JP3541746B2 - High strength thick steel plate excellent in CTOD characteristics and method for producing the same - Google Patents

High strength thick steel plate excellent in CTOD characteristics and method for producing the same Download PDF

Info

Publication number
JP3541746B2
JP3541746B2 JP25832799A JP25832799A JP3541746B2 JP 3541746 B2 JP3541746 B2 JP 3541746B2 JP 25832799 A JP25832799 A JP 25832799A JP 25832799 A JP25832799 A JP 25832799A JP 3541746 B2 JP3541746 B2 JP 3541746B2
Authority
JP
Japan
Prior art keywords
less
ctod
content
ctod characteristics
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25832799A
Other languages
Japanese (ja)
Other versions
JP2001081529A (en
Inventor
秀治 岡口
昌彦 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25832799A priority Critical patent/JP3541746B2/en
Publication of JP2001081529A publication Critical patent/JP2001081529A/en
Application granted granted Critical
Publication of JP3541746B2 publication Critical patent/JP3541746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CTOD(亀裂先端開口変位)特性に優れた高強度厚鋼板及びその製造方法に関する。詳しくは、低温環境で使用される船舶、海洋構造物、ラインパイプ、低温タンク及び橋梁などの溶接構造物に使用され、溶接性に優れるとともに、母材及び溶接熱影響部のCTOD特性にも優れ大きな限界CTOD値を有する高強度厚鋼板とその製造方法に関するものである。
【0002】
【従来の技術】
大型溶接構造物用鋼材としては、高強度、高靱性で且つ溶接性が良好な厚肉鋼板が用いられており、その素材鋼には例えば、ASTM A710で規定された1.0〜1.3重量%のCuを含有する鋼が知られている。前記の鋼は、時効処理してCuを析出させることによって、低C且つ低炭素当量の成分系で強度を確保し、高強度と高い溶接性とを両立させようとするものである。
【0003】
しかしながら、前記の鋼は析出強化による強度確保のために多量のCuを含むので、熱間圧延中に所謂「Cu−クラック」を引き起こしたり、Cuの時効析出による強度上昇のために低温靱性が著しく低下するなどの製造上、材質上の問題があった。このため、低CのCu析出型鋼の熱間加工性や低温靱性を高めるための技術が、例えば、特開昭61−149430号公報や特公昭62−5216号公報に提案されている。
【0004】
このうち特開昭61−149430号公報で提案された「低温靱性及び溶接性の優れた低C−Cu析出型高張力鋼の製造方法」は、C含有量を0.01〜0.10重量%と低くするとともに、Cuを0.7〜1.5重量%含有させて時効析出させることで溶接性と高強度化を達成し、更に、900〜700℃間で30%以上の圧下を加える制御圧延を行うことによって母材の低温靱性を確保しようとする技術である。
【0005】
特公昭62−5216号公報で提案された「溶接性及び低温靱性の優れたCu添加鋼の製造法」は、(イ)900〜1150℃という低温での鋼片加熱、(ロ)S含有量を0.003%以下とする低S化、(ハ)Nb添加と、900℃以下の累積圧下率が60〜85%で仕上げ温度が800〜700℃の制御圧延、の組み合わせによて、熱間圧延時の割れ防止と母材の低温靱性とを確保させる技術である。
【0006】
これらの技術によれば、確かに熱間加工性や低温でのシャルピー衝撃特性に改善が見られる。しかし、鋼板の更なる高強度厚肉化に対しては、前記の技術をもってしても、母材靱性と溶接熱影響部靱性とを同時に満足させるには不十分で、特に、厚さが1インチ(25.4mm)以上で引張強さが590MPa以上の厚肉高強度材の場合には、−46℃で母材と溶接熱影響部とに同時に0.7mm以上の大きな限界CTOD値を確保させることができず、特に、CTOD試験における「ポップイン(pop−in)」と称される不安定破壊の抑制が果たせなかった。
【0007】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みなされたもので、その目的は、低温環境で使用される船舶、海洋構造物、ラインパイプ、低温タンク及び橋梁などの大型溶接構造物の素材として好適な、CTOD特性に優れた高強度厚鋼板とその製造方法を提供することで、特に、1インチ(25.4mm)以上の厚さ及び590MPa以上の引張強さを有し、しかも、母材及び溶接熱影響部のいずれもが、−46℃で0.7mm以上の限界CTOD値を有する高強度厚鋼板とその製造方法を提供することである。
【0008】
【課題を解決するための手段】
本発明の要旨は、下記(1)に示すCTOD特性に優れた高強度厚鋼板及び(2)に示すその製造方法にある。
【0009】
(1)重量%で、C:0.02〜0.10%、Mn:0.50〜2.00%、Cu:0.70〜1.75%、Ni:0.30〜1.5%、Ti:0.004〜0.02%、Si:0.15%以下、Cr:1.0%以下、Mo:0.60%以下、V:0.10%以下、Nb:0.03%以下、Al:0.01%以下、Ca:0.0030%以下を含み、残部はFe及び不可避不純物からなり、不純物中のPは0.010%以下、Sは0.005%以下、Bは0.0002%以下、Nは0.0040%以下で、更に下記E1式で表されるM*の値が1.0%以下を満足するCTOD特性に優れた高強度厚鋼板。
【0010】
M*=5C(%)+2Si(%)+20Al(%)+70N(%)+1400B(%)・・・E1
(2)上記(1)に記載の化学組成を有する鋼片を、950〜1200℃の温度域に加熱して熱間圧延を行った後、700℃以上の温度から3℃/秒以上の冷却速度で550℃以下の温度まで冷却することを特徴とするCTOD特性に優れた高強度厚鋼板の製造方法。
【0011】
以下、上記の(1)、(2)に記載のものをそれぞれ(1)の発明、(2)の発明という。
【0012】
本発明者らは、前記した課題を解決するために種々検討を行い、下記の知見を得た。
【0013】
(a)厚さが1インチ以上の厚鋼板に引張強さで590MPa以上の高強度を確保させるとともに、母材及び溶接熱影響部の両方に−46℃で0.7mm以上の限界CTOD値を確保させるためには、素材鋼の基本成分系を低C−高Cuとすればよい。
【0014】
(b)母材及び溶接熱影響部のCTOD特性は、組織の微細化と組織中に発生する硬質相の生成量の抑制、及びその硬質相の形状を制御することによって向上する。
【0015】
なお、前記の硬質相とは「島状マルテンサイト」(あるいは「MA」)と呼ばれるもので、高炭素のマルテンサイトやベイナイトを多く含むために極めて硬くて脆い相である。以下、本明細書においてはこの硬質相を「島状マルテンサイト」という。
【0016】
硬質相である「島状マルテンサイト」の形状制御とは、応力集中が生じやすい針状、板状の形態から、応力集中の程度が低い球状、塊状の形態に変化させることを示す。
【0017】
(c)低C−高Cuを基本成分系とする鋼が含有するB量を0.0002重量%以下とした上で、更にC、Si、Al及びNの含有量を適正範囲に調整することによって、組織が極めて微細化するとともに、島状マルテンサイトの生成が極めて抑制されるので、母材と溶接熱影響部の両方についてそのCTOD値を大幅に高めることができる。
【0018】
そこで、更に検討を加えた結果、下記の事項が明らかになった。
【0019】
(d)基本成分系が低C−高Cuである鋼のB量と前記E1式で表されるM*の値を適正化すれば、所謂「ポップイン」現象が抑制されるので、安定してCTOD値を高めることができる。
【0020】
(e)上記M*の値を低減することによって、母材及び溶接熱影響部で生成する第2相(島状マルテンサイト)の硬さが著しく低減するとともに、この第2相は微細分散化する。
【0021】
(f)上記(e)の現象は、M*値の低減が第2相へのCの拡散を抑制すると同時に第2相中でのセメンタイトの生成を促進する結果生ずるもので、硬質で脆い島状マルテンサイトの生成が極めて抑制される効果と対応するものである。
【0022】
(g)M*値を低減すれば、島状マルテンサイトの形状を応力集中の生じやすい板状や針状から、応力集中の生じにくい塊状に変化させることもできるので、CTOD特性を飛躍的に高めることができる。
【0023】
本発明は、上記の知見に基づいて完成されたものである。
【0024】
【発明の実施の形態】
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「重量%」を意味する。
【0025】
(A)鋼板の化学組成
C:0.02〜0.10%
Cは、強度確保に必要な元素で、その含有量が0.02%未満では引張強さで590MPa以上の所望の高強度が得られない。一方、0.10%を超えて含有させると溶接性が損なわれるとともに、母材及び溶接熱影響部の靱性、なかでもCTOD特性が損なわれ、所望の−46℃で0.7mm以上の限界CTOD値が得られない。したがって、Cの含有量を0.02%〜0.10%とした。なお、CTOD特性を十分に高めるために、C含有量の上限は0.05%にするのが望ましい。
【0026】
Mn:0.50〜2.00%
Mnは、母材の強度と靱性を高めるのに有効な元素で、そのためには0.50%以上含有させることが必要である。しかし、2.00%を超えて含有させると溶接性並びに母材及び溶接熱影響部のCTOD特性が損なわれる。したがって、Mnの含有量を0.50〜2.00%とした。
【0027】
Cu:0.70〜1.75%
Cuは、析出強化して低C、低炭素当量の成分系に高強度、溶接性及び母材と溶接熱影響部の靱性を確保させるのに有効な元素である。更に、Cuには耐環境腐食性を高める作用もある。しかし、その含有量が0.70%未満では添加効果に乏しい。一方、1.75%を超えると母材の低温靱性、なかでもCTOD特性が損なわれる。したがって、Cuの含有量を0.70〜1.75%とした。なお、より安定した母材と溶接熱影響部のCTOD特性を得るために、Cuの上限は1.0%とすることが望ましい。
【0028】
Ni:0.30〜1.5%
Niは、所謂「Cu−クラック」を抑制して熱間圧延を初めとする熱間加工性を高める作用を有することに加えて、母材及び溶接熱影響部の靱性向上に対して著しい効果を有する。しかし、その含有量が0.3%未満では前記の効果が得難い。一方、1.5%を超えて含有させても前記の効果は飽和しコストが嵩むばかりである。したがって、Niの含有量を0.30〜1.5%とした。
【0029】
なお、CuとNiの含有量の比であるCu(%)/Ni(%)の値が0.40〜0.85の場合、母材及び溶接熱影響部の組織中に発生する島状マルテンサイトの生成量が低減するとともに、その形状が板状や針状から塊状へ変化するので、高強度と良好なCTOD特性とをより確実に兼備させることができる。高強度と良好なCTOD特性とを一層確実に兼備させるためには、Cu(%)/Ni(%)の値を0.50〜0.65とすることが好ましい。
【0030】
Ti:0.004〜0.02%
Tiは、オーステナイトの粗大化を抑制し、且つ、靱性に有害なNを固定する働きを有することから、母材及び溶接熱影響部のCTOD特性を高めるために不可欠な元素で、0.004%以上含有させることが必要である。しかし、0.02%を超えて含有させると、却って溶接熱影響部靱性、なかでもCTOD特性の低下を招く。したがって、Tiの含有量を0.004〜0.02%とした。なお、CTOD特性を一層安定して高めるためには、Tiの含有量を0.004%〜0.01%とすることが望ましい。
【0031】
Si:0.15%以下
Siは添加しなくてもよい。添加すれば、脱酸作用や強化作用を有する。これらの効果を確実に得るには、Siは0.01%以上の含有量とすることが好ましい。しかし、その含有量が0.15%を超えると、母材及び溶接熱影響部のCTOD特性が著しく低下する。このため、Siの含有量を0.15%以下とした。なお、CTOD特性をより安定して高めるために、Si含有量を0.07%以下にすることが望ましい。
【0032】
Cr:1.0%以下
Crは添加しなくてもよい。添加すれば、耐食性を向上させる効果及び強度を高める作用を有する。この効果を確実に得るには、Crは0.05%以上の含有量とすることが好ましい。しかし、その含有量が1.0%を超えると、溶接性が損なわれるし、溶接熱影響部のCTOD特性も劣化する。したがって、Crの含有量を1.0%以下とした。
【0033】
Mo:0.60%以下
Moは添加しなくてもよい。添加すれば、母材の強度と靱性を高める作用を有する。更に、Cu及びNbと複合添加することによる焼入れ性向上と制御圧延の相乗作用のために顕著な組織微細化効果がもたらされ、母材の高強度化及びCTOD特性の向上に著しい効果を発揮する。この効果を確実に得るには、Moは0.05%以上の含有量とすることが好ましい。しかし、その含有量が0.60%を超えると、溶接性が損なわれるし、CTOD特性も劣化する。したがって、Moの含有量を0.60%以下とした。
【0034】
V:0.10%以下
Vも添加しなくてもよい。添加すれば、析出強化により溶接性をあまり損なうことなく母材の強度を高める作用がある。この効果を確実に得るには、Vは0.01%以上の含有量とすることが好ましい。しかし、その含有量が0.10%を超えると、溶接熱影響部のCTOD特性が損なわれる。したがって、Vの含有量を0.10%以下とした。
【0035】
Nb:0.03%以下
Nbは添加しなくてもよい。添加すれば、強度と靱性を高める作用がある。更に、Cu及びMoと複合添加することによって、母材の高強度化とCTOD特性の向上に著しい効果を発揮する。この効果を確実に得るには、Nbは0.005%以上の含有量とすることが好ましい。しかし、その含有量が0.03%を超えると、溶接性が損なわれるし、CTOD特性も低下する。したがって、Nbの含有量を0.03%以下とした。
【0036】
Al:0.01%以下
Alは添加しなくてもよい。添加すれば、鋼を脱酸する作用がある。この効果を確実に得るには、Alは0.001%以上の含有量とすることが好ましい。しかし、Alの含有量が0.01%を超えると溶接熱影響部の靱性、特にCTOD特性の低下が著しくなる。したがって、Alの含有量を0.01%以下とした。なお、安定して良好なCTOD特性を確保するためには、Alの含有量を0.005%以下とすることが好ましい。
【0037】
Ca:0.0030%以下
Caも添加しなくてもよい。添加すれば、鋼中に不純物として含まれる介在物の生成量と形態を制御し、耐食性向上や母材靱性向上に効果がある。この効果を確実に得るには、Caは0.001%以上の含有量とすることが好ましい。しかし、その含有量が0.0030%を超えると、却って耐食性と靱性が低下してしまう。したがって、Caの含有量を0.0030%以下とした。
【0038】
本発明においては、不純物元素としてのP、S、B及びNの含有量を下記のとおりに制限する。
【0039】
P:0.010%以下
Pは母材及び溶接熱影響部のCTOD特性を損なうだけでなく、溶接性をも低下させるので、その含有量はできるだけ低くすること好ましいが、P含有量の過度の低減はコスト上昇を招く。したがって、実害を生じさせない範囲として、Pの含有量を0.010%以下とした。
【0040】
S:0.005%以下
Sは母材及び溶接熱影響部のCTOD特性を損なうだけでなく、溶接性をも低下させるので、その含有量はできるだけ低くすること好ましいが、S含有量の過度の低減はコスト上昇を招く。したがって、実害を生じさせない範囲として、Sの含有量を0.005%以下とした。
【0041】
B:0.0002%以下
Bは微量で母材及び溶接熱影響部のCTOD特性を低下させてしまう。特に、その含有量が0.0002%を超えるとCTOD特性の低下が著しくなり、所望の−46℃で0.7mm以上の限界CTOD値が得られない。したがって、Bの含有量を0.0002%以下とした。より良好なCTOD特性を安定して得るためには、Bの含有量を0.0001%以下にすることが望ましい。
【0042】
N:0.0040%以下
NはCTOD特性に有害で、特に溶接熱影響部のCTOD特性を著しく低下させてしまうため、Nの含有量はできるだけ低くすることが望ましい。しかし、過度の低N化はコスト増をもたらす。したがって、Nの含有量を0.0040%以下とした。より良好なCTOD特性を安定して得るためには、Nの含有量を0.0025%以下にすることが望ましい。
【0043】
M*の値:1.0%以下
母材の高強度化、母材及び溶接熱影響部のCTOD特性の向上、溶接性の確保を同時に達成するためには、化学組成を既に述べた値に規定することに加え、前記E1式で表されるM*の値を制御する必要がある。これは、M*の値が母材及び溶接熱影響部の組織中に発生する島状マルテンサイトの生成量と形状に大きく関係して、母材及び溶接熱影響部の靱性、特にCTOD特性に著しい影響を及ぼすためで、M*の値が1.0%を超えると母材及び溶接熱影響部のCTOD特性が著しく低下してしまう。したがって、M*の値を1.0%以下とした。なお、鋼板強度が引張強さで650MPa以上の場合に、良好なCTOD特性を安定して得るためには、M*の値を0.80%以下にすることが望ましい。
【0044】
M*の値及びB含有量と母材及びSAW溶接継ぎ手部のCTOD特性との関係の一例を図1に示す。この図1においては、下記の600〜1020MPaの引張強さに調整した鋼板と、その鋼板をSAW溶接して作製した溶接継ぎ手部を供試材とした。
【0045】
すなわち、種々のM*値とB含有量の鋼片を1100℃に加熱後、熱間圧延して厚さ60mmの鋼板に仕上げ、その後780℃から5℃/秒以上の冷却速度で500℃〜室温の種々の温度まで冷却した。なお一部の鋼板には冷却後に500〜620℃での焼き戻し処理を実施した。このようにして得た600〜1020MPaの引張強さに調整した鋼板と、その鋼板をSAW溶接して作製した溶接継ぎ手部のCTOD特性を調査した。
【0046】
CTOD試験は全厚の3点曲げ試験片を圧延方向に直角の方向から採取し、−46℃で実施した。なお、溶接継ぎ手部は、レ開先加工した鋼板突き合わせ部に8〜12パスの溶接を実施し、CTOD試験片の疲労ノッチがレ開先のストレート部側の溶接線(以下、この「レ開先のストレート部側の溶接線」を「FL部」という)上になるように作製した。
【0047】
図1から、B含有量が2ppm、つまり0.0002%以下で、且つ、M*の値が1.0%以下の場合に、母材及び溶接熱影響部(FL部)のCTOD特性が向上し、600MPa以上の引張強さを有する板厚60mmの厚鋼板でも、母材及び溶接熱影響部のいずれもが、−46℃で0.7mm以上の限界CTOD値を有することがわかる。
【0048】
本発明の厚鋼板においては、下記E2式で表されるPcmの値については特に規定しなくてもよい。しかし、母材及び溶接熱影響部における高いCTOD特性と良好な溶接性とを同時に確保するために、Pcmの値を0.16〜0.28%にすることが好ましく、0.16〜0.22%とすれば一層好ましい。
【0049】
cm=C(%)+Si(%)/30+{Mn(%)+Cu(%)+Cr(%)}/20+Ni(%)/60+Mo(%)/15+V(%)/10+5B(%)・・・E2
上記の化学組成を満足させることによって、(1)の発明に係るCTOD特性に優れた高強度厚鋼板が得られる。
【0050】
(B)鋼板の製造条件
(B−1)鋼片の加熱温度
鋼片の加熱温度は950〜1200℃とするのがよい。加熱温度が950℃未満ではオーステナイト化が十分生じず、所望の590MPa以上の引張強度が得難い場合がある。一方、加熱温度が1200℃を超えると、オーステナイト粒が粗大化して所望の母材CTOD特性(−46℃で0.7mm以上の限界CTOD値)が得られなくなったり、所謂「Cu−クラック」による割れが生じやすくなったりすることがある。したがって、鋼片の加熱温度は950〜1200℃とするのがよい。
【0051】
(B−2)熱間圧延後の冷却
良好な母材CTOD特性と590MPa以上の引張強さを得るには、鋼片を前記(B−1)項に記載の温度に加熱して熱間圧延した後、700℃以上の温度から3℃/秒以上の冷却速度で550℃以下の温度まで冷却するのがよい。これは、圧延仕上げ後、上記の条件で冷却することによって、母材組織の微細均一化が図られ、母材CTOD特性が向上するためである。又、この母材組織の微細均一化は溶接熱影響部の組織にも影響を及ぼすので、溶接熱影響部のCTOD特性向上にも効果がある。
【0052】
冷却開始温度が700℃を下回ったり、冷却を停止する温度が550℃を超える場合には、均一微細な組織が得られないために所望のCTOD特性が得られないことがある。又、冷却速度が3℃/秒未満の場合には、所望の590MPa以上の引張強さを得ることが難しくなったり、所望のCTOD特性を確保することが難しくなることがある。したがって、熱間圧延した後、700℃以上の温度から3℃/秒以上の冷却速度で550℃以下の温度まで冷却するのがよい。この冷却処理は例えば、通常の水冷、油冷やミスト冷却の処理とすればよい。
【0053】
既に述べた(A)項、(B−1)項及び本(B−2)項における条件を満足させることによって、(2)の発明に係るCTOD特性に優れた高強度厚鋼板の製造方法が得られる。なお、この製造方法は所謂「圧延後直接焼入れ」を利用するものであるが、圧延して得た厚鋼板を850〜1000℃に再加熱した後で、上記の700℃以上の温度から3℃/秒以上の冷却速度で550℃以下の温度まで冷却する「再加熱後焼入れ」を利用してもよい。
【0054】
なお、上記条件で冷却された厚鋼板に焼戻しを施すことによって、Cuの時効析出効果をより確実に得ることができる。したがって、厚鋼板には冷却後に焼戻しを施すことが好ましく、その際の焼戻し温度は500〜650℃とすることが好ましい。
【0055】
以下、実施例により本発明を詳しく説明する。
【0056】
【実施例】
表1に示す化学組成を有する転炉−連続鋳造設備にて製造した鋼片を用い、表2に示す種々の条件で板厚30〜120mmの厚鋼板を製造した。又、その厚鋼板を入熱2.5〜15kJ/mmのGMAW溶接及びSAW溶接によってレ開先の突き合わせ溶接して溶接継ぎ手部を作製した。
【0057】
表1における鋼A〜Gは化学組成が本発明で規定する範囲内にある本発明例、鋼H〜Mは成分のいずれかが本発明で規定する含有量の範囲から外れた比較例である。
【0058】
【表1】

Figure 0003541746
【0059】
【表2】
Figure 0003541746
【0060】
母材である板厚30〜120mmの各厚鋼板の板厚中心部からJIS4号引張試験片とJIS4号シャルピー衝撃試験片を、又、溶接継ぎ手部のストレートシーム部の板厚中心部からJIS4号シャルピー衝撃試験片を採取し、母材部の引張特性(降伏強さ及び引張強さ)とシャルピー衝撃特性(破面遷移温度vTs(℃))、及び溶接継手部の−46℃でのシャルピー衝撃特性(吸収エネルギーvE(J))を調査した。更に、全厚の3点曲げ試験片を圧延方向に直角の方向から採取して、−46℃でCTOD試験を実施した。なお、溶接継ぎ手部に関しては、CTOD試験片の疲労ノッチがFL部上と「FL+3mm」の位置になるように試験片を作製した。
【0061】
表2に、上記各種の試験結果を併せて示す。
【0062】
表2から、試験番号1〜14の本発明に係る厚鋼板の場合、いずれも引張強さ590MPa以上の強度と、母材及び溶接継ぎ手部の良好なシャルピー衝撃特性が得られている。しかも、母材及び溶接熱影響部(FL部及び「FL+3mm」部)のいずれもが、−46℃で0.7mm以上の大きな限界CTOD値を有し、CTOD特性に優れていることが明らかである。
【0063】
これに対して、化学組成が本発明で規定する範囲から外れる比較例の鋼を用いた厚鋼板の場合、溶接熱影響部のうち少なくともFL部で所望の限界CTOD値が得られず、CTOD特性に劣っている。
【0064】
【発明の効果】
本発明の厚鋼板は、1インチ(25.4mm)以上の厚さで590MPa以上の引張強さを有し、しかも、母材及び溶接熱影響部のいずれもが、−46℃で0.7mm以上の限界CTOD値を有するので、低温環境で使用される船舶、海洋構造物、ラインパイプ、低温タンク及び橋梁などの溶接構造物の素材として利用することができる。この厚鋼板は本発明の方法によって比較的容易に製造することができる。
【図面の簡単な説明】
【図1】
M*=5C(%)+2Si(%)+20Al(%)+70N(%)+1400B(%)で表されるM*の値及びB含有量と母材及びSAW溶接継ぎ手部のCTOD特性との関係の一例を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength steel plate excellent in CTOD (crack tip opening displacement) characteristics and a method for manufacturing the same. Specifically, it is used for welded structures such as ships, marine structures, line pipes, low-temperature tanks and bridges used in low-temperature environments, and has excellent weldability and excellent CTOD characteristics of the base material and the weld heat affected zone. The present invention relates to a high-strength steel plate having a large critical CTOD value and a method for producing the same.
[0002]
[Prior art]
As a steel material for a large-scale welded structure, a thick steel plate having high strength, high toughness, and good weldability is used. The material steel is, for example, 1.0 to 1.3 specified in ASTM A710. Steels containing weight percent Cu are known. The steel is intended to ensure high strength in a low C and low carbon equivalent component system by precipitating Cu by aging treatment so as to achieve both high strength and high weldability.
[0003]
However, since the steel contains a large amount of Cu to ensure strength by precipitation strengthening, so-called "Cu-crack" occurs during hot rolling, and low-temperature toughness is significantly increased due to strength increase due to aging precipitation of Cu. There were problems in production and materials such as lowering. For this reason, techniques for improving the hot workability and low-temperature toughness of low C Cu precipitation type steel have been proposed in, for example, JP-A-61-149430 and JP-B-62-5216.
[0004]
Among them, the "method of producing a low-C-Cu precipitation-type high-tensile steel excellent in low-temperature toughness and weldability" proposed in Japanese Patent Application Laid-Open No. 61-149430 has a C content of 0.01 to 0.10% by weight. %, And 0.7-1.5% by weight of Cu to precipitate by aging to achieve weldability and high strength, and further apply a reduction of 30% or more between 900 and 700 ° C. This is a technique for controlling the low-temperature toughness of the base material by performing controlled rolling.
[0005]
The method for producing a Cu-added steel excellent in weldability and low-temperature toughness proposed in Japanese Patent Publication No. Sho 62-5216 includes (A) heating a steel slab at a low temperature of 900 to 1150 ° C., and (B) S content. Is reduced by 0.003% or less, (c) Nb addition, and controlled rolling at a cumulative rolling reduction of not more than 900 ° C. of 60 to 85% and a finishing temperature of 800 to 700 ° C. This is a technique for preventing cracking during cold rolling and ensuring low-temperature toughness of the base material.
[0006]
According to these techniques, the hot workability and the Charpy impact properties at low temperatures are certainly improved. However, for further increasing the strength and thickness of the steel sheet, even with the above technique, it is not sufficient to simultaneously satisfy the base metal toughness and the weld heat affected zone toughness. In the case of thick high-strength materials with an inch (25.4 mm) or more and a tensile strength of 590 MPa or more, a large critical CTOD value of 0.7 mm or more is simultaneously secured at -46 ° C in the base metal and the heat affected zone. In particular, unstable destruction called "pop-in" in the CTOD test could not be suppressed.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned circumstances, and has as its object a CTOD characteristic suitable as a material for large welded structures such as ships, marine structures, line pipes, low-temperature tanks and bridges used in low-temperature environments. In particular, by providing a high-strength steel plate excellent in hardness and a method of manufacturing the same, it has a thickness of not less than 1 inch (25.4 mm) and a tensile strength of not less than 590 MPa, and furthermore, has a base material and a weld heat affected zone. Are to provide a high-strength steel plate having a critical CTOD value of 0.7 mm or more at -46 ° C and a method for producing the same.
[0008]
[Means for Solving the Problems]
The gist of the present invention resides in a high-strength steel plate excellent in CTOD characteristics shown in the following (1) and a manufacturing method thereof shown in (2).
[0009]
(1) By weight%, C: 0.02 to 0.10%, Mn: 0.50 to 2.00%, Cu: 0.70 to 1.75%, Ni: 0.30 to 1.5% , Ti: 0.004 to 0.02%, Si: 0.15% or less, Cr: 1.0% or less, Mo: 0.60% or less, V: 0.10% or less, Nb: 0.03% Hereinafter, Al: 0.01% or less, Ca: 0.0030% or less, the balance is composed of Fe and unavoidable impurities, P in the impurities is 0.010% or less, S is 0.005% or less, and B is A high-strength steel sheet excellent in CTOD characteristics, in which 0.0002% or less, N is 0.0040% or less, and the value of M * represented by the following formula E1 satisfies 1.0% or less.
[0010]
M * = 5C (%) + 2Si (%) + 20Al (%) + 70N (%) + 1400B (%) ... E1
(2) After heating the steel slab having the chemical composition described in the above (1) to a temperature range of 950 to 1200 ° C. and performing hot rolling, cooling from a temperature of 700 ° C. or more to 3 ° C./sec or more. A method for producing a high-strength steel plate having excellent CTOD characteristics, wherein the steel plate is cooled to a temperature of 550 ° C. or less at a speed.
[0011]
Hereinafter, those described in the above (1) and (2) are referred to as the invention of (1) and the invention of (2), respectively.
[0012]
The present inventors have conducted various studies in order to solve the above-mentioned problems, and have obtained the following findings.
[0013]
(A) While ensuring high strength of 590 MPa or more in tensile strength for a thick steel plate having a thickness of 1 inch or more, a limit CTOD value of 0.7 mm or more at -46 ° C for both the base metal and the weld heat affected zone is obtained. In order to ensure this, the basic component system of the raw steel may be low C-high Cu.
[0014]
(B) The CTOD characteristics of the base material and the weld heat affected zone are improved by miniaturizing the structure, suppressing the amount of hard phase generated in the structure, and controlling the shape of the hard phase.
[0015]
The hard phase is called "island-like martensite" (or "MA"), and is an extremely hard and brittle phase because it contains a large amount of high-carbon martensite and bainite. Hereinafter, in the present specification, this hard phase is referred to as “island martensite”.
[0016]
The shape control of the “island-like martensite”, which is a hard phase, refers to changing from a needle-like or plate-like form in which stress concentration easily occurs to a spherical or massive form in which the degree of stress concentration is low.
[0017]
(C) Adjusting the content of C, Si, Al, and N to an appropriate range after setting the amount of B contained in steel containing low C-high Cu as a basic component system to 0.0002% by weight or less. As a result, the structure becomes extremely fine and the formation of island-like martensite is extremely suppressed, so that the CTOD values of both the base metal and the weld heat affected zone can be greatly increased.
[0018]
Then, as a result of further study, the following matters became clear.
[0019]
(D) If the amount of B in steel whose basic component system is low C-high Cu and the value of M * represented by the formula E1 are optimized, the so-called “pop-in” phenomenon is suppressed, so that stable Thus, the CTOD value can be increased.
[0020]
(E) By reducing the value of M *, the hardness of the second phase (island martensite) generated in the base metal and the heat affected zone is significantly reduced, and the second phase is finely dispersed. I do.
[0021]
(F) The phenomenon (e) occurs as a result of the reduction of the M * value suppressing the diffusion of C into the second phase and at the same time promoting the formation of cementite in the second phase. This corresponds to the effect of extremely suppressing the formation of martensite.
[0022]
(G) If the M * value is reduced, the shape of the island-like martensite can be changed from a plate-like or needle-like shape in which stress concentration tends to occur to a clump-like shape in which stress concentration does not easily occur. Can be enhanced.
[0023]
The present invention has been completed based on the above findings.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of each element means “% by weight”.
[0025]
(A) Chemical composition C of steel sheet: 0.02 to 0.10%
C is an element necessary for ensuring strength. If the content is less than 0.02%, a desired high strength of 590 MPa or more in tensile strength cannot be obtained. On the other hand, if the content exceeds 0.10%, the weldability is impaired, and the toughness of the base metal and the heat affected zone, especially the CTOD properties, are impaired. No value is obtained. Therefore, the content of C is set to 0.02% to 0.10%. In order to sufficiently enhance the CTOD characteristics, the upper limit of the C content is preferably set to 0.05%.
[0026]
Mn: 0.50-2.00%
Mn is an element effective for increasing the strength and toughness of the base material, and therefore, must be contained at 0.50% or more. However, when the content exceeds 2.00%, the weldability and the CTOD characteristics of the base metal and the weld heat affected zone are impaired. Therefore, the content of Mn is set to 0.50 to 2.00%.
[0027]
Cu: 0.70 to 1.75%
Cu is an element effective for precipitating and strengthening the component system of low C and low carbon equivalent to ensure high strength, weldability, and toughness of the base metal and the weld heat affected zone. Further, Cu also has an effect of improving environmental corrosion resistance. However, if the content is less than 0.70%, the effect of addition is poor. On the other hand, if it exceeds 1.75%, the low-temperature toughness of the base material, especially CTOD characteristics, is impaired. Therefore, the content of Cu is set to 0.70 to 1.75%. In order to obtain more stable base metal and CTOD characteristics of the weld heat affected zone, the upper limit of Cu is preferably set to 1.0%.
[0028]
Ni: 0.30 to 1.5%
Ni has the effect of suppressing the so-called "Cu-crack" and improving the hot workability including hot rolling, and has a remarkable effect on improving the toughness of the base metal and the weld heat affected zone. Have. However, if the content is less than 0.3%, it is difficult to obtain the above effects. On the other hand, if the content exceeds 1.5%, the above effect is saturated and the cost is increased. Therefore, the content of Ni is set to 0.30 to 1.5%.
[0029]
When the value of Cu (%) / Ni (%), which is the ratio of the contents of Cu and Ni, is 0.40 to 0.85, the island-like marten generated in the structure of the base metal and the heat affected zone of the weld. Since the amount of generated sites is reduced and the shape changes from plate-like or needle-like to massive, it is possible to more reliably combine high strength with good CTOD characteristics. In order to more reliably combine high strength and good CTOD characteristics, the value of Cu (%) / Ni (%) is preferably set to 0.50 to 0.65.
[0030]
Ti: 0.004 to 0.02%
Ti is an element that is essential for improving the CTOD characteristics of the base metal and the weld heat affected zone because it has a function of suppressing coarsening of austenite and fixing N which is harmful to toughness. It is necessary to contain the above. However, if it is contained in excess of 0.02%, the toughness of the weld heat affected zone, especially the CTOD characteristic, is reduced. Therefore, the content of Ti is set to 0.004 to 0.02%. In addition, in order to more stably enhance the CTOD characteristic, the content of Ti is desirably 0.004% to 0.01%.
[0031]
Si: 0.15% or less Si need not be added. When added, it has a deoxidizing action and a strengthening action. To ensure these effects, it is preferable that the content of Si be 0.01% or more. However, when the content exceeds 0.15%, the CTOD characteristics of the base metal and the heat affected zone of the weld significantly decrease. Therefore, the content of Si is set to 0.15% or less. Note that, in order to more stably enhance the CTOD characteristics, the Si content is desirably 0.07% or less.
[0032]
Cr: 1.0% or less Cr may not be added. When added, it has the effect of improving corrosion resistance and the effect of increasing strength. To ensure this effect, the content of Cr is preferably set to 0.05% or more. However, if the content exceeds 1.0%, the weldability is impaired, and the CTOD characteristics of the heat affected zone deteriorate. Therefore, the content of Cr is set to 1.0% or less.
[0033]
Mo: 0.60% or less Mo may not be added. If added, it has the effect of increasing the strength and toughness of the base material. In addition, due to the synergistic effect of improved hardenability and controlled rolling due to the combined addition of Cu and Nb, a remarkable structure refining effect is brought about, and a remarkable effect is exerted on increasing the strength of the base material and improving the CTOD characteristics. I do. To ensure this effect, it is preferable that the content of Mo be 0.05% or more. However, if the content exceeds 0.60%, weldability is impaired, and CTOD characteristics are also deteriorated. Therefore, the content of Mo is set to 0.60% or less.
[0034]
V: 0.10% or less V may not be added. If added, it has the effect of increasing the strength of the base material without significantly impairing the weldability due to precipitation strengthening. To ensure this effect, it is preferable that the content of V be 0.01% or more. However, when the content exceeds 0.10%, the CTOD characteristics of the heat affected zone are impaired. Therefore, the content of V is set to 0.10% or less.
[0035]
Nb: 0.03% or less Nb may not be added. If added, it has the effect of increasing strength and toughness. Furthermore, by adding Cu and Mo in combination, a remarkable effect is exerted on increasing the strength of the base material and improving the CTOD characteristics. In order to surely obtain this effect, the content of Nb is preferably set to 0.005% or more. However, if the content exceeds 0.03%, the weldability is impaired, and the CTOD characteristics also deteriorate. Therefore, the content of Nb is set to 0.03% or less.
[0036]
Al: 0.01% or less Al may not be added. If added, it has the effect of deoxidizing steel. To ensure this effect, the content of Al is preferably set to 0.001% or more. However, when the Al content exceeds 0.01%, the toughness of the heat affected zone, particularly the CTOD characteristics, is significantly reduced. Therefore, the content of Al is set to 0.01% or less. In addition, in order to secure stable and good CTOD characteristics, the Al content is preferably set to 0.005% or less.
[0037]
Ca: 0.0030% or less Ca may not be added. If added, the amount and morphology of inclusions contained as impurities in steel are controlled, which is effective in improving corrosion resistance and base metal toughness. To ensure this effect, it is preferable that the content of Ca be 0.001% or more. However, if the content exceeds 0.0030%, the corrosion resistance and toughness are rather reduced. Therefore, the content of Ca is set to 0.0030% or less.
[0038]
In the present invention, the contents of P, S, B and N as impurity elements are limited as follows.
[0039]
P: 0.010% or less P not only impairs the CTOD characteristics of the base material and the weld heat affected zone, but also reduces the weldability, so that its content is preferably made as low as possible, but excessive P content Reduction leads to higher costs. Therefore, the content of P is set to 0.010% or less as a range that does not cause actual harm.
[0040]
S: not more than 0.005% S not only impairs the CTOD properties of the base metal and the weld heat affected zone, but also lowers the weldability, so that its content is preferably made as low as possible. Reduction leads to higher costs. Therefore, the content of S is set to 0.005% or less so as not to cause actual harm.
[0041]
B: 0.0002% or less B is a trace amount and lowers the CTOD characteristics of the base metal and the weld heat affected zone. In particular, when the content exceeds 0.0002%, the CTOD characteristic is significantly reduced, and a desired limit CTOD value of 0.7 mm or more at −46 ° C. cannot be obtained. Therefore, the content of B is set to 0.0002% or less. In order to stably obtain better CTOD characteristics, the B content is desirably 0.0001% or less.
[0042]
N: 0.0040% or less N is harmful to the CTOD characteristics, and in particular, significantly reduces the CTOD characteristics of the weld heat affected zone. Therefore, it is desirable that the N content be as low as possible. However, excessively low N leads to an increase in cost. Therefore, the content of N is set to 0.0040% or less. In order to stably obtain better CTOD characteristics, the N content is desirably 0.0025% or less.
[0043]
M * value: 1.0% or less In order to simultaneously enhance the strength of the base material, improve the CTOD characteristics of the base material and the weld heat affected zone, and secure the weldability, the chemical composition must be set to the value already described. In addition to the regulation, it is necessary to control the value of M * represented by the aforementioned E1 equation. This is because the value of M * is greatly related to the amount and shape of the island martensite generated in the structure of the base metal and the weld heat affected zone, and has an effect on the toughness of the base metal and the weld heat affected zone, especially the CTOD characteristics. If the value of M * exceeds 1.0%, the CTOD characteristics of the base metal and the heat affected zone of the weld are significantly reduced. Therefore, the value of M * was set to 1.0% or less. In addition, when the steel sheet strength is 650 MPa or more in tensile strength, in order to stably obtain good CTOD characteristics, the value of M * is desirably 0.80% or less.
[0044]
FIG. 1 shows an example of the relationship between the value of M * and the B content and the CTOD characteristics of the base metal and the SAW welding joint. In FIG. 1, a steel sheet adjusted to the following tensile strength of 600 to 1020 MPa and a welded joint produced by SAW welding the steel sheet were used as test materials.
[0045]
That is, steel slabs having various M * values and B contents are heated to 1100 ° C., and then hot-rolled to finish to a steel plate having a thickness of 60 mm, and then from 780 ° C. at a cooling rate of 5 ° C./sec. Cooled to various temperatures at room temperature. After cooling, some steel sheets were tempered at 500 to 620 ° C. CTOD characteristics of the steel sheet adjusted to have a tensile strength of 600 to 1020 MPa and a welded joint produced by SAW welding the steel sheet were investigated.
[0046]
In the CTOD test, a three-point bending test piece having a total thickness was sampled from a direction perpendicular to the rolling direction and was carried out at -46 ° C. The welded joint was welded by 8 to 12 passes on the butt portion of the grooved steel plate, and the fatigue notch of the CTOD test piece was welded to the weld line on the straight side of the groove. The welding line on the side of the straight portion was referred to as “FL portion”.
[0047]
From FIG. 1, when the B content is 2 ppm, that is, 0.0002% or less, and the value of M * is 1.0% or less, the CTOD characteristics of the base metal and the weld heat affected zone (FL portion) are improved. However, even with a 60 mm thick steel plate having a tensile strength of 600 MPa or more, both the base metal and the weld heat affected zone have a critical CTOD value of 0.7 mm or more at -46 ° C.
[0048]
In the thick steel plate of the present invention, the value of P cm represented by the following E2 formula need not be particularly specified. However, in order to simultaneously secure high CTOD characteristics and good weldability in the base material and the weld heat affected zone, the value of P cm is preferably set to 0.16 to 0.28%, and 0.16 to 0.28%. .22% is more preferable.
[0049]
P cm = C (%) + Si (%) / 30+ {Mn (%) + Cu (%) + Cr (%)} / 20 + Ni (%) / 60 + Mo (%) / 15 + V (%) / 10 + 5B (%) E2
By satisfying the above chemical composition, a high-strength steel plate having excellent CTOD characteristics according to the invention (1) can be obtained.
[0050]
(B) Manufacturing conditions of steel plate (B-1) Heating temperature of steel slab The heating temperature of the steel slab is preferably 950 to 1200 ° C. When the heating temperature is lower than 950 ° C., austenitization does not sufficiently occur, and it may be difficult to obtain a desired tensile strength of 590 MPa or more. On the other hand, when the heating temperature exceeds 1200 ° C., the austenite grains become coarse and the desired base material CTOD characteristic (limit CTOD value of 0.7 mm or more at −46 ° C.) cannot be obtained, or the so-called “Cu-crack” Cracks may easily occur. Therefore, the heating temperature of the billet is preferably 950 to 1200 ° C.
[0051]
(B-2) In order to obtain a good base material CTOD characteristic after cooling and a tensile strength of 590 MPa or more after hot rolling, the steel slab is heated to the temperature described in the above section (B-1) and hot rolled. After that, it is preferable to cool from a temperature of 700 ° C. or more to a temperature of 550 ° C. or less at a cooling rate of 3 ° C./sec or more. This is because the base material structure is finely uniformed and the base material CTOD characteristics are improved by cooling under the above conditions after the rolling finish. In addition, since the uniformization of the base material structure also affects the structure of the weld heat affected zone, it is also effective in improving the CTOD characteristics of the weld heat affected zone.
[0052]
If the cooling start temperature is lower than 700 ° C. or the temperature at which cooling is stopped exceeds 550 ° C., a desired fine CTOD characteristic may not be obtained because a uniform and fine structure cannot be obtained. If the cooling rate is less than 3 ° C./sec, it may be difficult to obtain a desired tensile strength of 590 MPa or more, or it may be difficult to secure desired CTOD characteristics. Therefore, after hot rolling, it is preferable to cool from a temperature of 700 ° C. or more to a temperature of 550 ° C. or less at a cooling rate of 3 ° C./sec or more. This cooling process may be, for example, normal water cooling, oil cooling, or mist cooling.
[0053]
By satisfying the conditions in (A), (B-1) and (B-2), the method for producing a high-strength steel plate having excellent CTOD characteristics according to the invention (2) is achieved. can get. In addition, although this manufacturing method utilizes what is called "direct quenching after rolling", after reheating the thick steel plate obtained by rolling to 850-1000 degreeC, from the above-mentioned temperature of 700 degreeC or more, it is 3 degreeC. A “quenching after reheating” of cooling to a temperature of 550 ° C. or less at a cooling rate of / sec or more may be used.
[0054]
By tempering the thick steel plate cooled under the above conditions, the effect of aging precipitation of Cu can be obtained more reliably. Therefore, it is preferable to temper the steel plate after cooling, and it is preferable that the tempering temperature at that time be 500 to 650 ° C.
[0055]
Hereinafter, the present invention will be described in detail with reference to examples.
[0056]
【Example】
Thick steel plates having a thickness of 30 to 120 mm were manufactured under various conditions shown in Table 2 using steel slabs manufactured by a converter-continuous casting facility having the chemical composition shown in Table 1. Also, the thick steel plate was butt-welded to the groove by GMAW welding and SAW welding at a heat input of 2.5 to 15 kJ / mm to produce a weld joint.
[0057]
Steels A to G in Table 1 are examples of the present invention in which the chemical composition is within the range specified in the present invention, and steels H to M are comparative examples in which any of the components is out of the range of the content specified in the present invention. .
[0058]
[Table 1]
Figure 0003541746
[0059]
[Table 2]
Figure 0003541746
[0060]
JIS No. 4 tensile test piece and JIS No. 4 Charpy impact test piece from the center of the thickness of each thick steel plate having a thickness of 30 to 120 mm as the base material, and JIS No. 4 from the center of the thickness of the straight seam part of the welding joint. A Charpy impact test specimen was collected, and the tensile properties (yield strength and tensile strength) and Charpy impact properties (fracture transition temperature vTs (° C)) of the base metal, and the Charpy impact of the welded joint at -46 ° C The characteristics (absorbed energy vE (J)) were investigated. Further, a three-point bending test piece having a total thickness was sampled from a direction perpendicular to the rolling direction, and a CTOD test was performed at -46 ° C. With respect to the weld joint, the test piece was prepared such that the fatigue notch of the CTOD test piece was located on the FL portion and at a position of “FL + 3 mm”.
[0061]
Table 2 also shows the results of the various tests described above.
[0062]
From Table 2, in the case of the steel plates according to the present invention of Test Nos. 1 to 14, the strengths of tensile strength of 590 MPa or more and the good Charpy impact characteristics of the base metal and the welded joint are all obtained. Moreover, it is clear that both the base metal and the weld heat affected zone (FL zone and “FL + 3 mm” zone) have a large critical CTOD value of 0.7 mm or more at −46 ° C. and are excellent in CTOD characteristics. is there.
[0063]
On the other hand, in the case of a thick steel plate using a steel of a comparative example whose chemical composition is out of the range specified in the present invention, a desired limit CTOD value cannot be obtained in at least the FL part of the weld heat affected zone, and the CTOD characteristic Inferior to
[0064]
【The invention's effect】
The steel plate of the present invention has a tensile strength of 590 MPa or more at a thickness of 1 inch (25.4 mm) or more, and further, both the base metal and the weld heat affected zone are 0.7 mm at -46 ° C. Since it has the above-mentioned limit CTOD value, it can be used as a material for welding structures such as ships, marine structures, line pipes, low-temperature tanks and bridges used in low-temperature environments. This thick steel plate can be manufactured relatively easily by the method of the present invention.
[Brief description of the drawings]
FIG.
M * = 5C (%) + 2Si (%) + 20Al (%) + 70N (%) + 1400B (%) Relationship between M * value and B content and CTOD characteristics of base metal and SAW weld joint It is a figure showing an example.

Claims (2)

重量%で、C:0.02〜0.10%、Mn:0.50〜2.00%、Cu:0.70〜1.75%、Ni:0.30〜1.5%、Ti:0.004〜0.02%、Si:0.15%以下、Cr:1.0%以下、Mo:0.60%以下、V:0.10%以下、Nb:0.03%以下、Al:0.01%以下、Ca:0.0030%以下を含み、残部はFe及び不可避不純物からなり、不純物中のPは0.010%以下、Sは0.005%以下、Bは0.0002%以下、Nは0.0040%以下で、更に下記E1式で表されるM*の値が1.0%以下を満足するCTOD特性に優れた高強度厚鋼板。
M*=5C(%)+2Si(%)+20Al(%)+70N(%)+1400B(%)・・・E1
By weight%, C: 0.02 to 0.10%, Mn: 0.50 to 2.00%, Cu: 0.70 to 1.75%, Ni: 0.30 to 1.5%, Ti: 0.004 to 0.02%, Si: 0.15% or less, Cr: 1.0% or less, Mo: 0.60% or less, V: 0.10% or less, Nb: 0.03% or less, Al : 0.01% or less, Ca: 0.0030% or less, the balance consists of Fe and unavoidable impurities, P in the impurities is 0.010% or less, S is 0.005% or less, and B is 0.0002%. % Or less, N is 0.0040% or less, and a high strength steel sheet excellent in CTOD characteristics satisfying the value of M * represented by the following formula E1 of 1.0% or less.
M * = 5C (%) + 2Si (%) + 20Al (%) + 70N (%) + 1400B (%) ... E1
請求1に記載の化学組成を有する鋼片を、950〜1200℃の温度域に加熱して熱間圧延を行った後、700℃以上の温度から3℃/秒以上の冷却速度で550℃以下の温度まで冷却することを特徴とするCTOD特性に優れた高強度厚鋼板の製造方法。The steel slab having a chemical composition according to claim 1, after hot rolling by heating to a temperature range of 950 to 1200 ° C., 550 ° C. at 3 ° C. / sec or more cooling rate from 700 ° C. above the temperature A method for producing a high-strength steel plate having excellent CTOD characteristics, characterized by cooling to the following temperature.
JP25832799A 1999-09-13 1999-09-13 High strength thick steel plate excellent in CTOD characteristics and method for producing the same Expired - Fee Related JP3541746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25832799A JP3541746B2 (en) 1999-09-13 1999-09-13 High strength thick steel plate excellent in CTOD characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25832799A JP3541746B2 (en) 1999-09-13 1999-09-13 High strength thick steel plate excellent in CTOD characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001081529A JP2001081529A (en) 2001-03-27
JP3541746B2 true JP3541746B2 (en) 2004-07-14

Family

ID=17318718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25832799A Expired - Fee Related JP3541746B2 (en) 1999-09-13 1999-09-13 High strength thick steel plate excellent in CTOD characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3541746B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200634B2 (en) 2007-04-11 2013-06-05 新日鐵住金株式会社 Hot rolled steel bar for forging and carburizing
KR100957968B1 (en) 2007-12-27 2010-05-17 주식회사 포스코 High strength and toughness thick steel plate having excellent base metal ctod property and method for producing the same
JP6242415B2 (en) 2016-02-25 2017-12-06 株式会社日本製鋼所 Cu-containing low alloy steel excellent in strength-low temperature toughness balance and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001081529A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
EP1978121A1 (en) HIGH-STRENGTH STEEL SHEET OF 450 MPa OR HIGHER YIELD STRESS AND 570 MPa OR HIGHER TENSILE STRENGTH HAVING LOW ACOUSTIC ANISOTROPY AND HIGH WELDABILITY AND PROCESS FOR PRODUCING THE SAME
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP2000129392A (en) High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPH11256270A (en) High tensile strength steel plate excellent in toughness in base material and large heat input weld heat-affected zone, and its production
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP3599556B2 (en) High-strength steel sheet excellent in toughness of base material and heat-affected zone of large heat input welding and method of manufacturing the same
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP7506305B2 (en) High-strength steel plate for large heat input welding
KR102400036B1 (en) Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
JP2688312B2 (en) High strength and high toughness steel plate
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JP3468168B2 (en) High-strength steel sheet with excellent economy and toughness
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP3444244B2 (en) High tensile strength steel excellent in toughness and method of manufacturing the same
JP3255004B2 (en) High strength steel material for welding excellent in toughness and arrestability and method for producing the same
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JPS6256518A (en) Production of high strength steel sheet for high heat input welding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Ref document number: 3541746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees