と母材及
び溶接部で優れた耐溶融亜鉛メッキ割れ性を示す。
When the finished plate thickness is 25 mm or less under the above manufacturing conditions, the steel of the present invention exhibits a strength of 70 to 80 kg class and excellent hot-dip galvanizing crack resistance in the base metal and the welded portion.

【0038】[0038]

【実施例】表1に示す化学成分の鋼を溶製し鋼塊とし、
表2に示した条件で鋼板を製造した。それぞれの鋼板よ
り所定の試験片を採取し、母材の強度と靭性、およびS
LM測定引張試験(鉄と鋼 VOl.79(199
3),No.9)により溶接熱影響部の耐溶融亜鉛メッ
キ割れ性の指標となるSLM−400を求めた。また、
JISZ3158に基づくy型溶接割れ試験を一般の8
0キロ級鋼用SMAW超低水素タイプの溶接棒を用い
て、雰囲気温度20℃、雰囲気湿度60%、予熱25℃
の条件にて実施し、溶接性を評価した。また、鋼板にボ
ルト穴加工を施し実際に溶融亜鉛メッキを施し、割れ発
生の有無を調査した。
EXAMPLES Steel having the chemical composition shown in Table 1 was melted into steel ingots.
A steel sheet was manufactured under the conditions shown in Table 2. A predetermined test piece was sampled from each steel plate, and the strength and toughness of the base metal and S
LM measurement tensile test (iron and steel VOL.79 (199
3), No. According to 9), SLM-400 which is an index of hot-dip galvanizing crack resistance of the heat affected zone was determined. Also,
The y-type welding crack test based on JISZ3158
Using a SMAW ultra-low hydrogen type welding rod for 0 kg steel, ambient temperature 20 ° C, atmospheric humidity 60%, preheating 25 ° C
And weldability was evaluated. In addition, the steel plate was subjected to bolt hole processing and actually hot-dip galvanized, and the presence or absence of cracks was investigated.

【0039】実施例No.1,2は、鋼番Aによる比較
例(Nb,Vが本発明の範囲より少ない)と、鋼番Bに
よる本発明例である。いずれもPcm値は0.17%と
低く、溶接性は良好である。また、Z値(=Ceq+6
00×B)は0.40以下であり、溶接熱影響部の耐溶
融亜鉛メッキ割れ性を示すSLM−400実測値は良好
である。しかし、実施例No.1(比較方法)は、N
b.Vを本発明の範囲添加しなかったため、板厚15m
mの鋼板を直接焼き入れする際、板厚中心部の冷却速度
は約50℃/秒に達していたにも拘わらず70〜80キ
ロ級鋼としての強度が得られない。
Example No. 1 and 2 are a comparative example using steel No. A (Nb and V are smaller than the range of the present invention) and a steel No. B present invention. In each case, the Pcm value was as low as 0.17%, and the weldability was good. Also, the Z value (= Ceq + 6)
00 × B) is 0.40 or less, and the measured value of SLM-400 showing the hot-dip galvanized crack resistance of the heat affected zone is good. However, in Example No. 1 (comparison method) is N
b. Since V was not added in the range of the present invention, the plate thickness was 15 m.
When directly quenching a steel sheet of m, the strength as a 70-80 kilo class steel cannot be obtained despite the cooling rate at the center of the sheet thickness reaching about 50 ° C./sec.

【0040】実施例No.3は、鋼番Cを用いた実施例
で、No.4は鋼番Cを用いた比較例である。再加熱焼
入・焼戻プロセスにより製造した実施例No.4では目
的とする80キロ級鋼としての強度が得られない。
Example No. No. 3 is an example using steel number C. No. 4 is a comparative example using steel number C. Example No. 1 manufactured by the reheating quenching / tempering process. In the case of No. 4, the intended strength of 80 kg class steel cannot be obtained.

【0041】実施例No.5は、板厚25mmの鋼板D
を製造した本発明例で、No.6は板厚25mmの鋼板
Eを製造した比較例(Z値が本発明の範囲を越える)で
ある。No.6は、本発明の化学成分を逸脱して、低C
化により溶接性を確保しようとしたため、Pcm値は
0.17%と低く本発明の範囲内であるが、Z値が0.
40%を越えている。このため母材の耐溶融亜鉛メッキ
割れ性は良好であるが、SLM−400実測値は39%
と低い。
Example No. 5 is a steel plate D having a thickness of 25 mm
In the example of the present invention in which 6 is a comparative example in which a steel sheet E having a thickness of 25 mm was manufactured (Z value exceeds the range of the present invention). No. 6 deviates from the chemical composition of the present invention and has a low C
The Pcm value is as low as 0.17%, which is within the range of the present invention, in order to secure the weldability by the formation of the alloy.
It is over 40%. For this reason, the hot-dip galvanizing crack resistance of the base material is good, but the measured value of SLM-400 is 39%.
And low.

【0042】実施例No.7は鋼板Fによる本発明例で
ある。母材特性、溶接性、母材の耐溶融亜鉛メッキ割れ
性及び溶接熱影響部の耐溶融亜鉛メッキ割れ性(SLM
−400実測値)いずれにも優れた70〜80キロ級鋼
として良好な性能を確認した。
Example No. 7 is an example of the present invention using a steel sheet F. Base metal properties, weldability, hot-dip galvanizing cracking resistance of base metal and hot-dip galvanizing cracking resistance of heat affected zone (SLM
(-400 actual measurement) Good performance was confirmed as an excellent 70-80 kg class steel in each case.

【0043】実施例No.8は鋼番CにCaを添加した
鋼番Gによる本発明例である。母材特性、溶接性、母材
の耐溶融亜鉛メッキ割れ性は良好であり、SLM−40
0実測値は鋼番Cによる実施例No.3を上回る良好な
耐溶融亜鉛メッキ割れ性を確認した。
Example No. 8 is an example of the present invention based on steel number G in which Ca is added to steel number C. The base material properties, weldability and hot-dip galvanizing crack resistance of the base material are good, and SLM-40
0 measured values are the values of Example No. Good hot-dip galvanizing cracking resistance exceeding 3 was confirmed.

【0044】実施例No.9.10は、鋼番Cを用い、
焼戻しを省略した場合及び低温焼戻しを実施した場合
で、鋼材亜鉛メッキ割れ試験で割れが発生した。
Example No. 9.10 uses steel number C,
In the case where tempering was omitted and the case where low-temperature tempering was performed, cracks occurred in the galvanizing steel cracking test.

【0045】実施例No.11は、高めの温度で焼戻し
したもので、70キロ級鋼となっている。
Example No. 11 is tempered at a higher temperature and is 70 kg class steel.

【0046】なお、以上の実施例において、直接焼き入
れ時の冷却速度は、冷却媒体として水を用いた結果とし
て、板厚15mmのとき約50℃/秒、板厚20mmの
とき約40℃/秒、板厚25mmのとき約30℃/秒で
あり、いずれも本発明の要件である25℃/秒以上を満
たす。
In the above embodiment, the cooling rate at the time of direct quenching is about 50 ° C./sec when the sheet thickness is 15 mm and about 40 ° C./sec when the sheet thickness is 20 mm as a result of using water as a cooling medium. Second, the thickness is about 30 ° C./sec when the plate thickness is 25 mm, and both satisfy the requirement of the present invention of 25 ° C./sec or more.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【発明の効果】本発明によれば、Nb,Vを複合的に添
加して焼き戻しによる軟化を抑制し、直接焼入時の冷却
速度は少なくとも肉厚の中心で25℃/秒以上確保し、
その結果、従来より低いCeq値の調質型鋼材でも70
〜80キロ級の強度を確保できる。その結果、耐溶融亜
鉛メッキ割れ性に優れた70〜80キロ級以上の強度を
有する調質型高張力鋼及びその製造方法を提供すること
ができる。
According to the present invention, Nb and V are added in a combined manner to suppress softening due to tempering, and to ensure a cooling rate of at least 25 ° C./sec at the center of the wall thickness at the time of direct quenching. ,
As a result, even a tempered steel having a lower Ceq value than the
A strength of up to 80 kg can be secured. As a result, it is possible to provide a tempered high-strength steel excellent in hot-dip galvanizing crack resistance and having a strength of 70 to 80 kg or more, and a method for producing the same.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.08〜0.12%、
Si:0.25%以下、Mn:0.8〜1.6%、N
b:0.008〜0.05%、V:0.02〜0.1
%、Ti:0.008〜0.015%で、N:(0.0
005+Ti/3.4)以上0.01%以下、B:0.
00016%未満を含み、 Ceq=C+Mn/6+Si/24+Ni/40+Cr
/5十Mo/4+V/14とB含有量で定義される、 Z=Ceq+600×Bの値が0.40以下であること
を特徴とする耐溶融亜鉛メッキ割れ性に優れた調質型高
張力鋼。
(1) C: 0.08 to 0.12% by weight
Si: 0.25% or less, Mn: 0.8 to 1.6%, N
b: 0.008 to 0.05%, V: 0.02 to 0.1
%, Ti: 0.008 to 0.015%, and N: (0.0
005 + Ti / 3.4) or more and 0.01% or less, B: 0.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr
/ Ten Mo / 4 + V / 14 and B content, wherein Z = Ceq + 600 × B is 0.40 or less. Tempered high tensile strength excellent in hot-dip galvanizing crack resistance. steel.
【請求項2】 鋼は、さらにCu:0.5%以下、N
i:0.5%以下、Cr:0.5%以下、Mo:0.0
5%以下、Ca:0.004%以下、Zr:0.001
%以下、REM:0.001%以下のー種以上を含む請
求項1に記載の耐溶融亜鉛メッキ割れ性に優れた調質型
高張力鋼。
2. The steel further comprises Cu: 0.5% or less,
i: 0.5% or less, Cr: 0.5% or less, Mo: 0.0
5% or less, Ca: 0.004% or less, Zr: 0.001
The tempered high-strength steel excellent in hot-dip galvanizing crack resistance according to claim 1, wherein the steel contains at least 1% or less and REM: 0.001% or less.
【請求項3】 重量%で、C:0.08〜0.12%、
Si:0.25%以下、Mn:0.8〜1.6%、N
b:0.008〜0.05%、V:0.02〜0.1
%、Ti:0.008〜0.015%で、N:(0.0
005+Ti/3.4)以上0.01%以下、B:0.
00016%未満を含み、 Ceq=C+Mn/6+Si/24+Ni/40+Cr
/5十Mo/4+V/14とB含有量で定義される、 Z=Ceq+600×Bの値が0.40以下である鋼片
を1000〜1250℃に加熱し、熱間圧延後Ar3変
態温度以上の温度から板厚の中心部が25℃/秒以上の
冷却速度で常温まで冷却し、その後500℃以上Acl
変態温度以下の温度で焼き戻しを施すことを特徴とする
耐溶融亜鉛メッキ割れ性に優れた調質型高張力鋼の製造
方法。
3. C: 0.08 to 0.12% by weight,
Si: 0.25% or less, Mn: 0.8 to 1.6%, N
b: 0.008 to 0.05%, V: 0.02 to 0.1
%, Ti: 0.008 to 0.015%, and N: (0.0
005 + Ti / 3.4) or more and 0.01% or less, B: 0.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr
A steel slab having a value of Z = Ceq + 600 × B of 0.40 or less is heated to 1000 to 1250 ° C., and is hot-rolled to an Ar3 transformation temperature or higher. From the temperature, the central part of the sheet thickness is cooled to a normal temperature at a cooling rate of 25 ° C./sec or more, and then is cooled to 500 ° C.
A method for producing a tempered high-strength steel excellent in hot-dip galvanizing crack resistance, characterized by performing tempering at a temperature equal to or lower than a transformation temperature.
【請求項4】 鋼は、さらにCu:0.5%以下、N
i:0.5%以下、Cr:0.5%以下、Mo:0.0
5%以下、Ca:0.004%以下、Zr:0.001
%以下、REM:0.001%以下のー種以上を含む請
求項3に記載の耐溶融亜鉛メッキ割れ性に優れた調質型
高張力鋼の製造方法。
4. The steel further comprises Cu: 0.5% or less;
i: 0.5% or less, Cr: 0.5% or less, Mo: 0.0
5% or less, Ca: 0.004% or less, Zr: 0.001
The method for producing a tempered high-strength steel excellent in hot-dip galvanizing crack resistance according to claim 3, wherein the steel contains at least one kind of REM: 0.001% or less.
JP25992996A 1996-09-30 1996-09-30 Heat treated high tensile strength steel excellent in resistance to hot dip galvanizing crack, and its production Pending JPH10102195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25992996A JPH10102195A (en) 1996-09-30 1996-09-30 Heat treated high tensile strength steel excellent in resistance to hot dip galvanizing crack, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25992996A JPH10102195A (en) 1996-09-30 1996-09-30 Heat treated high tensile strength steel excellent in resistance to hot dip galvanizing crack, and its production

Publications (1)

Publication Number Publication Date
JPH10102195A true JPH10102195A (en) 1998-04-21

Family

ID=17340898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25992996A Pending JPH10102195A (en) 1996-09-30 1996-09-30 Heat treated high tensile strength steel excellent in resistance to hot dip galvanizing crack, and its production

Country Status (1)

Country Link
JP (1) JPH10102195A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177682A (en) * 2012-02-08 2013-09-09 Nippon Steel & Sumitomo Metal Corp Steel plate for molten zinc bath equipment excellent in resistance to molten zinc corrosion and resistance to zinc-induced cracking and method for producing the same
JP2013177681A (en) * 2012-02-08 2013-09-09 Nippon Steel & Sumitomo Metal Corp Steel plate for molten zinc bath equipment excellent in resistance to molten zinc corrosion and resistance to zinc-induced cracking and method for producing the same
CN115710675A (en) * 2022-11-29 2023-02-24 莱芜钢铁集团银山型钢有限公司 500-550 ℃ tempering-resistant softened steel plate and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177682A (en) * 2012-02-08 2013-09-09 Nippon Steel & Sumitomo Metal Corp Steel plate for molten zinc bath equipment excellent in resistance to molten zinc corrosion and resistance to zinc-induced cracking and method for producing the same
JP2013177681A (en) * 2012-02-08 2013-09-09 Nippon Steel & Sumitomo Metal Corp Steel plate for molten zinc bath equipment excellent in resistance to molten zinc corrosion and resistance to zinc-induced cracking and method for producing the same
JP2017122280A (en) * 2012-02-08 2017-07-13 新日鐵住金株式会社 Molten zinc bath installation
JP2017133106A (en) * 2012-02-08 2017-08-03 新日鐵住金株式会社 Molten zinc bath facility
CN115710675A (en) * 2022-11-29 2023-02-24 莱芜钢铁集团银山型钢有限公司 500-550 ℃ tempering-resistant softened steel plate and production method thereof
CN115710675B (en) * 2022-11-29 2023-11-28 莱芜钢铁集团银山型钢有限公司 Anti-500-550 ℃ tempering softened steel plate and production method thereof

Similar Documents

Publication Publication Date Title
KR100697905B1 (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and stability of material properties and manufacturing method thereof
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
JP5412746B2 (en) High strength steel plate with good weldability and stretch flangeability
US11155902B2 (en) High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
WO2006093282A1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
KR20120121811A (en) High strength steel sheet and method of manufacturing the steel sheet
JP2003231941A (en) HOT-ROLLED STEEL SHEET SUPERIOR IN FORMABILITY AFTER WELDING, WITH HIGH STRENGTH HAVING TENSILE STRENGTH OF 780 MPa OR HIGHER, OF MAKING HEAT AFFECTED ZONE HARDLY BE SOFTENED, COLD-ROLLED STEEL SHEET WITH HIGH STRENGTH, AND SURFACE-TREATED STEEL SHEET WITH HIGH STRENGTH
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPS595649B2 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet with excellent workability
US20210140008A1 (en) Method for producing a hot or cold strip and/or a flexibly rolled flat steel product made of a high-strength manganese steel and flat steel product produced by said method
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
CN114480949B (en) 690 MPa-grade low-yield-ratio weather-resistant welding structural steel, steel plate and manufacturing method thereof
JPH1121623A (en) Manufacture of steel product for welded structure, having excellent atmospheric corrosion resistance and low yield ratio
JPH10102195A (en) Heat treated high tensile strength steel excellent in resistance to hot dip galvanizing crack, and its production
JP3336875B2 (en) Tempered high-strength steel excellent in hot-dip galvanizing crack resistance and method for producing the same
JPH10102193A (en) Heat treated high tensile strength steel excellent in weldability and resistance to hot dip galvanizing crack, and its production
JP3895002B2 (en) Non-tempered high-tensile steel with excellent resistance to hot-dip galvanizing cracking
JPH05117834A (en) Manufacture of hot dip galvannealed steel sheet having excellent stretch-flanging property using high strength hot-rolled original sheet
JPH10102192A (en) Heat treated high tensile strength steel excellent in weldability and resistance to hot dip galvanizing crack, and its production
JP3568710B2 (en) 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same
JPH07126739A (en) Production of high toughness and high strength steel plate having &gt;=980n/mm2 class tensile strength and low in residual stress
JPH0885823A (en) Production of refractory steel material for hot dip galvanized structural purpose
JPH08176731A (en) High tensile steel and production thereof
JPH0693371A (en) Quenched and tempered high tension steel for large heat input welding excellent in site weldability and jig mark cracking resistance and its production