JP4742597B2 - Production method of non-tempered high strength steel - Google Patents

Production method of non-tempered high strength steel Download PDF

Info

Publication number
JP4742597B2
JP4742597B2 JP2005020102A JP2005020102A JP4742597B2 JP 4742597 B2 JP4742597 B2 JP 4742597B2 JP 2005020102 A JP2005020102 A JP 2005020102A JP 2005020102 A JP2005020102 A JP 2005020102A JP 4742597 B2 JP4742597 B2 JP 4742597B2
Authority
JP
Japan
Prior art keywords
less
rolling
steel
toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005020102A
Other languages
Japanese (ja)
Other versions
JP2006206958A (en
Inventor
圭治 植田
章夫 大森
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005020102A priority Critical patent/JP4742597B2/en
Publication of JP2006206958A publication Critical patent/JP2006206958A/en
Application granted granted Critical
Publication of JP4742597B2 publication Critical patent/JP4742597B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、引張強さが570MPa以上の非調質高張力鋼の製造方法に関し、特に材質安定性に優れ橋梁、建築、土木、造船、海洋構造物、タンクおよび圧力容器等の用途に好適なものに関する。   The present invention relates to a method for producing non-tempered high-tensile steel having a tensile strength of 570 MPa or more, and is particularly excellent in material stability and suitable for applications such as bridges, architecture, civil engineering, shipbuilding, marine structures, tanks and pressure vessels. About things.

橋梁,建築,土木,造船,海洋構造物,タンク,圧力容器等の厚鋼板は,これまでにもその高強度化や高靭性化など,種々の特性改善が図られてきたが,近年,これらの特性が同一鋼材内の各部位で均一,かつ複数の鋼材間において特性のばらつきが小さいことが要求されている.
この種の高強度高靭性厚鋼板は,制御圧延制御冷却法,いわゆるTMCP法によって製造されるのが通例となっている.しかしながら,このTMCP法によって鋼材を製造すると,圧延後の冷却処理における冷却速度が鋼材の位置,表面からの深さ,または各鋼材間で異なることに起因して鋼組織が変化するため,鋼材の位置あるいは複数の鋼材間において材質ばらつきが生じ易い.
特に、引張り強さが570MPaを超える高強度厚鋼板では、強度確保のために合金を多量に添加するか,あるいは加速冷却を強化することが一般的であるため、低温靭性の劣化や,強度,靭性等の材質ばらつきが大きくなる.このため、強度および低温靭性のばらつきの少ない高張力鋼板の製造方法が要望されている。
Steel plates such as bridges, architecture, civil engineering, shipbuilding, offshore structures, tanks, pressure vessels, etc. have been improved in various properties, such as higher strength and higher toughness. Is required to be uniform in each part of the same steel material and to have small variation in characteristics among multiple steel materials.
This type of high-strength, high-tough steel plate is usually manufactured by the controlled rolling controlled cooling method, the so-called TMCP method. However, when steel is manufactured by this TMCP method, the steel structure changes due to the cooling rate in the cooling treatment after rolling being changed due to the position of the steel, the depth from the surface, or between each steel. Material variations are likely to occur between positions or between multiple steel materials.
In particular, in a high-strength thick steel plate having a tensile strength exceeding 570 MPa, it is common to add a large amount of alloy to ensure strength, or to enhance accelerated cooling. Material variations such as toughness increase. For this reason, there is a demand for a method for producing a high-tensile steel sheet with less variation in strength and low-temperature toughness.

このような要望に対して,例えば,特許文献1,特許文献2,特許文献3には,高強度高靭性厚鋼板の製造方法が提案されている。特許文献1には、Nb、Ti添加量の適正化と,オーステナイト未再結晶域の強圧下後に高冷却速度の加速冷却とを組合わせることにより,ベイナイトラスを微細化し,高強度と高靭性の両立を図る技術が提案されている。   In response to such a demand, for example, Patent Document 1, Patent Document 2, and Patent Document 3 propose a method for producing a high-strength, high-tough steel plate. In Patent Document 1, the bainite lath is refined by combining optimization of Nb and Ti addition amounts and accelerated cooling at a high cooling rate after strong pressure in the austenite non-recrystallized region, and high strength and high toughness. Techniques for achieving both have been proposed.

また,特許文献2には,未再結晶域圧延前のオーステナイト粒を細粒化したうえで,未再結晶域の強圧下後加速冷却を行う技術が提案されている.また,特許文献3には、Ti窒化物を微細分散させて,加熱オーステナイト粒の粗大化を抑制するとともに,オーステナイト未再結晶温度域を拡大するのに有効なB、MoおよびNbの複合添加により,オーステナイト未再結晶域圧延でのオーステナイト粒内組織微細化を効果的に図る技術が提案されている。   Patent Document 2 proposes a technology that refines austenite grains before rolling in the non-recrystallized zone, and then performs accelerated cooling after strong reduction in the non-recrystallized zone. Further, Patent Document 3 discloses that Ti nitride is finely dispersed to suppress the coarsening of the heated austenite grains and to add a combination of B, Mo, and Nb effective for expanding the austenite non-recrystallization temperature range. Therefore, a technique for effectively refining the austenite grain structure in austenite non-recrystallization zone rolling has been proposed.

しかしながら,いずれの技術においても,圧延条件もしくは冷却条件によって,ミクロ組織がフェライトとベイナイトの混合組織,あるいはベイナイトとマルテンサイトの混合組織となり,鋼材の位置あるいは複数の鋼材間における材質のばらつきが避けられない.
すなわち,特許文献1,特許文献2,特許文献3に記載された技術によっても,引張り強さが570MPa以上の高強度と低温靭性をばらつきなく保持させることは困難であった。
特開平10−158778号公報 特開2001−123222号公報 特開2000−256777号公報
However, in either technique, the microstructure becomes a mixed structure of ferrite and bainite, or a mixed structure of bainite and martensite, depending on the rolling conditions or cooling conditions, so that variations in the position of the steel material or between multiple steel materials can be avoided. Absent.
That is, even with the techniques described in Patent Document 1, Patent Document 2, and Patent Document 3, it was difficult to maintain high strength and low temperature toughness with a tensile strength of 570 MPa or more without variation.
JP-A-10-158778 JP 2001-123222 A JP 2000-256777 A

本発明は,上記した従来技術の問題を解決し,鋼材内での位置または複数の鋼材間における材質のばらつきが少なく,従って圧延後の冷却速度について制約が少ない、引張強さが570MPa以上の高強度で、材質安定性に優れる非調質高張力鋼の製造方法を提案することを目的とする。 The present invention solves the above-mentioned problems of the prior art, has less variation in the position within the steel material or between a plurality of steel materials, and therefore has less restrictions on the cooling rate after rolling, and has a high tensile strength of 570 MPa or more. It aims at proposing the manufacturing method of the non-tempered high strength steel which is strong and excellent in material stability.

ここで材質安定性に優れるとは、−40℃でのシャルピー吸収エネルギー(vE-40):100J以上が安定して得られることを指す。   Here, excellent material stability means that Charpy absorbed energy (vE-40) at −40 ° C .: 100 J or more can be stably obtained.

本発明者らは,上述した課題を達成するために,強度および低温靭性に及ぼす各種要因について鋭意研究した。その結果,冷却速度の変化に起因した強度のばらつきを回避するためには,広い冷却速度範囲で均質の組織を得ることが肝要で、極低炭素系の成分組成においてNbおよびBを適量添加すると,広い冷却速度範囲にわたってベイナイト単相組織が得られることを知見した。   In order to achieve the above-mentioned problems, the present inventors have intensively studied various factors affecting strength and low temperature toughness. As a result, in order to avoid variations in strength due to changes in the cooling rate, it is important to obtain a homogeneous structure in a wide range of cooling rates, and when appropriate amounts of Nb and B are added in the extremely low carbon component composition It was found that a bainite single-phase structure was obtained over a wide cooling rate range.

さらに,上記のように成分調整した鋼素材に対して,優れた低温靭性を得るためには,加熱オーステナイト粒を細粒化するための,オーステナイト再結晶域での1次圧延温度範囲と累積圧下率バランスの適正化と,ベイナイト粒内組織微細化を目的としたオーステナイト未再結晶域での2次圧延温度範囲と累積圧下率の適正化とを組合わせることが肝要であることを知見した。   Furthermore, in order to obtain excellent low-temperature toughness for the steel materials whose components are adjusted as described above, the primary rolling temperature range and the cumulative reduction in the austenite recrystallization region are used to refine the heated austenite grains. It was found that it is important to combine the optimization of the rate balance with the optimization of the secondary rolling temperature range and the cumulative reduction rate in the austenite non-recrystallized region for the purpose of refining the bainite grain structure.

本発明は、上述した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
1.質量%で、C:0.005〜0.03%、Si:0.05〜0.50%、Mn:0.6〜3.0%、P:0.025%以下、S:0.0050%以下、Al:0.1%以下、Nb:0.005〜0.1%、Ti:0.005〜0.03%、B:0.0005〜0.0030%、残部Feおよび不可避的不純物からなる鋼を1050〜1250℃に加熱後、各パスの圧延温度T(℃)で累積圧下率:RX1(%)が30〜80%の一次圧延を行い、次いで、各パスの圧延温度が700〜950℃で累積圧下率:RX2(%)の2次圧延を行った後、空冷することを特徴とする引張強さ(TS)が570MPa以上となる材質安定性に優れる非調質高張力鋼の製造方法。
但し、T(℃)は下記(1)式、RX2(%)は下記(2)式による。
1040−0.05(RX1−30)<T<1160−0.05(RX1−30)
(1)
(80−RX1)/(120−RX1)<RX2/100<(92−RX1)/(100−RX1)(2)
2.鋼組成に更にCu:1.0%以下、Ni:2.0%以下、Cr:1.5%以下、Mo:0.7%以下、V:0.2%以下、REM:0.02%以下、Ca:0.005%以下、Mg:0.005%以下の一種または二種以上を添加することを特徴とする1記載の引張強さ(TS)が570MPa以上となる材質安定性に優れる非調質高張力鋼の製造方法。
The present invention has been completed based on the above-described findings and further studies. That is, the gist of the present invention is as follows.
1. In mass%, C: 0.005 to 0.03%, Si: 0.05 to 0.50%, Mn: 0.6 to 3.0%, P: 0.025% or less, S: 0.0050 % Or less, Al: 0.1% or less, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.03%, B: 0.0005 to 0.0030%, balance Fe and inevitable impurities After heating the steel consisting of 1050 to 1250 ° C., primary rolling is performed at a rolling temperature T (° C.) of each pass of 30 to 80% of the cumulative rolling reduction ratio: R X1 (%). Non-tempered high excellent in material stability with a tensile strength (TS) of 570 MPa or more, characterized by air cooling after secondary rolling at 700 to 950 ° C. with cumulative rolling reduction: R X2 (%) Tensile steel manufacturing method.
However, T (° C.) is according to the following formula (1), and R X2 (%) is according to the following formula (2).
1040-0.05 (R X1 -30) 2 <T <1160-0.05 (R X1 -30) 2
(1)
(80-R X1 ) / (120-R X1 ) <R X2 / 100 <(92-R X1 ) / (100-R X1 ) (2)
2. Further steel composition: Cu: 1.0% or less, Ni: 2.0% or less, Cr: 1.5% or less, Mo: 0.7% or less, V: 0.2% or less, REM: 0.02% Hereinafter, one or two or more of Ca: 0.005% or less and Mg: 0.005% or less are added. The tensile strength (TS) according to 1, wherein the tensile strength (TS) is 570 MPa or more is excellent. Production method of non-tempered high-tensile steel.

3.1または2記載の製造方法による鋼を冷却後、400℃以上、Ac1変態点以下に焼戻すことを特徴とする引張強さ(TS)が570MPa以上となる高張力鋼の製造方法。   3. A method for producing a high-strength steel having a tensile strength (TS) of 570 MPa or more, characterized by tempering the steel by the production method according to 3.1 or 2 to 400 ° C. or more and the Ac1 transformation point or less.

本発明によれば、引張強さが570MPa以上の高強度鋼において鋼材内での試験片採取位置または複数の鋼材間における材質のばらつきが少なく,安定した引張強さと優れた低温靭性を安定して併せ持つ材質安定性に優れた非調質高張力鋼を工業的に安定して製造することが可能となり,産業上格段の効果を奏する。   According to the present invention, in high-strength steel having a tensile strength of 570 MPa or more, there is little variation in the specimen sampling position in the steel material or between multiple steel materials, and stable tensile strength and excellent low temperature toughness can be stably achieved. In addition, it is possible to produce industrially stable non-tempered high-tensile steel with excellent material stability, which has a remarkable industrial effect.

[成分組成]
本発明で使用する鋼素材の組成限定理由について具体的に説明する.なお,成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.005〜0.03%
Cは,冷却速度に依存せずにベイナイト単相組織とするため、および後述するNbの効果を発現させるために添加する。しかしながら、含有量が0.005%に満たないとその添加効果に乏しく、一方、0.03%を超えると組織にセメンタイトを含むパーライトが出現するため、冷却速度依存性が大きくなり材質の均質性が損なわれやすくなる。このため、Cは0.005〜0.03%の範囲に限定する。なお、好ましくは0.010〜0.025%である。
[Ingredient composition]
The reason for limiting the composition of the steel material used in the present invention will be described in detail. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.005 to 0.03%
C is added to make a bainite single-phase structure independent of the cooling rate and to express the effect of Nb described later. However, if the content is less than 0.005%, the addition effect is poor. On the other hand, if it exceeds 0.03%, pearlite containing cementite appears in the structure. Is easily damaged. For this reason, C is limited to the range of 0.005 to 0.03%. In addition, Preferably it is 0.010 to 0.025%.

Si:0.05〜0.50%
Siは、脱酸材として作用し、製鋼上,少なくとも0.05%必要であるが0.50%を超えて含有すると母材の靭性が劣化する。このため、Siは0.05〜0.50%の範囲に限定する。なお、好ましくは0.05〜0.35%である。
Si: 0.05 to 0.50%
Si acts as a deoxidizing material, and at least 0.05% is necessary for steelmaking, but if it exceeds 0.50%, the toughness of the base material deteriorates. For this reason, Si is limited to the range of 0.05 to 0.50%. In addition, Preferably it is 0.05 to 0.35%.

Mn:0.6〜3.0%
Mnは、鋼の強度を増加させる効果を有しており、本発明では、引張強度570MPa以上を確保するために0.6%以上の含有を必要とする。一方、3.0%を超えて含有すると母材の靭性が著しく劣化する。このため、Mnは0.6〜3.0%の範囲に限定する。なお、好ましくは1.0〜2.0%である。
Mn: 0.6 to 3.0%
Mn has the effect of increasing the strength of the steel. In the present invention, Mn needs to be contained in an amount of 0.6% or more in order to ensure a tensile strength of 570 MPa or more. On the other hand, if the content exceeds 3.0%, the toughness of the base material is remarkably deteriorated. For this reason, Mn is limited to the range of 0.6 to 3.0%. In addition, Preferably it is 1.0 to 2.0%.

P:0.025%以下
Pは、鋼の強度を増加させ靭性を劣化させる元素であり,とくに溶接部の靭性を劣化させるので、できるだけ低減することが望ましい。Pが0.025%を超えて含有されると、この傾向が顕著となるため、上限とした。なお、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.005%以上とすることが望ましい。
P: 0.025% or less P is an element that increases the strength of steel and deteriorates toughness, and particularly deteriorates the toughness of welds, so it is desirable to reduce it as much as possible. When P exceeds 0.025%, this tendency becomes remarkable, so the upper limit is set. In addition, since excessive P reduction raises refining cost and becomes economically disadvantageous, it is desirable to set it as 0.005% or more.

S:0.0050%以下
Sは靭性を劣化させる不純物元素であり、できるだけ低減することが望ましい。Sが0.0050%を超えて含有されるとこの傾向が顕著となるため、Sは0.0050%以下に限定した。
S: 0.0050% or less S is an impurity element that deteriorates toughness, and is desirably reduced as much as possible. This tendency becomes significant when S exceeds 0.0050%, so S is limited to 0.0050% or less.

Al:0.1%以下
Alは、脱酸剤として作用し、高張力鋼の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる.また、鋼中のNをAlNとして固定し、Bの焼入れ性を確保する効果も有する。しかしながら、0.1%を超える含有は母材の靭性が低下するとともに、溶接時に溶接金属部に混入して靭性を劣化させる。このため、Alは0.1%以下に限定した。なお、好ましくは0.01〜0.07%である。
Al: 0.1% or less Al acts as a deoxidizer and is most commonly used in the molten steel deoxidation process of high-strength steel. Moreover, N in steel is fixed as AlN, and it has the effect of ensuring the hardenability of B. However, when the content exceeds 0.1%, the toughness of the base material is lowered, and the toughness is deteriorated by being mixed in the weld metal part during welding. For this reason, Al was limited to 0.1% or less. In addition, Preferably it is 0.01 to 0.07%.

Nb:0.005〜0.1%
Nbは圧延時におけるオーステナイト未再結晶温度域を拡大し,微細な粒内組織を得るのに有効に寄与する。また、ベイナイト変態温度を低下させることにより、靭性の優れたベイナイト組織を得る上でも有用な元素である。このような効果を得るためには0.005%以上の添加が必要である。
Nb: 0.005 to 0.1%
Nb expands the austenite non-recrystallization temperature range during rolling and contributes effectively to obtain a fine intragranular structure. It is also an element useful for obtaining a bainite structure having excellent toughness by lowering the bainite transformation temperature. In order to obtain such an effect, addition of 0.005% or more is necessary.

しかしながら、0.1%を超えるとその効果は飽和し、さらに、圧延時におけるオーステナイト再結晶温度域を著しく縮小させることにより、加熱オーステナイト粒の再結晶細粒化を阻害して低温靭性の劣化を招く。このためNbは0.005〜0.1%の範囲に限定した。なお、好ましくは0.02〜0.05%である。   However, if it exceeds 0.1%, the effect is saturated, and further, the austenite recrystallization temperature range during rolling is significantly reduced, thereby inhibiting the recrystallization refinement of the heated austenite grains and reducing the low temperature toughness. Invite. For this reason, Nb was limited to 0.005 to 0.1% of range. In addition, Preferably it is 0.02-0.05%.

Ti:0.005〜0.030%
Tiは、Nとの親和力が強く凝固時にTiNとして析出し、鋼中のNを固定することによってBの効果を有効に発揮させる有用元素である。また、素材加熱時ならびに溶接熱影響部でのオーステナイト粒成長を抑制して組織を微細化する効果もある。
Ti: 0.005-0.030%
Ti is a useful element that has a strong affinity for N and precipitates as TiN during solidification, and effectively exhibits the effect of B by fixing N in the steel. In addition, there is also an effect of suppressing the austenite grain growth at the time of heating the material and at the weld heat affected zone to refine the structure.

