JP2529044B2 - Manufacturing method of low yield ratio steel pipe for building by cold forming. - Google Patents
Manufacturing method of low yield ratio steel pipe for building by cold forming.Info
- Publication number
- JP2529044B2 JP2529044B2 JP3277534A JP27753491A JP2529044B2 JP 2529044 B2 JP2529044 B2 JP 2529044B2 JP 3277534 A JP3277534 A JP 3277534A JP 27753491 A JP27753491 A JP 27753491A JP 2529044 B2 JP2529044 B2 JP 2529044B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- steel pipe
- temperature range
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は建築、土木分野におい
て、各種構造物に用いる冷間成形による低降伏比鋼管の
製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low yield ratio steel pipe by cold forming for various structures in the fields of construction and civil engineering.
【0002】[0002]
【従来の技術】一般的に、鋼材に対し冷間加工を加える
と加工硬化によりYP、TSが上昇し、TSに比べYP
の上昇が大きいため降伏比(以下YRと呼ぶ)も上昇し
てしまい、冷間成形による鋼管は降伏後の塑性変形能力
が小さいため建築構造物には適用しにくいという欠点が
あった。2. Description of the Related Art Generally, when cold working is applied to steel, YP and TS rise due to work hardening, and YP and TS are higher than TS.
The yield ratio (hereinafter referred to as YR) also increases due to the large increase in the steel sheet, and the cold-formed steel pipe has a drawback that it is difficult to apply to a building structure because the plastic deformation ability after yielding is small.
【0003】一方、低YR鋼管の製造法としては遠心鋳
造法、鋼管での熱処理(焼入、焼戻)等があるが、遠心
鋳造法はその生産性の低さ、経済性の面で、鋼管の熱処
理ではその経済性、鋼管の寸法精度の面で、鋼板の冷間
成形により製造した鋼管に比べ劣っていた。On the other hand, there are centrifugal casting method, heat treatment (quenching and tempering) in the steel tube, etc. as the manufacturing method of the low YR steel pipe, but the centrifugal casting method has low productivity and economical efficiency. The heat treatment of the steel pipe was inferior to the steel pipe manufactured by cold forming the steel plate in terms of its economical efficiency and dimensional accuracy of the steel pipe.
【0004】[0004]
【発明が解決しようとする課題】本発明は、鋼板の冷間
成形によるYRが低い鋼管の製造技術を提供するもので
ある。本発明法に基づいて製造した鋼管は、低YRで且
つ高い生産性、経済性及び寸法精度を有している。SUMMARY OF THE INVENTION The present invention provides a technique for manufacturing a steel pipe having a low YR by cold forming a steel plate. The steel pipe manufactured based on the method of the present invention has low YR and high productivity, economy and dimensional accuracy.
【0005】[0005]
【課題を解決するための手段】本発明は前述の課題を克
服し目的を達成するもので、その具体的手段を下記
(1)、(2)に示す。Means for Solving the Problems The present invention overcomes the above-mentioned problems and achieves the object, and its concrete means are shown in (1) and (2) below.
【0006】(1)重量比でC 0.01〜0.20
%、Si 0.5%以下、Mn 0.5〜1.6%、P
0.03%以下、S 0.01%以下、Ti 0.0
05〜0.025%、Al 0.1%以下、N 0.0
06%以下を含有し、残部が鉄および不可避的不純物か
らなる鋼を再加熱、圧延を行った後、Ac3 変態点〜1
000℃の温度範囲に再加熱、焼入れし、引き続き70
0〜850℃の温度範囲に再加熱、焼入れし、Ac1 変
態点以下の温度範囲で焼戻処理を施した鋼板を、t/D
(t:板厚、D:鋼管外径)≦10%の範囲で冷間成形
により鋼管を製作し、その後500から650℃の温度
範囲で板厚25mmあたり1時間の保定で焼鈍すること
を特徴とする板厚100mm以下、管軸方向のYRが8
0%以下である建築用低降伏比60kgf/mm2 級鋼
管の製造法。(1) C 0.01 to 0.20 by weight
%, Si 0.5% or less, Mn 0.5 to 1.6%, P
0.03% or less, S 0.01% or less, Ti 0.0
05-0.025%, Al 0.1% or less, N 0.0
After containing 0.06% or less of steel and the balance of iron and unavoidable impurities, the steel is reheated and rolled, and then the Ac 3 transformation point to 1
Reheat to the temperature range of 000 ℃, quench and continue to 70
A steel sheet reheated and hardened in a temperature range of 0 to 850 ° C. and tempered in a temperature range of Ac 1 transformation point or lower is t / D.
(T: plate thickness, D: outer diameter of steel pipe) ≦ 10%, a steel pipe is manufactured by cold forming, and then annealed by holding at a temperature of 500 to 650 ° C. for 1 hour per plate thickness of 25 mm. And plate thickness 100 mm or less, YR in the tube axis direction is 8
Manufacturing method of low yield ratio 60kgf / mm 2 class steel pipe for construction with 0% or less.
【0007】(2)重量比でC 0.01〜0.20
%、Si 0.5%以下、Mn 0.5〜1.6%、P
0.03%以下、S 0.01%以下、Ti 0.0
05〜0.025%、Al 0.1%以下、N 0.0
06%以下さらにCu 0.05〜0.5%、Ni
0.05〜1.0%、Cr 0.05〜1.0%、Mo
0.05〜1.0%、Nb 0.005〜0.05%、
V 0.005〜0.05%、Ca 0.001〜0.
006%の1種または2種以上を含有し、残部が鉄およ
び不可避的不純物からなる鋼を再加熱、圧延を行った
後、Ac3 変態点〜1000℃の温度範囲に再加熱、熱
入れし、引き続き700〜850℃の温度範囲に再加
熱、焼入れし、Ac1 変態点以下の温度範囲で焼戻処理
を施した鋼板を、t/D≦10%の範囲で冷間成形によ
り鋼管を製作し、その後500から650℃の温度範囲
で板厚25mmあたり1時間の保定で焼鈍することを特
徴とする板厚100mm以下、管軸方向のYRが80%
以下である建築用低降伏比60kgf/mm2 級鋼管の
製造法。(2) C 0.01 to 0.20 by weight
%, Si 0.5% or less, Mn 0.5 to 1.6%, P
0.03% or less, S 0.01% or less, Ti 0.0
05-0.025%, Al 0.1% or less, N 0.0
06% or less, Cu 0.05 to 0.5%, Ni
0.05-1.0%, Cr 0.05-1.0%, Mo
0.05-1.0%, Nb 0.005-0.05%,
V 0.005-0.05%, Ca 0.001-0.
Steel containing 006% of one kind or two or more kinds and the balance consisting of iron and unavoidable impurities is reheated and rolled, and then reheated and heated to a temperature range of Ac 3 transformation point to 1000 ° C. Then, the steel pipe which is reheated and tempered in the temperature range of 700 to 850 ° C. and tempered in the temperature range below the Ac 1 transformation point is manufactured into a steel pipe by cold forming in the range of t / D ≦ 10%. Then, after that, annealing is performed in a temperature range of 500 to 650 ° C. for 1 hour per 25 mm of plate thickness, the plate thickness is 100 mm or less, and the YR in the tube axis direction is 80%.
The following is a method for manufacturing a low yield ratio 60 kgf / mm 2 class steel pipe for construction.
【0008】[0008]
【作用】以下、本発明について説明する。The present invention will be described below.
【0009】発明者らの研究によれば、冷間加工後のY
Rを低くするには冷間加工前の鋼板の材質制御、特にY
Rを低く制御することと冷間加工後の適切な熱処理(焼
鈍)を組み合わせることが必要であることを見いだし
た。According to the research conducted by the inventors, Y after cold working
To lower R, control the material of the steel plate before cold working, especially Y
It has been found that it is necessary to control R to be low and to combine appropriate heat treatment (annealing) after cold working.
【0010】そこで本発明のポイントは冷間加工に供
する鋼板を必要なYR値以下に制御する製造法と、そ
の鋼板を冷間加工した後の熱処理による材質制御技術に
ある。Therefore, the point of the present invention lies in a manufacturing method for controlling a steel sheet to be cold-worked to a required YR value or less, and a material control technique by heat treatment after cold-working the steel sheet.
【0011】1回目の焼入は熱間圧延後に再加熱により
γに再変態させ焼入することで組織をベイナイト化及び
微細化させるためで、このため熱間圧延後の再加熱温度
の下限をAc3 変態点とする。再加熱温度が高すぎると
結晶粒が大きくなって低温靭性が劣化するので、その上
限温度は1000℃にしなければならない。The first quenching is for re-transforming to γ by reheating after hot rolling and quenching to make the structure bainitic and fine, and therefore the lower limit of the reheating temperature after hot rolling is set. Ac 3 transformation point. If the reheating temperature is too high, the crystal grains become large and the low temperature toughness deteriorates, so the upper limit temperature must be set to 1000 ° C.
【0012】次に2回目の焼入を700〜850℃の温
度範囲に再加熱、焼入れし、その後Ac1 変態点以下の
温度範囲で焼戻処理を行う必要がある。この理由はフェ
ライト−オーステナイトの2相共存域に再加熱し、フェ
ライトからオーステナイトへCの濃化が生じCの濃化し
たオーステナイトとCが減少したフェライト相にせし
め、その状態から焼入を行うことにより極めて微細な炭
化物を有する相と粗大な炭化物を有する相の2相混合組
織を得るためである。降伏比の低減はこの2相混合組織
により達成される。Next, it is necessary to reheat the second quenching to a temperature range of 700 to 850 ° C., quench it, and then temper it in a temperature range below the Ac 1 transformation point. The reason for this is that the ferrite-austenite two-phase coexisting region is reheated so that C is enriched from ferrite to austenite, and the austenite enriched in C and the ferrite phase depleted in C are made to undergo quenching from that state. Is to obtain a two-phase mixed structure of a phase having extremely fine carbide and a phase having coarse carbide. The reduction of the yield ratio is achieved by this two-phase mixed structure.
【0013】しかしながら、850℃超の再加熱温度か
らの焼入ではフェライト相が少なく降伏比の低減効果が
期待できず、また700℃未満からの焼入では強度が下
がり目的を達成できない。However, quenching from a reheating temperature of more than 850 ° C. has few ferrite phases, and the effect of reducing the yield ratio cannot be expected, and quenching from less than 700 ° C. lowers the strength and the object cannot be achieved.
【0014】焼戻処理は鋼の靭性改善と、溶接、応力除
去処理などによる軟化を防止するために必須である。し
かし、その温度がAc1 点を超えると強度が著しく低下
するので、Ac1 点以下としなければならない。The tempering treatment is essential for improving the toughness of steel and preventing softening due to welding, stress relief treatment and the like. However, if the temperature exceeds the Ac 1 point, the strength is remarkably reduced, so the temperature must be set to the Ac 1 point or less.
【0015】次に成分範囲の限定理由について説明す
る。Cは母材の強度を確保するために必要であるが、多
量に含有させると靭性あるいは溶接性を損なうために適
量の添加が必要となる。このような観点からCは0.0
1〜0.2%とした。Next, the reason for limiting the component range will be described. C is necessary in order to secure the strength of the base material, but if it is contained in a large amount, toughness or weldability is impaired, so an appropriate amount of C must be added. From such a viewpoint, C is 0.0
It was set to 1 to 0.2%.
【0016】Siは脱酸上、鋼に必然的に含まれる元素
であるが、SiはHAZ靭性及び溶接性上好ましくない
元素であるため、その上限を0.5%とした。Si is an element that is inevitably contained in steel for deoxidation. However, since Si is an unfavorable element in HAZ toughness and weldability, its upper limit was made 0.5%.
【0017】Mnは強度、靭性を同時に向上せしめる極
めて重要な元素であり、0.5%以上は必要であるが、
多量に添加すると溶接性、母材及びHAZの靭性劣化を
招くためその上限を1.6%とした。Mn is an extremely important element that simultaneously improves strength and toughness, and 0.5% or more is necessary, but
If a large amount is added, the weldability and the toughness of the base material and HAZ are deteriorated, so the upper limit was made 1.6%.
【0018】本発明鋼において不純物であるP、Sをそ
れぞれ0.03%、0.01%以下とした理由は、母
材、溶接部の低温靭性をより一層向上させるためであ
る。Pの低減は粒界破壊を防止し、S量の低減はMnS
による靭性の劣化を防止する。好ましいP、S量はそれ
ぞれ0.01%、0.005%以下である。The reason why the impurities P and S in the steel of the present invention are 0.03% and 0.01% or less, respectively, is to further improve the low temperature toughness of the base material and the welded portion. Reduction of P prevents grain boundary destruction, and reduction of S amount reduces MnS
To prevent deterioration of toughness. The preferred P and S contents are 0.01% and 0.005% or less, respectively.
【0019】Tiは炭窒化物を形成してHAZ靭性を向
上させる。Al量が少ない場合、Tiの酸化物を形成し
HAZ靭性を向上させるが、0.005%未満では効果
がなく、0.025%を超えるとHAZ靭性に好ましく
ない影響があるため、0.005〜0.025%に限定
する。Ti forms carbonitrides and improves HAZ toughness. When the amount of Al is small, Ti oxide is formed to improve the HAZ toughness, but if it is less than 0.005%, it has no effect, and if it exceeds 0.025%, it has an unfavorable effect on the HAZ toughness. Limited to ~ 0.025%.
【0020】Alは一般に脱酸上鋼に含まれる元素であ
るが、Si及びTiによっても脱酸は行われるので本発
明鋼については下限は限定しない。しかしAl量が多く
なると鋼の清浄度が悪くなり、溶接部の靭性が劣化する
ので上限を0.06%とした。Al is generally an element contained in the deoxidized upper steel, but since Si and Ti also perform deoxidation, the lower limit of the steel of the present invention is not limited. However, if the amount of Al increases, the cleanliness of the steel deteriorates and the toughness of the welded portion deteriorates, so the upper limit was made 0.06%.
【0021】Nは一般的に不可避的不純物として鋼中に
含まれるものであるが、Nb、Vと結合して炭窒化物を
形成して強度を増加させ、またTiNを形成して前述の
ようにHAZの性質を高める。このためN量として最低
0.001%が必要である。しかしながらN量が多くな
るとHAZ靭性の劣化や連続鋳造スラブの表面キズの発
生等を助長するので、その上限を0.006%とした。N is generally contained in steel as an unavoidable impurity, but it is combined with Nb and V to form a carbonitride to increase strength, and TiN is formed to form the above-mentioned material. Enhances the properties of HAZ. Therefore, the N content must be at least 0.001%. However, if the amount of N increases, it deteriorates the HAZ toughness and the occurrence of surface flaws in the continuously cast slab, so the upper limit was made 0.006%.
【0022】本発明鋼の基本成分は以上のとおりであ
り、十分に目的を達成できるが、さらに目的に対し特性
を高めるため、以下に述べる元素即ちCu、Ni、C
r、Mo、Nb、V、Caを選択的に添加すると強度、
靭性の向上について、さらに好ましい結果が得られる。The basic components of the steel of the present invention are as described above, and the object can be sufficiently achieved. However, in order to further improve the characteristics for the object, the elements described below, namely Cu, Ni and C, are used.
Strength is obtained by selectively adding r, Mo, Nb, V, and Ca.
Further favorable results are obtained with respect to improvement in toughness.
【0023】つぎに、前記添加元素とその添加量につい
て説明する。Niは溶接性、HAZ靭性に悪影響を及ぼ
すことなく、母材の強度、靭性を向上させるが、0.0
5%以下では効果が薄く、1.0%以上では極めて高価
になるため経済性を失うので、上限は1.0%とした。Next, the above-mentioned additional element and its addition amount will be described. Ni improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness, but 0.0
If it is 5% or less, the effect is weak, and if it is 1.0% or more, the cost is extremely high and the economy is lost, so the upper limit was made 1.0%.
【0024】CuはNiとほぼ同様な効果を持つほか、
Cu析出物による強度の増加や耐食性や耐候性の向上に
も効果を有する。この場合Cu量が0.5%を超えると
その析出効果が著しく、冷間成形後の熱処理において過
度の析出効果によりYRの低下が困難になり、また0.
05%以下では効果がないのでCu量は0.05〜0.
5%に限定する。Cu has almost the same effect as Ni,
It also has the effect of increasing strength and improving corrosion resistance and weather resistance due to Cu precipitates. In this case, when the amount of Cu exceeds 0.5%, the precipitation effect is remarkable, and it becomes difficult to reduce YR due to the excessive precipitation effect in the heat treatment after cold forming.
If it is less than 05%, there is no effect, so the Cu content is 0.05-0.
Limited to 5%.
【0025】Moは母材の強度、靭性を共に向上させる
元素であるが、0.05%以下では効果が薄く、1.0
%を超えると溶接部靭性及び溶接性の劣化を招き好まし
くないため0.05%〜1.0%に限定する。Mo is an element that improves both the strength and toughness of the base material, but if the content is 0.05% or less, the effect is small and 1.0
%, The toughness and weldability of the welded part are deteriorated, which is not preferable.
【0026】Crは母材及び溶接部の強度を高める元素
であり、Cr量が0.5%以上で耐候性も向上するが、
1.0%を超えると溶接性やHAZ靭性を劣化させ、ま
た0.05%以下では効果が薄い。従ってCr量は0.
05〜1.0%とする。Cr is an element which enhances the strength of the base material and the welded portion, and when the amount of Cr is 0.5% or more, the weather resistance is also improved.
If it exceeds 1.0%, the weldability and HAZ toughness are deteriorated, and if it is 0.05% or less, the effect is small. Therefore, the Cr amount is 0.
05 to 1.0%.
【0027】Nbは微細な炭窒化物を形成し、強度を増
加させ、またHAZ靭性を向上させる。しかし、0.0
05%以下では効果がなく0.05%を超えるとHAZ
靭性に好ましくない影響がある。Nb forms fine carbonitrides to increase strength and HAZ toughness. But 0.0
No effect if less than 05%, HAZ if more than 0.05%
It has an unfavorable effect on toughness.
【0028】VはNbとほぼ同じ効果をもつ元素である
が、Nbに比較して析出硬化能はやや劣る。0.005
%以下では硬化が少なく、0.05%を超えると冷間成
形後の熱処理で過度の析出効果によりYR低下の妨げに
なる。V is an element having almost the same effect as Nb, but its precipitation hardening ability is slightly inferior to that of Nb. 0.005
% Or less, the hardening is small, and if it exceeds 0.05%, the YR is hindered by the excessive precipitation effect in the heat treatment after cold forming.
【0029】Caは硫化物(MnS)の形態を制御し、
シャルピー吸収エネルギーを増加させ低温靭性を向上さ
せる効果がある。しかしCa量は0.001%未満では
実用上効果がなく、0.006%を超えるとCaO、C
aSが多量に生成して大型介在物となり、鋼の靭性のみ
ならず清浄度も害し溶接性、耐ラメラテア性にも悪影響
を与えるので、Ca添加量の範囲を0.001〜0.0
06%とする。Ca controls the morphology of sulfide (MnS),
It has the effect of increasing Charpy absorbed energy and improving low temperature toughness. However, if the amount of Ca is less than 0.001%, there is no practical effect, and if it exceeds 0.006%, CaO, C
A large amount of aS is generated and becomes large inclusions, which not only impairs the toughness of steel but also the cleanliness and adversely affects the weldability and lamella tear resistance. Therefore, the range of Ca addition amount is 0.001 to 0.0
It is set to 06%.
【0030】次に冷間成形(t/D≦10%)後の熱処
理(焼鈍)温度は、冷間加工での歪を十分に開放し、Y
Rの低下、靭性の回復を行わせるためその下限温度を5
00℃とする。また高すぎる温度での焼鈍は、冷間歪の
開放だけでなく鋼材自体の軟化を起こし、強度不足、Y
Rの上昇を招いてしまうためその上限温度を650℃と
する。Next, the heat treatment (annealing) temperature after cold forming (t / D ≦ 10%) is set so that the strain in cold working is sufficiently released and Y
The lower limit temperature is 5 in order to reduce R and recover toughness.
Set to 00 ° C. Also, annealing at too high a temperature not only releases the cold strain but also softens the steel material itself, resulting in insufficient strength, Y
The upper limit temperature is set to 650 ° C. because R is increased.
【0031】[0031]
【実施例】周知の転炉、連続鋳造、厚板工程により鋼板
を製造し、その後冷間成形で鋼管を製作、焼鈍熱処理を
施し、その強度、靭性について調査した。EXAMPLE A steel plate was manufactured by a well-known converter, continuous casting, and thick plate process, and then a steel pipe was manufactured by cold forming and annealed and heat-treated, and its strength and toughness were investigated.
【0032】表1の1〜6に本発明鋼、7〜13に比較
鋼の化学成分を示す。表2に本発明鋼と比較鋼の鋼板製
造条件とその機械的性質を示す。Tables 1 to 6 show the chemical compositions of the present invention steels, and 7 to 13 show the chemical compositions of the comparative steels. Table 2 shows the steel plate manufacturing conditions and the mechanical properties of the present invention steel and the comparative steel.
【0033】表2の本発明鋼1〜6は、鋼管での強度、
靭性がバランスよく達成できており、YRも80%以下
となっている。Steels 1 to 6 of the present invention shown in Table 2 are strengths in steel pipes,
The toughness is achieved in a well-balanced manner, and the YR is 80% or less.
【0034】これに対し比較鋼7では冷間加工度(t/
D)が12%と大きすぎるため、YRが高くなってい
る。比較鋼8は2回目の焼入温度が低いために強度が不
足している。比較鋼9では1回目の焼入温度が高いため
に結晶粒の細粒化が十分になされておらず、靭性が劣化
している。比較鋼10では焼鈍温度が低いために、YR
が高く、靭性が劣化している。比較鋼11では2回目の
焼入温度が高いために、YRが高くなっている。比較鋼
12では焼鈍温度が高いために、YRが高くなってい
る。比較鋼13ではVが高いために、YRが高くなって
いる。On the other hand, in Comparative Steel 7, the cold workability (t /
Since D) is too large as 12%, YR is high. Comparative Steel 8 lacks strength because the second quenching temperature is low. In Comparative Steel 9, since the first quenching temperature was high, the crystal grains were not sufficiently refined, and the toughness was deteriorated. Comparative steel 10 has a low annealing temperature, so YR
Is high and the toughness is deteriorated. Comparative Steel 11 has a high YR because the second quenching temperature is high. Comparative Steel 12 has a high YR because the annealing temperature is high. Comparative Steel 13 has a high V and therefore a high YR.
【0035】[0035]
【表1】 [Table 1]
【0036】[0036]
【表2】 [Table 2]
【0037】[0037]
【発明の効果】本発明の化学成分及び製造法で製造した
鋼管は、YRが低く降伏後の塑性変形能力に優れた鋼管
である。その結果、建築、橋梁等の構造物の安全性を大
きく高めることができる。INDUSTRIAL APPLICABILITY The steel pipe manufactured by the chemical composition and manufacturing method of the present invention has a low YR and an excellent plastic deformation ability after yielding. As a result, the safety of structures such as buildings and bridges can be greatly improved.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/14 C22C 38/14 (72)発明者 南 晃 君津市君津1番地 新日本製鐵株式会社 君津製鐵所内 (56)参考文献 特開 平5−105946(JP,A) 特開 平3−20408(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C22C 38/14 C22C 38/14 (72) Inventor Akira Minami 1 Kimitsu, Kimitsu-shi Nippon Steel shares Company Kimitsu Works (56) References JP-A-5-105946 (JP, A) JP-A-3-20408 (JP, A)
Claims (2)
熱間圧延した後、Ac3変態点〜1000℃の温度範囲
に再加熱、焼入れし、引き続き700〜850℃の温度
範囲に再加熱、焼入れし、Ac1 変態点以下の温度範囲
で焼戻処理を施した鋼板を、板厚をt、鋼管外径をDと
してt/D≦10%の範囲で冷間成形により鋼管を製作
し、その後500から650℃の温度範囲で焼鈍するこ
とを特徴とする建築用低降伏比鋼管の製造法。1. By weight ratio, C: 0.01 to 0.20%, Si: 0.5% or less, Mn: 0.5 to 1.6%, P: 0.03% or less, S: 0. Steel containing 0.1% or less, Ti: 0.005 to 0.025%, Al: 0.1% or less, N: 0.006% or less, and the balance being iron and inevitable impurities was hot-rolled. After that, the steel sheet is reheated and quenched to a temperature range of Ac 3 transformation point to 1000 ° C, subsequently reheated and quenched to a temperature range of 700 to 850 ° C, and tempered in a temperature range of Ac 1 transformation point or less. Steel plate is manufactured by cold forming in the range of t / D ≦ 10%, where t is the plate thickness and D is the outer diameter of the steel pipe, and then annealed in the temperature range of 500 to 650 ° C. Yield ratio Steel pipe manufacturing method.
的不純物からなる鋼を熱間圧延した後、Ac3 変態点〜
1000℃の温度範囲に再加熱、焼入れし、引き続き7
00〜850℃の温度範囲に再加熱、焼入れし、Ac1
変態点以下の温度範囲で焼戻処理を施した鋼板を、板厚
をt、鋼管外径をDとしてt/D≦10%の範囲で冷間
成形により鋼管を製作し、その後500から650℃の
温度範囲で焼鈍することを特徴とする建築用低降伏比鋼
管の製造法。2. By weight ratio, C: 0.01 to 0.20%, Si: 0.5% or less, Mn: 0.5 to 1.6%, P: 0.03% or less, S: 0. 01% or less, Ti: 0.005 to 0.025%, Al: 0.1% or less, N: 0.006% or less, further Cu: 0.05 to 0.5%, Ni: 0.05 to 1 0.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, Nb: 0.005 to 0.05%, V: 0.005 to 0.05%, Ca: After hot-rolling steel containing 0.001 to 0.006%, one or more of which is the balance of iron and inevitable impurities, the Ac 3 transformation point
Reheat to the temperature range of 1000 ℃, quench and continue to 7
Reheat and quench in the temperature range of 0 to 850 ° C, and Ac 1
A steel pipe that has been tempered in a temperature range below the transformation point is manufactured by cold forming within a range of t / D ≦ 10%, where t is the plate thickness and D is the outer diameter of the steel pipe, and then 500 to 650 ° C. A method for manufacturing a low yield ratio steel pipe for construction, characterized in that it is annealed in the above temperature range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3277534A JP2529044B2 (en) | 1991-10-24 | 1991-10-24 | Manufacturing method of low yield ratio steel pipe for building by cold forming. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3277534A JP2529044B2 (en) | 1991-10-24 | 1991-10-24 | Manufacturing method of low yield ratio steel pipe for building by cold forming. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05117746A JPH05117746A (en) | 1993-05-14 |
JP2529044B2 true JP2529044B2 (en) | 1996-08-28 |
Family
ID=17584903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3277534A Expired - Lifetime JP2529044B2 (en) | 1991-10-24 | 1991-10-24 | Manufacturing method of low yield ratio steel pipe for building by cold forming. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2529044B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4912013B2 (en) * | 2006-03-31 | 2012-04-04 | 株式会社神戸製鋼所 | Manufacturing method of press-bend cold-formed circular steel pipe with excellent earthquake resistance |
JP6398585B2 (en) * | 2014-10-15 | 2018-10-03 | 新日鐵住金株式会社 | Steel pipe manufacturing method and steel pipe |
JP7034861B2 (en) * | 2018-08-03 | 2022-03-14 | 株式会社神戸製鋼所 | Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods |
-
1991
- 1991-10-24 JP JP3277534A patent/JP2529044B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05117746A (en) | 1993-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2529044B2 (en) | Manufacturing method of low yield ratio steel pipe for building by cold forming. | |
JPH07109521A (en) | Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming | |
JP3245224B2 (en) | Manufacturing method of low yield ratio steel pipe for building by cold forming. | |
JP2529042B2 (en) | Manufacturing method of low yield ratio steel pipe for building by cold forming. | |
JP2529045B2 (en) | Manufacturing method of low yield ratio 60kgf / mm2 grade steel pipe for construction by cold forming | |
JPH0826395B2 (en) | 80 kgf / mm with excellent weldability (2) High-strength steel manufacturing method | |
JP3245223B2 (en) | Manufacturing method of low yield ratio steel pipe for building by cold forming. | |
JPH06104861B2 (en) | Manufacturing method of V added high toughness high strength steel sheet | |
JP3497250B2 (en) | Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability | |
JP3007247B2 (en) | Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less | |
JP3212380B2 (en) | Manufacturing method of low yield ratio 600N / mm2 class steel sheet for building with excellent heat input zone toughness of large heat input welding | |
JP3212363B2 (en) | Manufacturing method of low yield ratio 600N / mm2 class steel sheet for building with excellent heat input zone toughness of large heat input welding | |
JPH06128641A (en) | Production of steel tube with low yield ratio for construction use by cold forming | |
JP4639508B2 (en) | Manufacturing method of low yield ratio steel with excellent fire resistance | |
JP3208495B2 (en) | Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability | |
JPH06264144A (en) | Production of steel tube with low yield ratio for construction use by cold forming | |
JP3426047B2 (en) | Method for producing low yield ratio 590 N / mm2 class high strength steel with excellent weldability | |
JP2528561B2 (en) | Low yield ratio 70kgf / mm2 class high strength steel with excellent weldability | |
JP2834500B2 (en) | Manufacturing method of high-strength steel sheet with excellent thermal toughness | |
JP3007246B2 (en) | Method for producing 590 N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less | |
JPH0737649B2 (en) | Manufacturing method of fireproof steel plate for building with low yield ratio | |
JP2962110B2 (en) | Manufacturing method of low yield ratio high strength steel sheet for box column | |
JP2546953B2 (en) | Method for manufacturing high-strength steel for construction with excellent fire resistance | |
JPH06248336A (en) | Production of 780n/mm2 class high tensile strength steel excellent in weldability and reduced in yield ratio | |
JPH06264143A (en) | Production of steel tube with low yield ratio for construction use by cold forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960409 |