JPS6366368B2 - - Google Patents

Info

Publication number
JPS6366368B2
JPS6366368B2 JP58033958A JP3395883A JPS6366368B2 JP S6366368 B2 JPS6366368 B2 JP S6366368B2 JP 58033958 A JP58033958 A JP 58033958A JP 3395883 A JP3395883 A JP 3395883A JP S6366368 B2 JPS6366368 B2 JP S6366368B2
Authority
JP
Japan
Prior art keywords
steel
strength
toughness
content
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58033958A
Other languages
Japanese (ja)
Other versions
JPS59159932A (en
Inventor
Nozomi Komatsubara
Seiichi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3395883A priority Critical patent/JPS59159932A/en
Publication of JPS59159932A publication Critical patent/JPS59159932A/en
Publication of JPS6366368B2 publication Critical patent/JPS6366368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、強度が高く、しかも優れた靭性を
も有する高張力鋼板を、低コストで能率良く製造
する方法に関するものである。 近年、世界の経済事情は益々複雑化の兆しをみ
せてきており、これにともなつて各種建造物や機
械装置等の溶接構造物にも大型化や使用環境の広
範囲化が目立つようになつてきた。そして、これ
らに対処すべく、高張力鋼板の需要も増加の一途
をたどつてきている。 ところで、これらの高張力鋼板には、当然のこ
とながら強靭性、溶接性、経済性等に優れている
ことが要求されており、その製造方法としては、
前記特性をできるだけ十分に備えたものが得られ
るように、制御圧延法と焼入れ焼戻し法が広く利
用されている。 しかし、前記制御圧延法には、それによつて得
られる鋼板強度の向上に限界があることや、圧延
に時間がかかりすぎて生産性の低下を招く等の問
題があり、また焼入れ焼戻し法には、再加熱焼入
れ処理を必要とするために経済性が低下するとい
う不都合な問題を抱えていた。 このようなことから、最近に至つて、一旦冷却
することなく直ちに焼入れし、焼戻しを行うとい
う直接焼入れ焼戻し法も実施されるようになつて
きており、経済性を低下させることなく強度を増
大させることができるということから大きな注目
を集めるようになつてきた。 例えば、Nbを0.005〜0.016%含有させた構造用
合金鋼では直接焼入れ焼戻し法の効果が顕著に現
われるので、通常の焼入れ焼戻しに比べて大幅な
強度向上を実現できることが知られているが、こ
れは、通常の焼入れ焼戻し法に比べて直焼入れ法
は加熱温度が高く、従つてNb(C、N)等の炭窒
化物を固溶させることが容易であつてオーステナ
イト状態での固浴Nb量を増大させることができ、
それ故、焼入れ後の焼戻し処理時にNbC或いは
Nb(C、N)の析出量が増加して強度を向上させ
るからである。 しかしながら、実際操業をふまえた本発明者等
の長期にわたる実験、検討の結果、前記直接焼入
れ焼戻し法にも、得られる鋼板に強度ムラができ
るのを回避できないばかりか、期待するほどの靭
性を確保できないという問題点が存在するとの認
識を得るに至つたのである。即ち、 直接焼入れを行う場合、通常の鋼中には比較
的多量のNが含有されていることもあつて、存
在するNbCやNb(C、N)を十分に固溶させ
ようとして高温に加熱すると、鋼中のAlNも
同時に分解し、固溶N量が増大する。従つて、
低温度域での圧延中に、或いは圧延終中後直接
焼入れを行うまでの間にNb(C、N)等の析出
が起つてしまい、固溶Nb量が減少するために、
焼戻し時のNbCの析出量が減少して十分な強
度上昇を得ることができない、 一方、このように低温度域での圧延中、或い
は圧延終了後直接焼入れを行うまでの間にNb
(C、N)やAl等の析出が始まると、これがフ
エライトの核生成を促進して焼入れ性を低下さ
せるという現象をも引き起し、これによつて強
度及び靭性が低下するので、より多くの合金元
素を添加してこれを補う必要がある、 さらに、Nb(C、N)等を完全に固浴させる
ために高温に加熱した場合、オーステナイト結
晶粒が粗大化してしまつてその後の熱間圧延に
よつてもこれを十分に微細化することが難かし
くなるので、通常の焼入れ焼戻しを行つた場合
に比べて結晶粒が粗大となり、この点からも靭
性劣化を来たす、 等の不都合が見出されたのである。 本発明者等は、従来の直接焼入れ焼戻し法にみ
られる上述のような問題点を解決して、強度並び
に靭性ともに優れている高張力鋼板を、コスト安
く高能率で製造する方法を見付け出すべく、特に
高温加熱を必要とする原因になると考えられる鋼
中Nに着目して詳細な研究を行つた結果、 (a) 鋼中のNはAlと結びついてAlNを形成する
が、AlNが多すぎると圧延中や圧延終了後焼
入れを行うまでの間にこれが析出して、前記の
ようにフエライトの核生成を促進し、靭性劣化
を招く。そこで、N量を下げると、圧延中や、
圧延終了後焼入れを行うまでの間のAlNを析
出しないで、焼戻し時にはじめてAlNを析出
するようになるので、それほど靭性を劣化する
ことなく強度向上を図れること、 (b) しかしながら、単純にN量を下げるとオース
テナイト粒の粗粒化を招き、靭性改善の妨げと
なるが、鋼中に微量のTiを添加すると、これ
が微細なTiNを生成させて高温加熱時のオー
ステナイト結晶粒の粗大化を防止し、鋼の靭性
を大幅に向上する。しかしこの場合、Tiの添
加量が従来の一般的なTi添加鋼のように0.01%
を越えるようなことがある。低N鋼であるが故
に、過剰なTiが焼戻し時にTiCとして析出して
鋼材の靭性を著しく劣化させるので、Tiの添
加量を特に微量に制限することが重要であるこ
と、 (c) このように、低N化し、微量のTiを添加し
た鋼にさらに適当量のNbを添加したものを熱
間圧延し、直接焼入れ焼戻しすると、鋼材組織
中にはAlNのほかにNb(C、N)等もが析出さ
れることとなり、鋼材強度がさらに向上するこ
と、 この場合、NbCやNb(C、N)はTi(C、
N)よりも低温度で鋼中に固溶するので、加熱
温度を適当に選択すれば、微量のTiNのみが
析出してオーステナイト粒の粗大化を阻止し、
焼戻し時にはじめてNbCやNb(C、N)の析
出が起つて鋼材強度が更に向上することとな
る。 (d) 総じて、低N鋼に微量のTiを添加し、さら
に適量のNbをも含有させた鋼を熱間圧延して
直接焼入れ焼戻しを施せば、Ti添加によつて
加熱時のオーステナイト結晶粒の粗大化が防止
されるとともに、熱間圧延によつてオーステナ
イト結晶粒の微細化がなされ、さらに特定温度
以上で圧延を終了するとオーステナイトの再結
晶が促進して加工歪による焼入れ性の低下も防
止される上、焼戻し時のNbCやNb(C、N)
の析出で強度がより向上して、強度、靭性バラ
ンスの極めて優れた高張力鋼板が得られるこ
と、 以上(a)〜(d)に示される如き知見を得るに至つた
のである。 次に、この発明の方法において、対象とする鋼
の成分組成、及びその他の鋼板製造条件を上述の
ように数値限定した理由を説明する。 (A) 化学成分量 C C成分には、鋼板の焼入れ性と強度とを確
保する作用があるが、その含有量が0.03%未
満では前記作用に所望の効果が得られず、他
方0.20%を越えて含有させると溶接性を劣化
することとなるので、その含有量を0.03〜
0.20%と定めた。 Si Si成分には、鋼の脱酸作用と強度確保作用
とがあるが、その含有量が0.03%未満では前
記作用に所望の効果が得られず、他方0.50%
を越えて含有させると靭性を劣化するように
なることから、その含有量を0.03〜0.50%と
定めた。 Mn Mn成分には、銅の焼入れ性を向上する作
用があり、所望の焼入れ性を確保するために
は0.60%以上の添加が必要である。一方、
1.80%を越え含有させると、鋼の溶接性と靭
性とを劣化させることとなるので、その含有
量を0.60〜1.80%と定めた。 Ti成分の微量添加は、TiNを形成せしめ
るためのものであるが、TiNは1250℃程度
に過熱しても容易には溶解せず、オーステナ
イト結晶粒界を釘付けにしてオーステナイト
結晶粒の粗大化を防止する作用がある。しか
しながら、その含有量が0.003%未満では前
記作用に所望の効果を得ることができず、他
方0.010%を越えて含有させると、固溶Tiが
増加し、焼戻し時にTiCとして析出して靭性
を著しく劣化させるために、その含有量を
0.003〜0.010%と定めた。 Nb Nb成分には、直接焼入れ時の焼入れ性を
高めるとともに、焼戻し時に2次析出して鋼
板の強度を向上する作用があるが、その含有
量が0.01%未満では前記作用に所望の効果を
得ることができず、他方0.10%を越えて含有
させると靭性を著しく劣化させることとなる
ので、その含有量を0.01〜0.10%と定めた。 sol.Al sol.Al成分は、直接焼入れ焼戻しにおいて
はオーステナイト結晶粒の微細化というより
も、むしろ鋼中に存在する固溶NをAlNと
して固定して靭性を向上させるために重要な
成分であるが、その含有量が0.002%未満で
は満足できる効果を得ることができず、他方
0.100%を越えて含有させると鋼の靭性を劣
化させることとなるので、その含有量を
0.002〜0.100%と定めた。 N N成分には、Tiと結合してTiNを生成す
ることによりオーステナイト結晶粒の粗大化
を防止するという重要な作用があり、また
AlやNbと結合して焼戻し後の鋼板の強度を
向上させる作用もあるが、その含有量が
0.0020%未満では前記作用に所望の効果を得
ることができず、他方0.0040%を越えて含有
させると、圧延中、或いは圧延終了後直接焼
入れを行うまでの間にNb(C、N)やAlN等
を析出して鋼の焼入れ性を低下し、強度及び
靭性を劣化することとなる上、このように
Nb(C、N)が析出すると固浴Nb量が減少
し、焼戻し時のNbCの析出量を少なくして
強度を更に低下することとなるので、その含
有量を0.0020〜0.0040%と定めた。 Cr Cr成分には、鋼の焼入れ性と強度を確保
する作用があるので必要により含有せしめら
れるものであるが、その含有量が0.05%未満
では前記作用に所望の効果が得られず、他方
0.75%を越えて含有させると靭性を劣化する
ようになることから、その含有量を0.05〜
0.75%と定めた。 Ni Ni成分には、鋼の焼入れ性を確保し、特
に低温靭性を向上する作用があるので必要に
より添加されるものであるが、その含有量が
0.05%未満では前記作用に所望の効果が得ら
れず、他方1.50%を越えて含有させると経済
的に不利となることから、その含有量を0.05
〜1.50%と定めた。 Mo Mo成分には、鋼の焼入れ性を増大させ、
かつ焼戻し軟化抵抗を高める作用があるので
必要により添加されるものであるが、その含
有量が0.05%末満では前記作用に所望の効果
を得ることができず、他方0.50%を越えて含
有させると溶接性を著しく劣化させるので、
その含有量を0.05〜0.50%と定めた。 V V成分には、鋼の強度を高める作用がある
ので、より高強度の鋼板を必要とする場合に
添加含有せしめられるものであるが、その含
有量が0.01%未満では前記作用の所望の効果
を得ることができず、他方0.10%を越えて含
有させると靭性の劣化を招くようになること
から、その含有量を0.01〜0.10%と定めた。 B B成分には、微量添加で鋼の焼入れ性を大
幅に向上する作用があるので、鋼板の強度及
び靭性をより向上する必要がある場合に添加
含有せしめられるものであるが、その含有量
が0.0020%を越えると粗大なM23(C、B)6
生成されて鋼の靭性を劣化するようになるこ
とから、0.0020%以下にその含有量を限定し
た。なお、この発明においては、N量を
0.0020〜0.0040%と限定しているので、Bの
添加量を0.0010%以下にすることが望まし
い。 Cu Cu成分には、鋼の焼入れ性と強度を向上
する作用があるが、その含有量が0.05%未満
では前記作用に所望の効果を得ることができ
ず、他方0.50%を越えて含有させると熱間脆
性を示すようになることから、その含有量を
0.05〜0.50%と定めた。 (B) 加熱温度 熱間圧延に際して、その加熱温度が1050℃未
満ではNbC等の難溶性炭化物等を十分に固溶
させることができず、他方1250℃を越える加熱
温度とするとTiNが粗大化してオーステナイ
ト粒の成長を抑止できなくなることから、加熱
温度を1050〜1250℃と定めた。 (C) 圧延仕上温度 圧延仕上温度が900℃未満になると、加工さ
れたオーステナイトの再結晶が抑制されて加工
歪が残留することとなる。加工歪が残留する
と、フエライト或いはベイナイトの生成が促進
され、焼入れ性を低下させるので、鋼板の強度
及び靭性の劣化を来たすこととなる。従つて、
加工されたオーステナイトの再結晶を促進し、
加工歪の残留を防ぐため、圧延仕上温度を900
℃以上と定めた。 (D) 圧延後の焼入れ温度 圧延終了後、Ar3変態点以上の温度から焼入
The present invention relates to a method for efficiently manufacturing high-strength steel plates having high strength and excellent toughness at low cost. In recent years, the world's economic situation has shown signs of becoming more and more complex, and as a result, welded structures such as various buildings and machinery have become larger and can be used in a wider range of environments. Ta. In order to meet these demands, the demand for high-strength steel sheets is also increasing. By the way, these high-strength steel plates are naturally required to have excellent toughness, weldability, economic efficiency, etc., and the manufacturing method is as follows.
Controlled rolling methods and quenching and tempering methods are widely used to obtain products with the above-mentioned properties as fully as possible. However, the above-mentioned controlled rolling method has problems such as there is a limit to the improvement in steel sheet strength that can be obtained by it, and rolling takes too much time, leading to a decrease in productivity. However, since it requires reheating and quenching, it has had the disadvantage of lowering economic efficiency. For this reason, in recent years, direct quenching and tempering methods, in which the material is quenched and tempered immediately without cooling, have been implemented, which increases strength without reducing economic efficiency. It has started to attract a lot of attention because of its ability to For example, it is known that the effects of direct quenching and tempering are noticeable in structural alloy steel containing 0.005 to 0.016% Nb, and it is possible to achieve a significant improvement in strength compared to normal quenching and tempering. The heating temperature of the direct quenching method is higher than that of the normal quenching and tempering method, and therefore it is easier to dissolve carbonitrides such as Nb (C, N) into a solid solution, and the amount of Nb in the solid bath in the austenitic state can be reduced. can be increased,
Therefore, during tempering treatment after quenching, NbC or
This is because the amount of Nb (C, N) precipitated increases and the strength is improved. However, as a result of long-term experiments and studies conducted by the present inventors based on actual operations, it has been found that the above-mentioned direct quenching and tempering method not only cannot avoid the occurrence of strength unevenness in the resulting steel sheet, but also does not ensure the expected toughness. We have come to realize that there is a problem in that it cannot be done. In other words, when direct quenching is performed, since ordinary steel contains a relatively large amount of N, the steel is heated to a high temperature in order to fully dissolve the existing NbC and Nb (C, N). Then, AlN in the steel is also decomposed at the same time, and the amount of solid solution N increases. Therefore,
During rolling in a low temperature range or during direct quenching after rolling, precipitation of Nb (C, N) etc. occurs, reducing the amount of solid solute Nb.
The amount of NbC precipitated during tempering decreases, making it impossible to obtain a sufficient increase in strength.
When precipitation of (C, N), Al, etc. begins, this promotes the nucleation of ferrite and reduces hardenability, which reduces strength and toughness. It is necessary to supplement this by adding alloying elements such as Even by rolling, it is difficult to make the grains fine enough, so the crystal grains become coarser than when normal quenching and tempering is performed, which also causes disadvantages such as deterioration of toughness. It was released. The present inventors aimed to solve the above-mentioned problems found in the conventional direct quenching and tempering method, and to find a method for manufacturing high-strength steel sheets with excellent strength and toughness at low cost and with high efficiency. As a result of detailed research focusing on N in steel, which is thought to be the cause of the need for high-temperature heating, we found that (a) N in steel combines with Al to form AlN, but there is too much AlN; This precipitates during rolling or before quenching after rolling and promotes nucleation of ferrite as described above, leading to deterioration of toughness. Therefore, if the amount of N is lowered, during rolling,
(b) However, because AlN does not precipitate between the end of rolling and quenching, and AlN precipitates only during tempering, strength can be improved without significantly deteriorating toughness. Lowering the austenite grains causes the austenite grains to become coarser, which hinders the improvement of toughness, but when a small amount of Ti is added to the steel, this creates fine TiN, which prevents the austenite grains from becoming coarser during high-temperature heating. and greatly improves the toughness of steel. However, in this case, the amount of Ti added is 0.01%, which is the same as in conventional general Ti-added steel.
There are times when it exceeds. Because it is a low-N steel, excess Ti precipitates as TiC during tempering and significantly deteriorates the toughness of the steel material, so it is important to limit the amount of Ti added to a particularly small amount; In addition, when a steel with low N content and a small amount of Ti added with an appropriate amount of Nb is hot rolled, directly quenched and tempered, Nb (C, N) etc. are added in addition to AlN in the steel structure. In this case, NbC and Nb(C,N) are precipitated by Ti(C,N).
Since it forms a solid solution in steel at a lower temperature than N), if the heating temperature is appropriately selected, only a small amount of TiN will precipitate and prevent the coarsening of austenite grains.
Only during tempering does NbC and Nb (C, N) precipitate, which further improves the strength of the steel material. (d) Generally speaking, if a low N steel containing a small amount of Ti and an appropriate amount of Nb is hot rolled and then directly quenched and tempered, the austenite grains during heating will be reduced due to the addition of Ti. In addition to preventing coarsening of the austenite, hot rolling also refines the austenite grains, and furthermore, when rolling is finished above a certain temperature, austenite recrystallization is promoted and deterioration of hardenability due to processing strain is also prevented. In addition, NbC and Nb (C, N) during tempering
We have come to the knowledge shown in (a) to (d) above that the strength is further improved by the precipitation of , and a high tensile strength steel plate with an extremely excellent balance of strength and toughness can be obtained. Next, in the method of the present invention, the reason why the composition of the target steel and other steel sheet manufacturing conditions are numerically limited as described above will be explained. (A) Amount of chemical components C The C component has the effect of ensuring the hardenability and strength of the steel plate, but if its content is less than 0.03%, the desired effect cannot be obtained; If the content exceeds 0.03 to 0.03, weldability will be deteriorated.
It was set at 0.20%. Si The Si component has a deoxidizing effect and a strength-enhancing effect on steel, but if its content is less than 0.03%, the desired effect cannot be obtained, and on the other hand, if the content is less than 0.50%, the desired effect cannot be obtained.
Since the toughness deteriorates if the content exceeds 0.03% to 0.50%. Mn The Mn component has the effect of improving the hardenability of copper, and in order to ensure the desired hardenability, it is necessary to add 0.60% or more. on the other hand,
If the content exceeds 1.80%, the weldability and toughness of the steel will deteriorate, so the content was set at 0.60 to 1.80%. The purpose of adding a small amount of Ti component is to form TiN, but TiN does not dissolve easily even when heated to about 1250℃, and it is necessary to nail the austenite grain boundaries and prevent coarsening of the austenite grains. It has a preventive effect. However, if the content is less than 0.003%, the desired effect cannot be obtained, while if the content exceeds 0.010%, solid solution Ti increases and precipitates as TiC during tempering, significantly reducing toughness. In order to degrade its content,
It was set at 0.003-0.010%. Nb The Nb component has the effect of increasing the hardenability during direct hardening and improving the strength of the steel plate through secondary precipitation during tempering, but if its content is less than 0.01%, the desired effect is not obtained. On the other hand, if the content exceeds 0.10%, the toughness will be significantly deteriorated, so the content was set at 0.01 to 0.10%. sol.Al The sol.Al component is an important component in direct quenching and tempering, rather than refining austenite grains, it fixes solid solution N present in the steel as AlN and improves toughness. However, if the content is less than 0.002%, satisfactory effects cannot be obtained;
If the content exceeds 0.100%, it will deteriorate the toughness of the steel, so the content should be controlled.
It was set at 0.002-0.100%. N The N component has the important effect of preventing coarsening of austenite crystal grains by combining with Ti and producing TiN, and also
It also has the effect of combining with Al and Nb to improve the strength of the steel plate after tempering, but the content is
If the content is less than 0.0020%, the desired effect cannot be obtained; on the other hand, if the content exceeds 0.0040%, Nb (C, N) and AlN are etc. will precipitate, reducing the hardenability of the steel and deteriorating its strength and toughness.
When Nb (C, N) precipitates, the amount of Nb in the solid bath decreases, reducing the amount of NbC precipitated during tempering and further lowering the strength, so the content was determined to be 0.0020 to 0.0040%. Cr The Cr component has the effect of ensuring the hardenability and strength of steel, so it is included as necessary. However, if its content is less than 0.05%, the desired effect cannot be obtained, and on the other hand,
If the content exceeds 0.75%, the toughness will deteriorate, so the content should be reduced to 0.05% or more.
It was set at 0.75%. Ni The Ni component has the effect of ensuring the hardenability of the steel and particularly improving the low-temperature toughness, so it is added as necessary, but its content is
If the content is less than 0.05%, the desired effect cannot be obtained, while if the content exceeds 1.50%, it will be economically disadvantageous, so the content should be reduced to 0.05%.
~1.50%. Mo Mo component increases the hardenability of steel,
It is added as necessary because it has the effect of increasing resistance to temper softening, but if the content is less than 0.05%, the desired effect cannot be obtained; on the other hand, if the content is less than 0.50%, it is added. This will significantly deteriorate weldability.
Its content was set at 0.05-0.50%. V Since the V component has the effect of increasing the strength of steel, it is added when a higher strength steel plate is required, but if its content is less than 0.01%, the desired effect of the above effect is not achieved. However, if the content exceeds 0.10%, the toughness deteriorates, so the content was set at 0.01 to 0.10%. B Component B has the effect of greatly improving the hardenability of steel when added in small amounts, so it is added when it is necessary to further improve the strength and toughness of steel sheets, but its content is If it exceeds 0.0020%, coarse M 23 (C, B) 6 is produced and the toughness of the steel deteriorates, so the content was limited to 0.0020% or less. In addition, in this invention, the amount of N is
Since B is limited to 0.0020 to 0.0040%, it is desirable that the amount of B added be 0.0010% or less. Cu The Cu component has the effect of improving the hardenability and strength of steel, but if the content is less than 0.05%, the desired effect cannot be obtained, whereas if the content exceeds 0.50%, the desired effect cannot be obtained. Since it begins to show hot brittleness, its content must be reduced.
It was set at 0.05-0.50%. (B) Heating temperature During hot rolling, if the heating temperature is less than 1050°C, poorly soluble carbides such as NbC cannot be sufficiently dissolved in solid solution, while if the heating temperature exceeds 1250°C, TiN will become coarse. Since the growth of austenite grains could no longer be suppressed, the heating temperature was set at 1050 to 1250°C. (C) Finishing rolling temperature When the finishing rolling temperature is less than 900°C, recrystallization of worked austenite is suppressed and working strain remains. If processing strain remains, the formation of ferrite or bainite is promoted and the hardenability is reduced, resulting in deterioration of the strength and toughness of the steel sheet. Therefore,
Promote recrystallization of processed austenite,
To prevent residual machining distortion, the rolling finishing temperature was set at 900°C.
℃ or higher. (D) Quenching temperature after rolling After rolling, quenching is performed at a temperature above the Ar 3 transformation point.

【表】【table】

【表】 (注) *印は、本発明範囲から外れていることを示
すものである。
[Table] (Note) *mark indicates that it is outside the scope of the present invention.

【表】【table】

【表】【table】

【表】 *印は、本発明の条件から外れていることを示すも
のである。
を行うのは、圧延後直ちに焼入れして焼入れ効
果を増幅し、十分な強度と靭性を得るためであ
り、前記温度未満では焼入れ効果を得ることが
できないためである。 (E) 焼戻し処理 Ac1変態点以下で焼戻し処理を施すのは、鋼
板組織中にNbC等を析出させて、その強度と
靭性をより向上するためである。 次いで、この発明を実施例により比較例と対
比しながら説明する。 実施例 まず、常法によつて第1表に示される成分組成
を有し、厚さ:100mmの鋼片A〜Uを製造した。
次に、これを1150℃に加熱後熱間圧延を行い、圧
延仕上温度:930℃にて板厚:30mmの鋼板とし、
そのまま該温度から直接水焼入れした後、更に
630℃で焼戻しを施した。 一方、これとは別に、第1表に示した鋼種A〜
Oの、厚さ:100mmの鋼片を1150℃に加熱後熱間
圧延し、仕上温度:830℃で板厚:30mmの鋼板と
してから、そのまま該温度より直接水焼入れした
後、更に630℃で焼戻すという従来の低温仕上圧
延を行つた鋼板をも用意した。 そして、これらの各鋼板の板厚中心部から、
JIS4号の2mmVノツチシヤルピー試験片と、8.5
mmφで平行部長さ:50mmの丸棒引張り試験片を圧
延方向にそれぞれ採取し、その機械的性質を調査
した。その結果を、処理条件とともに第2表に示
した。 第2表に示される結果からも、本発明の範囲内
の成分組成を有する鋼を直接焼入れ焼戻しすれ
ば、強度が高く、しかも靭性の良好な鋼板を製造
できることが明らかであり、一方、仕上圧延温度
が830℃と低くしたものは、本発明方法で得られ
た鋼板に比して強度、靭性ともに劣つており、良
好な強度・靭性バランスを達成できないことがわ
かる。 また、比較鋼(従来鋼)を本発明の処理条件ど
おりに直接焼入れ焼戻ししても、得られる鋼板の
靭性が良好とはならず、やはり強度・靭性バラン
スの満足できる鋼板を得られないことが明白であ
る。 上述のように、含Nb高張力鋼において、含有
N量を制御するとともに微量のTiを添加したも
のに、特定条件の圧延と直接焼入れ焼戻し処理を
施して高張力鋼板を製造するというこの発明によ
れば、強度・靭性ともに優れ、しかも溶接割れ感
受性の低い製品を、高価な添加合金元素を多量に
使用することなく、簡単な工程で得ることがで
き、橋梁、圧力容器、ペンストツク、各種タンク
等の溶接構造物の安全性を高め、低価格化を達成
することが可能となるなど、工業上有用な効果が
もたらされるのである。
[Table] *mark indicates that the conditions of the present invention are not met.
The reason for this is to quench immediately after rolling to amplify the quenching effect and obtain sufficient strength and toughness, and this is because the quenching effect cannot be obtained below the above temperature. (E) Tempering Treatment The reason for performing tempering treatment below the Ac 1 transformation point is to precipitate NbC etc. into the steel sheet structure and further improve its strength and toughness. Next, the present invention will be explained by examples and in comparison with comparative examples. Example First, steel slabs A to U having the composition shown in Table 1 and having a thickness of 100 mm were manufactured by a conventional method.
Next, this was heated to 1150℃ and hot rolled to form a steel plate with a thickness of 30mm at a finishing temperature of 930℃.
After directly water quenching from that temperature, further
Tempering was performed at 630°C. On the other hand, apart from this, steel types A~ shown in Table 1
After heating a 100mm thick steel slab to 1150℃, hot rolling it into a 30mm thick steel plate at a finishing temperature of 830℃, directly water quenching it at that temperature, and then further heating it at 630℃. We also prepared steel plates that had been subjected to conventional low-temperature finish rolling called tempering. Then, from the center of the thickness of each of these steel plates,
JIS No. 4 2mm V notched pea test piece and 8.5
Round bar tensile test pieces with mmφ and parallel length: 50 mm were taken in the rolling direction, and their mechanical properties were investigated. The results are shown in Table 2 along with the processing conditions. From the results shown in Table 2, it is clear that if steel having a composition within the range of the present invention is directly quenched and tempered, a steel plate with high strength and good toughness can be produced. It can be seen that the steel plate at a lower temperature of 830°C has inferior strength and toughness compared to the steel plate obtained by the method of the present invention, and cannot achieve a good balance of strength and toughness. Furthermore, even if comparative steel (conventional steel) is directly quenched and tempered under the treatment conditions of the present invention, the resulting steel plate will not have good toughness, and it may still be impossible to obtain a steel plate with a satisfactory balance of strength and toughness. It's obvious. As mentioned above, this invention involves manufacturing high-strength steel sheets by controlling the amount of N contained in Nb-containing high-strength steel and adding a small amount of Ti, followed by rolling under specific conditions and direct quenching and tempering treatment. According to the above, products with excellent strength and toughness and low susceptibility to weld cracking can be obtained through a simple process without using large amounts of expensive additive alloying elements, and can be used for bridges, pressure vessels, pen stocks, various tanks, etc. This brings about industrially useful effects such as increasing the safety of welded structures and making it possible to achieve lower prices.

Claims (1)

【特許請求の範囲】 1 C:0.03〜0.20%、 Si:0.03〜0.50%、 Mn:0.60〜1.80%、 Ti:0.003〜0.010%、 Nb:0.01〜0.10%、 sol.Al:0.002〜0.100%、 N:0.0020〜0.0040%、 を含有し、 Fe及び不可避不純物:残り、 から成る成分組成(以上重量%)の鋼を、1050〜
1250℃の温度域に加熱し、続いて900℃以上の温
度域で熱間圧延を施して所定の寸法の鋼板に仕上
げた後、Ar3変態点以上の温度から直接焼入れを
行い、引続いてAc1変態点以下の温度で焼戻すこ
とを特徴とする、強度及び靭性の優れた高張力鋼
板の製造方法。 2 C:0.03〜0.20%、 Si:0.03〜0.50%、 Mn:0.60〜1.80%、 Ti:0.003〜0.010%、 Nb:0.01〜0.10%、 sol.Al:0.002〜0.100%、 N:0.0020〜0.0040%、 を含有するとともに、さらに、 Cr:0.05〜0.75%、 Ni:0.05〜1.50%、 Mo:0.05〜0.50%、 V:0.01〜0.10%、 B:0.0020%以下、 Cu:0.05〜0.50%、 のうちの1種以上をも含み、 Fe及び不可避不純物:残り、 から成る成分組成(以上重量%)の鋼を、1050〜
1250℃の温度域に加熱し、続いて900℃以上の温
度域で熱間圧延を施して所定の寸法の鋼板に仕上
げた後、Ar3変態点以上の温度から直接焼入れを
行い、引続いてAc1変態点以下の温度で焼戻すこ
とを特徴とする、強度及び靭性の優れた高張力鋼
板の製造方法。
[Claims] 1 C: 0.03-0.20%, Si: 0.03-0.50%, Mn: 0.60-1.80%, Ti: 0.003-0.010%, Nb: 0.01-0.10%, sol.Al: 0.002-0.100% , N: 0.0020~0.0040%, Fe and unavoidable impurities: the remainder, steel with a composition (more than 1050% by weight) consisting of 1050~0.0040%.
After heating to a temperature range of 1250°C and then hot rolling at a temperature range of 900°C or higher to finish the steel plate to the specified dimensions, it is directly quenched at a temperature higher than the Ar 3 transformation point, and then A method for producing a high-strength steel sheet with excellent strength and toughness, characterized by tempering at a temperature below the Ac 1 transformation point. 2 C: 0.03-0.20%, Si: 0.03-0.50%, Mn: 0.60-1.80%, Ti: 0.003-0.010%, Nb: 0.01-0.10%, sol.Al: 0.002-0.100%, N: 0.0020-0.0040 %, and further contains Cr: 0.05-0.75%, Ni: 0.05-1.50%, Mo: 0.05-0.50%, V: 0.01-0.10%, B: 0.0020% or less, Cu: 0.05-0.50%, Containing one or more of the following, with the remainder being Fe and unavoidable impurities, steel with a composition (more than 1% by weight) consisting of 1050~
After heating to a temperature range of 1250°C and then hot rolling at a temperature range of 900°C or higher to finish the steel plate to the specified dimensions, it is directly quenched at a temperature higher than the Ar 3 transformation point, and then A method for producing a high-strength steel sheet with excellent strength and toughness, characterized by tempering at a temperature below the Ac 1 transformation point.
JP3395883A 1983-03-02 1983-03-02 Production of high tensile steel plate having excellent strength and toughness Granted JPS59159932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3395883A JPS59159932A (en) 1983-03-02 1983-03-02 Production of high tensile steel plate having excellent strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3395883A JPS59159932A (en) 1983-03-02 1983-03-02 Production of high tensile steel plate having excellent strength and toughness

Publications (2)

Publication Number Publication Date
JPS59159932A JPS59159932A (en) 1984-09-10
JPS6366368B2 true JPS6366368B2 (en) 1988-12-20

Family

ID=12400994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3395883A Granted JPS59159932A (en) 1983-03-02 1983-03-02 Production of high tensile steel plate having excellent strength and toughness

Country Status (1)

Country Link
JP (1) JPS59159932A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148517A (en) * 1984-08-10 1986-03-10 Nippon Kokan Kk <Nkk> Manufacture of high tension steel having >=60kg/mm2 tensile strength
JPS6196028A (en) * 1984-10-18 1986-05-14 Nippon Kokan Kk <Nkk> Manufacture of high strength and high toughness medium carbon steel by direct hardening and tempering
JPS61147812A (en) * 1984-12-19 1986-07-05 Nippon Kokan Kk <Nkk> Production of high strength steel superior in delayed breaking characteristic
JPS61186453A (en) * 1985-02-13 1986-08-20 Kobe Steel Ltd High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JPS61190016A (en) * 1985-02-19 1986-08-23 Kobe Steel Ltd Production of steel for large heat input welded construction
JPS6256518A (en) * 1985-09-04 1987-03-12 Sumitomo Metal Ind Ltd Production of high strength steel sheet for high heat input welding
JPS6286122A (en) * 1985-09-28 1987-04-20 Kobe Steel Ltd Production of structural steel having high strength and high weldability
JPS6286119A (en) * 1985-10-09 1987-04-20 Kobe Steel Ltd Production of structural steel having excellent weld cracking resistance for large heat input welding
JPS62142726A (en) * 1985-12-18 1987-06-26 Kobe Steel Ltd Manufacture of wear resistant steel sheet having satisfactory weldability
JPH0617507B2 (en) * 1985-12-18 1994-03-09 川崎製鉄株式会社 High strength and high toughness steel plate manufacturing method
JPS63103021A (en) * 1986-10-20 1988-05-07 Nippon Steel Corp Manufacture of steel plate having superior toughness at low temperature
JPH0196329A (en) * 1987-10-07 1989-04-14 Nippon Steel Corp Manufacture of steel for welding construction excellent in sulfide stress corrosion cracking resistance and having >=56kgf/mm2 tensile strength
JP2705946B2 (en) * 1988-06-27 1998-01-28 新日本製鐵株式会社 Manufacturing method of high strength steel sheet with excellent SSC resistance
CN100372962C (en) * 2005-03-30 2008-03-05 宝山钢铁股份有限公司 Superhigh strength steel plate with yield strength more than 1100Mpa and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128821A (en) * 1976-04-12 1977-10-28 Nippon Steel Corp Preparation of high tensile steel having superior low temperature toughness and yield point above 40 kg/pp2
JPS5466321A (en) * 1977-11-05 1979-05-28 Nippon Steel Corp Manufacture of unrefined high tensile steel for welded structure
JPS5687622A (en) * 1979-12-19 1981-07-16 Nippon Steel Corp Production of nonquenched high toughness high tensile steel
JPS59136418A (en) * 1983-01-26 1984-08-06 Nippon Steel Corp Preparation of high toughness and high strength steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128821A (en) * 1976-04-12 1977-10-28 Nippon Steel Corp Preparation of high tensile steel having superior low temperature toughness and yield point above 40 kg/pp2
JPS5466321A (en) * 1977-11-05 1979-05-28 Nippon Steel Corp Manufacture of unrefined high tensile steel for welded structure
JPS5687622A (en) * 1979-12-19 1981-07-16 Nippon Steel Corp Production of nonquenched high toughness high tensile steel
JPS59136418A (en) * 1983-01-26 1984-08-06 Nippon Steel Corp Preparation of high toughness and high strength steel

Also Published As

Publication number Publication date
JPS59159932A (en) 1984-09-10

Similar Documents

Publication Publication Date Title
JP2022513964A (en) Cold-rolled steel sheets with excellent workability, hot-dip galvanized steel sheets, and methods for manufacturing these.
CN113862558A (en) Low-cost high-toughness high-strength tempered steel with yield strength of 700MPa and manufacturing method thereof
JPS6366368B2 (en)
CN114592153A (en) High-strength steel with excellent weather resistance and manufacturing method thereof
CN108728728B (en) High manganese steel with extremely low yield ratio and manufacturing method thereof
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
KR20100070639A (en) Steel with excellent low-temperature toughness for construction and manufacturing method thereof
CN114134387A (en) 1300 MPa-tensile-strength thick-specification ultrahigh-strength steel plate and manufacturing method thereof
JP2001020035A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
KR20210014055A (en) High strength steel sheet and manufacturing method thereof
JPH02129317A (en) Production of 80kgf/mm2 class high tension steel having excellent weldability
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP3043519B2 (en) Manufacturing method of high strength hot rolled steel sheet
KR20200075337A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JP2585321B2 (en) Manufacturing method of high strength and high toughness steel sheet with excellent weldability
JP2002088413A (en) Method for producing high tension steel excellent in weldability and ductility
JPH05345917A (en) Production of high strength hot rolled steel plate
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
KR20090103619A (en) High-strength steel sheet, and method for producing the same
KR20000019209A (en) Preparation method of hot rolled steel sheet with low yield ratio having good hot strength
JPH06158160A (en) Production of high tensile strength heat treated steel excellent in cost effectiveness
JP2001089816A (en) Method of manufacturing high strength hot rolled steel plate
JPH06340924A (en) Production of low yield ratio high tensile strength steel