このような効果を得るためには、0.005%以上の含有が必要である。一方、0.030%を超えて含有すると鋼の清浄性や靭性が低下する。このため、Tiは0.005〜0.030%の範囲に限定する。なお、好ましくは0.010〜0.030%である。   In order to acquire such an effect, 0.005% or more needs to be contained. On the other hand, if the content exceeds 0.030%, the cleanliness and toughness of the steel deteriorate. For this reason, Ti is limited to 0.005 to 0.030% of range. In addition, Preferably it is 0.010 to 0.030%.

B:0.0005〜0.0030%
Bは、微量の添加によって旧γ粒界エネルギーを減少させてフェライトの核生成を抑制するのに有効に寄与する。この効果を発揮させて鋼組織をベイナイト単相とするためには0.0005%以上の添加が必要である。
B: 0.0005 to 0.0030%
B contributes effectively to decrease the old γ grain boundary energy and suppress the nucleation of ferrite by adding a small amount. In order to exhibit this effect and make the steel structure a single phase of bainite, it is necessary to add 0.0005% or more.

一方、0.0030%を超える含有は焼入れ性を著しく増加させ、母材の靭性、延性の劣化をもたらす。このため、Bは0.0005〜0.0030%の範囲に限定した。なお、好ましくは0.0005〜0.0020%である。   On the other hand, if the content exceeds 0.0030%, the hardenability is remarkably increased and the toughness and ductility of the base material are deteriorated. For this reason, B was limited to the range of 0.0005 to 0.0030%. In addition, Preferably it is 0.0005 to 0.0020%.

本発明では,更に、所望の特性を向上させる場合、上述した基本成分系に加えて、Cu:1.0%以下、Ni:2.0%以下の1種または2種、および/またはCr:1.5%以下、Mo:0.7%以下、V:0.2%の1種または2種以上、および/またはREM:0.02%以下、Ca:0.005%以下およびMg:0.005%以下の1種または2種以上を含有することができる。   In the present invention, when desired characteristics are further improved, in addition to the basic component system described above, one or two of Cu: 1.0% or less, Ni: 2.0% or less, and / or Cr: 1.5% or less, Mo: 0.7% or less, V: 0.2% or more, and / or REM: 0.02% or less, Ca: 0.005% or less, and Mg: 0 One or two or more of 0.005% or less may be contained.

Cu:1.0%以下、Ni:2.0%以下の1種または2種
CuおよびNiは高靭性を保ちつつ強度を増加させることが可能な元素であり、HAZ靭性への影響も小さいため高強度化のために有用な元素である。
One or two of Cu: 1.0% or less and Ni: 2.0% or less Cu and Ni are elements that can increase strength while maintaining high toughness, and have little influence on HAZ toughness. It is an element useful for increasing strength.

Cuを添加する場合、0.1%以上含有することが好ましいが、含有量が1.0%を超えると熱間脆性を生じて鋼板の表面性状を劣化させる。このため、Cuは1.0%以下に限定した。なお、好ましくは0.2〜0.7%である。   When adding Cu, it is preferable to contain 0.1% or more. However, if the content exceeds 1.0%, hot brittleness is generated and the surface properties of the steel sheet are deteriorated. For this reason, Cu was limited to 1.0% or less. In addition, Preferably it is 0.2 to 0.7%.

Niを添加する場合、0.1%以上含有することが好ましいが、2.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利になる。このため、Niは2.0%以下に限定した。なお、好ましくは0.2〜1.7%である。   When adding Ni, it is preferable to contain 0.1% or more, but even if it contains more than 2.0%, the effect is saturated, the effect commensurate with the content can not be expected, economically disadvantageous Become. For this reason, Ni was limited to 2.0% or less. In addition, Preferably it is 0.2 to 1.7%.

Cr:1.5%以下、Mo:0.7%以下、V:0.2%以下の1種または2種以上
Cr、MoおよびVはいずれも鋼の強度向上に寄与する元素である。Crを添加する場合は、0.05%以上含有することが好ましいが、1.5%を超える含有は母材およびHAZ靭性を劣化させる。このため、Crは1.5%以下に限定することが望ましい。
One or two or more of Cr: 1.5% or less, Mo: 0.7% or less, V: 0.2% or less Cr, Mo, and V are all elements that contribute to improving the strength of steel. When adding Cr, it is preferable to contain 0.05% or more, but inclusion exceeding 1.5% degrades the base material and the HAZ toughness. For this reason, it is desirable to limit Cr to 1.5% or less.

Moを添加する場合は、0.05%以上含有することが好ましいが、0.7%を超える含有は母材靭性およびHAZ靭性に悪影響を及ぼす。このため、Moは0.7%以下に限定することが望ましい。   When adding Mo, it is preferable to contain 0.05% or more, but inclusion exceeding 0.7% adversely affects the base material toughness and the HAZ toughness. For this reason, it is desirable to limit Mo to 0.7% or less.

Vを添加する場合は、0.01%以上含有することが好ましいが、 0.2%を超える含有は、HAZ靭性を劣化させる。このため、Vは0.2%以下に限定することが望ましい。   When adding V, it is preferable to contain 0.01% or more, but the content exceeding 0.2% deteriorates HAZ toughness. For this reason, it is desirable to limit V to 0.2% or less.

REM:0.02%以下、Ca:0.005%以下およびMg:0.005%以下の1種または2種以上
REM、CaおよびMgはいずれも靭性向上に寄与する元素である。REMを添加する場合は、0.002%以上含有することが好ましいが 、0.02%を超えて含有しても効果が飽和するため0.02%を上限とした。
One or more of REM: 0.02% or less, Ca: 0.005% or less, and Mg: 0.005% or less REM, Ca, and Mg are elements that contribute to toughness improvement. When adding REM, it is preferable to contain 0.002% or more, but even if it contains more than 0.02%, the effect is saturated, so 0.02% was made the upper limit.

Caを添加する場合は、0.001%以上含有することが好ましいが、0.005% を超えて含有しても効果が飽和するため0.005%を上限とした。   When adding Ca, it is preferable to contain 0.001% or more, but even if it contains exceeding 0.005%, the effect is saturated, so 0.005% was made the upper limit.

Mgは結晶粒の微細化を介して靭性を向上させる有用な元素である。Mgを添加する場合は0.001%以上含有することが好ましいが、0.005%を超えて含有しても効果が飽和するため、0.005%を上限とした。   Mg is a useful element that improves toughness through refinement of crystal grains. When adding Mg, it is preferable to contain 0.001% or more, but even if it exceeds 0.005%, the effect is saturated, so 0.005% was made the upper limit.

なお,上記した成分以外の残部は、Feおよび不可避的不純物である。
[製造条件]
本発明における製造方法について説明する。本発明は、オーステナイト再結晶温度域の1次圧延の温度範囲と圧下率の関係の最適化と、オーステナイト未再結晶温度域の2次圧延における圧延温度範囲と累積圧下率の関係の最適化を組合わせることを製造条件における特徴とする。なお、温度に関する「℃」表示は特に断らない限り板厚1/2t部の温度を意味するものとする。
The balance other than the components described above is Fe and inevitable impurities.
[Production conditions]
The production method in the present invention will be described. The present invention optimizes the relationship between the rolling range and primary rolling temperature range in the austenite recrystallization temperature range, and optimizes the relationship between the rolling temperature range and cumulative reduction rate in secondary rolling in the austenite non-recrystallization temperature range. Combining is a feature in manufacturing conditions. The “° C.” display relating to the temperature means a temperature of 1/2 t part thickness unless otherwise specified.

本発明では、上述した組成の溶鋼を、転炉、電気炉、真空溶解炉等の周知の装置を用いて常法により溶製ー鋳造後鋼素材(スラブ)とし、1050〜1250℃に再加熱する。   In the present invention, the molten steel having the above-described composition is made into a steel material (slab) after being melted and cast by a conventional method using a known apparatus such as a converter, an electric furnace, a vacuum melting furnace, and reheated to 1050 to 1250 ° C. To do.

再加熱温度が1050℃未満では、熱間圧延での変形抵抗が高くなり1パス当たりの圧下率が大きく取れなくなることから、圧延パス数が増加し、圧延能率の低下を招き、所定の圧延温度範囲や累積圧下率を確保することが困難になる。また、鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合も生じる。   When the reheating temperature is less than 1050 ° C., the deformation resistance in hot rolling becomes high and the rolling reduction per pass cannot be increased, so the number of rolling passes increases, causing a reduction in rolling efficiency, and the predetermined rolling temperature It becomes difficult to ensure the range and the cumulative rolling reduction. Moreover, the case where the casting defect in steel materials (slab) cannot be crimped also arises.

一方、再加熱温度が1250℃を超えると、加熱時のスケールによって表面疵が生じやすく、圧延後の手入れ負荷が増大する。このため、鋼素材の再加熱温度は1050〜1250℃の範囲とするのが好ましい。   On the other hand, when the reheating temperature exceeds 1250 ° C., surface flaws are likely to occur due to the scale during heating, and the maintenance load after rolling increases. For this reason, it is preferable to make the reheating temperature of a steel raw material into the range of 1050-1250 degreeC.

本発明では、1050〜1250℃に加熱後、下記(1)式で定義される温度T(オーステナイト再結晶温度)の範囲内で行う累積圧下率30〜80%の、複数パスからなる1次圧延と、700〜950℃のオーステナイト未再結晶温度域で下記(2)式で定義される累積圧下率RX2の、複数パスからなる2次圧延を効果的に利用することにより、変態前のオーステナイト状態を制御して、強度および低温靭性のばらつきを少なくするのに最適なベイナイト組織を得ることができる。
1040−0.05(RX1−30)<T<1160−0.05(RX1−30)
(1)
ここで、RX1:一次圧延の累積圧下率(%)、T:温度(℃)
(80−RX1)/(120−RX1)<RX2/100<(92−RX1)/(100−RX1) (2)
ここで、RX2:2次圧延の累積圧下率(%)
以下、圧延条件について具体的に説明する。鋼素材を加熱後、上記(1)式で定義されるオーステナイト再結晶温度域で累積圧下率30〜80%の1次圧延を施し、オーステナイト粒を再結晶により十分細粒化する。
In the present invention, after heating to 1050 to 1250 ° C., primary rolling consisting of a plurality of passes with a cumulative reduction ratio of 30 to 80% performed within a range of temperature T (austenite recrystallization temperature) defined by the following formula (1): And austenite before transformation by effectively using secondary rolling consisting of a plurality of passes with a cumulative reduction ratio R X2 defined by the following formula (2) in the austenite non-recrystallization temperature range of 700 to 950 ° C. By controlling the state, it is possible to obtain an optimum bainite structure for reducing variations in strength and low temperature toughness.
1040-0.05 (R X1 -30) 2 <T <1160-0.05 (R X1 -30) 2
(1)
Here, R X1 : Cumulative rolling reduction (%) of primary rolling, T: Temperature (° C.)
(80-R X1 ) / (120-R X1 ) <R X2 / 100 <(92-R X1 ) / (100-R X1 ) (2)
Here, R X2 : Cumulative rolling reduction ratio of secondary rolling (%)
Hereinafter, the rolling conditions will be specifically described. After heating the steel material, primary rolling is performed at a cumulative reduction of 30 to 80% in the austenite recrystallization temperature range defined by the above formula (1), and the austenite grains are sufficiently refined by recrystallization.

さらに、引き続く700〜950℃のオーステナイト未再結晶温度域で下記(2)式で定義される累積圧下率の2次圧延を施し、1次圧延で細粒化されたオーステナイト結晶粒内に多数の歪を導入することにより、ベイナイト組織の微細化を実現する。   Furthermore, the secondary rolling of the cumulative reduction defined by the following formula (2) is performed in the subsequent austenite non-recrystallization temperature range of 700 to 950 ° C., and a large number of grains are contained in the austenite crystal grains refined by the primary rolling. By introducing strain, the bainite structure is refined.

1次圧延は、累積圧下率が30%以下になると、再結晶による細粒化が不十分であり、また、累積圧下率が80%以上になると、2次圧延の累積圧下率が不足するためオーステナイト結晶粒内の微細化が不十分となり低温靭性が劣化する。このため、1次圧延の累積圧下率は30〜80%の範囲に限定する。   In the primary rolling, if the cumulative rolling reduction is 30% or less, the refining is insufficient, and if the cumulative rolling reduction is 80% or more, the cumulative rolling reduction of the secondary rolling is insufficient. Refinement in the austenite crystal grains becomes insufficient and the low temperature toughness deteriorates. For this reason, the cumulative rolling reduction of primary rolling is limited to the range of 30 to 80%.

本発明では、累積圧下率と圧延温度範囲のバランスが重要で(1)式で定義される温度より圧延温度が高くなると、オーステナイト粒は再結晶するものの、効果的に細粒化されず、低温靭性が不利になる。   In the present invention, the balance between the cumulative rolling reduction and the rolling temperature range is important. When the rolling temperature becomes higher than the temperature defined by the formula (1), the austenite grains recrystallize, but they are not effectively refined, and the temperature is low. Toughness is disadvantageous.

一方、上記(1)式で定義される温度より圧延温度が低くなると、十分にオーステナイト粒が再結晶せず、一部で粗大なオーステナイト粒が残存するようになるために、低温靭性が劣化するとともにばらつきが生じる。このため、1次圧延は(1)式の温度範囲に限定する。   On the other hand, when the rolling temperature is lower than the temperature defined by the above formula (1), the austenite grains are not sufficiently recrystallized, and some coarse austenite grains remain, so that the low temperature toughness deteriorates. Variations occur. For this reason, primary rolling is limited to the temperature range of Formula (1).

2次圧延は、圧延開始温度が950℃以上になるとオーステナイト結晶粒内への歪の導入が不足し組織が微細化されず、低温靭性が不利になる。   In secondary rolling, when the rolling start temperature is 950 ° C. or higher, introduction of strain into the austenite crystal grains is insufficient, the structure is not refined, and low temperature toughness is disadvantageous.

一方、圧延終了温度が700℃未満では、変形抵抗が高くなりすぎて圧延荷重が増大し、圧延機への負担が大きくなるだけでなく、機械的性質に異方性が生じ、さらには、フェライトの生成が促進されて強度が低下するようになる。   On the other hand, when the rolling end temperature is less than 700 ° C., the deformation resistance becomes too high, the rolling load increases, the load on the rolling mill increases, and the anisotropy of the mechanical properties occurs. The generation of is promoted and the strength decreases.

また、厚肉材の圧延終了温度を700℃未満まで低下させるためには、圧延途中で待機させる時間が著しく長くなり、生産性を大きく阻害する。このため、2次圧延の温度範囲を700〜950℃とした。   In addition, in order to lower the rolling end temperature of the thick material to less than 700 ° C., the time for waiting in the middle of rolling becomes remarkably long, which greatly hinders productivity. For this reason, the temperature range of secondary rolling was 700-950 degreeC.

また、2次圧延における累積圧下率は1次圧延における累積圧下率との関係において最適化することが重要となる。 2次圧延における累積圧下率が(2)式で定義される範囲を超えて、より高くなると、機械的性質に異方性が生じ、さらにはフェライトの生成が促進されて強度が低下するようになる。   In addition, it is important to optimize the cumulative rolling reduction in secondary rolling in relation to the cumulative rolling reduction in primary rolling. When the cumulative rolling reduction in secondary rolling exceeds the range defined by equation (2) and becomes higher, anisotropy occurs in the mechanical properties, and further, the formation of ferrite is promoted and the strength is lowered. Become.

一方、2次圧延における累積圧下率が (2)式で定義される範囲を超えて、より低くなると、オーステナイト結晶粒内の微細化が不十分となり、低温靭性が劣化する。このため、2次圧延の累積圧下率は(2)式の範囲に限定する。   On the other hand, if the cumulative rolling reduction in the secondary rolling exceeds the range defined by the formula (2) and becomes lower, refinement in the austenite crystal grains becomes insufficient, and the low temperature toughness deteriorates. For this reason, the cumulative rolling reduction of secondary rolling is limited to the range of Formula (2).

なお、1パスあたりの圧下率については規定しないが、1パスあたりの圧下率が5%未満になると圧延パス数が増加し、圧延能率の低下を招き、上記の圧延温度範囲や累積圧下率を確保することが困難となるため、1パスあたりの圧下率は5%以上とすることが好ましい。   The rolling reduction per pass is not specified, but if the rolling reduction per pass is less than 5%, the number of rolling passes increases and the rolling efficiency decreases, and the above rolling temperature range and cumulative rolling reduction are reduced. Since it becomes difficult to ensure, the rolling reduction per pass is preferably 5% or more.

また、板厚が60mmを超える極厚鋼板の場合には、ザク圧着のために1次圧延において1パスあたりの圧下率が15%以上となる圧延パスを少なくとも1パス以上確保することが望ましい。   Further, in the case of an extremely thick steel plate having a thickness exceeding 60 mm, it is desirable to secure at least one or more rolling passes in which the rolling reduction per pass is 15% or more in the primary rolling for the Zaku pressure bonding.

本発明において圧延終了後の冷却方法は、上述した基本組成と圧延条件の組合わせにより、ほぼ均一な組織を広い冷却速度範囲において得ることができるため、空冷をしても加速冷却をしてもよく特に規定しない。なお、加速冷却を施す場合は冷却停止温度を室温以上とすることが好ましい。   In the present invention, the cooling method after the end of rolling can obtain an almost uniform structure in a wide cooling rate range by the combination of the basic composition and rolling conditions described above. Not well specified. In addition, when performing accelerated cooling, it is preferable that cooling stop temperature shall be more than room temperature.

本発明により厚鋼板を製造する場合、焼戻し処理を施してもよい。厚鋼板の場合、400℃以上Ac1変態点以下の焼戻し処理により、冷却時に生成した脆い硬化相の靭性を向上できる。尚、焼戻しは室温まで冷却した後に、オフラインの熱処理設備で施しても、インラインで冷却後、インライン加熱設備で施しても良い。   When manufacturing a thick steel plate by this invention, you may give a tempering process. In the case of a thick steel plate, the toughness of the brittle hardened phase generated during cooling can be improved by tempering at 400 ° C. or higher and the Ac1 transformation point or lower. The tempering may be performed after cooling to room temperature in an off-line heat treatment facility or in-line heating facility after in-line cooling.

このような効果を得るためには、焼戻し温度を400℃以上とする必要があるが、 600℃を超えると強度低下を招くため、焼戻し処理は400〜600℃で行うことが望ましい。   In order to obtain such an effect, it is necessary to set the tempering temperature to 400 ° C. or higher. However, if it exceeds 600 ° C., the strength is lowered, so that the tempering treatment is preferably performed at 400 to 600 ° C.

上述した組成の鋼素材に上述した条件の熱間圧延を施すことを特徴とする本発明によれば、引張強さ570MPa以上の高強度において、安定した強度と低温靭性を兼備する非調質高張力鋼を容易に製造することができる。以下、本発明の効果を実施例をもって示す。   According to the present invention, which is characterized by subjecting a steel material having the above-described composition to hot rolling under the above-described conditions, in a high strength with a tensile strength of 570 MPa or more, a non-tempered high having both stable strength and low-temperature toughness. Tensile steel can be easily manufactured. Hereinafter, the effect of the present invention will be described with examples.

本発明に係る鋼板を製造条件を変えて複数枚製造し、各鋼板間での材質のバラツキを調査した。転炉−取鍋精錬−連続鋳造法で,表1に示す組成に調製された鋼素材を種々の製造条件(熱間圧延工程、冷却方法)により厚鋼板とした。表2に熱間圧延条件、冷却条件および得られた厚鋼板の板厚を示す。前記厚鋼板はいずれも成分組成が本発明範囲内で、熱間圧延条件、冷却条件も本発明範囲内で種々に変化させた本発明に係る鋼である。   A plurality of steel plates according to the present invention were manufactured under different manufacturing conditions, and the variation in material between the steel plates was investigated. Steel materials prepared in the composition shown in Table 1 by the converter-ladder refining-continuous casting method were made into thick steel plates under various production conditions (hot rolling process, cooling method). Table 2 shows the hot rolling conditions, the cooling conditions, and the thickness of the obtained thick steel sheet. Each of the thick steel plates is a steel according to the present invention in which the component composition is within the range of the present invention, and the hot rolling conditions and the cooling conditions are variously changed within the range of the present invention.

各厚鋼板の板厚1/4および1/2位置から、JIS4号引張試験片を採取し、JISZ2241の既定に準拠して引張試験を実施し、引張特性を調査した。また、得られた各厚鋼板の板厚1/4および1/2位置から、JISZ2202の規定に準拠してVノッチシャルピー衝撃試験片を採取し、JISZ2242の規定に準拠してシャルピー衝撃試験を試験温度ー40℃で実施し、シャルピー衝撃吸収エネルギーを求め、母材の低温靭性を評価した。尚、シャルピー衝撃試験は板厚1/4および1/2位置で各5本とした。   JIS No. 4 tensile test specimens were collected from the thickness ¼ and ½ positions of each thick steel plate, and a tensile test was carried out in accordance with JISZ2241 defaults to investigate the tensile properties. In addition, V-notch Charpy impact test specimens were collected from the thickness 1/4 and 1/2 positions of each thick steel plate obtained in accordance with JISZ2202, and tested for Charpy impact test in accordance with JISZ2242. The test was carried out at a temperature of −40 ° C., Charpy impact absorption energy was determined, and the low temperature toughness of the base material was evaluated. In addition, the Charpy impact test was made into five each at the board thickness 1/4 and 1/2 position.

表3に引張試験結果、シャルピー衝撃試験結果を示す。本発明に係る鋼は製造条件が変動しても各鋼材間での特性のばらつきが少なく、引張強さ570MPa以上の高強度において、安定した高強度と、−40℃でのシャルピー衝撃吸収エネルギーが個値で100J以上の安定した低温靭性を有している。   Table 3 shows the tensile test results and Charpy impact test results. The steel according to the present invention has little variation in properties among steel materials even when the production conditions fluctuate, and has a high strength with a tensile strength of 570 MPa or more, a stable high strength, and a Charpy impact absorption energy at −40 ° C. It has a stable low temperature toughness of 100 J or more in individual values.

Figure 0004742597
Figure 0004742597

Figure 0004742597
Figure 0004742597

Figure 0004742597
Figure 0004742597

表4に示す成分組成の鋼を転炉−取鍋精錬−連続鋳造法で鋼素材(スラブ)とし、種々の製造条件(熱間圧延工程、冷却条件)により厚鋼板とした。一部の厚鋼板には、焼戻し工程を施した。表5に熱間圧延条件、冷却条件を示す。   Steel having the component composition shown in Table 4 was made into a steel material (slab) by a converter-ladder refining-continuous casting method, and was made into a thick steel plate by various production conditions (hot rolling process, cooling conditions). Some thick steel plates were tempered. Table 5 shows hot rolling conditions and cooling conditions.

得られた各厚鋼板の板厚1/4、1/2および3/4位置からJIS4号引張試験片を採取し,JISZ2241の既定に準拠して引張試験を実施し、引張特性を調査した。また、得られた各厚鋼板の板厚1/4、1/2および3/4位置から、JISZ2202の規定に準拠してVノッチシャルピー衝撃試験片を採取し、JISZ2242の規定に準拠してシャルピー衝撃試験を試験温度ー40℃で実施し、シャルピー衝撃吸収エネルギーを求め、母材の低温靭性を評価した。尚、シャルピー衝撃試験は各採取位置で各5本とした。   JIS No. 4 tensile test specimens were collected from the 1/4, 1/2, and 3/4 positions of the obtained steel plate thickness, and a tensile test was carried out in accordance with JISZ2241 defaults to investigate the tensile properties. In addition, V-notch Charpy impact test specimens were collected from the obtained thicknesses of 1/4, 1/2 and 3/4 of each thick steel plate in accordance with JISZ2202, and Charpy in accordance with JISZ2242. An impact test was performed at a test temperature of −40 ° C., Charpy impact absorption energy was determined, and the low temperature toughness of the base material was evaluated. In addition, the Charpy impact test was made into five each at each sampling position.

表6−1、表6−2に引張試験結果、シャルピー衝撃試験結果を示す。本発明例はいずれの厚鋼板も板厚1/4、1/2および3/4の各鋼材内位置で引張強さ570MPa以上の高強度において、安定した高強度とー40℃でのシャルピー衝撃吸収エネルギーが個値で100J以上の安定した低温靭性の母材特性を有する。   Tables 6-1 and 6-2 show the tensile test results and Charpy impact test results. In the examples of the present invention, each of the thick steel plates has a stable high strength and a Charpy impact at −40 ° C. at a high strength of 570 MPa or more at each of the steel material thicknesses of 1/4, 1/2 and 3/4. It has stable low-temperature toughness base material characteristics with an absorbed energy of 100 J or more in individual values.

一方、成分組成または製造条件の一部が本発明の範囲を外れる比較例では、板厚1/4、1/2および3/4の各鋼材内位置のいずれかまたは全てにおいて、母材強度が570MPa未満(比較例No.3−3、No.6−2、No.13、No.15、No.16)となったり、母材強度が570MPa以上となるものは−40℃でのシャルピー衝撃吸収エネルギーが100J未満となる個値が生じたりして安定した低温靭性が得られない(比較例No.1−2、No.1−3、No.1−4、No.3−2、No.4−2、No.8−2、No.8−3、No.11、No.12、No.14、No.17、No.18)。   On the other hand, in the comparative example in which a part of the component composition or the manufacturing condition is out of the scope of the present invention, the base material strength is at any or all of the positions in the steel materials of the thickness 1/4, 1/2, and 3/4. Charpy impact at −40 ° C. is less than 570 MPa (Comparative Examples No. 3-3, No. 6-2, No. 13, No. 15, No. 16) or a base material strength of 570 MPa or more. Stable low-temperature toughness cannot be obtained due to the occurrence of individual values with absorbed energy of less than 100 J (Comparative Examples No. 1-2, No. 1-3, No. 1-4, No. 3-2, No. 4-2, No. 8-2, No. 8-3, No. 11, No. 12, No. 14, No. 17, No. 18).

Figure 0004742597
Figure 0004742597

Figure 0004742597
Figure 0004742597

Figure 0004742597
Figure 0004742597

Figure 0004742597
Figure 0004742597

Claims (2)

質量%で、C:0.005〜0.03%、Si:0.05〜0.50%、Mn:0.6〜3.0%、P:0.025%以下、S:0.0050%以下、Al:0.1%以下、Nb:0.005〜0.1%、Ti:0.005〜0.03%、B:0.0005〜0.0030%、残部Feおよび不可避的不純物からなる鋼を1050〜1250℃に加熱後、各パスの圧延温度T(℃)で累積圧下率:RX1(%)が30〜80%の一次圧延を行い、次いで、各パスの圧延温度が700〜950℃で累積圧下率:RX2(%)の2次圧延を行った後、空冷することを特徴とする引張強さ(TS)が570MPa以上となる材質安定性に優れる非調質高張力鋼の製造方法。
但し、T(℃)は下記(1)式、RX2(%)は下記(2)式による。
1040−0.05(RX1−30)<T<1160−0.05(RX1−30)
(1)
(80−RX1)/(120−RX1)<RX2/100<(92−RX1)/(100−RX1)(2)
In mass%, C: 0.005 to 0.03%, Si: 0.05 to 0.50%, Mn: 0.6 to 3.0%, P: 0.025% or less, S: 0.0050 % Or less, Al: 0.1% or less, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.03%, B: 0.0005 to 0.0030%, balance Fe and inevitable impurities After heating the steel consisting of 1050 to 1250 ° C., primary rolling is performed at a rolling temperature T (° C.) of each pass of 30 to 80% of the cumulative rolling reduction ratio: R X1 (%). Non-tempered high excellent in material stability with a tensile strength (TS) of 570 MPa or more, characterized by air cooling after secondary rolling at 700 to 950 ° C. with cumulative rolling reduction: R X2 (%) Tensile steel manufacturing method.
However, T (° C.) is according to the following formula (1), and R X2 (%) is according to the following formula (2).
1040-0.05 (R X1 -30) 2 <T <1160-0.05 (R X1 -30) 2
(1)
(80-R X1 ) / (120-R X1 ) <R X2 / 100 <(92-R X1 ) / (100-R X1 ) (2)
鋼組成に、質量%で、更にCu:1.0%以下、Ni:2.0%以下、Cr:1.5%以下、Mo:0.7%以下、V:0.2%以下、REM:0.02%以下、Ca:0.005%以下、Mg:0.005%以下の一種または二種以上を添加することを特徴とする請求項1記載の引張強さ(TS)が570MPa以上となる材質安定性に優れる非調質高張力鋼の製造方法。 In steel composition, in mass%, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 1.5% or less, Mo: 0.7% or less, V: 0.2% or less, REM The tensile strength (TS) according to claim 1 is 570 MPa or more, characterized by adding one or more of: 0.02% or less, Ca: 0.005% or less, Mg: 0.005% or less A method for producing non-tempered high-tensile steel with excellent material stability.
JP2005020102A 2005-01-27 2005-01-27 Production method of non-tempered high strength steel Expired - Fee Related JP4742597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020102A JP4742597B2 (en) 2005-01-27 2005-01-27 Production method of non-tempered high strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020102A JP4742597B2 (en) 2005-01-27 2005-01-27 Production method of non-tempered high strength steel

Publications (2)

Publication Number Publication Date
JP2006206958A JP2006206958A (en) 2006-08-10
JP4742597B2 true JP4742597B2 (en) 2011-08-10

Family

ID=36964130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020102A Expired - Fee Related JP4742597B2 (en) 2005-01-27 2005-01-27 Production method of non-tempered high strength steel

Country Status (1)

Country Link
JP (1) JP4742597B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823495B (en) * 2018-07-09 2020-06-05 青岛理工大学 Thick plate and extra-thick plate with uniform tissue in thickness direction and preparation method thereof
JP7396322B2 (en) * 2020-06-24 2023-12-12 Jfeスチール株式会社 steel plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052063A (en) * 2002-07-23 2004-02-19 Jfe Steel Kk METHOD FOR PRODUCING 780 MPa-CLASS NON-HEAT REFINING THICK STEEL PLATE

Also Published As

Publication number Publication date
JP2006206958A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4332554B2 (en) Manufacturing method of welded structural steel with excellent low temperature toughness of weld heat affected zone
JP4410836B2 (en) Method for producing 780 MPa class high strength steel sheet having excellent low temperature toughness
JP6460292B1 (en) High Mn steel and manufacturing method thereof
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP5354164B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP2010229453A (en) High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP2008075107A (en) Method for manufacturing high-strength/high-toughness steel
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
WO2010119989A1 (en) MASS PRODUCED 780 MPa GRADE HIGH TENSION STEEL SHEET HAVING EXCELLENT LOW-TEMPERATURE TOUGHNESS AND METHOD FOR PRODUCING THE SAME
JP2004124113A (en) Non-water-cooled thin low yield ratio high tensile steel, and production method therefor
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP4742597B2 (en) Production method of non-tempered high strength steel
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP4539100B2 (en) Super high heat input welded heat affected zone

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees