JP3568710B2 - 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same - Google Patents

590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same Download PDF

Info

Publication number
JP3568710B2
JP3568710B2 JP27807996A JP27807996A JP3568710B2 JP 3568710 B2 JP3568710 B2 JP 3568710B2 JP 27807996 A JP27807996 A JP 27807996A JP 27807996 A JP27807996 A JP 27807996A JP 3568710 B2 JP3568710 B2 JP 3568710B2
Authority
JP
Japan
Prior art keywords
steel sheet
heat input
less
large heat
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27807996A
Other languages
Japanese (ja)
Other versions
JPH10121191A (en
Inventor
孝道 浜中
隆司 細谷
研吾 安部
学 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27807996A priority Critical patent/JP3568710B2/en
Publication of JPH10121191A publication Critical patent/JPH10121191A/en
Application granted granted Critical
Publication of JP3568710B2 publication Critical patent/JP3568710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大入熱溶接を適用しても、溶接熱影響部(以下HAZと言う)の靱性が高い低降伏比型溶接構造用590N/mm級鋼板の製造方法に関し、特に、鋼板の降伏比が80%以下である溶接構造用590N/mm級鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、建築構造物の高層化、大スパン化により、建築構造物の鉄骨用鋼板にはより厚板化および高強度化が求められている。
より具体的には、ビルの支柱など、建築物の基本構造となる部分には、30mm以上の厚板が用いられるとともに、従来使用されてきた490〜570N/mm級高張力鋼板から、更に強度の高い590N/mm級以上の高張力鋼板(以下、HT590と言う)を使用する動きが強まっている。
この情勢を受けて、HT590級高張力鋼板の建築構造用規格(SA440)が1994年に制定された。
【0003】
この規格では、耐震設計思想に基づき、溶接構造用HT590級鋼板に対し、高強度であるとともに、降伏比を80%以下に低減すること、および溶接入熱量30kJ/mm以上の大入熱溶接後のHAZ全域の靱性が、0℃シャルピー吸収エネルギーで15J以上であること等の要求がなされている。その上、阪神大震災以来、HAZ部の更なる高靱化が要求され、前記大入熱溶接後のHAZ全域の靱性が、母材と同等の47J以上を要求するケースも出てきている。
【0004】
建築構造用のHT590級以上の高張力鋼板を、その製造過程、特に熱間圧延工程において、低降伏比化する技術は、既に従来から種々提案されている。
その一つとして、まず、Q−Q’−TあるいはDQ−Q’−T熱処理方法がある。
【0005】
この熱処理方法は、HT590級以上の高張力鋼板の高強度を確保したまま、低降伏比化するために、▲1▼DQあるいはQ〔圧延後オンラインAr点以上の温度からの直接焼入れ(DQ)乃至圧延後オフラインでAc点以上の温度からの再加熱焼入れ(Q)〕、▲2▼Q’〔フェライト/オーステナイト二相域温度(Ac点以上Ac点未満)からの焼入れ〕、▲3▼T〔Ac点未満の温度での焼戻し〕の組み合わせにより行われている。
【0006】
即ち、Q−Q’−TあるいはDQ−Q’−T熱処理方法は、通常の熱処理方法に対し、焼入れ(Q)−焼戻し(T)処理の中間に、γ−α二相域温度からの焼入れ(Q’)加えるものである。
そして、この中間焼入れ処理Q’により、低硬度で延性に優れるフェライトが組織中に生成するため、低い降伏比が得られる。
【0007】
但し、このQ−Q’−TあるいはDQ−Q’−T熱処理は、中間の焼入れQ’の温度が、γ−α二相域と低いため、HT590級の鋼板強度を確保するためには、通常の熱処理タイプのHT590級鋼板よりも多量の合金元素を添加して、鋼の焼入れ性を向上させる必要がある。
【0008】
図3に、Ceq.が0.37〜0.40%の範囲の化学成分を有する鋼板に、このQ−Q’−T熱処理を適用した場合のCeq.と強度との関係を示す。
図3から明らかな通り、Q−Q’−T熱処理を適用して製造した鋼板は、Ceq.が0.42%以上にならないとHT590級以上の強度は得られず、この熱処理方法では、より多量の合金元素の添加が必要となることが分かる。
【0009】
また、これとは別に、HT590級以上の高張力鋼板の高強度を確保したまま低降伏比化する手法として、「製鉄研究、第334号、1989、17−28頁」等に、板厚が80mmの鋼板を熱間圧延後、Ar点−Ar点のγ−α二相域から水冷(加速冷却)して、低降伏比鋼を得る方法が開示されている。
【0010】
この二相域から加速冷却して低降伏比鋼を得る方法は、HT590級以上の高張力鋼板の高強度を確保したまま、低降伏比化する方法として優れている。
しかし、この技術でも、前記Q−Q’−T熱処理の中間の焼入れQ’の温度と同様に、圧延後の冷却開始温度が、通常のAr点以上からの焼入れ乃至加速冷却に比して、Ar点−Ar点のγ−α二相域と低い。
そのため、HT590級の鋼板強度を確保するためには、やはり、通常の熱処理タイプのHT590級鋼板よりも多量の合金元素を添加して、鋼の焼入れ性を向上させる必要がある。
【0011】
実際、前記文献でも、基本成分の他、Cu、Ni、Cr、Mo、V、Ti、B等の、鋼の強度向上や靱性向上元素を同時に添加し、Ceq.が0.43%程度のレベルで、HT590級の強度を確保している。
【0012】
【発明が解決しようとする課題】
一方、建築構造用鋼板の溶接施工には、施工効率上、エレクトロスラグ溶接のような入熱量30〜100kJ/mmの超大入熱溶接法が適用されている。
そして、この大入熱溶接法を、前記Ceq.が比較的高いQ−Q’−T熱処理適用鋼板や、二相域加速冷却低降伏比鋼に適用した場合、HAZの靱性が確保しにくく靱性が低下するという問題が生じる。
【0013】
通常、建築以外の用途のHT590級鋼板では、入熱を数kJ/mm程度の小入熱に抑えた溶接法が採用さており、この溶接法によれば、HAZの組織も下部ベイナイトとなり、HAZ靱性が確保される。
したがって、前記Q−Q’−T熱処理適用鋼板や二相域加速冷却低降伏比鋼も、小入熱に抑えた溶接法であれば、HAZの靱性が著しく低下するという問題は生じない。
【0014】
しかし、大入熱溶接が行われた場合、鋼板は、溶接熱により一般的に1350℃程度に加熱された後、緩慢な冷却を受ける。
この際、前記Q−Q’−T熱処理適用鋼板や二相域加速冷却低降伏比鋼は、Ceq.が0.42%以上と高いので、前記溶接後の冷却過程で、HAZは変態時に靱性の極めて悪い上部ベイナイトとなり、HAZ靱性が劣化する。
実際、前記二相域加速冷却低降伏比鋼を開示した文献でも、エレクトロスラグ溶接した場合に、シャルピー試験による溶接部の衝撃特性は、0℃シャルピー吸収エネルギーで35〜40Jレベルとなっている。
【0015】
したがって、これら従来技術では、溶接入熱量30kJ/mm以上の大入熱溶接後のHAZ全域の靱性が、0℃シャルピー吸収エネルギーで、目標とする47J以上という規格を満足できない。
【0016】
因みに、HAZ靱性劣化の対策として従来一般的な方法は、(1) 鋼の焼入れ性を低下させ、HAZの上部ベイナイト量を減少させ、靱性の良好なフェライト−パーライト主体の組織(上部ベイナイトよりもさらに焼きが入っていない組織)とする方法や、(2) 逆に焼入れ性を増加させ、上部ベイナイトからHAZ靱性の良好な下部ベイナイトとする方法がある。
【0017】
しかしながら、これらHAZ靱性劣化の対策は、前記Q−Q’−T熱処理適用鋼板や二相域加速冷却低降伏比鋼には適用できない。
即ち、前記(1) のフェライト−パーライト組織化は、鋼材の炭素当量(Ceq.)を下げることにより、実現可能である。しかし、この組織は、490N/mm級の強度の低い鋼板(以下、HT490という)に特有の組織であり、そのような低い焼入れ性の鋼を用いてHT590級の母材強度を確保することは、実質的に不可能である。
【0018】
また、前記(2) の下部ベイナイト化(鋼の高焼入れ性化)は、逆に鋼材の炭素当量(Ceq.)を上げることにより、実現可能であるが、従来の製造法のままでは降伏比が高くなりすぎ、母材の降伏比を80%以下にできない。
しかも、合金元素添加量の増加により、溶接性が低下し、経済性の問題もあり実用的ではない。
【0019】
以上述べた通り、現状では、素材鋼板の側から、特にビルの支柱などの建築構造物用の30mm以上の厚鋼板で、高強度と低降伏比とを両方兼備し、且つ大入熱溶接を適用してもHAZの靱性が優れた建築構造物用のHT590級鋼板を提供できていない。
したがって、建築基準を満足させるために、溶接の施工側で、溶接入熱量を30kJ/mm以下に制限して溶接しているのが実情であり、建築分野では、溶接乃至建築効率上無視できない問題となっている。
【0020】
本発明は、このような事情に着目してなされたものであって、HT590級以上の高張力鋼板において、高強度と80%以下の低い降伏比を確保すると同時に、入熱量30kJ/mm以上の大入熱溶接を適用しても、HAZの靱性が優れた溶接構造用鋼板およびその製造方法を提供することを目的とするものである。
【0021】
【課題を解決するための手段】
本発明者らは、合金元素が少ない=低炭素当量(低Ceq.)鋼でも、特にTiやNなど鋼の組成を調節し、かつ熱間圧延後の加速冷却法(TMCP:熱加工制御技術)を活用することにより、HT590級以上の高強度を確保しつつ、80%以下の低い降伏比と、溶接入熱量30kJ/mm以上の大入熱溶接後のHAZ全域の靱性が0℃シャルピー吸収エネルギーで47J以上の優れたHAZ靱性を確保できることを知見した。
【0022】
この知見に基づく、本発明の要旨は、まず、構造用鋼板の化学成分について、熱間圧延後にAr点以上の温度から加速冷却される鋼板の組成を、質量%にて、C:0.10〜0.16%、Si:0.40%以下、Mn:1.00〜1.80%、P:0.025%以下、S:0.012%以下、Ti:0.005〜0.020%、Al:0.010〜0.080%、N:0.0020〜0.0080%を含み、かつCeq.(但し、Ceq.=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14%)を0.37〜0.40%の範囲とし、残部Feおよび不可避的不純物からなるものとする。
【0023】
上記合金成分に加え、Nb:0.005〜0.100%、Cu:0.05〜0.50%、Ni:0.05〜1.00%、V:0.005〜0.100%、の一種または二種以上を含有することができる。
【0024】
また、上記合金成分に加え、Cr:0.05〜0.40%、Mo:0.05〜0.40%、B:0.0002〜0.0020%の一種または二種以上を含有することができる。
【0025】
更に、上記合金成分に加え、Ca:0.0005〜0.0040%を含有することができる。
【0026】
次に、本発明の鋼板の製造方法の要旨は、これらの化学成分の鋼片を加熱し、熱間圧延を850℃以上で終了した後、Ar点以上の温度から500℃以下まで6〜14℃/sec以上の冷却速度で加速冷却して製造する。
【0027】
また、前記加速冷却後、Ac点以下の温度で焼き戻すことが好ましい。
【0028】
【発明の実施の形態】
以下に、本発明における化学成分の限定理由について説明する。
Cは、鉄骨用高張力鋼板としての強度を確保するために必要な元素であるが、含有量が0.10%未満では、引張強さHT590級以上の強度は得がたく、また、0.16%を超えて添加すると耐溶接割れ性を害するので好ましくない。したがって、C含有量は0.10〜0.16%の範囲とする。
【0029】
Siは脱酸に必要な元素であるが、0.40%を超えて過多に添加すると、母材の靱性を劣化させるので好ましくない。したがって、Si含有量は0.40%以下とする。なお、脱酸の効果を発揮させるためには、0.05%以上の含有が好ましい。
【0030】
Mnは焼入れ性を向上させ、板厚内部の強度を確保するために必要な元素であるが、含有量が1.00%未満ではこのような効果は十分に得られず、また、1.80%を超えて過剰に添加すると、溶接性、HAZ靱性を劣化させるので好ましくない。したがって、Mn含有量は1.00〜1.80%の範囲とする。
【0031】
Pは不純物として鋼板中に含有される元素であり、偏析しやすい元素であり、含有量が多いと偏析部の靱性が劣化する。したがって、含有量が少ないほど母材およびHAZの靱性は良好となる。しかし過度に低減することは著しいコストアップをもたらす。したがって、P含有量は0.025%以下とする。
【0032】
Sも不純物として鋼板中に含有される元素であり、MnS介在物を形成し、鋼の靱性を劣化させる。したがって、含有量が少ないほど母材およびHAZの靱性は良好となる。しかし過度に低減することは著しいコストアップをもたらす。したがって、含有量は0.012%以下とする。
【0033】
Tiは、本発明において最も重要な元素のひとつである。Tiは、窒化物形成傾向が極めて強く、大入熱溶接時、靱性が特に低いボンド部において、フェライトの核となるTiNを形成し、ボンド部を細粒のフェライト・パーライト化することを通して、後述する図1の通り、HAZの靱性を良好とする。
そのためには、Tiの含有量が0.005%以上とする必要があり、また、0.020%を超えて過剰に添加すると、Tiの非金属介在物の増加およびTiN粒子の粗大化を招き、逆に母材の溶接性、靱性を劣化させるので好ましくない。したがって、Ti含有量は0.005〜0.020%の範囲とする。また、より好ましくは、0.007〜0.015%の範囲とする。
【0034】
因みに、この種厚鋼板の分野において、Tiの添加自体は公知である。しかし、従来、その添加目的は、例えば特公昭62−970号公報等に記載されている通り、他のNb、Vなどと同様に、オーステナイトの細粒化や焼戻し(T処理)時の析出効果であって、本発明のように、大入熱溶接時にTiNを形成させ、HAZの靱性を改善する目的ではない。
【0035】
Alは脱酸元素であるが、含有量が0.010%未満ではそのような効果は少なく、また、0.080%を超えて添加すると、Al介在物形成による母材靱性の劣化をもたらす。したがって、Al含有量は0.010〜0.080%の範囲とする。
【0036】
Nは、従来、HAZの靱性向上を図るためには、一般的に、0.0060%以下とし、できるだけ低く抑える方が好ましいとされてきた。
しかし、本発明鋼では、Tiと共に、HAZの組織微細化による靱性改善に有効な重要因子であるTiNの微細析出により、大入熱溶接におけるHAZ靱性を改善する効果を期待している。この効果を最大限に発揮させるためには、含有量が0.0020%以上必要である。
一方、0.0080%を超えて含有すると、固溶N量を増大させることになり、母材およびHAZの靱性を著しく劣化させる。したがって、N含有量は0.0020〜0.0080%の範囲とする。
【0037】
この他に、本発明では、Nb、V、Cu、Niの一種または二種以上を含有することができる。これらの元素は、後述する他の元素に比して、溶接性、特に大入熱溶接におけるHAZ部の靱性を劣化させない少量乃至微量の添加で、焼入れ焼戻し時に顕著な母材の強度や靱性の上昇効果を有する。
このため、鋼板の降伏比をより低下させる必要から、特に焼入れ開始温度を、Ar〜Ar点の二相域と低くする場合はHT590級の強度確保が難しい場合の、母材の強度調節に有効である。
【0038】
Nbは、少量の添加により、圧延後の直接焼入れ時の焼入れ性を増すとともに、焼戻し軟化抵抗を高める等、顕著な強度上昇効果を有しており、強度調節に有効な元素である。
また、結晶粒微細化作用を有し、また直接焼入れ・焼戻しを行う場合には析出強化作用をもたらす元素である。その効果を得るためには、0.005%以上の添加が必要であり、また0.100%を超えて添加すると溶接性、特にHAZ部の靱性や、母材靱性を劣化させる傾向にある。したがって、Nb含有量は0.005〜0.100%の範囲とする。
【0039】
Vは、Nbと同様、少量の添加により、直接焼入れ時の焼入れ性を増し、焼戻し軟化抵抗を高め、顕著な強度上昇効果を有しており、強度調節に有効な元素である。その効果を得るためには0.005%以上の添加が必要であるが、0.100%を超えて添加すると溶接性、特にHAZ部の靱性を害する。したがって、V含有量は0.005〜0.100%の範囲とする。
【0040】
Cuは固溶強化、析出強化による強度上昇に有効な元素であるが、含有量が0.05%未満ではこのような効果を十分に発揮することができない。また、0.50%を超えて添加すると熱間加工性が劣化し、鋼板表面に割れを生じやすく、また、溶接性、特にHAZ部の靱性を害する問題もある。したがって、Cu含有量は0.05〜0.50%の範囲とする。
【0041】
Niは母材の強度と靱性およびHAZ靱性を向上させる効果があるが、含有量が0.05%未満ではそのような効果は十分に発揮されない。また、1.00%を超えて過剰に添加するとスケール疵が発生しやすくなり、またコストアップとなる。したがって、Ni含有量は0.05〜1.00%の範囲とする。
【0042】
また、上記合金成分に加え、母材の靱性および強度レベルの向上のために、Cr:0.05〜0.40%、Mo:0.05〜0.40%、B:0.0003〜0.0020%の一種または二種以上を含有することができる。但し、これらの元素の含有は、確実にHAZ靱性を劣化させるので、止むを得ない場合以外は、極力避けることが好ましい。
【0043】
Crは焼入れ性向上に有効な元素であるが、含有量が0.05%未満ではそのような効果は十分に発揮されず、また、0.40%を超えて添加すると溶接性を害し、特に大入熱溶接におけるHAZの靱性を劣化させる。したがって、Cr含有量は.0.05〜0.40%の範囲とする。
【0044】
Moは焼入れ性を高め、焼戻し軟化抵抗を増す元素であるが、含有量が0.05%未満ではそのような効果は十分に得られず、また、0.40%を超えて過剰に添加すると、特に大入熱溶接におけるHAZの靱性を劣化させ、コストアップにもなる。したがって、Mo含有量は0.05〜0.40%の範囲とする。
【0045】
Bは微量の添加で焼入れ性の向上をもたらし、また母材強度上昇に寄与する。 しかし、含有量が0.0002%未満ではその効果は十分に得られず、また、0.0020%を超えると、BN以外のB化合物の多量生成、固溶Bの増加により、逆に母材靱性や大入熱溶接におけるHAZの靱性を劣化させる。したがって、B含有量は0.0002〜0.0020%の範囲とする。
【0046】
更に、本発明では、この他に、鋼中の非金属介在物を制御するためにCaを添加することができる。
Caは極微量で硫化物などの非金属介在物の球状化作用を有し、母材の靱性向上に有効である。含有量が0.0005%未満ではその十分な効果は得られず、また、0.0040%を超えて添加すると介在物の増加により靱性が劣化する。したがって、Ca含有量は0.0005〜0.040%の範囲とする。
【0047】
本発明においては、鋼の組成を前記のような化学成分とするが、さらに炭素当量の規定も重要である。合金元素を多量に添加すると、入熱量30kJ/mm以上の大入熱溶接を適用した場合、 HAZ部で靱性に悪影響を及ぼす上部ベイナイト組織が出やすくなり、本発明のTiN等の析出物による靱性改善効果が薄れてしまう。
したがって、本発明においては、炭素当量(但し、Ceq.=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14%)を0.37〜0.40%の範囲とする必要がある。
【0048】
図1に溶接入熱量70kJ/mm以上の大入熱溶接を行った際の、Ceq.とHAZの0℃のシャルピー吸収エネルギーとの関係を示す。
図1から分かるように、Tiの添加した本発明鋼(○印)は、Ceq.が0.40%以下の場合に、大入熱溶接を行った場合のHAZ全域での0℃のシャルピー吸収エネルギーが47J以上を確保できる。
【0049】
これに対して、Tiを添加していない比較鋼(△印)では、低Ceq.にしても、大入熱溶接を行った場合のHAZ全域での0℃のシャルピー吸収エネルギー47J以上を安定して確保できていない。
したがって、大入熱溶接を行った場合のHAZ全域での靱性を確保するためには、Tiの添加が必須で、かつCeq.を0.40%以下とする必要がある。
【0050】
これは、低Ceq.化により、HAZの組織が細粒のフェライト・パーライト化する効果に加えて、Tiの添加によるTiNのフェライト細粒化効果が重畳され、HAZの靱性が良好となったためである。
なお、前記の通り、Ceq.は低くなるほどHAZ靱性は改善されるが、一方で、Ceq.が低すぎると溶接継ぎ手部の強度が低下するため、Ceq.の下限は0.37%とする。
【0051】
次に、本発明の製造条件と鋼の組織について説明する。
まず、図2を用いて、本発明の加速冷却の意義について明らかにする。図2は、Ceq.が0.37%の化学成分を有する鋼板に、加速冷却を適用した場合の冷却速度と強度との関係を示す。図2から明らかな通り、制御冷却(以下、TMCPと言う)を適用して製造した鋼板は、冷却速度が6℃/sec以上で、HT590級以上の母材強度が得られる。
【0052】
TMCPを適用した方が、前記図3で示した従来のQ−Q’−T熱処理適用鋼よりも高強度が得られる理由は、析出強化元素の効果を有効に利用できるためであり、また、冷却速度の速いTMCPでは、可動転位が多量に導入されるため、低降伏比を達成しやすい。
【0053】
また鋼片の熱間圧延は、通常の再結晶域で行うが、二相域圧延など、圧延温度があまり低温になると、再結晶域での熱間圧延に比して、歪みがより蓄積してフェライト生成核サイトが増加し、また加工硬化するなどして降伏比が高くなりやすい。したがって、降伏比を下げる乃至高くしないために、少なくとも850℃以上で圧延を終了する必要がある。
【0054】
圧延後の加速冷却は、変態強化を利用し母材強度を確保するため、熱間圧延を850℃以上で終了した後、Ar点以上の温度から500℃以下まで6℃/sec以上の冷却速度で冷却する必要がある。
このうち、冷却開始温度は、冷却効果=変態強化を利用し、母材強度を確保するためには、Ar点以上の温度であることが必要であるが、低降伏比を安定して実現するという観点からはAr点以下の二相域温度が好ましい。
ただ、前記した通り、冷却開始温度が二相域では、Ar点以上の場合に比して、HT590級の強度確保が難しい。また、低温圧延のため圧延の生産性を低下させるという問題もある。したがって、生産性向上と高強度を安定的に得るためには、冷却開始温度がAr点以上の方が好ましい。
【0055】
次に、冷却速度について、前記した通り、図2から、冷却速度が6℃/sec以上で、HT590級以上の母材強度が得られ、6℃/secの冷却速度が、母材高強度化の臨界的意義を持っていることが分かる。
一方、冷却速度が15℃/sec以上と大きくなると、靱性が非常に低いマルテンサイトの生成量が増加し、降伏比を高くするので、このマルテンサイトの生成量を抑制する観点から、14℃/sec以下に、冷却速度を抑えることが必要である。したがって、好ましい冷却速度は6〜14℃/secの範囲である。
【0056】
また、前記冷却時、冷却速度を遅くしても、靱性が非常に低いマルテンサイトの一部生成は避けがたく、母材の靱性の劣化原因となる。したがって、高い母材靱性が要求される場合には、また、冷却による鋼板の歪み除去のためにも、前記冷却後、Ac点以下の温度で焼戻し、前記マルテンサイトを焼戻しマルテンサイトとすることが好ましい。
【0057】
本発明鋼の組織は、靱性が非常に低い前記マルテンサイトや上部ベーナイトを極力少なくすることが好ましい。
即ち、Ar〜Ar点から冷却開始すると、フェライト乃至フェライトと下部ベーナイトの混合組織が得られ、Ar点から冷却開始すると、下部ベーナイが得られ、これらの組織はいずれも、靱性が高く、高強度と低降伏比のためにも好ましい組織である。
【0058】
しかし、30mm以上の厚板になればなるほど、冷却されやすい鋼板表面は下部ベーナイトとなっても、冷却されにくい鋼板内部は上部ベーナイトとなりやすい等、冷却過程で必然的に生じる鋼板の表面と内部との冷却速度の差から、表面と内部との組織の差が生じ易い。
したがって、本発明における鋼板の好ましい組織(フェライト組織乃至フェライトと下部ベーナイトの混合組織若しくは下部ベーナイト組織)とは、実質的にこれら組織のみの場合だけではなく、一部若しくは内部に、フェライト、上部ベーナイト、マルテンサイト乃至焼戻しマルテンサイトを、鋼特性を劣化させない範囲で、含んでも良い組織である。
【0059】
【実施例】
以下、具体的な実施例を用いて、本発明を更に説明する。
表1、2に示した化学成分とCeq.を有する鋼種(表1は本発明鋼、表2は比較鋼)を、▲1▼TMCP法乃至TMCP法+焼戻し(T)(加熱温度1150℃、圧延仕上げ温度900℃で圧延後、冷却開始温度880℃、冷却速度10℃/secで加速冷却、500〜600℃で焼戻し)、▲2▼Q−Q’−T熱処理(前記▲1▼の圧延後、Q:930℃、Q’:750〜800℃から各々焼入れ、T:500〜600℃で焼戻し)、▲3▼通常の熱間圧延(加熱温度1150℃、圧延仕上げ温度900℃、圧延後放冷)の各条件により板厚60mmに熱間圧延し、鋼板を製造した。
【0060】
表1、2に示したこれらの鋼板について、溶接入熱量70kJ/mmの溶接を行った時のHAZ最脆化部の0℃シャルピー吸収エネルギーを、引っ張り強度(TS)と降伏比(YR)の測定結果とともに表3、4に示す(表3は本発明鋼、表4は比較鋼)。なお、表3、4の鋼の番号は、表1、2の鋼の番号に対応している。
なお、表1の本発明鋼1については、TMCPまま(焼戻し無し)および冷却速度を変え17℃/secで加速冷却したもの、本発明鋼4については、冷却開始温度を変え750℃としたものも合わせて実施し、表3に示している。
【0061】
表3、4から分かる通り、本発明鋼1〜10は、建築用HT590級鋼として、十分な引っ張り強度(TS)と降伏比(YR)を有するとともに共に、溶接入熱量70kJ/mmの大入熱溶接においても、HAZ全域で(表3、4では、溶接継ぎ手部の最脆化部の靱性で示す)0℃シャルピー吸収エネルギーが47J以上という優れたHAZ靱性を確保している。
【0062】
これに対し、比較鋼11、12は、本発明鋼と同じ成分でありながら、Q−Q’−T熱処理を行っているため、母材強度が590N/mm未満と低くなっている。
また、比較鋼13、15は、Ceq.が0.37%未満のため、母材強度が590N/mm未満となっている。
更に、比較鋼16〜19は、熱間圧延後にAr点以上の温度から水冷(加速冷却)しているにも関わらず、Ceq.が0.41%以上のため、HAZ全域で0℃シャルピー吸収エネルギーが47J未満となっている。
【0063】
比較鋼20〜24は、Tiが添加されていないため、前記図1の説明でも述べた通り、HAZ全域での0℃シャルピー吸収エネルギーが47J未満となっている。なお、これらの比較鋼は、Tiが添加されておらず、HAZ靱性が悪いことは明らかであったので、敢えて機械的性質は測定しなかった。
【0064】
【表1】

Figure 0003568710
【0065】
【表2】
Figure 0003568710
【0066】
【表3】
Figure 0003568710
【0067】
【表4】
Figure 0003568710
【0068】
【発明の効果】
本発明による鋼板は、HT590級以上の高強度と80%以下の低い降伏比を確保すると同時に、入熱量30kJ/mm以上の大入熱溶接を適用しても、HAZの靱性が優れている。
したがって、各種建築構造物の溶接において、HAZの靱性を劣化させることなく、大入熱の片面サブマージアーク溶接やエレクトロガスアーク溶接等の高能率溶接法が適用できる。
言い換えると、本発明によれば、溶接構造用鋼の各種構造物への溶接作業能率を高め、建築工期や溶接施工費を低減することができる。
しかも、これらの性能向上が、従来の溶接構造用鋼板として汎用されるアルミキルド鋼の成分や製法を、著しく変更したり、製造コストの増加を招かずに達成することができる点で工業的な価値は大きい。
【図面の簡単な説明】
【図1】図1は、大入熱溶接を行った際の、鋼板のCeq.とHAZの0℃のシャルピー吸収エネルギーとの関係を示す、説明図である。
【図2】図2は、Ceq.が0.37%の化学成分を有する鋼板に、TMCP(加速冷却)法を適用した場合の冷却速度と強度との関係を示す、説明図である。
【図3】図3は、Ceq.が0.37〜0.40%の範囲の化学成分を有する鋼板に、従来のQ−Q’−T熱処理を適用した場合のCeqと強度との関係を示す、説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a low yield ratio type welded structure having a high toughness of a weld heat affected zone (hereinafter, referred to as HAZ) for a low-yield ratio type welded structure of 590 N / mm even when large heat input welding is applied. 2 The present invention relates to a method for producing a graded steel sheet, particularly, 590 N / mm for a welded structure in which the yield ratio of the steel sheet is 80% or less. 2 The present invention relates to a grade steel sheet and a method for producing the same.
[0002]
[Prior art]
In recent years, steel plates for steel frames of building structures have been required to be thicker and stronger due to the increase in height and span of building structures.
More specifically, a thick plate of 30 mm or more is used for a portion serving as a basic structure of a building such as a pillar of a building, and a conventionally used 490 to 570 N / mm has been used. 2 590 N / mm with higher strength from high-grade high-strength steel sheet 2 The use of high-strength steel sheets of grade HT590 or higher (hereinafter referred to as HT590) is increasing.
In response to this situation, the HT590-grade high-strength steel sheet standard for building structures (SA440) was established in 1994.
[0003]
According to this standard, based on the concept of seismic design, HT590 grade steel sheets for welded structures have high strength and a yield ratio reduced to 80% or less, and after large heat input welding with a heat input of 30 kJ / mm or more. It has been demanded that the toughness of the entire HAZ be 15 J or more at 0 ° C. Charpy absorbed energy. In addition, since the Great Hanshin Earthquake, even higher toughness of the HAZ has been required, and there have been cases where the toughness of the entire HAZ after the large heat input welding requires 47 J or more, which is equivalent to the base metal.
[0004]
Various techniques for lowering the yield ratio of HT590 or higher-strength steel sheets for building structures in the manufacturing process, particularly in the hot rolling step, have already been proposed.
One of them is a QQ'-T or DQ-Q'-T heat treatment method.
[0005]
This heat treatment method involves the following steps: (1) DQ or Q [online Ar after rolling] in order to reduce the yield ratio while maintaining the high strength of a high-strength steel sheet of HT590 or higher. 3 Direct quenching (DQ) from a temperature above the point to offline after rolling 3 Reheating and quenching from a temperature above the temperature (Q)], [2] Q '[ferrite / austenite two-phase region temperature (Ac 1 Ac above the point 3 Quenching), ▲ 3 ▼ T [Ac 1 Tempering at a temperature lower than the point].
[0006]
That is, the QQ'-T or DQ-Q'-T heat treatment method is different from the ordinary heat treatment method in that the quenching from the γ-α two-phase region temperature is performed in the middle of the quenching (Q) -tempering (T) treatment. (Q ') is added.
And, by this intermediate quenching treatment Q ′, a ferrite having low hardness and excellent ductility is generated in the structure, so that a low yield ratio can be obtained.
[0007]
However, in this QQ'-T or DQ-Q'-T heat treatment, since the temperature of the intermediate quenching Q 'is low in the γ-α two-phase region, in order to secure the strength of the HT590 grade steel sheet, It is necessary to improve the hardenability of the steel by adding a larger amount of alloying elements than in an ordinary heat-treated HT590 grade steel sheet.
[0008]
FIG. 3 shows Ceq. When the QQ′-T heat treatment is applied to a steel sheet having a chemical component in the range of 0.37 to 0.40%. And the relationship between strength and strength.
As is clear from FIG. 3, the steel sheet manufactured by applying the QQ′-T heat treatment is Ceq. If HT590 is not 0.42% or more, it is not possible to obtain strength equal to or higher than HT590 grade, and it is understood that this heat treatment method requires addition of a larger amount of alloying elements.
[0009]
Separately from this, as a technique for lowering the yield ratio while maintaining high strength of a high-strength steel sheet of HT590 grade or higher, “Steel Making Research, No. 334, 1989, pp. 17-28”, etc. After hot rolling 80 mm steel sheet, Ar 3 Point-Ar 1 A method of obtaining a low yield ratio steel by water cooling (accelerated cooling) from a γ-α two-phase region at a point is disclosed.
[0010]
The method of obtaining a low-yield-ratio steel by accelerated cooling from this two-phase region is excellent as a method of lowering the yield ratio while maintaining the high strength of a high-strength steel sheet of HT590 grade or higher.
However, even in this technique, similarly to the temperature of the quenching Q ′ in the middle of the QQ′-T heat treatment, the cooling start temperature after the rolling is the same as that of ordinary Ar. 3 Compared to quenching or accelerated cooling from above 3 Point-Ar 1 The point is as low as the γ-α two-phase region.
Therefore, in order to ensure the strength of the HT590 grade steel sheet, it is necessary to improve the hardenability of the steel by adding a larger amount of alloying elements than in the normal heat treatment type HT590 grade steel sheet.
[0011]
In fact, even in the literature, in addition to the basic components, elements for improving the strength and toughness of steel, such as Cu, Ni, Cr, Mo, V, Ti, and B, are added simultaneously, and Ceq. Has a strength of about HT590 at a level of about 0.43%.
[0012]
[Problems to be solved by the invention]
On the other hand, an ultra-large heat input welding method having a heat input of 30 to 100 kJ / mm, such as electroslag welding, is applied to welding of a steel sheet for building structures in terms of processing efficiency.
This large heat input welding method is referred to as the Ceq. However, when applied to a QQ'-T heat-treated steel sheet or a steel having a relatively high yield ratio and a two-phase region accelerated cooling low yield ratio steel, there is a problem that the toughness of the HAZ is hardly secured and the toughness is reduced.
[0013]
Normally, HT590 grade steel sheets for applications other than construction use a welding method in which the heat input is suppressed to a small heat input of about several kJ / mm. According to this welding method, the structure of the HAZ also becomes lower bainite and the HAZ Toughness is ensured.
Accordingly, the QQ'-T heat-treated steel sheet and the two-phase region accelerated cooling low yield ratio steel do not have the problem that the toughness of the HAZ is significantly reduced if the welding method is performed with a small heat input.
[0014]
However, when large heat input welding is performed, the steel sheet is slowly cooled after being generally heated to about 1350 ° C. by welding heat.
At this time, the QQ'-T heat-treated steel sheet and the two-phase region accelerated cooling low yield ratio steel are Ceq. Is as high as 0.42% or more, in the cooling process after the welding, the HAZ becomes upper bainite having extremely poor toughness during transformation, and the HAZ toughness deteriorates.
In fact, even in the literature that discloses the two-phase region accelerated cooling low yield ratio steel, when electroslag welding is performed, the impact characteristic of the welded portion in the Charpy test is 35 to 40 J at a Charpy absorbed energy of 0 ° C.
[0015]
Therefore, in these conventional techniques, the toughness of the entire HAZ after welding with a large heat input having a welding heat input of 30 kJ / mm or more cannot satisfy the target standard of 47 J or more at 0 ° C Charpy absorbed energy.
[0016]
Incidentally, as a countermeasure against HAZ toughness deterioration, conventional methods generally include (1) reducing the hardenability of steel, reducing the amount of upper bainite of HAZ, and forming a structure mainly composed of ferrite-pearlite having better toughness (than upper bainite). And (2) conversely, a method of increasing the hardenability and converting the upper bainite into a lower bainite having good HAZ toughness.
[0017]
However, these countermeasures against HAZ toughness deterioration cannot be applied to the above-mentioned steel sheet to which the QQ'-T heat treatment is applied or to the two-phase region accelerated cooling low yield ratio steel.
That is, the ferrite-pearlite structure (1) can be realized by lowering the carbon equivalent (Ceq.) Of the steel material. However, this tissue is 490 N / mm 2 This is a structure peculiar to a steel sheet having low grade strength (hereinafter, referred to as HT490), and it is substantially impossible to secure a base material strength of HT590 grade using such a steel having low hardenability.
[0018]
On the other hand, the lower bainite (high hardenability of steel) in the above (2) can be realized by increasing the carbon equivalent (Ceq.) Of the steel material. Is too high, and the yield ratio of the base material cannot be reduced to 80% or less.
In addition, the weldability is reduced due to the increase in the amount of alloying elements added, and this is not practical due to the problem of economy.
[0019]
As described above, at present, from the side of the material steel plate, especially with a thick steel plate of 30 mm or more for building structures such as pillars of a building, it has both high strength and low yield ratio, and large heat input welding. Even if it is applied, it has not been possible to provide an HT590 grade steel sheet for building structures having excellent HAZ toughness.
Therefore, in order to satisfy the building standards, it is a fact that the welding heat input is limited to 30 kJ / mm or less on the welding side, and welding is performed. In the building field, welding or building efficiency cannot be ignored. It has become.
[0020]
The present invention has been made in view of such circumstances, and in a high-strength steel sheet of HT590 grade or higher, high strength and a low yield ratio of 80% or less are ensured, and at the same time, a heat input of 30 kJ / mm or more. An object of the present invention is to provide a steel sheet for a welding structure in which the toughness of the HAZ is excellent even when large heat input welding is applied, and a method for manufacturing the same.
[0021]
[Means for Solving the Problems]
The present inventors have adjusted the composition of steels such as Ti and N especially in steels having a small alloying element = low carbon equivalent (low Ceq.) And accelerated cooling after hot rolling (TMCP: thermal processing control technology). ), While ensuring high strength of HT590 class or higher, low yield ratio of 80% or less, and toughness of the entire HAZ after welding with a large heat input of 30 kJ / mm or more of welding heat input of 0 ° C Charpy absorption It has been found that excellent HAZ toughness of 47 J or more can be secured with energy.
[0022]
Based on this finding, the gist of the present invention is to first determine the chemical composition of a structural steel sheet after hot rolling. 1 The composition of the steel sheet that is accelerated and cooled from a temperature not lower than the temperature is 0.10 to 0.16% by mass, Si: 0.40% or less, Mn: 1.00 to 1.80%, P : 0.025% or less, S: 0.012% or less, Ti: 0.005 to 0.020%, Al: 0.010 to 0.080%, N: 0.0020 to 0.0080%, And Ceq. (However, Ceq. = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14%) is in the range of 0.37 to 0.40%, and the balance is made up of Fe and inevitable impurities.
[0023]
In addition to the above alloy components, Nb: 0.005 to 0.100%, Cu: 0.05 to 0.50%, Ni: 0.05 to 1.00%, V: 0.005 to 0.100%, May be contained alone or in combination.
[0024]
In addition to one or more of Cr: 0.05 to 0.40%, Mo: 0.05 to 0.40%, and B: 0.0002 to 0.0020%, in addition to the above alloy components. Can be.
[0025]
Further, in addition to the above alloy components, Ca: 0.0005 to 0.0040% can be contained.
[0026]
Next, the gist of the method for manufacturing a steel sheet of the present invention is to heat a steel slab of these chemical components and finish hot rolling at 850 ° C. or higher, 1 It is manufactured by accelerated cooling at a cooling rate of 6 to 14 ° C./sec or more from a temperature not lower than the point to 500 ° C. or less.
[0027]
After the accelerated cooling, Ac 1 It is preferred to temper at a temperature below the point.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reasons for limiting the chemical components in the present invention will be described.
C is an element necessary to secure the strength as a high-strength steel sheet for steel frames. However, if the content is less than 0.10%, it is difficult to obtain a tensile strength equal to or higher than HT590 grade, and 0.1%. Addition of more than 16% is not preferable because it impairs weld cracking resistance. Therefore, the C content is in the range of 0.10 to 0.16%.
[0029]
Si is an element necessary for deoxidation. However, excessive addition of more than 0.40% is not preferable because it deteriorates the toughness of the base material. Therefore, the Si content is set to 0.40% or less. In order to exert the effect of deoxidation, the content is preferably 0.05% or more.
[0030]
Mn is an element necessary for improving the hardenability and securing the strength inside the sheet thickness. However, if the content is less than 1.00%, such effects cannot be sufficiently obtained, and 1.80. %, It is not preferable because the weldability and the HAZ toughness are deteriorated. Therefore, the Mn content is in the range of 1.00 to 1.80%.
[0031]
P is an element contained in the steel sheet as an impurity and is an element that is easily segregated. If the P content is large, the toughness of the segregated portion is deteriorated. Therefore, the lower the content, the better the toughness of the base material and HAZ. However, excessive reduction leads to significant cost increase. Therefore, the P content is set to 0.025% or less.
[0032]
S is also an element contained in the steel sheet as an impurity, and forms MnS inclusions to deteriorate the toughness of the steel. Therefore, the lower the content, the better the toughness of the base material and HAZ. However, excessive reduction leads to significant cost increase. Therefore, the content is set to 0.012% or less.
[0033]
Ti is one of the most important elements in the present invention. Ti has an extremely strong tendency to form nitrides, and at the time of large heat input welding, forms TiN which is a core of ferrite in a bond portion having particularly low toughness, and forms a fine-grained ferrite / pearlite bond portion as described later. As shown in FIG. 1, the toughness of the HAZ is improved.
For this purpose, the content of Ti needs to be 0.005% or more, and if it is added in excess of 0.020%, nonmetallic inclusions of Ti increase and TiN particles become coarse. On the contrary, it deteriorates the weldability and toughness of the base material, which is not preferable. Therefore, the Ti content is in the range of 0.005 to 0.020%. Further, more preferably, it is in the range of 0.007 to 0.015%.
[0034]
Incidentally, the addition of Ti itself is known in the field of thick steel sheets. However, conventionally, the purpose of the addition is, as described in, for example, Japanese Patent Publication No. 62-970, similar to other Nb, V, etc., in that austenite is reduced in grain size and precipitation effect during tempering (T treatment). However, this is not the purpose of improving the toughness of the HAZ by forming TiN during high heat input welding as in the present invention.
[0035]
Al is a deoxidizing element, but if the content is less than 0.010%, such an effect is small, and if it exceeds 0.080%, Al 2 O 3 The formation of inclusions causes deterioration of the base material toughness. Therefore, the Al content is in the range of 0.010 to 0.080%.
[0036]
Conventionally, in order to improve the toughness of HAZ, it has generally been considered that N is preferably set to 0.0060% or less and kept as low as possible.
However, the steel of the present invention is expected to have an effect of improving HAZ toughness in large heat input welding by fine precipitation of TiN, which is an important factor for improving toughness by refining the structure of HAZ, together with Ti. In order to maximize this effect, the content is required to be 0.0020% or more.
On the other hand, if the content exceeds 0.0080%, the amount of solute N increases, and the toughness of the base material and HAZ is remarkably deteriorated. Therefore, the N content is in the range of 0.0020 to 0.0080%.
[0037]
In addition, in the present invention, one or more of Nb, V, Cu, and Ni can be contained. These elements, compared to the other elements described below, the addition of a small amount or a small amount that does not degrade the weldability, particularly the toughness of the HAZ portion in large heat input welding, the strength and toughness of the base material remarkable during quenching and tempering. Has a rising effect.
For this reason, since it is necessary to further reduce the yield ratio of the steel sheet, in particular, the quenching start temperature is set to Ar 1 ~ Ar 3 When the temperature is set to be as low as the two-phase region of the point, it is effective for adjusting the strength of the base material when it is difficult to secure the strength of HT590 class.
[0038]
Nb has a remarkable strength increasing effect, such as increasing the hardenability in direct quenching after rolling and increasing the tempering softening resistance, by adding a small amount, and is an element effective for strength control.
Further, it is an element that has a crystal grain refining action and, when direct quenching / tempering is performed, brings about a precipitation strengthening action. In order to obtain the effect, addition of 0.005% or more is necessary, and if it exceeds 0.100%, the weldability, particularly the toughness of the HAZ portion and the base material toughness tend to be deteriorated. Therefore, the Nb content is in the range of 0.005 to 0.100%.
[0039]
V, like Nb, is an element effective for strengthening by increasing the hardenability during direct quenching, increasing the tempering softening resistance, and having a remarkable strength increasing effect by adding a small amount. To obtain this effect, 0.005% or more must be added, but if added in excess of 0.100%, the weldability, particularly the toughness of the HAZ, is impaired. Therefore, the V content is in the range of 0.005 to 0.100%.
[0040]
Cu is an element effective for increasing the strength by solid solution strengthening and precipitation strengthening, but if its content is less than 0.05%, such effects cannot be sufficiently exerted. Further, if it is added in excess of 0.50%, there is a problem that the hot workability is deteriorated, cracks are easily generated on the surface of the steel sheet, and the weldability, particularly, the toughness of the HAZ portion is impaired. Therefore, the Cu content is in the range of 0.05 to 0.50%.
[0041]
Ni has the effect of improving the strength and toughness of the base material and the HAZ toughness, but if the content is less than 0.05%, such effects are not sufficiently exhibited. Further, if it is added in excess of 1.00%, scale flaws are likely to occur, and the cost is increased. Therefore, the Ni content is in the range of 0.05 to 1.00%.
[0042]
In addition to the above alloy components, Cr: 0.05 to 0.40%, Mo: 0.05 to 0.40%, B: 0.0003 to 0 for improving the toughness and strength level of the base material. .0020% of one kind or two or more kinds. However, since the inclusion of these elements definitely deteriorates the HAZ toughness, it is preferable to avoid them as much as possible unless it is unavoidable.
[0043]
Cr is an element effective for improving the hardenability, but if its content is less than 0.05%, such effects are not sufficiently exhibited, and if it exceeds 0.40%, the weldability is impaired. It degrades the toughness of HAZ in large heat input welding. Therefore, the Cr content is. The range is 0.05 to 0.40%.
[0044]
Mo is an element that enhances hardenability and increases temper softening resistance. However, if the content is less than 0.05%, such effects cannot be sufficiently obtained, and if Mo is added excessively exceeding 0.40%. In particular, the toughness of the HAZ in large heat input welding is deteriorated, and the cost is increased. Therefore, the Mo content is in the range of 0.05 to 0.40%.
[0045]
B brings about an improvement in hardenability when added in a small amount, and also contributes to an increase in base material strength. However, if the content is less than 0.0002%, the effect is not sufficiently obtained, and if it exceeds 0.0020%, a large amount of B compounds other than BN is generated and solid solution B is increased. It deteriorates toughness and toughness of HAZ in large heat input welding. Therefore, the B content is in the range of 0.0002 to 0.0020%.
[0046]
Furthermore, in the present invention, Ca can be added to control nonmetallic inclusions in steel.
A very small amount of Ca has a spheroidizing effect on nonmetallic inclusions such as sulfides, and is effective in improving the toughness of the base material. If the content is less than 0.0005%, its sufficient effect cannot be obtained, and if it exceeds 0.0040%, toughness is deteriorated due to an increase in inclusions. Therefore, the Ca content is in the range of 0.0005 to 0.040%.
[0047]
In the present invention, the chemical composition of the steel is as described above, but the definition of the carbon equivalent is also important. When a large amount of alloying elements are added, when high heat input welding with a heat input of 30 kJ / mm or more is applied, an upper bainite structure that adversely affects toughness is likely to appear in the HAZ, and the toughness due to precipitates such as TiN of the present invention is obtained. The improvement effect will be diminished.
Therefore, in the present invention, the carbon equivalent (however, Ceq. = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14%) needs to be in the range of 0.37 to 0.40%.
[0048]
FIG. 1 shows Ceq. When a large heat input welding with a heat input of 70 kJ / mm or more was performed. And the Charpy absorption energy of HAZ at 0 ° C. is shown.
As can be seen from FIG. 1, the steel of the present invention to which Ti was added (indicated by a circle) was Ceq. Is 0.40% or less, the Charpy absorbed energy at 0 ° C. over the entire HAZ when large heat input welding is performed can be 47 J or more.
[0049]
On the other hand, the comparative steel to which Ti was not added (marked with △) had a low Ceq. In any case, it is not possible to stably secure a Charpy absorbed energy of 47 J or more at 0 ° C. over the entire HAZ when large heat input welding is performed.
Therefore, in order to secure toughness in the entire HAZ when large heat input welding is performed, addition of Ti is essential and Ceq. Must be 0.40% or less.
[0050]
This is because low Ceq. This is because, in addition to the effect of making the HAZ structure fine-grain ferrite and pearlite, the effect of adding Ti to ferrite fine-graining of TiN is superimposed, thereby improving the toughness of the HAZ.
As described above, Ceq. Is lower, the HAZ toughness is improved, while Ceq. Is too low, the strength of the welded joint portion is reduced. Is 0.37%.
[0051]
Next, the manufacturing conditions and the structure of the steel according to the present invention will be described.
First, the significance of the accelerated cooling of the present invention will be clarified with reference to FIG. FIG. 4 shows the relationship between the cooling rate and the strength when accelerated cooling is applied to a steel sheet having a chemical composition of 0.37%. As is clear from FIG. 2, a steel sheet manufactured by applying controlled cooling (hereinafter, referred to as TMCP) has a base material strength of HT590 or higher at a cooling rate of 6 ° C./sec or more.
[0052]
The reason why TMCP is applied to obtain higher strength than the conventional QQ'-T heat-treated steel shown in FIG. 3 is that the effect of the precipitation strengthening element can be effectively used, In TMCP with a high cooling rate, a large yield of mobile dislocations is introduced, so that a low yield ratio is easily achieved.
[0053]
In addition, hot rolling of billets is performed in a normal recrystallization zone, but when the rolling temperature is too low, such as in two-phase zone rolling, strain is accumulated more than in hot rolling in the recrystallization zone. As a result, the yield ratio tends to increase due to an increase in ferrite generation nucleus sites and work hardening. Therefore, it is necessary to end the rolling at least at 850 ° C. or higher in order not to lower or increase the yield ratio.
[0054]
The accelerated cooling after the rolling is performed by ending the hot rolling at 850 ° C. or more in order to secure the base material strength by utilizing the transformation strengthening. 1 It is necessary to cool at a cooling rate of 6 ° C./sec or more from a temperature above the point to 500 ° C. or less.
Among these, the cooling start temperature is determined by Ar effect in order to secure the base material strength by utilizing the cooling effect = transformation strengthening. 1 It is necessary that the temperature be equal to or higher than the temperature, but from the viewpoint of stably realizing a low yield ratio, Ar 3 A two-phase temperature below the point is preferred.
However, as described above, when the cooling start temperature is in the two-phase region, Ar 1 It is more difficult to secure the strength of HT590 class than in the case of the above points. In addition, there is a problem that the productivity of rolling is reduced due to low-temperature rolling. Therefore, in order to improve productivity and obtain high strength stably, the cooling start temperature must be Ar 3 More than the point is preferable.
[0055]
Next, regarding the cooling rate, as described above, from FIG. 2, a base material strength of HT590 class or higher can be obtained at a cooling rate of 6 ° C./sec or more, and a cooling rate of 6 ° C./sec increases the base material strength. It has a critical significance of
On the other hand, when the cooling rate is as high as 15 ° C./sec or more, the amount of martensite having very low toughness increases, and the yield ratio is increased. It is necessary to suppress the cooling rate within seconds. Therefore, a preferable cooling rate is in a range of 6 to 14 ° C./sec.
[0056]
Further, even when the cooling rate is reduced during the cooling, it is inevitable that a part of martensite having very low toughness is generated, which causes deterioration of the toughness of the base material. Therefore, when high base material toughness is required, and after the cooling, Ac 1 Tempering at a temperature equal to or lower than the temperature, it is preferable that the martensite be tempered martensite.
[0057]
In the structure of the steel of the present invention, it is preferable that the martensite and the upper bainite having extremely low toughness are reduced as much as possible.
That is, Ar 1 ~ Ar 3 When cooling is started from the point, a ferrite or a mixed structure of ferrite and lower bainite is obtained, and Ar 3 When cooling is started from the point, a lower vane is obtained, and all of these structures are preferable structures because of their high toughness and high strength and low yield ratio.
[0058]
However, as the thickness of the steel plate becomes larger than 30 mm, even if the surface of the steel plate that is easy to be cooled becomes lower bainite, the inside of the steel plate that is hard to be cooled easily becomes upper bainite. The difference in the cooling rate between the surfaces tends to cause a difference in the structure between the surface and the inside.
Therefore, the preferred structure (ferrite structure or mixed structure of ferrite and lower bainite or lower bainite structure) of the steel sheet according to the present invention is not only substantially the case of only these structures, but also partially or internally, ferrite and upper bainite. This is a structure that may contain martensite or tempered martensite within a range that does not deteriorate steel properties.
[0059]
【Example】
Hereinafter, the present invention will be further described with reference to specific examples.
The chemical components shown in Tables 1 and 2 and Ceq. (Table 1 is the present invention steel, Table 2 is the comparative steel), (1) TMCP method to TMCP method + tempering (T) (heating temperature 1150 ° C, rolling finish temperature 900 ° C, rolling start temperature, 880 ° C, accelerated cooling at a cooling rate of 10 ° C / sec, tempering at 500 to 600 ° C), (2) QQ'-T heat treatment (after rolling of (1) above, Q: 930 ° C, Q ': 750 to 750 ° C) Heating from 800 ° C., T: tempering at 500-600 ° C.), (3) Heating to a plate thickness of 60 mm by each condition of normal hot rolling (heating temperature 1150 ° C., rolling finish temperature 900 ° C., and cooling after rolling) Rolling was performed to produce a steel sheet.
[0060]
For these steel sheets shown in Tables 1 and 2, the Charpy absorbed energy at 0 ° C. of the most brittle part of the HAZ when welding was performed at a welding heat input of 70 kJ / mm was calculated based on the tensile strength (TS) and the yield ratio (YR). The measurement results are shown in Tables 3 and 4 (Table 3 is the present invention steel, and Table 4 is the comparative steel). The steel numbers in Tables 3 and 4 correspond to the steel numbers in Tables 1 and 2.
In addition, the steel 1 of the present invention in Table 1 was as it was TMCP (no tempering) and was cooled at an accelerated rate of 17 ° C./sec while changing the cooling rate, and the steel 4 of the present invention was changed to a cooling start temperature of 750 ° C. Table 3 shows the results.
[0061]
As can be seen from Tables 3 and 4, the steels 1 to 10 of the present invention have sufficient tensile strength (TS) and yield ratio (YR) as HT590 grade steel for building, and have a large input of welding heat input of 70 kJ / mm. Also in the heat welding, the excellent HAZ toughness of which the Charpy absorbed energy at 0 ° C. is 47 J or more over the entire HAZ (in Tables 3 and 4, indicated by the toughness of the most brittle portion of the welded joint) is secured.
[0062]
On the other hand, the comparative steels 11 and 12 have the same components as the steels of the present invention but have been subjected to the QQ'-T heat treatment, so that the base metal strength is 590 N / mm. 2 It is lower than less.
Comparative steels 13 and 15 are Ceq. Is less than 0.37%, the base material strength is 590 N / mm 2 Less than.
Furthermore, the comparative steels 16 to 19 have Ar after hot rolling. 3 Despite water cooling (accelerated cooling) from a temperature above the temperature, Ceq. Is 0.41% or more, the Charpy absorbed energy at 0 ° C. is less than 47 J in the entire HAZ.
[0063]
Since the comparative steels 20 to 24 did not contain Ti, the Charpy absorbed energy at 0 ° C. over the entire HAZ was less than 47 J as described in the description of FIG. Note that these comparisons Steel is , Ti was not added, and it was clear that the HAZ toughness was poor, so the mechanical properties were not intentionally measured.
[0064]
[Table 1]
Figure 0003568710
[0065]
[Table 2]
Figure 0003568710
[0066]
[Table 3]
Figure 0003568710
[0067]
[Table 4]
Figure 0003568710
[0068]
【The invention's effect】
The steel sheet according to the present invention has a high strength of HT590 or higher and a low yield ratio of 80% or less, and has excellent HAZ toughness even when a large heat input welding of 30 kJ / mm or more is applied.
Therefore, in welding various building structures, a high-efficiency welding method such as single-sided submerged arc welding with large heat input and electrogas arc welding can be applied without deteriorating the toughness of the HAZ.
In other words, according to the present invention, the efficiency of welding work for welding structural steel to various structures can be increased, and the construction period and welding construction costs can be reduced.
In addition, these performance improvements can be achieved industrially in that the composition and manufacturing method of aluminum-killed steel, which is commonly used as conventional welded structural steel plates, can be achieved without significantly changing the composition and production cost. Is big.
[Brief description of the drawings]
FIG. 1 shows Ceq. Of a steel sheet when large heat input welding is performed. It is explanatory drawing which shows the relationship between the Charpy absorption energy of 0 degreeC of HAZ.
FIG. 2 shows Ceq. FIG. 4 is an explanatory diagram showing a relationship between a cooling rate and strength when a TMCP (accelerated cooling) method is applied to a steel sheet having a chemical component of 0.37%.
FIG. 3 shows Ceq. It is explanatory drawing which shows the relationship between Ceq and intensity | strength when the conventional QQ'-T heat treatment is applied to the steel plate which has a chemical component in the range of 0.37 to 0.40%.

Claims (13)

熱間圧延後にAr1 点以上の温度から加速冷却された鋼板であって、質量%にて、C:0.10〜0.16%、Si:0.40%以下、Mn:1.00〜1.80%、P:0.025%以下、S:0.012%以下、Ti:0.005〜0.020%、Al:0.010〜0.080%、N:0.0020〜0.0080%を含み、かつCeq.(但し、Ceq.=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14%)を0.37〜0.40%の範囲とし、残部Feおよび不可避的不純物からなり、溶接入熱量30kJ/mm以上の大入熱溶接後のHAZ全域の靱性が、0℃シャルピー吸収エネルギーで47J以上であることを特徴とする、大入熱溶接時のHAZ靱性が優れ、降伏比が80%以下である、溶接入熱量30〜100kJ/mm(但し、30kJ/mmを除く)の大入熱溶接構造用590N/mm2 級鋼板。A steel sheet accelerated and cooled from a temperature of Ar 1 or more after hot rolling. In mass%, C: 0.10 to 0.16%, Si: 0.40% or less, Mn: 1.00 to 100%. 1.80%, P: 0.025% or less, S: 0.012% or less, Ti: 0.005 to 0.020%, Al: 0.010 to 0.080%, N: 0.0020 to 0 .0080% and Ceq. (However, Ceq. = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14%) is in the range of 0.37 to 0.40%, the balance being Fe and unavoidable impurities, and the heat input of welding is 30 kJ / mm or more. Characterized in that the toughness of the entire HAZ after large heat input welding is 47 J or more at 0 ° C Charpy absorbed energy, the HAZ toughness during large heat input welding is excellent, and the yield ratio is 80% or less. 590 N / mm 2nd grade steel sheet for large heat input welding structure with heat input of 30 to 100 kJ / mm (excluding 30 kJ / mm). 上記合金成分に加え、Nb:0.005〜0.100%、V:0.005〜0.100%、Cu:0.05〜0.50%、Ni:0.05〜1.00%、の一種または二種以上を含有する、請求項1に記載の大入熱溶接構造用590N/mm2 級鋼板。In addition to the above alloy components, Nb: 0.005 to 0.100%, V: 0.005 to 0.100%, Cu: 0.05 to 0.50%, Ni: 0.05 to 1.00%, The 590 N / mm 2 grade steel sheet for a large heat input welded structure according to claim 1, comprising one or more of the following. 上記合金成分に加え、Cr:0.05〜0.40%、Mo:0.05〜0.40%、B:0.0002〜0.0020%の一種または二種以上を含有する、請求項1または2に記載の大入熱溶接構造用590N/mm2 級鋼板。Claims containing one or more of Cr: 0.05 to 0.40%, Mo: 0.05 to 0.40%, and B: 0.0002 to 0.0020% in addition to the alloy components. 590 N / mm 2 grade steel sheet for large heat input welding structures according to 1 or 2. 上記合金成分に加え、Ca:0.0005〜0.0040%を含有する請求項1乃至3のいずれか1項に記載の大入熱溶接構造用590N/mm2 級鋼板。The 590 N / mm 2 grade steel sheet for large heat input welding structures according to any one of claims 1 to 3, further comprising Ca: 0.0005 to 0.0040% in addition to the alloy component. 鋼板の板厚が30mm以上である請求項1乃至4のいずれか1項に記載の大入熱溶接構造用590N/mm2 級鋼板。The 590 N / mm 2 grade steel sheet for large heat input welding structures according to any one of claims 1 to 4, wherein the steel sheet has a thickness of 30 mm or more. 前記N含有量が0.0036〜0.0080%である請求項1乃至5のいずれか1項に記載の大入熱溶接構造用590N/mmThe 590 N / mm for large heat input welding structures according to any one of claims 1 to 5, wherein the N content is 0.0036 to 0.0080%. 2 Two 級鋼板。Grade steel sheet. 質量%にて、C:0.10〜0.16%、Si:0.40%以下、Mn:1.00〜1.80%、P:0.025%以下、S:0.012%以下、Ti:0.005〜0.020%、Al:0.010〜0.080%、N:0.0020〜0.0080%を含み、かつCeq.(但し、Ceq.=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14%)を0.37〜0.40%の範囲とし、残部Feおよび不可避的不純物からなる鋼片を、850℃以上の圧延終了温度で熱間圧延した後、ArIn mass%, C: 0.10 to 0.16%, Si: 0.40% or less, Mn: 1.00 to 1.80%, P: 0.025% or less, S: 0.012% or less , Ti: 0.005 to 0.020%, Al: 0.010 to 0.080%, N: 0.0020 to 0.0080%, and Ceq. (However, Ceq. = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14%) is in the range of 0.37 to 0.40%, and the steel slab consisting of the balance Fe and unavoidable impurities is heated to 850 ° C. or more. After hot rolling at the rolling end temperature, Ar 1 1 点以上の温度から500℃以下まで、6〜14℃/sec以上の冷却速度で冷却し、溶接入熱量30kJ/mm以上の大入熱溶接後のHAZ全域の靱性が0℃シャルピー吸収エネルギーで47J以上の鋼板を得ることを特徴とする、大入熱溶接時のHAZ靱性が優れ、降伏比が80%以下である溶接構造用590N/mmCooling at a cooling rate of 6 to 14 ° C / sec or more from a temperature of not less than the point to 500 ° C or less, the toughness of the entire HAZ after welding with a large heat input of 30 kJ / mm or more is 47 J at 0 ° C Charpy absorbed energy. 590 N / mm for a welded structure having excellent HAZ toughness during large heat input welding and a yield ratio of 80% or less, characterized by obtaining the above steel sheet. 2 Two 級鋼板の製造方法。Manufacturing method for grade steel sheet. 上記合金成分に加え、Nb:0.005〜0.100%、Cu:0.05〜0.50%、Ni:0.05〜1.00%、V:0.005〜0.100%、の一種または二種以上を含有する、請求項7に記載の、大入熱溶接時のHAZ靱性が優れ、降伏比が80%以下である溶接構造用590N/mmIn addition to the above alloy components, Nb: 0.005 to 0.100%, Cu: 0.05 to 0.50%, Ni: 0.05 to 1.00%, V: 0.005 to 0.100%, 590 N / mm for a welded structure having excellent HAZ toughness at the time of large heat input welding and having a yield ratio of 80% or less according to claim 7, which contains one or more of the following. 2 Two 級鋼板の製造方法。Manufacturing method for grade steel sheet. 上記合金成分に加え、Cr:0.05〜0.40%、Mo:0.05〜0.40%、B:0.0002〜0.0020%の一種または二種以上を含有する、請求項7または8に記載の、大入熱溶接時のHAZ靱性が優れ、降伏比が80%以下である溶接構造用590N/mmClaim 1 or 2 or more types of Cr: 0.05 to 0.40%, Mo: 0.05 to 0.40%, B: 0.0002 to 0.0020%, in addition to the alloy components. 590 N / mm for welded structures having excellent HAZ toughness during large heat input welding and having a yield ratio of 80% or less according to 7 or 8. 2 Two 級鋼板の製造方法。Manufacturing method for grade steel sheet. 上記合金成分に加え、Ca:0.0005〜0.0040%を含有する請求項7乃至9のいずれか1項に記載の、大入熱溶接時のHAZ靱性が優れ、降伏比が80%以下である溶接構造用590N/mmThe HAZ toughness at the time of high heat input welding according to any one of claims 7 to 9, which contains Ca: 0.0005 to 0.0040% in addition to the above alloy components, and has a yield ratio of 80% or less. 590 N / mm for welded structures 2 Two 級鋼板の製造方法。Manufacturing method for grade steel sheet. 前記冷却後、AcAfter cooling, Ac 1 1 点以下の温度で焼き戻する請求項7乃至10のいずれか1項に記載の、大入熱溶接時のHAZ靱性が優れ、降伏比が80%以下である溶接構造用590N/mmThe tempering at a temperature equal to or lower than the point, wherein the HAZ toughness at the time of large heat input welding is excellent and the yield ratio is 590 N / mm for a welding structure having a yield ratio of 80% or less. 2 Two 級鋼板の製造方法。Manufacturing method for grade steel sheet. 鋼板の板厚が30mm以上である請求項7乃至11のいずれか1項に記載の、大入熱溶接時のHAZ靱性が優れ、降伏比が80%以下である溶接構造用59The welding structure according to any one of claims 7 to 11, wherein the steel sheet has a thickness of 30 mm or more, and has excellent HAZ toughness during large heat input welding and a yield ratio of 80% or less. 0N/mm0N / mm 2 Two 級鋼板の製造方法。Manufacturing method for grade steel sheet. 前記N含有量が0.0036〜0.0080%である請求項7乃至12のいずれか1項に記載の大入熱溶接構造用590N/mmThe large heat input welding structure according to any one of claims 7 to 12, wherein the N content is 0.0036 to 0.0080%. 2 Two 級鋼板の製造方法。Manufacturing method for grade steel sheet.
JP27807996A 1996-10-21 1996-10-21 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same Expired - Lifetime JP3568710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27807996A JP3568710B2 (en) 1996-10-21 1996-10-21 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27807996A JP3568710B2 (en) 1996-10-21 1996-10-21 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10121191A JPH10121191A (en) 1998-05-12
JP3568710B2 true JP3568710B2 (en) 2004-09-22

Family

ID=17592355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27807996A Expired - Lifetime JP3568710B2 (en) 1996-10-21 1996-10-21 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same

Country Status (1)

Country Link
JP (1) JP3568710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736193B2 (en) * 2001-01-29 2011-07-27 Jfeスチール株式会社 Fillet welded joint with excellent fatigue characteristics and gas shielded arc fillet welding method

Also Published As

Publication number Publication date
JPH10121191A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
JP4410836B2 (en) Method for producing 780 MPa class high strength steel sheet having excellent low temperature toughness
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
KR102255821B1 (en) Ultra-thick steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP2001152248A (en) Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JP2009235549A (en) Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
KR100723201B1 (en) High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP7410438B2 (en) steel plate
JP7506305B2 (en) High-strength steel plate for large heat input welding
JP3568710B2 (en) 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JPH05117745A (en) Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JP4742597B2 (en) Production method of non-tempered high strength steel
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP7381838B2 (en) steel plate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

EXPY Cancellation because of completion of term