KR20000019209A - Preparation method of hot rolled steel sheet with low yield ratio having good hot strength - Google Patents

Preparation method of hot rolled steel sheet with low yield ratio having good hot strength Download PDF

Info

Publication number
KR20000019209A
KR20000019209A KR1019980037184A KR19980037184A KR20000019209A KR 20000019209 A KR20000019209 A KR 20000019209A KR 1019980037184 A KR1019980037184 A KR 1019980037184A KR 19980037184 A KR19980037184 A KR 19980037184A KR 20000019209 A KR20000019209 A KR 20000019209A
Authority
KR
South Korea
Prior art keywords
steel
strength
weight
percent
steel sheet
Prior art date
Application number
KR1019980037184A
Other languages
Korean (ko)
Other versions
KR100368553B1 (en
Inventor
김기호
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1998-0037184A priority Critical patent/KR100368553B1/en
Publication of KR20000019209A publication Critical patent/KR20000019209A/en
Application granted granted Critical
Publication of KR100368553B1 publication Critical patent/KR100368553B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method for preparing a hot rolled steel sheet is provided, which steel sheet has the low yield ratio and the good hot strength. CONSTITUTION: A steel sheet is prepared by finish hot rolling the steel comprising carbon in arrange of 0.05-0.10 percent by weight; silicon in a range of 0.6-1.0 percent by weight; manganese in a range of 0.5-1.0 percent by weight; phosphorus less than 0.015 percent by weight; sulfur less than 0.016 percent by weight; aluminum in a range of 0.02-0.1 percent by weight; niobium in a range of 0.02-0.06 percent by weight; molybdenum in a range of 0.1-0.3 percent by weight; chromium in a range of 0.1-0.3 percent by weight; and iron and inevitable impurities being the balance at a temperature of 820-880°C; water-cooling it at a cooling velocity of 10-60°C per second; and coiling it at a temperature of 520-650°C. The steel sheet has a yield strength more than 22 kg per square millimeter at 600°C and a yield ratio less than 85%.

Description

고온 강도가 우수한 저항복비형 열연강판의 제조방법Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength

본 발명은 고온 강도가 우수한 열연강판의 제조방법에 관한 것으로, 특히 고온에서 우수한 재질 특성을 나타내어 건축용으로 사용되는 일반강을 대체하여 사용할 수 있도록 하기 위하여 합금원소와 여러 압연조건을 개선한 고온강도가 우수한 저항복비형 열연강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a hot rolled steel sheet having excellent high temperature strength, and in particular, exhibits excellent material properties at high temperature, so that the high temperature strength of alloy elements and various rolling conditions can be improved in order to be used as a substitute for general steel used for construction. The present invention relates to a method for producing an excellent resistance ratio ratio type hot rolled steel sheet.

일반적으로 건축용으로 사용되는 일반 강재는 화재시에 급격한 내력 감소를 나타내므로 붕괴 위험성이 있다. 따라서 이를 방지하기 위해서 강재 표면에 내화 피복을 하여 시공하고 있다. 그러나 강재표면에 실시하는 이러한 내화피복 시공으로 인하여 시공비 상승, 사용 실공간 감소 및 시공기간 증가 등의 문제점이 있다.In general, general steels used for construction show a rapid decrease in strength in the event of fire, which is a risk of collapse. Therefore, in order to prevent this, the fireproof coating is applied to the steel surface. However, due to such fireproof coating construction on the steel surface, there are problems such as an increase in construction cost, a decrease in use space, and an increase in construction period.

따라서 강재의 온도 상승에 의한 내력 감소를 방지하기 위한 강재 표면에 실시하는 내화 피복을 경감하기 위하여 소재 자체의 고온 강도가 우수한 강재 개발에 대한 노력이 많이 진행되고 있다.Therefore, many efforts are being made to develop steels having excellent high temperature strength of the material itself in order to reduce the fire resistance coating applied to the steel surface in order to prevent a decrease in strength due to the temperature rise of the steel materials.

먼저, 일본 고베(kobe)의 특개평 6-264136에는 용접성이 우수한 건축용 저항복비 후판 내화강의 제조방법을 개시하고 있는데, 그 합금성분계로는 C : 0.04∼0.15%, Si : 0.05∼0.60%, Mn : 0.5∼1.5%, Mo : 0.1∼0.4%, Nb : 0.005∼0.06%, V : 0.005∼0.06%, Ti : 0.005∼0.03%를 함유하는 Pcm(= C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/15 + V/10 +5B, 용접성 평가지수) 0.2%이하의 강재를 1050℃이상에서 가열하고, 850∼950℃에서 압연을 종료한 후, Ar3이상의 온도에서 3∼20℃/s의 냉각 속도로 400∼550℃까지 가속 냉각하고, 다시 Ac1∼Ac3의 온도 범위로 재가열하여 500∼650℃에서 소려함에 의해 강재를 제조하는 것을 특징으로 하고 있다.First, Japanese Patent Kobe Publication No. Hei 6-264136 discloses a method for producing a resistive-strength thick plate refractory steel having excellent weldability. The alloy component system is C: 0.04 to 0.15%, Si: 0.05 to 0.60%, and Mn. : Pcm (= C + Si / 30 + Mn / 20 + Cu containing 0.5 to 1.5%, Mo: 0.1 to 0.4%, Nb: 0.005 to 0.06%, V: 0.005 to 0.06%, Ti: 0.005 to 0.03% / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B, weldability evaluation index) After heating the steel of 0.2% or less at 1050 ℃ or more and finishing rolling at 850 ~ 950 ℃, Ar Steel is produced by accelerating cooling to 400 to 550 ° C. at a cooling rate of 3 to 20 ° C./s at a temperature of 3 or more, and reheating again to a temperature range of Ac 1 to Ac 3 to produce the steel at 500 to 650 ° C. Doing.

또한 일본 특개평 7-173532에서도 소재 두께가 60∼70mmt인 용접성이 우수한 건축용 저항복비 내과강의 제조방법에 대해서 개시하고 있다. 여기서는 앞에 소개한 특허와 거의 유사한 성분계, 즉 C : 0.04∼0.15%, Si : 0.05∼0.60%, Mn : 0.5∼1.5%, Mo : 0.1∼0.4%m, Nb : 0.005∼0.06%, V : 0.005∼0.06%, Ti : 0.005∼0.03%, Al : 0.002∼0.1%를 함유하는 Pcm 0.2% 이하의 강재를 1050℃이상에서 가열하고, 850∼950℃에서 압연을 종료한 후 공냉하여 700∼750℃의 온도에서 3∼20℃/s의 냉각 속도로 400∼550℃까지 가속냉각한 후, 500∼650℃에서 소려하고, 필요시 : Cu 0.05∼0.4%, Ni : 0.05∼0.5%, Cr : 0.1∼0.4%, Ca : 5∼50ppm의 1종 이상의 합금 성분을 첨가함에 의해 우수한 재질 특성의 강재를 제조할 수 있다고 보고되고 있다.In addition, Japanese Patent Laid-Open No. 7-173532 discloses a method for manufacturing a resistive wear-resistant medical steel having excellent weldability having a material thickness of 60 to 70 mmt. Here, the component system which is almost similar to the patent introduced before, that is, C: 0.04 to 0.15%, Si: 0.05 to 0.60%, Mn: 0.5 to 1.5%, Mo: 0.1 to 0.4% m, Nb: 0.005 to 0.06%, V: 0.005 Pcm 0.2% or less of Pcm containing -0.06%, Ti: 0.005-0.03%, and Al: 0.002-0.1% is heated at 1050 degreeC or more, air-cooled after finishing rolling at 850-950 degreeC, and is 700-750 degreeC. After cooling to 400 to 550 ° C. at a cooling rate of 3 to 20 ° C./s at a temperature of 500 ° C., it is considered at 500 to 650 ° C., if necessary, Cu is 0.05 to 0.4%, Ni is 0.05 to 0.5%, and Cr is 0.1. It is reported that steel materials of excellent material properties can be produced by adding at least one alloy component of ˜0.4% and Ca: 5 to 50 ppm.

또한, 일본 특개평 6-73449에서는 건축용 고강도 내화강판의 제조방법으로 C : 0.05∼0.15%, Si : 0.60%이하, Mn : 0.5∼1.8%, P : 0.03%이하, S : 0.03%이하, sol. Al : 0.003%이하, Mo : 0.1∼0.4%, Nb : 0.005∼0.06%, Ti : 0.005∼0.03%, N : 0.002∼0.007%, Ca 5∼50ppm의 성분계를 이용해서 1050℃로 가열한 후, 1000℃이하에서의 압하율을 50% 이상으로 하고, 850∼950℃에서 압연을 종료하는 건축용 고강도 내하강판의 제조방법에 대하여 보고하고 있는데, 이는 600℃에서 높은 내력과 양호한 용접성을 겸비하고, 낮은 항복비를 나타내는 강재를 제조함으로써 내화피복의 저감 및 생략이 가능하다고 한다. 이 발명의 특징으로는 sol. Al의 첨가량을 제한한 것인데, sol. Al : 0.003% 이하에서 내력이 증가하는 결과를 나타내고 있으나, 구체적인 원인에 대해서는 보고하지 않고 있다.In Japanese Patent Laid-Open No. 6-73449, C: 0.05-0.15%, Si: 0.60%, Mn: 0.5-1.8%, P: 0.03% or less, S: 0.03% or less . Al: 0.003% or less, Mo: 0.1 to 0.4%, Nb: 0.005 to 0.06%, Ti: 0.005 to 0.03%, N: 0.002 to 0.007%, Ca 5 to 50 ppm by heating to 1050 ℃ using a component system, A method for producing a high strength strength-bearing steel sheet for construction in which a rolling reduction rate of 1000 ° C. or lower is 50% or more and finishes rolling at 850 ° C. to 950 ° C. is reported, which combines high strength and good weldability at 600 ° C. By manufacturing steel materials showing yield ratio, it is possible to reduce and omit fireproof coating. This invention features sol. The addition amount of Al is limited, sol. Al: The yield strength is increased below 0.003%, but the specific cause is not reported.

또한 일본 특개평 6-57371은 600℃에서의 내력이 높고, 양호한 용접성 및 대입열 용접부 인성을 나타내는 건축용 저항복비 내화강의 제조방법에 대하여 보고하고 있는바, 이는 합금 원소 Mo, Cr의 적정한 첨가 및 200A이하의 결정립 크기, 106개/mm3이상의 Nb탄질화물을 함유하는 것을 특징으로 한다. 본 발명은 열간압연 후 가속 냉각에 의해 Nb석출을 억제하여 고용 Nb에 의한 변태 강화를 활용하고, 모재조직을 베이나이트(bainite)주체로 만든 후, 소려에 의해 미세한 Nb탄질화물을 다수 석출시켜 석출 강화에 의하여 탄소당량이 낮으면서 고온 강도를 확보하는 것을 특징으로 한다. 한편, 일본 특개평 3-173715에서도 Cr, Mo, Nb를 복합 첨가하고, 제어 압연을 행하여 우수한 고온 강도를 나타내는 강재를 제조한다고 보고하고 있다.In addition, Japanese Patent Laid-Open No. 6-57371 reports a method for producing a resistive wear-resistant refractory steel for construction that has a high yield strength at 600 ° C. and shows good weldability and toughness of a high heat input weld, which is appropriately added with alloying elements Mo and Cr and 200 A. It is characterized by containing the following grain size, Nb carbonitride of 106 piece / mm <3> or more. According to the present invention, after the hot rolling, Nb precipitation is suppressed by accelerated cooling to take advantage of the transformation of solid solution by Nb, and after the base material is made of bainite, a large number of fine Nb carbonitrides are precipitated by thinning. It is characterized by ensuring high temperature strength while having a low carbon equivalent by strengthening. On the other hand, Japanese Laid-Open Patent Publication No. 3-173715 also reports that a steel material exhibiting excellent high-temperature strength is produced by carrying out a composite addition of Cr, Mo, and Nb, followed by controlled rolling.

다음으로 일본 신일본제철(NSC)의 특개평 7-207338은 건축용 저항복비 내화강판의 제조방법에 대하여 보고하고 있는데, 여기서는 C : 0.04∼0.15%, Si : 0.60%이하, Mn : 0.8∼1.6%, P : 0.03%이하, S : 0.01%이하, Mo : 0.4∼1.0%, Nb : 0.005%이하, V : 0.02∼0.1%, Ti : 0.005∼0.025%, Al : 0.06%이하, N : 10∼60ppm을 함유하며 실질적으로는 Nb를 거의 첨가하지 않은 강재를 재가열하여 850℃ 이상의 온도에서 압연 종료후 공냉함에 의해 두께 25mm이하의 항복비 80%이하의 건축용 저항복비 내화 490N/mm2급 강재의 제조방법에 대해 개시하고 있다. 통상적으로 판두께가 얇은 강재를 열간압연하면, 조직의 미세화, 가공 조직의 생성, 압연후 공냉시 냉각 속도가 빠르기 때문에 항복강도, 인장강도는 상승하고, 이로 인해서 항복비는 상승하는 결과를 나타내는데, 특히 Nb는 상온에서 소재의 항복 강도를 높이는 것으로 많이 알려져 있기 때문에, 이 발명에서는 가능한한 Nb첨가량을 억제하고 Mo와 V의 양을 조정해서 내화특성과 함께 저항복비를 얻고자 하였다.Next, Japanese Laid-Open Patent Publication No. 7-207338 reports on a method for manufacturing a resistive wear-resistant refractory steel sheet for construction, where C: 0.04 to 0.15%, Si: 0.60% or less, and Mn: 0.8 to 1.6%. , P: 0.03% or less, S: 0.01% or less, Mo: 0.4 to 1.0%, Nb: 0.005% or less, V: 0.02 to 0.1%, Ti: 0.005 to 0.025%, Al: 0.06% or less, N: 10 to containing 60ppm, and substantially in the manufacture of almost then by not re-heating a steel material that is added to terminate the rolling at least 850 ℃ temperature air cooling as the thickness construction resistance of the yield ratio of 80% or less of 25mm or less yield ratio by refractory 490N / mm 2 class steels for Nb The method is disclosed. In general, when hot rolled steel having a thin plate thickness, yield strength and tensile strength increase due to the rapid cooling of the microstructure, formation of processed structure, and air-cooling after rolling. In particular, since Nb is known to increase the yield strength of the material at room temperature, in the present invention, the amount of Nb added is suppressed as much as possible, and the amount of Mo and V is adjusted to obtain a resistance ratio with fire resistance.

또한 일본 가와사키제철(KSC)의 경우는 특개평6-248334에서 종래의 고온용 저합금강보다 용접성이 우수하고, 종래의 용접구조용 강재보다도 고온 강도가 우수한 건축구조용 내화강재의 제조방법으로, 고온 강도를 향상시키기 위하여 Mo : 0.15∼0.60%, 상온강도 향상을 위하여 Nb : 0.005∼0.10%로 함께 (Mn+Cr+Cu+Ni+500B)를 0.8∼1.6%로 한후 강재를 1050∼1300℃으로 가열하여 열간압연을 950℃이상에서 종료한 후, 600∼750℃의 범위에서 급냉이후 공냉하는 것을 특징으로 하는 건축구조물용 내화강재의 제조방법을 보고하는데 이는 Mo, Nb탄화물에 의해 고온 강도의 향상을 꾀하고 있는 것이다.In addition, in the case of Japanese Kawasaki Steel (KSC), in Japanese Patent Application Laid-Open No. 6-248334, the weldability is superior to that of the conventional high temperature low alloy steel, and the manufacturing method of the refractory steel for the construction structure, which is superior to the conventional welding structural steel, has high temperature strength. Mo: 0.15 to 0.60%, Nb: 0.005 to 0.10% to improve room temperature strength (Mn + Cr + Cu + Ni + 500B) to 0.8 ~ 1.6%, and then the steels are heated to 1050-1300 ℃. After the hot rolling is finished at 950 ° C or higher, a method for manufacturing a refractory steel for a building structure, which is air cooled after being quenched in the range of 600 to 750 ° C, is reported, which is intended to improve the high temperature strength by Mo and Nb carbides. I'm doing it.

또한, 일본 강관(NKK)에서는 내화강제를 제조할 수 있는 성분계, 두께 및 제어압연/제어냉각시의 냉각 개시 온도와의 관계를 명확하게 하여, 소정의 강도를 가지는 내화강재의 제조에 대하여, 판두께에 대한 최적의 제조 조건을 제공하는 것으로, 5% ≤ Mo + V + Ceq ≤ 1.0%를 만족하는 성분계를 열간압연가능한 두께로 가열하여 소정의 판두께로 Ar3이상으로 사상압연된 후, (1)식에서 제공하는 온도 Ts±10℃의 온도범위에서 냉각을 개시하고, 550℃이하의 온도까지 매초 1∼50℃/s로 급냉하는 것을 특징으로 하는 상온 강도 490∼720N/mm2의 건축용 내화강재의 제조방법을 제공한다.Further, in the Japanese steel pipe (NKK), the relationship between the component system capable of manufacturing the refractory steel, the thickness, and the cooling start temperature at the time of controlled rolling / controlled cooling is made clear, and the plate of the refractory steel having the predetermined strength In order to provide the optimum manufacturing conditions for the thickness, a component system satisfying 5% ≦ Mo + V + Ceq ≦ 1.0% is heated to a thickness capable of hot rolling, followed by filamentous rolling over Ar 3 to a predetermined sheet thickness, and then ( 1) Start of cooling in the temperature range of the temperature Ts ± 10 ℃ provided by the formula, and quench at 1-50 ℃ / s every second to a temperature of 550 ℃ or less every second, the building fire resistance of 490 ~ 720 N / mm 2 It provides a method for manufacturing steel.

여기서 Ts = 400 × logK …………… (1) Ts : 냉각개시온도(℃), K = t/(Mo+V+Ceq), t : 최종제품의 두께(mm)Where Ts = 400 × logK... … … … … (1) Ts: Cooling start temperature (℃), K = t / (Mo + V + Ceq), t: Thickness of final product (mm)

상술한 일본 제철사들의 특허 내용을 간단히 정리하면, 600℃에서의 고온 강도를 향상시키기 위하여 Mo, Cr, Nb, V 등의 합금 원소를 적정량 첨가하고, 제어 압연, 가속 냉각 등의 공정을 적정하게 사용하고 있으며, 일부 Cu, Ni, B, 희토류 원소를 첨가하고 있는 것을 특징으로 한다.To summarize the above patents of Japanese steelmakers, an appropriate amount of alloying elements such as Mo, Cr, Nb, and V are added to improve the high temperature strength at 600 ° C, and the processes such as controlled rolling and accelerated cooling are appropriately performed. It is used, It is characterized by adding some Cu, Ni, B, and rare earth elements.

그러나 여전히 건축용으로 사용되는 일반강재가 화재시에 급격한 내력감소로 붕괴위험성을 내재하고 있고, 또한 이를 방지하기 위하여 강재 표면에 실시하는 내화피복 시공으로 인한 시공비 상승, 사용 실공간 감소 및 시공기간증가 등의 문제점이 남아 있으므로 이를 위한 소재자체의 고온강도가 우수한 강재개발에 대한 노력이 요망되고 있다.However, the general steel still used for building has the risk of collapse due to the rapid decrease in strength in case of fire, and in order to prevent it, the construction cost is increased due to the fireproof coating on the surface of the steel, and the space used and the construction period are increased. Because of this problem, efforts are being made to develop steel materials with excellent high temperature strength.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 건축물의 화재시 붕괴를 방지하기 위한 내화피복의 두께를 저감하거나 생략할 수 있는 강재에 대한 것으로, 더욱 정확하게는 상온 및 고온 강도가 우수하여 낮은 항복비(85%)를 가지는 강재를 제공하는 것을 목적으로 한다.The present invention has been made to solve the above-mentioned problems, the steel material that can reduce or omit the thickness of the fire-resistant coating to prevent collapse in the event of a fire of the building, more precisely excellent low temperature and high temperature strength It is an object to provide a steel having a yield ratio (85%).

상술한 목적을 달성하기위한 본 발명은 중량 %로 C : 0.05∼0.10%, Si : 0.6%∼1.0%, Mn : 0.5∼1.0%, P < 0.015%, S < 0.016%, Al : 0.02∼0.1%, Nb : 0.02∼0.06%, Mo : 0.1∼0.3%, Cr : 0.1∼0.3%, 나머지는 Fe 및 불가피한 불순 원소로 구성된 강을 820∼880℃에서 열간 마무리 압연하는 단계와, 냉각 속도 10∼60℃/s범위에서 수냉하는 단계와, 520∼650℃로 권취하는 단계로 이루어진 것을 특징으로 한다.The present invention for achieving the above object is by weight% C: 0.05 to 0.10%, Si: 0.6% to 1.0%, Mn: 0.5 to 1.0%, P <0.015%, S <0.016%, Al: 0.02 to 0.1 %, Nb: 0.02% to 0.06%, Mo: 0.1% to 0.3%, Cr: 0.1% to 0.3%, and the remainder is hot finished rolling at 820 ° C to 880 ° C for a remainder of Fe and an unavoidable impurity element; It is characterized by consisting of a step of water cooling in the range of 60 ℃ / s, and winding at 520 ~ 650 ℃.

도 1은 본 발명에 따른 Si첨가량에 따른 상온 인장 특성의 변화를 나타내는 그래프도.1 is a graph showing a change in room temperature tensile properties according to the amount of Si added according to the present invention.

도 2는 본 발명에 따른 Si첨가량에 따른 항복비의 변화를 나타내는 그래프도.2 is a graph showing a change in yield ratio according to the amount of Si added according to the present invention.

도 3은 본 발명에 따른 Si첨가량에 따른 600℃ 고온 인장 특성의 변화를 나타내는 그래프도.Figure 3 is a graph showing the change in tensile properties at high temperature 600 ℃ according to the amount of Si added in accordance with the present invention.

이하 본 발명을 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the drawings.

본 발명은 중량 %로 C : 0.05∼0.10%, Si : 0.6%∼1.0%, Mn : 0.5∼1.0%, P < 0.015%, S < 0.016%, Al : 0.02∼0.1%, Nb : 0.02∼0.06%, Mo : 0.1∼0.3%, Cr : 0.1∼0.3%, 나머지는 Fe 및 불가피한 불순 원소로 구성된 강을 820∼880℃에서 열간 마무리 압연하는 단계와, 냉각 속도 10∼60℃/s범위에서 수냉하는 단계와, 520∼650℃로 권취하는 단계로 이루어진 것을 특징으로 하는 고온강도가 우수한 저항복비형 열연강판의 제조방법.In the present invention, C: 0.05 to 0.10%, Si: 0.6% to 1.0%, Mn: 0.5 to 1.0%, P <0.015%, S <0.016%, Al: 0.02 to 0.1%, Nb: 0.02 to 0.06 %, Mo: 0.1% to 0.3%, Cr: 0.1% to 0.3%, the remainder is hot-rolled and rolled at a temperature of 820 ° C to 880 ° C for a steel composed of Fe and an unavoidable impurity element, and water cooled at a cooling rate of 10 ° C to 60 ° C / s. And a step of winding at 520 to 650 ° C., a method for producing a resistance-ratio type hot rolled steel sheet having excellent high temperature strength.

이하 본 발명강의 조성범위 한정이유에 대하여 상세히 설명한다.Hereinafter, the reason for limiting the composition range of the inventive steel will be described in detail.

C : 소재의 강도를 확보하기 위해서는 필수적인 원소이나, 과다한 첨가는 소재의 용접성을 평가하는 지수인 탄소당량을 상승시켜 용접성을 떨어뜨리며, 또한 충격인성의 확보면에서도 불리하게 작용하기 때문에 그 양을 제한할 필요가 있다. 본 발명에서는 그 하한을 0.05%, 상한을 0.10%로 설정하였다.C: Elements necessary for securing the strength of the material, but excessive addition increases the carbon equivalent, which is an index for evaluating the weldability of the material, to reduce the weldability, and also limits the amount because it adversely affects the impact toughness. Needs to be. In this invention, the minimum was set to 0.05% and the upper limit to 0.10%.

Si : 통상 탈산제로 주로 사용하고 있는 원소로, Si 첨가로 인해서 페라이트(ferrite)내에서 C의 확산 속도를 느리게 하기 때문에 탄화물의 형성을 억제하는 역할을 한다. 본 발명에서는 이러한 Si 효과를 이용하여 열연제에서 탄화물 형성을 억제시킨 강판 상태를 유지하였으며, 이렇게 석출이 억제된 열연강판은 600℃에서 고온 인장 시험되는 과정에서 많은 양의 탄화물이 형성되어 고온 강도를 향상시키는 역할을 한다. 이처럼 통상 탈산제로 주로 사용되고 있는 Si을 이용해서 고온 강도를 향상시키고자 한 노력은 아직 진행된 적이 없으며, 본 발명의 경우, Si 첨가량이 0.6%이하에서는 그 효과가 적으며, 또한 Si이 너무 과도하게 첨가되는 경우는 표면에 묽은형 스케일의 형성으로 인한 결함을 나타내기 때문에 상한을 1.0%로 제한한다.Si: An element usually used as a deoxidizer. Since Si slows the diffusion rate of C in ferrite due to the addition of Si, it suppresses the formation of carbides. In the present invention, using the Si effect to maintain the state of the steel sheet to suppress the formation of carbides in the hot rolled, this precipitation suppressed hot rolled steel sheet formed a large amount of carbide in the process of high temperature tensile test at 600 ℃ to increase the high temperature strength To improve. Efforts to improve the high-temperature strength by using Si, which is usually used as a deoxidizer, have not been made yet. In the present invention, the effect of Si addition is less than 0.6%, and the Si addition is excessively added. In this case, the upper limit is limited to 1.0% because it shows defects due to the formation of a thin scale on the surface.

Mn : 강의 강도를 향상시키는 원소로 본 발명에서 보인 것처첨 고강도를 나타내기 위해서는 0.5% 이상은 첨가되어야 하나, 너무 과도한 Mn의 첨가는 비금속 개재물의 양을 증가시키고 편석도를 증가시키기 때문에 인성을 확보하기 어려우며, 또한 용접상 측면에서도 불리하게 작용하기 때문에 그 상한을 1.0%로 제한한다.Mn: As an element to enhance the strength of steel, 0.5% or more must be added in order to exhibit high strength, but too much addition of Mn increases the amount of nonmetallic inclusions and increases segregation, thereby securing toughness. The upper limit is limited to 1.0% because it is difficult to perform and also adversely affects the welding phase.

P, S : P는 페라이트 형성을 조장하는 원소로 강의 강도를 해치지 않고 연성을 증가시킬 수 있으나, 일반적인 강재의 제조시 편석이 극심한 원소로 중심편석 형성으로 재질을 열화시킨다. 또한 S는 MnS로 대표되는 비금속 개재물을 형성하여 강의 가공중 크랙을 발생시키는 결함을 발생시키기 쉽다. 따라서 P, S는 가능한한 낮게 관리하는 것이 바람직하며, 통상 현재의 제강방법에 의해 저P, S화를 일반적으로 이룰 수 있는 수준인 0.015, 0.016이하가 바람직하므로 본 발명에서는 이와 같이 제한하였다.P, S: P is an element that promotes the formation of ferrite and can increase the ductility without harming the strength of steel. In addition, S forms a non-metallic inclusion represented by MnS and is likely to generate defects that cause cracks during processing of steel. Therefore, it is preferable to manage P and S as low as possible, and in general, the present invention is limited in this way because 0.01 P, 0.016 or less, which is a level that can generally achieve low P and S, is preferable.

Al : 탈산을 위하여 주로 사용되는 원소로 페라이트의 형성을 도우므로 가공성 향상측면에서 유리하다. 이 경우 0.02% 정도 이상이 되어야 강중 산소가 충분히 제거되고, 또한 AlN의 형성으로 조직의 미세화에도 기여하게 된다. 함유량이 많은 경우에는 용접중 산화물의 형성으로 용접 결함을 생성시키기 쉬운 것으로 알려져 있기 때문에 0.1%를 상한선으로 정하였다.Al: It is an element mainly used for deoxidation, and it is advantageous in terms of processability improvement since it helps to form ferrite. In this case, the oxygen in the steel should be sufficiently removed at about 0.02% or more, and the formation of AlN also contributes to the refinement of the structure. In the case where the content is large, 0.1% is set as the upper limit because it is known that welding defects are easily generated by the formation of oxide during welding.

Nb : 오스테나이트의 재결정을 억제하여 압연후 냉각 과정에서 생성되는 페라이트 결정립을 미세화시키고, 또한 생성되는 탄질화물에 의해 강의 상온 강도 및 고온 강도를 상승시키는 원소로, 첨가량이 적은 경우 강도가 낮아지며, 첨가량이 과도한 경우에는 상온에서의 항복 강도 상승폭이 인장 강도 상승폭보다 커져서 항복비를 급격하게 상승시키는 역할을 한다. 따라서, 본 발명에서는 Nb의 하한을 0.02%, 상한을 0.06%로 각각 제한한다.Nb: It is an element that suppresses recrystallization of austenite and refines ferrite grains produced during the cooling process after rolling, and also increases the room temperature strength and the high temperature strength of the steel by the carbonitrides produced. In this excessive case, the yield strength rise at room temperature becomes larger than the tensile strength rise, thereby rapidly increasing the yield ratio. Therefore, in the present invention, the lower limit of Nb is limited to 0.02% and the upper limit to 0.06%, respectively.

Mo : 고온 강도 향상에 필수적인 원소로, 미세한 탄화물을 형성시켜 600℃에서의 강도 향상에 크게 기여하는 원소이다. 그러나, 0.1% 미만에서는 그 효과가 적고, 0.3% 이상 첨가시에는 고가의 합금 원소로 강재의 가격이 상승하기 때문에 상기와 같이 그 범위를 제한한다.Mo: It is an element essential for high temperature strength improvement, and is an element which forms fine carbide and contributes greatly to the strength improvement at 600 degreeC. However, if the amount is less than 0.1%, the effect is small, and when 0.3% or more is added, the price of steel is increased by expensive alloying elements, so the range is limited as described above.

Cr : Mo와 마찬가지로 미세한 탄화물을 형성시켜 고온 강도 향상에 유효한 원소로, 0.1% 미만에서는 그 효과를 기대하기 어렵고, 0.3% 이상에서는 그 효과가 포화되며 또한 경제적인 측면에서도 불리하기 때문에 그 범위를 제한한다.Like Cr: Mo, it is an element that is effective in improving high temperature strength by forming fine carbides, and its effect is difficult to expect at less than 0.1%, and its effect is saturated at 0.3% or more, and it is disadvantageous in terms of economics. do.

본 발명에 관한 열간압연조건을 살펴보면, 본 발명의 재질을 결정하는데 중요한 열간 마무리 압연온도 820∼880℃가 바람직하고, 그 후 10∼60℃/s의 냉각 속도로 수냉을 실시하며 권취 온도 520∼850℃로 하여 작업하는 경우에 TS 50kg급으로 600℃에서 22kg/mm2이상의 항복 강도를 가지면서, 항복비 85% 이하를 나타내는 소재를 제조할 수 있다.Looking at the hot rolling conditions related to the present invention, the hot finish rolling temperature 820 to 880 ° C, which is important for determining the material of the present invention, is preferable, and then water-cooled at a cooling rate of 10 to 60 ° C / s and the winding temperature of 520 to When working at 850 ℃ can produce a material having a yield ratio of 85% or less while having a yield strength of 22kg / mm 2 or more at 600 ℃ in TS 50kg class.

이하 본 발명을 실시예를 통하여 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to Examples.

(실시예 1)(Example 1)

표 1은 시험재의 화학 성분 및 열간압연 조건을 나타냈고, 표 2는 각 시험재의 기계적 성질에 대해서 정리한 것이다.Table 1 shows the chemical composition and hot rolling conditions of the test specimens, and Table 2 summarizes the mechanical properties of each test specimen.

강종Steel grade CC SiSi MnMn PP SS AlAl NbNb MoMo CrCr FDT (℃)FDT (℃) CT (℃)CT (℃) 냉각속도(℃/s)Cooling rate (℃ / s) 비고Remarks AlAl 0.080.08 0.050.05 0.780.78 0.0110.011 0.0100.010 0.050.05 0.030.03 0.280.28 0.310.31 853853 610610 2727 비교강Comparative steel A2A2 0.080.08 0.490.49 0.780.78 0.0120.012 0.0100.010 0.030.03 0.030.03 0.280.28 0.290.29 856856 620620 3131 비교강Comparative steel A3A3 0.080.08 0.860.86 0.830.83 0.0120.012 0.0110.011 0.060.06 0.030.03 0.260.26 0.310.31 858858 690690 2424 비교강Comparative steel A4A4 0.080.08 0.860.86 0.830.83 0.0120.012 0.0110.011 0.060.06 0.030.03 0.260.26 0.310.31 855855 635635 1616 발명강Invention steel A5A5 0.080.08 0.860.86 0.830.83 0.0120.012 0.0110.011 0.060.06 0.030.03 0.260.26 0.310.31 854854 537537 5050 발명강Invention steel A6A6 0.090.09 0.250.25 0.870.87 0.0120.012 0.0100.010 0.030.03 0.030.03 0.300.30 0.300.30 853853 600600 3030 비교강Comparative steel A7A7 0.040.04 0.220.22 1.141.14 0.0130.013 0.0110.011 0.030.03 0.030.03 0.250.25 0.270.27 852852 600600 3131 비교강Comparative steel A8A8 0.120.12 0.260.26 0.400.40 0.0110.011 0.0110.011 0.050.05 0.030.03 0.280.28 0.300.30 854854 630630 2727 비교강Comparative steel A9A9 0.090.09 0.250.25 0.800.80 0.0130.013 0.0120.012 0.020.02 0.030.03 -- 0.300.30 849849 566566 3636 비교강Comparative steel A10A10 0.160.16 0.400.40 1.301.30 0.0120.012 0.0120.012 0.020.02 -- -- -- 852852 570570 3737 비교강Comparative steel

( FDT : finish delivery temperature , CT : coiling temperature )(FDT: finish delivery temperature, CT: coiling temperature)

강종Steel grade 상온 인장 특성Room temperature tensile properties 고온 인장 특성High temperature tensile properties 열연 조건Hot Rolling Condition YS(kg/mm2)YS (kg / mm 2 ) TS(kg/mm2)TS (kg / mm 2 ) El(%)El (%) YR(%)YR (%) YS(kg/mm2)YS (kg / mm 2 ) TS(kg/mm2)TS (kg / mm 2 ) EI(%)EI (%) FDT(℃)FDT (℃) CT(℃)CT (℃) A1A1 46.946.9 53.153.1 30.330.3 88.388.3 23.823.8 30.930.9 62.662.6 853853 610610 A2A2 48.948.9 56.656.6 31.031.0 86.386.3 25.125.1 32.432.4 59.159.1 856856 620620 A3A3 42.942.9 52.252.2 33.333.3 82.282.2 21.121.1 28.728.7 54.254.2 858858 690690 A4A4 48.348.3 58.358.3 29.329.3 82.982.9 26.026.0 32.432.4 57.157.1 855855 635635 A5A5 55.255.2 65.265.2 18.918.9 84.684.6 31.931.9 39.439.4 33.033.0 854854 537537 A6A6 49.849.8 56.856.8 30.930.9 87.787.7 25.125.1 33.433.4 52.352.3 853853 600600 A7A7 48.248.2 53.953.9 28.028.0 89.489.4 23.723.7 32.132.1 55.055.0 852852 600600 A8A8 45.245.2 54.254.2 30.230.2 83.383.3 22.522.5 30.530.5 58.758.7 854854 630630 A9A9 46.246.2 53.153.1 29.929.9 87.087.0 20.620.6 24.824.8 61.061.0 849849 566566 A10A10 38.038.0 49.849.8 36.036.0 76.476.4 15.615.6 21.321.3 88.388.3 852852 570570

( El : elongation , YR : yield ratio )(El: elongation, YR: yield ratio)

Si첨가량에 따른 상온 재질 변화를 조사하기 위하여, 본 발명에 따른 Si첨가량을 변화시킨 A1, A2, A4강의 인장 특성을 도 1에 나타내었는데, Si이 증량됨에 따라 상온 인장 강도는 증가하고 있는 것을 볼 수 있다. 이와 같은 경과는 고용강화 원소인 Si 첨가에 기인되는 것으로, Si를 0.05% 첨가에서 0.87%로 증량함에 의해 대략 5kg/mm2정도 인장 강도가 상승하는 것을 볼 수 있다. 한편, 항복 강도는 Si를 0.05%에서 0.49%로 증량함에 따라 2kg/mm2증가하다가 0.87%로 더욱 증량함에 의해 다소 감소하는 것을 볼 수 있다. Si첨가량에 따라 이와 같은 상온 인장 특성을 나타내는 본 시험재의 항복비(항복강도÷인장강도×100)의 변화를 도 2에 나타내었다. 내화강의 경우, 통상 건축구조용 후판재로 많이 사용되고 있고, 굽힘가공 등의 변형이 비교적 작은 곳에 사용되나, 본 발명재와 같이 열연재로 사용되는 경우는 조관 성형(pipe forming)을 실시하여 파이프 형태로 사용되기 때문에 조관 성형을 용이하게 하기 위해서 항복비를 낮게 하는 것이 유리하다. 도 2에서 Si 첨가량이 0.05%(A1강), 0.49%(A2강), 0.87%(A3강)인 경우에 항복비는 각 각 88.3%, 86.3%, 82.9%를 나타내어 Si첨가량이 증가함에 따라 항복비는 감소하는 것을 볼 수 있으며, 본 발명에서 목표로 하는 85%이하의 항복비를 얻기 위해 Si첨가량은 0.6%이상 첨가해야 할 것으로 생각된다.In order to investigate the change in the room temperature material according to the amount of Si addition, the tensile properties of the A1, A2, A4 steel with varying the amount of Si addition according to the present invention are shown in FIG. 1, and the room temperature tensile strength increases as Si is increased. Can be. This progress is due to the addition of Si as a solid solution strengthening element, and it can be seen that the tensile strength is increased by about 5 kg / mm 2 by increasing Si from 0.8% to 0.87%. On the other hand, the yield strength can be seen to decrease slightly by increasing 2kg / mm 2 as the Si is increased from 0.05% to 0.49% and further increased to 0.87%. The change in yield ratio (yield strength ÷ tensile strength x 100) of this test specimen showing such room temperature tensile characteristics according to the amount of Si added is shown in FIG. 2. In the case of refractory steel, it is usually used as a thick plate for building structure, and it is used in a place where deformation such as bending process is relatively small. However, when used as a hot rolled material like the present invention, pipe forming is performed by pipe forming. Since it is used, it is advantageous to lower the yield ratio in order to facilitate tube forming. In FIG. 2, when the Si addition amount is 0.05% (A1 steel), 0.49% (A2 steel), and 0.87% (A3 steel), the yield ratio is 88.3%, 86.3%, and 82.9%, respectively. It can be seen that the yield ratio decreases, and in order to obtain a yield ratio of 85% or less, the Si addition amount should be added more than 0.6%.

(실시예 2)(Example 2)

건축물에 사용되고 있는 일반강의 경우, 화재시에 급격한 내력 감소로 인한 붕괴 위험성을 내포하기 때문에, 고온에서 강도가 우수한 강재인 내화강이 요구되었다. 통상 강재의 내화성을 평가하기 위해서 600℃에서 인장 시험을 실시하여, 고온 항복 강도가 상온 항복 강도의 2/3이상을 나타내는지로 평가하고 있는데, 본 발명에서 목표로 하고 있는 TS 50kg급 강재의 경우 600℃ 고온 인장 시험에서 22kg/mm2이상의 항복 강도를 나타내어야 한다.In the case of general steel used in buildings, a fire resistant steel, which is a high strength steel at high temperatures, was required because of the risk of collapse due to a rapid decrease in strength in a fire. In order to evaluate the fire resistance of steels, a tensile test is usually performed at 600 ° C., and it is evaluated whether the high temperature yield strength indicates 2/3 or more of the room temperature yield strength. At higher temperature tensile tests, the yield strength shall be at least 22 kg / mm 2 .

도 3은 Si첨가에 따른 고온 재질특성의 변화를 조사하기 위하여, Si첨가량이 각 각 0.05%, 0.49%, 0.86%인 A1, A2, A4강의 600℃에서의 강도 변화를 나타낸 것으로, A1, A2, A4강에서 각각 23.8, 25.1, 26.0kg/mm2의 항복 강도를 나타내어 Si첨가량이 증가함에 따라 항복강도는 계속해서 증가하는 것을 볼 수 있다. 통상 고온 강도는 600℃에서 진행되는 인장 시험중에 미세한 Mo, Cr계 탄화물들이 석출되어 전위의 이동을 방해하기 때문에 고온 강도가 상승하는 것으로 많이 알려져 있으며, 따라서 고온 인장 시험시에 많은 양의 탄화물을 석출시키기 위해서는 인장 시험전 소재에서는 가능한한 탄화물의 석출을 억제하고, 인장 시험중에 많은 양의 탄화물을 석출시키는 것이 유리하다.FIG. 3 shows the change in strength at 600 ° C. of A1, A2, and A4 steels with Si addition amounts of 0.05%, 0.49%, and 0.86%, respectively, in order to investigate the change of high temperature material properties according to Si addition. , A4 steel showed yield strengths of 23.8, 25.1 and 26.0 kg / mm 2 , respectively, and as the Si addition amount increased, the yield strength continued to increase. In general, high temperature strength is known to increase the high temperature strength because fine Mo, Cr-based carbides are precipitated during the tensile test conducted at 600 ℃ to hinder the movement of dislocations, and therefore, a large amount of carbides are precipitated during the high temperature tensile test. For this purpose, it is advantageous to suppress the precipitation of carbides as much as possible in the material before the tensile test, and to deposit a large amount of carbide during the tensile test.

일반적으로 Si는 탄화물 형성을 억제하는 원소로 많이 알려져 있으며, 이러한 Si의 역할에 기인하여 인장 시험전 소재 상태에서는 탄화물의 석출이 억제되고, 인장 시험전 석출된 탄화물이 적은 소재는 인장 시험이 진행되는 과정에서 탄화물 석출이 활발하게 진행되기 때문에, Si첨가량이 증가함에 따라 고온강도는 향상되는 것으로 보인다. 한편, Si를 0.89% 첨가한 A3강에서 보이는 항복 강도는 21.1kg/mm2을 나타내어 TS 50kg급 규격에 미달되는 것을 볼 수 있는데, 이것을 A3강의 경우 권취 온도가 다른 강재(A4, A5강)에 비해 높기 때문으로, 권취 온도가 높은 경우는 소재 상태에서 많은 양의 탄화물이 석출되기 때문에, 이미 소재 상태에서 석출된 탄화물들은 인장 시험중 고온으로 유지되는 과정에서 조대화하여 고온 강도 향상에 크게 기여하지 못하는 것으로 생각되며, 또한 인장시험전 많은 양의 탄화물이 이미 석출되었기 때문에 고온 인장 시험중 새로 형성되는 탄화물 분율도 적어져서 강도가 낮게 나타나는 것으로 생각된다. 따라서 고온 강도를 증가시키기 위해서는 권취 온도 범위는 650℃ 미만으로 낮게 설정하는 것이 바람직할 것으로 생각된다.In general, Si is widely known as an element for inhibiting carbide formation. Due to the role of Si, precipitation of carbide is suppressed in the state of the material before the tensile test, and the material having the small amount of carbide deposited before the tensile test is subjected to the tensile test. Since carbides precipitate actively during the process, the high temperature strength seems to improve as the amount of Si added increases. On the other hand, the yield strength of A3 steel added 0.89% of Si was 21.1kg / mm 2 , which is below TS 50kg grade, which is different from the winding temperature of A3 steel (A4, A5 steel). Because of the high rolling temperature, a large amount of carbides are precipitated in the state of the material when the coiling temperature is high, and the carbides that have already been precipitated in the state of the material coarsen in the process of being kept at a high temperature during the tensile test, and thus do not contribute significantly to the improvement of the high temperature strength. In addition, since a large amount of carbide has already been precipitated before the tensile test, the newly formed carbide fraction during the high temperature tensile test also appears to be low in strength. Therefore, in order to increase high temperature strength, it is thought that setting the winding temperature range as low as less than 650 degreeC is desirable.

한편, Mo를 첨가하지 않은 A9강과 Mo, Cr을 첨가하지 않은 A10강의 고온 항복 강도는 각각 20.6, 15.6kg/mm2으로 나타나고 있는데, 이것은 고온 강도 향상에 유리한 Mo, Cr을 첨가하지 않음으로써 본 발명에서 목표로 하는 TS 50kg/mm2급 내화강재 규격인 22kg/mm2에 미달되는 것을 볼 수 있으며, 따라서 고온 강도 향상을 위해서는 Cr, Mo는 필수적인 원소임을 확인할 수 있다.On the other hand, the high temperature yield strength of A9 steel without Mo and A10 steel without Mo and Cr is shown to be 20.6 and 15.6 kg / mm 2 , respectively. It can be seen that the target TS 50kg / mm 2 refractory steel standards below 22kg / mm 2 , and therefore, Cr, Mo is an essential element to improve the high temperature strength.

A6, A7, A8강은 C, Mn양을 제한하기 위한 것으로, A6강(0.25% Si)에 비해 C양 감소, Mn양 증량된 A7강과 A6강에 비해 C양 증량, Mn양 감소된 A8강의 고온 항복 강도는 각 각 23.7, 22.5kg/mm2으로 A6강에 비해 1.4, 2.6kg/mm2감소되고 있으며, 따라서 고온 항복 강도 측면에서 적정양의 C, Mn 첨가가 필요한 것을 확인할 수 있으며, 따라서 본 발명에서는 C양은 0.05∼0.1%로 제한하고, Mn은 0.5∼1.0%로 제한한다.The A6, A7, and A8 steels are for limiting the amount of C and Mn, and the amount of C is reduced compared to A6 steel (0.25% Si), and the amount of C is increased and the amount of Mn is reduced compared to A7 and A6. Yield strength at high temperatures is 23.7 and 22.5kg / mm 2 , respectively, and 1.4, 2.6kg / mm 2 is reduced compared to A6 steel. Therefore, it is confirmed that an appropriate amount of C and Mn is required in terms of high temperature yield strength. In the present invention, the amount of C is limited to 0.05 to 0.1%, and Mn is limited to 0.5 to 1.0%.

상술한 바와 같이 본 발명에 따라 열간 마무리 압연온도와 냉각속도, 권취온도를 조절하고 강의 Si함량을 조절함으로서 TS 50Kg급으로 600℃에서 22Kg/mm2 이상의 항복강도를 가지면서 항복비 85%이하를 나타내는 소재를 제조할 수 있으므로 특히 고온에서 우수한 재질 특성을 나타내어 건축용으로 사용되는 일반강을 대체하여 사용할 수 있는 효과가 있다.As described above, by controlling the hot finishing rolling temperature, cooling rate, winding temperature, and controlling the Si content of the steel according to the present invention, the yield ratio is 85% or less while having a yield strength of 22Kg / mm2 or more at 600 ° C in TS 50Kg class. Since the material can be manufactured, it exhibits excellent material properties, especially at high temperatures, and thus can be used to replace general steel used for construction.

Claims (1)

중량 %로 C : 0.05∼0.10%, Si : 0.6%∼1.0%, Mn : 0.5∼1.0%, P < 0.015%, S < 0.016%, Al : 0.02∼0.1%, Nb : 0.02∼0.06%, Mo : 0.1∼0.3%, Cr : 0.1∼0.3%, 나머지는 Fe 및 불가피한 불순 원소로 구성된 강을 820∼880℃에서 열간 마무리 압연하는 단계와, 냉각 속도 10∼60℃/s범위에서 수냉하는 단계와, 520∼650℃로 권취하는 단계로 이루어진 것을 특징으로 하는 고온강도가 우수한 저항복비형 열연강판의 제조방법.By weight% C: 0.05-0.10%, Si: 0.6% -1.0%, Mn: 0.5-1.0%, P <0.015%, S <0.016%, Al: 0.02-0.1%, Nb: 0.02-0.06%, Mo : 0.1 to 0.3%, Cr: 0.1 to 0.3%, the remainder being hot-finish-rolled at 820 to 880 ° C. of steel consisting of Fe and unavoidable impurity elements, followed by water cooling at a cooling rate of 10 to 60 ° C./s, , The method of manufacturing a high-temperature resistance excellent strength ratio hot-rolled steel sheet, characterized in that consisting of winding to 520 ~ 650 ℃.
KR10-1998-0037184A 1998-09-09 1998-09-09 Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength KR100368553B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0037184A KR100368553B1 (en) 1998-09-09 1998-09-09 Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0037184A KR100368553B1 (en) 1998-09-09 1998-09-09 Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength

Publications (2)

Publication Number Publication Date
KR20000019209A true KR20000019209A (en) 2000-04-06
KR100368553B1 KR100368553B1 (en) 2003-05-16

Family

ID=19550080

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0037184A KR100368553B1 (en) 1998-09-09 1998-09-09 Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength

Country Status (1)

Country Link
KR (1) KR100368553B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7730115B2 (en) 2004-08-11 2010-06-01 Samsung Electronics Co., Ltd. System, microcontroller and methods thereof
KR20190078080A (en) 2017-12-26 2019-07-04 (주)에스모터스 Vehicle suspension capable of reducing vibration in wide range
KR102039979B1 (en) 2018-09-18 2019-11-04 (주)에스모터스 System for reducing vibration in vehicle
KR20200032475A (en) 2018-09-18 2020-03-26 (주)에스모터스 Vehicle modifying system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173532A (en) * 1993-10-29 1995-07-11 Kobe Steel Ltd Production of low yield ratio type fire resistant architectural steel excellent in weldability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7730115B2 (en) 2004-08-11 2010-06-01 Samsung Electronics Co., Ltd. System, microcontroller and methods thereof
KR20190078080A (en) 2017-12-26 2019-07-04 (주)에스모터스 Vehicle suspension capable of reducing vibration in wide range
KR102039979B1 (en) 2018-09-18 2019-11-04 (주)에스모터스 System for reducing vibration in vehicle
KR20200032475A (en) 2018-09-18 2020-03-26 (주)에스모터스 Vehicle modifying system

Also Published As

Publication number Publication date
KR100368553B1 (en) 2003-05-16

Similar Documents

Publication Publication Date Title
EP1367143B1 (en) Hot dip zinc plated steel sheet having high strength and method for producing the same
KR101858852B1 (en) Cold-rolled steel sheet and galvanized steel sheet having excelent elonggation, hole expansion ration and yield strength and method for manufacturing thereof
JP2006219738A (en) High tensile strength cold rolled steel sheet having excellent forming workability and weldability, and its production method
JPH06128688A (en) Hot rolled steel plate excellent in fatigue characteristic and it production
JPS6366368B2 (en)
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
KR100368553B1 (en) Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
KR102209575B1 (en) Steel sheet having excellent workability and balance of strength and ductility, and method for manufacturing the same
JP3337246B2 (en) Method for producing thick H-section steel having a thickness of 40 mm or more with small difference in mechanical properties in the thickness direction
JP2001020035A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
KR100544645B1 (en) Manufacturing method of multiphase cold rolled steel sheet with good formability
KR101180593B1 (en) Method of manufacturing precipitative hardening galvannealed steel sheets with high strength
KR20200075337A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
KR102560057B1 (en) High yield ratio and high strength steel sheet having excellent bendability and the method for manufacturing the same
JP2002012939A (en) High tensile steel excellent in hot strength and its production method
JPH0756053B2 (en) Manufacturing method of galvanized hot rolled steel sheet with excellent workability
JP2020503445A (en) Thick steel material having excellent tensile strength of 450 MPa class having excellent resistance to hydrogen-induced cracking and method for producing the same
KR102209569B1 (en) High strength and ductility steel sheet, and method for manufacturing the same
JP2655956B2 (en) Manufacturing method of low yield ratio refractory steel sheet for building structure
KR100415663B1 (en) A method for manufacturing hot rolled steel sheet having good high temperature strength
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141219

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee