JPH06158160A - Production of high tensile strength heat treated steel excellent in cost effectiveness - Google Patents

Production of high tensile strength heat treated steel excellent in cost effectiveness

Info

Publication number
JPH06158160A
JPH06158160A JP31033092A JP31033092A JPH06158160A JP H06158160 A JPH06158160 A JP H06158160A JP 31033092 A JP31033092 A JP 31033092A JP 31033092 A JP31033092 A JP 31033092A JP H06158160 A JPH06158160 A JP H06158160A
Authority
JP
Japan
Prior art keywords
less
toughness
steel
tensile strength
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31033092A
Other languages
Japanese (ja)
Inventor
Daisuke Fujita
大輔 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31033092A priority Critical patent/JPH06158160A/en
Publication of JPH06158160A publication Critical patent/JPH06158160A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the method for producing high tensile strength heat treated steel provided with cost effectiveness as well as toughness and weldability. CONSTITUTION:Steel contg. 0.10 to 0.18% C, 0.05 to 0.15% Si, 0.60 to 1.00% Mn, 0.40 to 1.00% Cr, 0.50 to 1.00% Ni, 0.40 to 0.80% Mo, 0.010 to 0.030% Ti, 0.010 to 0.030% Nb, 0.0004 to 0.0015% B and <=0.50% Cu and in which Cr/Mo is regulated to <=2.0 and Nb+Cr+Mo is regulated to <=2.50% and, furthermore, the weld crack sensitivity index Pcm is regulated to <=0.29 and the carbon equivalent Ceq. is regulated to >=0.53 is heated to 1150 to 1200 deg.C, is subjected to hot rolling at 650 to 900 deg.C at >=30% draft, is thereafter reheated to the Ac3 point or above, is hardened and is then tempered at the Ac1 point or below. In this way, the high tensile strength heat treated steel small in the content of expensive Ni, provided with high strength and high toughness of >=950N/mm<2> tensile strength and furthermore excellent in weldability can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高い強度と良好な靱
性とが要求される水圧鉄管(ペンストック)、橋梁など
の構造用高張力調質鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-strength heat-treated steel for structures such as penstocks and bridges, which are required to have high strength and good toughness.

【0002】[0002]

【従来の技術】近年、溶接構造物の大型化に伴い構造物
の軽量化を図るために高張力鋼が使用される傾向が増大
してきている。これは、設計における軽量化のメリット
はもとより、加工および施工側においてもそれに伴う運
搬、組立て作業性の向上、さらには各種構造部材の薄肉
化による溶接施工性の向上などのメリットを最大限に享
受しうることにもよる。
2. Description of the Related Art In recent years, with the increase in size of welded structures, there is an increasing tendency to use high-strength steel in order to reduce the weight of the structure. This maximizes the benefits of weight reduction in design as well as the associated improvements in transportation and assembly workability on the processing and construction side, as well as welding workability due to the thinning of various structural members. It depends on what you can do.

【0003】例えば、近年、揚水発電所のペンストック
を始め、圧力容器、橋梁あるいは海洋構造物などの溶接
構造物においても、大型化の傾向はますます著しく、使
用される高張力鋼の特性も高性能化されてきている。最
近では、HT 980(引張強さ980N/mm2) クラスのものも
開発されており、本出願人も、特公平1−20210 号公報
において、HT 980クラスの溶接性の良好な高強度高靱
性鋼材の製造方法を示した。これは、成分系の特徴とし
て、C: 0.07〜0.15%、Si:0.15 %以下、Mn:0.40〜1.0
0%、Cr: 0.40〜1.20%、Ni:2.0〜4.2 %、Mo: 0.40〜
0.80%、V: 0.01〜0.06%、B:0.004〜0.0015%および
Cu:0.50 %以下で、かつ前記溶接割れ感受性指数PCM(
以下、単にPCMという) が0.31以下の鋼から製造された
板厚40〜150mm の鋼板をAc3点〜1000℃に加熱後、焼入
れし、次いで 560〜630 ℃に再加熱後焼戻しして、降伏
点が 980N/mm2 以上、引張強さが 950N/mm2 以上、 vT
rs( 衝撃破面遷移温度 )が−60℃以下の鋼材を得る方法
である。
[0003] For example, in recent years, there has been a marked increase in the trend toward larger sizes in welded structures such as penstocks for pumped storage power plants, pressure vessels, bridges, and offshore structures. The performance has been improved. Recently, an HT 980 (tensile strength 980 N / mm 2 ) class material has also been developed, and the applicant of the present invention also discloses in KOKOKU Publication No. 1-20210 that the HT 980 class has good weldability and high strength and high toughness. The method of manufacturing steel is shown. This is a characteristic of the component system, C: 0.07 to 0.15%, Si: 0.15% or less, Mn: 0.40 to 1.0
0%, Cr: 0.40 to 1.20%, Ni: 2.0 to 4.2%, Mo: 0.40 to
0.80%, V: 0.01 to 0.06%, B: 0.004 to 0.0015% and
Cu: 0.50% or less, and the weld crack susceptibility index P CM (
Hereinafter simply after heating the steel sheet having a thickness of 40~150mm that of P CM) was prepared from 0.31 following steel Ac 3 point to 1000 ° C., and quenched and then reheated after tempering from 560 to 630 ° C., Yield point is 980N / mm 2 or more, tensile strength is 950N / mm 2 or more, vT
It is a method to obtain steel with rs (impact fracture transition temperature) of -60 ° C or less.

【0004】同じく、本出願人による特公平1−25371
号公報では、成分系の特徴として、C: 0.07〜0.15%、
Si:0.15 %以下、Mn: 0.40〜1.20%、Cr: 0.40〜1.20
%、Ni: 1.00〜3.50%、Mo: 0.40〜0.80%、V: 0.01〜
0.06%、Nb:0.005〜0.030 %およびB:0.004〜0.0015
%、さらに必要に応じてCu:0.50 %以下、Ca:0.005%以
下およびW:1.00 %以下の1種以上を含有し、PCMが0.
28以下の鋼を1050℃以上に加熱した後熱間圧延し、続い
てAc3点〜1050℃に再加熱後焼入れし、次いでAc1点以
下で焼戻しした後水冷して、降伏点が 880N/mm2 以上、
引張強さが950N/mm2以上、 vTrsが−60℃以下の調質型
高張力厚鋼材を得る製造方法を示した。
Similarly, Japanese Patent Publication No. 1-25371 of the applicant.
In the publication, as a characteristic of the component system, C: 0.07 to 0.15%,
Si: 0.15% or less, Mn: 0.40 to 1.20%, Cr: 0.40 to 1.20
%, Ni: 1.00 to 3.50%, Mo: 0.40 to 0.80%, V: 0.01 to
0.06%, Nb: 0.005-0.030% and B: 0.004-0.0015
%, And if necessary, at least one of Cu: 0.50% or less, Ca: 0.005% or less and W: 1.00% or less is contained, and P CM is 0.
Steel of 28 or less is heated to 1050 ° C or higher, then hot-rolled, subsequently reheated to an Ac of 3 points to 1050 ° C and then quenched, then tempered at an Ac of 1 or less and water-cooled to give a yield point of 880N / mm 2 or more,
A manufacturing method for obtaining a tempered high strength thick steel material having a tensile strength of 950 N / mm 2 or more and a vTrs of -60 ° C or less was shown.

【0005】これらの方法では、CおよびSiをともに0.
15%までに抑制したSi−Mn系に、Cr、Ni、Mo、Cu、V、
NbおよびBなどを添加した鋼材を調質(焼入れ、焼戻
し)して、強度と靱性を確保するとともに、PCMを限定
して溶接熱影響部の硬さを低下させ溶接時の割れ感受性
を改善している。しかしながら、いずれも高強度と靱性
を両立させるためにNiを多量に含有させており、経済性
をも有する高張力調質鋼の製造方法とはいえない。
In these methods, C and Si are both reduced to 0.
Cr, Ni, Mo, Cu, V,
Nb and B, such as steel temper was added (quenching, tempering) to, while securing the strength and toughness, improve the cracking susceptibility during welding to reduce the hardness of the welding heat affected zone is limited to P CM is doing. However, all of them contain a large amount of Ni in order to achieve both high strength and toughness, and cannot be said to be a method for producing a high-strength tempered steel that is also economical.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、靱
性、溶接性とともに経済性を備えた引張強さが950N/mm2
以上の高張力調質鋼の製造方法を提供することにある。
The object of the present invention is to achieve a tensile strength of 950 N / mm 2 which is economical with toughness and weldability.
An object of the present invention is to provide a method for manufacturing the above high tensile tempered steel.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、下記の
高張力調質鋼の製造方法にある。
The gist of the present invention resides in the following method for producing a high tensile tempered steel.

【0008】重量%で、C:0.10〜0.18%、Si: 0.05〜
0.15%、Mn: 0.60〜1.00%、Cr: 0.40〜1.00%、Ni:0.
50〜1.00%、Mo: 0.40〜0.80%、Ti:0.010〜0.030 %、
Nb:0.010〜0.030 %、B:0.0004〜0.0015%およびCu:
0.50 %以下を含有し、残部はFeおよび不可避的不純物
からなり、かつ、Cr/Moが2.0 以下、Mn+Cr+Moが2.50
%以下であり、さらに下記 (I)式で表される溶接割れ感
受性指数PCMが0.29以下、炭素当量Ceq. が0.53以上で
ある鋼を、1150〜1200℃に加熱して 650〜900 ℃の温度
域で圧下率を30%以上として熱間圧延を行った後、Ac3
点以上の温度域に再加熱して焼入れし、次いでAc1点以
下の温度域で焼戻しすることを特徴とする高張力調質鋼
の製造方法。
% By weight, C: 0.10 to 0.18%, Si: 0.05 to
0.15%, Mn: 0.60 to 1.00%, Cr: 0.40 to 1.00%, Ni: 0.
50 to 1.00%, Mo: 0.40 to 0.80%, Ti: 0.010 to 0.030%,
Nb: 0.010 to 0.030%, B: 0.0004 to 0.0015% and Cu:
Contains 0.50% or less, the balance Fe and unavoidable impurities, Cr / Mo 2.0 or less, Mn + Cr + Mo 2.50
% Or less, and a steel having a weld crack susceptibility index P CM represented by the following formula (I) of 0.29 or less and a carbon equivalent Ceq. Of 0.53 or more is heated to 1150 to 1200 ° C. to 650 to 900 ° C. After hot rolling with a rolling reduction of 30% or more in the temperature range, Ac 3
A method for producing a high-strength tempered steel, which comprises reheating to a temperature range of at least a point, quenching, and then tempering at a temperature range of less than Ac 1 .

【0009】PCM=C%+{(Mn%+Cr%+Cu%)/2
0}+(Si%/30)+(Ni%/60)+(Mo%/15)+
(V%/10)+5B% ・・・・・(I)なお、Ceq. は
一般に定義される下記の式による。
P CM = C% + {(Mn% + Cr% + Cu%) / 2
0} + (Si% / 30) + (Ni% / 60) + (Mo% / 15) +
(V% / 10) + 5B% (I) Note that Ceq. Is based on the following formula that is generally defined.

【0010】Ceq. =C%+ (Mn%/6) + (Si%/2
4) + (Ni%/40) + (Cr%/5)+ (Mo%/4) + (V
%/14)
Ceq. = C% + (Mn% / 6) + (Si% / 2
4) + (Ni% / 40) + (Cr% / 5) + (Mo% / 4) + (V
%/14)

【0011】[0011]

【作用】本発明は、上記の素材鋼の化学組成と熱間圧延
から焼戻しまでの条件を適切に定めたことの総合的な効
果として前記の目的を達成するのであるが、まず、本発
明方法の主な特徴を列挙すると次の (イ)〜 (ヘ)のとおり
である。
The present invention achieves the above object as a comprehensive effect of appropriately setting the chemical composition of the raw material steel and the conditions from hot rolling to tempering. First, the method of the present invention is achieved. The main features of are listed in (a) to (f) below.

【0012】(イ)Niの含有量を低下させて経済性を確保
する。
(B) The Ni content is reduced to ensure economic efficiency.

【0013】(ロ)Ni含有量の低下による母材の強度と靱
性の低下をNbで補う。すなわち、適量のNbを含有させる
ことにより含Nb析出物による析出効果を一層高め、結晶
粒の細粒化を図り、母材の強度と靱性を確保する。
(B) Nb compensates the decrease in strength and toughness of the base material due to the decrease in Ni content. That is, by containing an appropriate amount of Nb, the precipitation effect of the Nb-containing precipitate is further enhanced, the crystal grains are made finer, and the strength and toughness of the base material are secured.

【0014】(ハ)Tiを含有させることによりTiN を析出
させ、溶接時の結晶粒の粗大化を防止し、継手性能の向
上を図る。
(C) By containing Ti, TiN is precipitated to prevent coarsening of crystal grains during welding and to improve joint performance.

【0015】(ニ)Cr/Moで2.0 以下、Mn+Cr+Moで2.50
%以下とし、さらにPCMが0.29以下、かつCeq. が0.53
以上になるように合金元素含有量を制限して溶接割れ感
受性を抑制する。
(D) Cr / Mo 2.0 or less, Mn + Cr + Mo 2.50
% Or less, P CM is 0.29 or less, and Ceq. Is 0.53.
As described above, the alloying element content is limited to suppress the weld cracking susceptibility.

【0016】(ホ)NbとTiを複合で含有させるとNbの固溶
が阻害され、圧延前の加熱温度が1150℃未満ではほとん
ど固溶しないため、Nbの析出効果は発揮されない。ま
た、前記温度が1200℃を超えるとNbの析出効果が飽和
し、スラブの表面割れが発生するので、1150〜1200℃に
加熱して熱間圧延を施す。
(E) When Nb and Ti are contained in combination, the solid solution of Nb is hindered, and when the heating temperature before rolling is less than 1150 ° C., the solid solution hardly occurs, so that the precipitation effect of Nb is not exhibited. If the temperature exceeds 1200 ° C, the Nb precipitation effect is saturated and surface cracking of the slab occurs, so heating to 1150 to 1200 ° C and hot rolling are performed.

【0017】(ヘ)Nbの固溶化を促進するために、圧延加
熱温度を上記の1150〜1200℃の範囲とし、さらに 650〜
900 ℃の温度域で圧下率を30%以上として熱間圧延を行
い、γ粒の微細化を図る。
(F) In order to promote the solid solution of Nb, the rolling heating temperature is set in the above range of 1150 to 1200 ° C., and further 650 to
Hot rolling is performed in the temperature range of 900 ° C with a rolling reduction of 30% or more to refine the γ grains.

【0018】次に、素材鋼の化学組成を前記のように定
めた理由を説明する。以下、成分含有量の%は重量%を
意味する。
Next, the reason why the chemical composition of the raw steel is determined as described above will be explained. Hereinafter,% of the content of components means% by weight.

【0019】C:0.10〜0.18%鋼の焼入性向上と強度確
保のために必要な成分である。0.10%未満では、目標と
する引張強さ950N/mm2以上の特性が得られない。一方、
0.18%を超えると溶接性および低温靱性を悪化させる。
よって、C含有量の範囲は0.10〜0.18%に限定した。
C: 0.10 to 0.18% C is a component necessary for improving the hardenability of steel and ensuring strength. If it is less than 0.10%, the target tensile strength of 950 N / mm 2 or more cannot be obtained. on the other hand,
If it exceeds 0.18%, the weldability and low temperature toughness deteriorate.
Therefore, the range of the C content is limited to 0.10 to 0.18%.

【0020】Si:0.05〜0.15%脱酸および強度確保に有
効な成分であり、そのためには0.05%以上の含有量が必
要である。一方、0.15%を超えると溶接継手部の靱性が
悪化する。よって、Si含有量の範囲は0.05〜0.15%とし
た。
Si: 0.05 to 0.15% A component effective in deoxidizing and securing strength, and for that purpose, a content of 0.05% or more is necessary. On the other hand, if it exceeds 0.15%, the toughness of the welded joint deteriorates. Therefore, the range of the Si content is set to 0.05 to 0.15%.

【0021】Mn:0.60〜1.00%鋼の焼入性を確保する上
で重要な成分であるが、0.60%未満ではこの効果がな
い。一方、1.00%を超えると溶接性と母材の靱性をとも
に劣化させる。よって、Mn含有量の範囲は0.60〜1.00%
に限定した。
Mn: 0.60-1.00% This is an important component for ensuring the hardenability of steel, but if it is less than 0.60%, this effect is not obtained. On the other hand, if it exceeds 1.00%, both the weldability and the toughness of the base material are deteriorated. Therefore, the range of Mn content is 0.60 to 1.00%
Limited to.

【0022】Ni:0.50〜1.00%母材と溶接継手部の低温
靱性および強度の確保に有効な成分である。そのために
は、0.50%以上の含有量が必要である。一方、経済性を
考慮して上限を1.00%とした。
Ni: 0.50 to 1.00% Ni is an effective component for securing the low temperature toughness and strength of the base material and the welded joint. For that purpose, the content of 0.50% or more is required. On the other hand, considering economy, the upper limit was set to 1.00%.

【0023】Cr: 0.40〜1.00%鋼の焼入性を確保する上
で重要な成分であるが、0.40%未満ではこの効果がな
い。一方、1.00%を超えると溶接性と母材の靱性をとも
に劣化させる。よって、Cr含有量の範囲は0.40〜1.00%
に限定した。
Cr: 0.40-1.00% This is an important component for ensuring the hardenability of steel, but if it is less than 0.40%, this effect is not obtained. On the other hand, if it exceeds 1.00%, both the weldability and the toughness of the base material are deteriorated. Therefore, the range of Cr content is 0.40 to 1.00%
Limited to.

【0024】Mo:0.40〜0.80%焼入性を向上させ、かつ
焼戻し軟化抵抗を高めて強度を上昇させる効果を有す
る。0.40%未満ではその効果がなく、一方、0.80%を超
えるとその効果が飽和し、高価な元素であることから経
済性も損なう。よって、Mo含有量の範囲は0.40〜0.80%
とした。
Mo: 0.40 to 0.80% Mo has the effects of improving the hardenability and increasing the resistance to temper softening to increase the strength. If it is less than 0.40%, the effect is not exerted, while if it exceeds 0.80%, the effect is saturated and the economy is impaired because it is an expensive element. Therefore, the range of Mo content is 0.40 to 0.80%
And

【0025】Cr/Mo: 2.0 以下、Mn+Cr+Mo: 2.50%以
下Mn、CrおよびMoは、いずれも上記のように焼入れ性ま
たは強度を向上させるが、Cr/Moが2.0 を超えると母材
の靱性は向上するものの、Moの析出効果が減少するため
所望の強度は確保できない。一方、Mn+Cr+Moが2.50%
を超えると強度向上効果が飽和し、かつ母材および継手
部の靱性は低下する。よって、さらに、前記の単独の成
分含有量の範囲を満たすと同時に、Cr/Moで2.0 以下、
かつMn+Cr+Moで2.50%以下とした。
Cr / Mo: 2.0 or less, Mn + Cr + Mo: 2.50% or less Mn, Cr and Mo all improve the hardenability or strength as described above, but if Cr / Mo exceeds 2.0, the toughness of the base material is Although improved, the desired strength cannot be secured because the Mo precipitation effect decreases. On the other hand, Mn + Cr + Mo is 2.50%
If it exceeds, the strength improving effect is saturated, and the toughness of the base material and the joint portion decreases. Therefore, further, while satisfying the above range of the content of the single component, Cr / Mo is 2.0 or less,
In addition, Mn + Cr + Mo was set to 2.50% or less.

【0026】Ti: 0.010〜0.030 %溶接継手部の靱性向
上に有効であるため、 0.010%以上含有させる必要があ
るが、過剰のTiは母材の靱性劣化を起こすので 0.030%
以下とした。
Ti: 0.010 to 0.030% Since it is effective in improving the toughness of the welded joint, it is necessary to add 0.010% or more. However, since excessive Ti causes deterioration of the toughness of the base metal, it is 0.030%.
Below.

【0027】Nb: 0.010〜0.030 %結晶粒微細化によっ
て母材の強度と靱性を確保するのに有効な成分である。
0.010 %未満では、その効果が期待できない。一方、0.
030 %を超えて多量に含有させると溶接継手部の靱性を
劣化させる。よって、Nb含有量の範囲は 0.010〜0.030
%とした。
Nb: 0.010 to 0.030% This is an effective component for ensuring the strength and toughness of the base material by refining the crystal grains.
If it is less than 0.010%, its effect cannot be expected. On the other hand, 0.
If it is contained in a large amount exceeding 030%, the toughness of the welded joint is deteriorated. Therefore, the range of Nb content is 0.010 to 0.030.
%.

【0028】B:0.0004〜0.0015%微量の含有量で焼入
れ性を大幅に向上させ、さらに母材の靱性も向上させる
成分である。そのためには、少なくとも0.004 %以上含
有させる必要がある。一方、0.0015%を超えるとその効
果が飽和し逆に母材の靱性を劣化させる。よって、B含
有量の範囲は0.0004〜0.0015%とした。
B: 0.0004 to 0.0015% A small amount of the component greatly improves the hardenability and further improves the toughness of the base material. For that purpose, it is necessary to contain at least 0.004% or more. On the other hand, if it exceeds 0.0015%, the effect is saturated and, conversely, the toughness of the base material is deteriorated. Therefore, the range of B content is 0.0004 to 0.0015%.

【0029】Cu:0.5 %以下強度と耐食性を向上させる
ために必要な成分であるが、0.5 %を超えると母材の熱
間加工脆性、靱性および溶接性を劣化させる。
Cu: 0.5% or less Cu is a component necessary for improving strength and corrosion resistance, but if it exceeds 0.5%, hot working brittleness, toughness and weldability of the base material deteriorate.

【0030】PCM: 0.29%以下従来から鋼材の溶接性を
表す指標として利用されているものであり、溶接性も具
備させるには小さいことが望ましい。本発明の方法の素
材鋼でPCMを0.29%以下に抑えれば、後の実施例で示す
ように、Y開先拘束割れ試験における割れ停止に必要な
予熱温度を150 ℃以下にすることができる。
P CM : 0.29% or less It has been conventionally used as an index showing the weldability of steel materials, and it is desirable that it is small to have weldability. If P CM is suppressed to 0.29% or less in the material steel of the method of the present invention, the preheating temperature necessary for stopping cracking in the Y-groove constrained cracking test can be set to 150 ° C. or less as shown in the examples below. it can.

【0031】Ceq.:0.53以上Ceq. は鋼の焼入れ性を表
す指数の一つである。本発明では、一般的に用いられる
前記の式を用いる。このCeq. が0.53を下廻ると焼入れ
性が不足し、目標の強度が得られない。
Ceq .: 0.53 or more Ceq. Is one of the indexes showing the hardenability of steel. In the present invention, the above-mentioned commonly used formula is used. If this Ceq. Is less than 0.53, the hardenability is insufficient and the target strength cannot be obtained.

【0032】次に、熱間圧延およびその後の熱処理条件
の限定理由について説明する。
Next, the reasons for limiting the conditions of hot rolling and subsequent heat treatment will be described.

【0033】本発明の素材鋼の熱間圧延は、いわゆる制
御圧延ではなく、オーステナイト単相の高温域で圧延を
終了する通常の熱間圧延である。しかし、その時の鋼の
加熱温度の範囲を1150〜1200℃、圧延温度の範囲を 650
〜900 ℃、圧下率を30%以上とする。加熱温度が1200
℃、圧延温度が900 ℃をそれぞれ超えると、細粒化のた
めにNbとTiを含有させた鋼であってもオーステナイト粒
が粗大化して母材靱性が劣化するため、それぞれの上限
は加熱温度で1200℃、圧延温度で900 ℃とした。
The hot rolling of the material steel of the present invention is not so-called controlled rolling but ordinary hot rolling in which the rolling is finished in the high temperature region of the austenite single phase. However, the heating temperature range of the steel at that time is 1150 to 1200 ° C, and the rolling temperature range is 650.
~ 900 ℃, reduction rate of 30% or more. Heating temperature is 1200
℃ and rolling temperature are over 900 ℃, the austenite grains are coarsened and the base metal toughness deteriorates even in steel containing Nb and Ti for grain refinement. The temperature was 1200 ° C and the rolling temperature was 900 ° C.

【0034】一方、加熱温度が1150℃未満では、γ粒へ
のNbの固溶を図りその後の微細な含Nb析出物によるγ粒
の微細化を起こさせて強度と靱性を向上させようとする
効果を発揮させることができなくなる。また、圧延温度
が650 ℃未満では、圧延そのものが困難となる。よっ
て、それぞれの下限は、加熱温度で1150℃、圧延温度で
650 ℃とした。このときの圧下率が30%未満では、充分
な細粒組織が得られないので、熱間圧延の圧下率は30%
以上とした。
On the other hand, if the heating temperature is less than 1150 ° C., it is attempted to form a solid solution of Nb in the γ-grains and then to refine the γ-grains by fine Nb-containing precipitates to improve the strength and toughness. The effect cannot be exerted. If the rolling temperature is lower than 650 ° C, rolling itself becomes difficult. Therefore, the lower limit of each is 1150 ℃ at heating temperature and rolling temperature.
The temperature was 650 ° C. If the reduction ratio at this time is less than 30%, a sufficient fine grain structure cannot be obtained, so the reduction ratio of hot rolling is 30%.
That's it.

【0035】熱間圧延終了後は、次の理由でAc3点以上
の温度域まで再加熱して焼入れし、次いでAc1点以下の
温度で焼戻しを行う。すなわち、焼入れ後の鋼組織を均
一にするため焼入れ温度は、オーステナイト単相域から
の焼入れが行えるAc3点以上の温度とし、焼戻し温度
は、過度の強度低下を避けるためにAc1点以下の温度と
する。
After the hot rolling is finished, it is reheated to a temperature range of Ac 3 point or higher for quenching for the following reason, and then tempered at a temperature of Ac 1 point or lower. That is, in order to make the steel structure uniform after quenching, the quenching temperature is set to a temperature of Ac 3 point or higher at which quenching from the austenite single phase region can be performed, and the tempering temperature is set to an Ac 1 point or lower in order to avoid excessive strength reduction. The temperature.

【0036】[0036]

【実施例】表1に示す化学組成の連続鋳造鋳片を表2に
示す条件で熱間圧延し、熱間圧延後、さらに表2に示す
温度で焼入れ焼戻し熱処理を施して、板厚75mmの高張力
調質鋼を製造した。
EXAMPLE Continuously cast slabs having the chemical composition shown in Table 1 were hot-rolled under the conditions shown in Table 2, and after hot-rolling, they were further subjected to quenching and tempering heat treatment at the temperature shown in Table 2 to give a sheet thickness of 75 mm. High tensile tempered steel was manufactured.

【0037】このようにして得られた鋼材の機械的特性
値、靱性および溶接性についての性能評価結果を表2に
併せて示す。なお、溶接性は、入熱1.7kJ/cmの CO2アー
ク溶接(溶接棒L−80、室温25℃、湿度70%)でJIS Z
3121に定められるY開先拘束割れ試験を行い、割れ停止
に必要な予熱温度で、靱性は衝撃破面遷移温度 vTrs
で、それぞれ評価した。
Table 2 also shows the performance evaluation results of the mechanical properties, toughness and weldability of the steel material thus obtained. The weldability is JIS Z in CO 2 arc welding with a heat input of 1.7 kJ / cm (welding rod L-80, room temperature 25 ° C, humidity 70%).
The Y-groove restraint cracking test specified in 3121 was performed, and the toughness was the impact fracture surface transition temperature vTrs at the preheating temperature required to stop cracking.
Then, each was evaluated.

【0038】表2からわかるように、全ての条件が本発
明で定める範囲の本発明例では、いずれも目標値を上廻
る良好な性能のものが得られた。
As can be seen from Table 2, in the examples of the present invention in which all the conditions are within the range defined by the present invention, good performance exceeding the target value was obtained.

【0039】比較例1〜9および比較例13〜16は、化学
組成が本発明で定める範囲外のものであるが、その他の
条件が本発明で定める範囲内であっても、性能のいずれ
かが目標に達しなかった。比較例10、11、12は、本発明
例Aと同一化学組成のものであるが、熱間圧延の温度条
件が本発明で定める範囲外であるため、性能のいずれか
が目標に達しなかった。すなわち、比較例10では、圧延
加熱温度が下限を下廻っているため、Nbによる微細化効
果が得られず、引張強さ、靱性ともに所定の目標値に達
しなかった。比較例11は、圧延加熱温度が上限を超える
例であるが、目標性能は達成したものの性能向上効果は
明らかに飽和しており、またスラブ表面荒れが発生し
た。したがって、同程度の性能が得られるならば、圧延
加熱温度はやはり本発明で定める範囲とすべきであるこ
とがわかった。比較例12では、熱間圧延仕上温度が上限
を超えているため、比較例10と同様の結果しか得られな
かった。
In Comparative Examples 1 to 9 and Comparative Examples 13 to 16, the chemical composition is outside the range defined by the present invention, but even if the other conditions are within the range defined by the present invention, any of the performances Did not reach the goal. Comparative Examples 10, 11 and 12 have the same chemical composition as that of Inventive Example A, but one of the performances did not reach the target because the temperature condition of hot rolling was outside the range defined by the present invention. . That is, in Comparative Example 10, since the rolling heating temperature was below the lower limit, the Nb refinement effect was not obtained, and neither the tensile strength nor the toughness reached the predetermined target values. Comparative Example 11 is an example in which the rolling heating temperature exceeds the upper limit, but although the target performance was achieved, the performance improving effect was clearly saturated, and slab surface roughness occurred. Therefore, it was found that the rolling heating temperature should be within the range defined by the present invention if the same level of performance can be obtained. In Comparative Example 12, the hot rolling finishing temperature exceeded the upper limit, so that only the same results as in Comparative Example 10 were obtained.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】本発明の方法によれば、一般に高強度化
のために使用されている高価なNiの含有量を少なくし
て、引張強さ950N/mm2以上の高強度と高靱性を備え、し
かも溶接性が優れた高張力調質鋼を製造することができ
る。
According to the method of the present invention, the high-strength and high-toughness of 950 N / mm 2 or more in tensile strength can be obtained by reducing the content of expensive Ni generally used for strengthening. It is possible to manufacture a high-strength tempered steel that is equipped with and has excellent weldability.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.10〜0.18%、Si: 0.05〜
0.15%、Mn: 0.60〜1.00%、Cr: 0.40〜1.00%、Ni:0.
50〜1.00%、Mo: 0.40〜0.80%、Ti:0.010〜0.030 %、
Nb:0.010〜0.030 %、B:0.0004〜0.0015%およびCu:
0.50 %以下を含有し、残部はFeおよび不可避的不純物
からなり、かつ、Cr/Moが2.0 以下、Mn+Cr+Moが2.50
%以下であり、さらに下記 (I)式で表される溶接割れ感
受性指数PCMが0.29以下、炭素当量Ceq. が0.53以上で
ある鋼を、1150〜1200℃に加熱して 650〜900 ℃の温度
域で圧下率を30%以上として熱間圧延を行った後、Ac3
点以上の温度域に再加熱して焼入れし、次いでAc1点以
下の温度域で焼戻しすることを特徴とする高張力調質鋼
の製造方法。PCM=C%+{( Mn%+Cr%+Cu% )/2
0}+(Si%/30)+(Ni%/60)+(Mo%/15)+
(V%/10)+5B% ・・・・・(I)
1. By weight%, C: 0.10-0.18%, Si: 0.05-
0.15%, Mn: 0.60 to 1.00%, Cr: 0.40 to 1.00%, Ni: 0.
50 to 1.00%, Mo: 0.40 to 0.80%, Ti: 0.010 to 0.030%,
Nb: 0.010 to 0.030%, B: 0.0004 to 0.0015% and Cu:
Contains 0.50% or less, the balance Fe and unavoidable impurities, Cr / Mo 2.0 or less, Mn + Cr + Mo 2.50
% Or less, and a steel having a weld crack susceptibility index P CM represented by the following formula (I) of 0.29 or less and a carbon equivalent Ceq. Of 0.53 or more is heated to 1150 to 1200 ° C. to 650 to 900 ° C. After hot rolling with a rolling reduction of 30% or more in the temperature range, Ac 3
A method for producing a high-strength tempered steel, which comprises reheating to a temperature range of at least a point, quenching, and then tempering at a temperature range of less than Ac 1 . P CM = C% + {(Mn% + Cr% + Cu%) / 2
0} + (Si% / 30) + (Ni% / 60) + (Mo% / 15) +
(V% / 10) + 5B% ・ ・ ・ ・ ・ (I)
JP31033092A 1992-11-19 1992-11-19 Production of high tensile strength heat treated steel excellent in cost effectiveness Pending JPH06158160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31033092A JPH06158160A (en) 1992-11-19 1992-11-19 Production of high tensile strength heat treated steel excellent in cost effectiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31033092A JPH06158160A (en) 1992-11-19 1992-11-19 Production of high tensile strength heat treated steel excellent in cost effectiveness

Publications (1)

Publication Number Publication Date
JPH06158160A true JPH06158160A (en) 1994-06-07

Family

ID=18003940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31033092A Pending JPH06158160A (en) 1992-11-19 1992-11-19 Production of high tensile strength heat treated steel excellent in cost effectiveness

Country Status (1)

Country Link
JP (1) JPH06158160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026276A1 (en) * 1998-08-05 2000-08-09 Nippon Steel Corporation Rolled steel product excellent in weatherability and fatigue resisting characteristic and method of production thereof
WO2012060405A1 (en) 2010-11-05 2012-05-10 新日本製鐵株式会社 High-strength steel sheet and method for producing same
CN109023114A (en) * 2018-09-29 2018-12-18 南京钢铁股份有限公司 A kind of superelevation steel Q960E slab and manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026276A1 (en) * 1998-08-05 2000-08-09 Nippon Steel Corporation Rolled steel product excellent in weatherability and fatigue resisting characteristic and method of production thereof
EP1026276A4 (en) * 1998-08-05 2005-03-09 Nippon Steel Corp Rolled steel product excellent in weatherability and fatigue resisting characteristic and method of production thereof
WO2012060405A1 (en) 2010-11-05 2012-05-10 新日本製鐵株式会社 High-strength steel sheet and method for producing same
CN109023114A (en) * 2018-09-29 2018-12-18 南京钢铁股份有限公司 A kind of superelevation steel Q960E slab and manufacturing method
EP3859035A4 (en) * 2018-09-29 2021-08-18 Nanjing Iron & Steel Co., Ltd. Ultrahigh-steel q960e slab and manufacturing method

Similar Documents

Publication Publication Date Title
JP2022513964A (en) Cold-rolled steel sheets with excellent workability, hot-dip galvanized steel sheets, and methods for manufacturing these.
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JPS6366368B2 (en)
JPH0794687B2 (en) Method for producing HT80 steel excellent in high weldability, stress corrosion cracking resistance and low temperature toughness
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP4309561B2 (en) High-tensile steel plate with excellent high-temperature strength and method for producing the same
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JP3255790B2 (en) Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JPS60121228A (en) Manufacture of tempered high tension steel plate
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP4276341B2 (en) Thick steel plate having a tensile strength of 570 to 720 N / mm2 and a small hardness difference between the weld heat-affected zone and the base material, and a method for producing the same
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP4264296B2 (en) Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same
JPH06158160A (en) Production of high tensile strength heat treated steel excellent in cost effectiveness
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
KR100311791B1 (en) METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART
JP3371715B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JP3864880B2 (en) Manufacturing method of high toughness and high yield point steel with excellent weldability
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JPH0670250B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness