JP3245224B2 - Manufacturing method of low yield ratio steel pipe for building by cold forming. - Google Patents

Manufacturing method of low yield ratio steel pipe for building by cold forming.

Info

Publication number
JP3245224B2
JP3245224B2 JP20921692A JP20921692A JP3245224B2 JP 3245224 B2 JP3245224 B2 JP 3245224B2 JP 20921692 A JP20921692 A JP 20921692A JP 20921692 A JP20921692 A JP 20921692A JP 3245224 B2 JP3245224 B2 JP 3245224B2
Authority
JP
Japan
Prior art keywords
less
steel
steel pipe
cold forming
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20921692A
Other languages
Japanese (ja)
Other versions
JPH0649541A (en
Inventor
譲 吉田
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20921692A priority Critical patent/JP3245224B2/en
Publication of JPH0649541A publication Critical patent/JPH0649541A/en
Application granted granted Critical
Publication of JP3245224B2 publication Critical patent/JP3245224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は建築、土木分野におい
て、各種構造物に用いる冷間成形による低降伏比鋼管の
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a low yield ratio steel pipe by cold forming for use in various structures in the fields of construction and civil engineering.

【0002】[0002]

【従来の技術】一般的に、鋼材に対し冷間加工を加える
と加工硬化によりYP、TSが上昇し、TSに比べYP
の上昇が大きいため降伏比(以下YRと呼ぶ)も上昇し
てしまい、冷間成形による鋼管は降伏後の塑性変形能力
が小さいため建築構造物には適用しにくいという欠点が
あった。
2. Description of the Related Art Generally, when a steel material is subjected to cold working, YP and TS rise due to work hardening, and YP and TS increase in comparison with TS.
The yield ratio (hereinafter, referred to as YR) also increases due to the large rise of the steel pipe, and the steel pipe formed by cold forming has a drawback that it is difficult to apply to a building structure because the plastic deformation capacity after yielding is small.

【0003】一方、低YR鋼管の製造法としては遠心鋳
造法、鋼管での焼入、焼戻し等があるが、遠心鋳造法は
その生産性の低さ、経済性の面で、鋼管の焼入、焼戻し
ではその経済性、鋼管の寸法精度の面で、鋼板の冷間成
形により製造した鋼管に比べ劣っていた。
On the other hand, there are centrifugal casting, quenching and tempering in steel pipes as methods for producing low YR steel pipes, and centrifugal casting is quenching steel pipes in terms of low productivity and economy. However, tempering was inferior to steel pipes manufactured by cold forming of steel sheets in terms of economy and dimensional accuracy of the steel pipes.

【0004】[0004]

【発明が解決しようとする課題】本発明は、鋼板の冷間
成形によるYRが低い鋼管の製造技術を提供するもので
ある。本発明法に基づいて製造した鋼管は、低YRで且
つ高い生産性、経済性及び寸法精度を有している。
SUMMARY OF THE INVENTION The present invention provides a technique for manufacturing a steel pipe having a low YR by cold forming a steel sheet. The steel pipe manufactured according to the method of the present invention has low YR and high productivity, economy and dimensional accuracy.

【0005】[0005]

【課題を解決するための手段】本発明は前述の課題を克
服し目的を達成するもので、その具体的手段を下記
(1)、(2)に示す。
The present invention overcomes the above-mentioned problems and achieves the object, and specific means are shown in the following (1) and (2).

【0006】(1)重量比でC 0.01〜0.12
%、Si 0.5%以下、Mn 0.9〜1.6%、P
0.03%以下、S 0.01%以下、Nb 0.0
05〜0.05%、Ti 0.005〜0.025%、
Al 0.1%以下、N 0.006%以下を含有し、
残部が鉄および不可避的不純物からなる鋼を熱間圧延し
た後空冷あるいは水冷を行い、Ac3 以上の温度に再加
熱して焼きならしを行った鋼板を、t/D(t:板厚、
D:鋼管外径)≦10%の範囲で冷間成形により鋼管を
製作し、その後700から850℃の温度範囲に再加熱
して焼きならしすることを特徴とする板厚100mm以
下、YRが80%以下である建築用低降伏比鋼管の製造
法。
(1) C 0.01 to 0.12 in weight ratio
%, Si 0.5% or less, Mn 0.9-1.6%, P
0.03% or less, S 0.01% or less, Nb 0.0
05-0.05%, Ti 0.005-0.025%,
Al 0.1% or less, N 0.006% or less,
A steel sheet whose remaining portion is made of iron and unavoidable impurities is hot-rolled, then air-cooled or water-cooled, and re-heated to a temperature of Ac 3 or higher to perform a normalizing steel sheet, t / D (t: sheet thickness,
D: steel pipe outer diameter) ≦ 10%, a steel pipe is manufactured by cold forming, and then reheated to a temperature range of 700 to 850 ° C. to perform normalizing, characterized by a sheet thickness of 100 mm or less and a YR of A method for producing a low yield ratio steel pipe for a building having 80% or less.

【0007】(2)重量比でC 0.01〜0.12
%、Si 0.5%以下、Mn 0.9〜1.6%、P
0.03%以下、S 0.01%以下、Nb 0.0
05〜0.05%、Ti 0.005〜0.025%、
Al 0.1%以下、N 0.006%以下さらにCu
0.05〜1.5%、Ni 0.05〜2.0%、C
r0.05〜1.0%、Mo 0.05〜1.0%、V
0.005〜0.10%、Ca 0.001〜0.0
06%の1種または2種以上を含有し、残部が鉄および
不可避的不純物からなる鋼を熱間圧延した後空冷あるい
は水冷を行い、Ac3 以上の温度に再加熱して焼きなら
しを行った鋼板を、t/D(t:板厚、D:鋼管外径)
≦10%の範囲で冷間成形により鋼管を製作し、その後
700から850℃の温度範囲に再加熱して焼きならし
することを特徴とする板厚100mm以下、YRが80
%以下である建築用低降伏比鋼管の製造法。
(2) C 0.01 to 0.12 in weight ratio
%, Si 0.5% or less, Mn 0.9-1.6%, P
0.03% or less, S 0.01% or less, Nb 0.0
05-0.05%, Ti 0.005-0.025%,
Al 0.1% or less, N 0.006% or less, and Cu
0.05-1.5%, Ni 0.05-2.0%, C
r 0.05-1.0%, Mo 0.05-1.0%, V
0.005 to 0.10%, Ca 0.001 to 0.0
A steel containing one or more of 0.6% and the remainder consisting of iron and unavoidable impurities is hot-rolled, then air-cooled or water-cooled, and reheated to a temperature of Ac 3 or more for normalizing. T / D (t: plate thickness, D: outer diameter of steel pipe)
A steel pipe is manufactured by cold forming in a range of ≦ 10%, and then reheated to a temperature range of 700 to 850 ° C. to perform normalizing.
% Low-yield-ratio steel pipe for architectural use.

【0008】[0008]

【作用】以下、本発明について説明する。The present invention will be described below.

【0009】発明者らの研究によれば、冷間加工後のY
Rを低くするために、鋼板の成分の適正化と冷間加工後
の適切な熱処理(焼きならし)を組み合わせることが必
要であることを見いだした。
According to the study of the inventors, Y after cold working
In order to lower R, it has been found that it is necessary to combine steel sheet components with appropriate heat treatment (normalizing) after cold working.

【0010】そこで本発明の要点は(1)冷間加工に供
する鋼板の成分、製造法の限定と、(2)その鋼板を冷
間加工した後の熱処理による材質制御技術にある。
Therefore, the gist of the present invention lies in (1) the limitation of the composition of the steel sheet to be subjected to cold working and the manufacturing method, and (2) the material control technique by heat treatment after cold working the steel sheet.

【0011】まず成分範囲の限定理由について説明す
る。
First, the reasons for limiting the component ranges will be described.

【0012】Cは母材の強度を確保するために必要であ
るが、多量に含有させると冷間成形後に施す熱処理(2
相域焼きならし)で著しい靭性劣化が生じる。このよう
な観点からCは0.01〜0.12%とした。
C is necessary to ensure the strength of the base material. However, if C is contained in a large amount, heat treatment (2) performed after cold forming.
(Temperature normalization) causes significant deterioration in toughness. From such a viewpoint, C is set to 0.01 to 0.12%.

【0013】Siは脱酸上、鋼に必然的に含まれる元素
であるが、SiはHAZ靭性及び溶接性上好ましくない
元素であるため、その上限を0.5%とした。
[0013] Si is an element inevitably contained in steel for deoxidation. However, since Si is an element that is not preferable in terms of HAZ toughness and weldability, its upper limit is set to 0.5%.

【0014】Mnは強度、靭性を同時に向上せしめる極
めて重要な元素であり、0.9%以上は必要であるが、
多量に添加すると溶接性、母材及びHAZの靭性劣化を
招くためその上限を1.6%とした。
Mn is a very important element that simultaneously improves the strength and toughness, and is required to be 0.9% or more.
If added in a large amount, the weldability, the base material and the toughness of the HAZ are deteriorated, so the upper limit is set to 1.6%.

【0015】本発明鋼において不純物であるP、Sをそ
れぞれ0.03%、0.01%以下とした理由は、母
材、溶接部の低温靭性をより一層向上させるためであ
る。Pの低減は粒界破壊を防止し、S量の低減はMnS
による靭性の劣化を防止する。好ましいP、S量はそれ
ぞれ0.01%、0.005%以下である。
The reason why the impurities P and S are set to 0.03% and 0.01% respectively in the steel of the present invention is to further improve the low-temperature toughness of the base material and the welded portion. The reduction of P prevents grain boundary destruction, and the reduction of S content is MnS
To prevent toughness degradation. Preferred P and S contents are 0.01% and 0.005% respectively.

【0016】Nbは微細な炭窒化物を形成し強度の増
加、熱間圧延中の組織を細粒化させ、またHAZ靭性を
向上させる。しかし、0.005%以下では効果がな
く、0.05%を超えると冷間成形後の熱処理での靭性
劣化を招く。
Nb forms fine carbonitrides, increases strength, refines the structure during hot rolling, and improves HAZ toughness. However, if the content is 0.005% or less, there is no effect, and if it exceeds 0.05%, toughness is deteriorated by heat treatment after cold forming.

【0017】Tiは炭窒化物を形成してHAZ靭性を向
上させる。Al量が少ない場合、Tiの酸化物を形成し
てHAZ靭性を向上させる。Al量が少ない場合、Ti
の酸化物を形成しHAZ靭性を向上させるが、0.00
5%未満では効果がなく、0.025%を超えるとHA
Z靭性に好ましくない影響があるため、0.005〜
0.025%に限定する。
[0017] Ti forms a carbonitride to improve HAZ toughness. When the amount of Al is small, an oxide of Ti is formed to improve the HAZ toughness. When the amount of Al is small, Ti
To improve the HAZ toughness,
Less than 5% has no effect, and more than 0.025% HA
It has an unfavorable effect on Z toughness.
Limited to 0.025%.

【0018】Alは一般に脱酸上鋼に含まれる元素であ
るが、Si及びTiによっても脱酸は行われるので本発
明鋼については下限は限定しない。しかしAl量が多く
なると鋼の清浄度が悪くなり、溶接部の靭性が劣化する
ので上限を0.1%とした。Nは一般的に不可避的不純
物として鋼中に含まれるのであるが、Nb、Vと結合し
て炭窒化物を形成して強度を増加させ、またTiNを形
成して前述のようにHAZの性質を高める。このためN
量として最低0.001%が必要である。しかしながら
N量が多くなるとHAZ靭性の劣化や連続鋳造スラブの
表面キズの発生等を助長するので、その上限を0.00
6%とした。
Al is generally an element contained in the deoxidized upper steel, but the lower limit is not limited for the steel of the present invention because deoxidation is also performed by Si and Ti. However, when the amount of Al increases, the cleanliness of the steel deteriorates and the toughness of the welded portion deteriorates. Therefore, the upper limit was set to 0.1%. Although N is generally contained in steel as an unavoidable impurity, it combines with Nb and V to form a carbonitride to increase the strength, and forms TiN to form the HAZ as described above. Enhance. Therefore N
A minimum amount of 0.001% is required. However, an increase in the N content promotes deterioration of the HAZ toughness and generation of surface flaws in the continuously cast slab.
6%.

【0019】本発明鋼の基本成分は以上のとおりであ
り、十分に目的を達成できるが、さらに目的に対し特性
を高めるため、以下に述べる元素即ちCu、Ni、C
r、Mo、V、Caを選択的に添加すると強度、靭性の
向上について、さらに好ましい結果が得られる。
The basic components of the steel of the present invention are as described above, and the objectives can be sufficiently achieved. However, in order to further enhance the properties for the objectives, the following elements, namely Cu, Ni, C
When r, Mo, V, and Ca are selectively added, more favorable results can be obtained with respect to improvement in strength and toughness.

【0020】つぎに、前記添加元素とその添加量につい
て説明する。
Next, the above-mentioned additional elements and the amounts thereof will be described.

【0021】Niは溶接性、HAZ靭性に悪影響を及ぼ
すことなく、母材の強度、靭性を向上させるが、0.0
5%以下では効果が薄く、2.0%以上では極めて高価
になるため経済性を失うので、上限は2.0%とした。
Ni improves the strength and toughness of the base material without adversely affecting weldability and HAZ toughness.
If it is 5% or less, the effect is weak, and if it is 2.0% or more, it becomes extremely expensive and loses economy, so the upper limit was made 2.0%.

【0022】CuはNiとほぼ同様な効果を持つほか、
Cu析出物による強度の増加や耐食性や耐候性の向上に
も効果を有する。この場合Cu量が1.5%を超えると
その析出効果が飽和し、また0.05%以下では効果が
ないのでCu量は0.05〜0.5%に限定する。
Cu has almost the same effect as Ni,
It is also effective in increasing the strength due to Cu precipitates and in improving corrosion resistance and weather resistance. In this case, if the Cu content exceeds 1.5%, the precipitation effect is saturated, and if it is 0.05% or less, there is no effect, so the Cu content is limited to 0.05 to 0.5%.

【0023】Moは母材の強度、靭性を共に向上させ、
特に2相域熱処理後の低YR化に効果的な元素である。
0.05%以下では効果が薄く、1.0%を超えると溶
接部靭性及び溶接性の劣化を招き好ましくないため0.
05〜1.0%に限定する。Crは母材及び溶接部の強
度を高める元素であり、Cr量が0.5%以上で耐候性
も向上するが、1.0%を超えると溶接性やHAZ靭性
を劣化させ、また0.05%以下では効果が薄い。従っ
てCr量は0.05〜1.0%とする。
Mo improves both the strength and toughness of the base material,
In particular, it is an element effective for lowering the YR after the heat treatment in the two-phase region.
If the content is less than 0.05%, the effect is small.
Limited to 05-1.0%. Cr is an element that enhances the strength of the base material and the welded portion. When the Cr content is 0.5% or more, the weather resistance is also improved. However, when the Cr content exceeds 1.0%, the weldability and HAZ toughness are deteriorated. At less than 05%, the effect is weak. Therefore, the Cr content is set to 0.05 to 1.0%.

【0024】VはNbとほぼ同じ効果をもつ元素である
が、Nbに比較して析出硬化能はやや劣る。0.005
%以下では硬化が少なく、0.10%を超えると冷間成
形後の熱処理での靭性劣化を招く。
V is an element having almost the same effect as Nb, but has a slightly lower precipitation hardening ability than Nb. 0.005
% Or less, hardening is small, and if it exceeds 0.10%, toughness is deteriorated by heat treatment after cold forming.

【0025】Caは硫化物(MnS)の形態を制御し、
シャルピー吸収エネルギーを増加させ低温靭性を向上さ
せる効果がある。しかしCa量は0.001%未満では
実用上効果がなく、0.006%を超えるとCaO、C
aSが多量に生成して大型介在物となり、鋼の靭性のみ
ならず清浄度も害し溶接性、耐ラメラテア性にも悪影響
を与えるので、Ca添加量の範囲を0.001〜0.0
06%とする。
Ca controls the form of sulfide (MnS),
This has the effect of increasing Charpy absorbed energy and improving low temperature toughness. However, if the Ca content is less than 0.001%, there is no practical effect, and if it exceeds 0.006%, CaO, C
aS is generated in large amounts to become large inclusions, which impair not only the toughness but also the cleanliness of the steel and adversely affect weldability and lamella tear resistance.
06%.

【0026】鋼板の製造方法は、上記成分限定した鋼を
熱間圧延した後空冷あるいは水冷を行い、Ac3 以上の
温度に再加熱して焼きならしを行う。この場合熱間圧延
後の冷却は空冷、水冷でも必要特性は得られるが、水冷
の方が組織の細粒化による靭性の向上という点で好まし
い。
In the method for producing a steel sheet, the above-defined steel is hot-rolled, air-cooled or water-cooled, and reheated to a temperature of Ac 3 or higher to normalize. In this case, the required properties can be obtained by cooling after hot rolling by air cooling or water cooling, but water cooling is preferable in terms of improvement in toughness due to grain refinement of the structure.

【0027】次に冷間成形(t/D≦10%)後の熱処
理(焼きならし)温度は、冷間加工での歪を十分に開放
し、YRの低下、強度の上昇を行わせるためその下限温
度を700℃とする。また高すぎる温度での焼きならし
は、冷間歪の開放だけでなく強度不足、YRの上昇を招
いてしまうためその上限温度を850℃とする。
Next, the heat treatment (normalizing) temperature after the cold forming (t / D ≦ 10%) is used to sufficiently release the strain in the cold working, lower the YR, and increase the strength. The lower limit temperature is 700 ° C. Normalization at an excessively high temperature not only releases cold strain but also causes insufficient strength and an increase in YR. Therefore, the upper limit temperature is set to 850 ° C.

【0028】[0028]

【実施例】周知の転炉、連続鋳造、厚板工程により鋼板
を製造し、その後冷間成形で鋼管を製作、焼きならし熱
処理を施し、その強度、靭性について調査した。
EXAMPLE A steel plate was manufactured by a well-known converter, continuous casting, and thick plate process, and then a steel pipe was manufactured by cold forming, subjected to normalizing heat treatment, and its strength and toughness were investigated.

【0029】表1の1〜8に本発明鋼、9〜16に比較
鋼の化学成分を示す。表1において鋼1〜4はTS60
0N/mm2 クラス、鋼5〜8TS800N/mm2
ラス目標にしたものである。
Tables 1 to 8 show the chemical compositions of the steels of the present invention and 9 to 16 show the chemical compositions of the comparative steels. In Table 1, steels 1-4 are TS60
0N / mm 2 class, is obtained by the steel 5~8TS800N / mm 2 class goal.

【0030】表2に本発明鋼と比較鋼の鋼板製造条件と
その機械的性質を示す。
Table 2 shows the steel sheet production conditions of the steel of the present invention and the comparative steel and their mechanical properties.

【0031】表2の本発明鋼1〜8は、鋼管での強度、
靭性がバランスよく達成できており、YRも80%以下
となっている。
The steels 1 to 8 of the present invention shown in Table 2 have strengths in steel pipes,
Toughness can be achieved in a well-balanced manner, and YR is also 80% or less.

【0032】これに対し比較鋼9ではCが高いため、鋼
管での靭性が劣化している。比較鋼10はMnが低く、
鋼管での強度が低い。比較鋼11はMnが高く、靭性が
劣化している。比較鋼12はNbが添加されていないた
め圧延中での結晶粒の細粒化が十分になされず、靭性が
劣化している。比較鋼13はNbが高く、鋼管での靭性
が劣化している。比較鋼14は冷間加工度(t/D)が
12%と大きすぎるため、YRが高くなっている。比較
鋼15は焼きなまし温度が低いため、強度が不足しYR
も高くなっている。比較鋼16は焼きなまし温度が高い
ため、強度が不足しYRも高くなっている。
On the other hand, in Comparative Steel 9, since C is high, the toughness of the steel pipe is deteriorated. Comparative steel 10 has low Mn,
Low strength in steel pipes. The comparative steel 11 has a high Mn and has a deteriorated toughness. Since the comparative steel 12 does not contain Nb, the crystal grains are not sufficiently refined during rolling and the toughness is deteriorated. The comparative steel 13 has a high Nb, and the toughness of the steel pipe is deteriorated. The comparative steel 14 has a high YR because the degree of cold work (t / D) is too large at 12%. The comparative steel 15 has a low annealing temperature, and thus has insufficient strength and has a low YR.
Is also higher. Since the comparative steel 16 has a high annealing temperature, the strength is insufficient and the YR is also high.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明の化学成分及び製造法で製造した
鋼管は、YRが低く降伏後の塑性変形能力に優れた鋼管
である。その結果、建築、橋梁等の構造物の安全性を大
きく高めることができる。
The steel pipe produced by the chemical composition and production method of the present invention is a steel pipe having a low YR and excellent plastic deformation ability after yielding. As a result, the safety of structures such as buildings and bridges can be greatly improved.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C21D 9/08 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/00-8/10 C21D 9/08 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量比で C :0.01〜0.12%、 Si:0.5%以下、 Mn:0.9〜1.6%、 P :0.03%以下、 S :0.01%以下、 Nb:0.005〜0.05%、 Ti:0.005〜0.025%、 Al:0.1%以下、 N :0.006%以下 を含有し、残部が鉄および不可避的不純物からなる鋼を
熱間圧延した後空冷あるいは水冷を行い、Ac3 以上の
温度に再加熱して焼きならしを行った鋼板を、t/D
(t:板厚、D:鋼管外径)≦10%の範囲で冷間成形
により鋼管を製作し、その後700から850℃の温度
範囲に再加熱して焼きならしすることを特徴とする建築
用低降伏比鋼管の製造法。
C: 0.01 to 0.12%, Si: 0.5% or less, Mn: 0.9 to 1.6%, P: 0.03% or less, S: 0. 01% or less, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.025%, Al: 0.1% or less, N: 0.006% or less, with the balance being iron and inevitable Hot rolled steel containing natural impurities, air-cooled or water-cooled, and reheated to a temperature of Ac 3 or higher to normalize the steel sheet, t / D
(T: plate thickness, D: outer diameter of steel pipe) A steel pipe is manufactured by cold forming within a range of ≦ 10%, and then reheated to a temperature range of 700 to 850 ° C. to normalize. Method for producing low yield ratio steel pipes.
【請求項2】重量比で C :0.01〜0.12%、 Si:0.5%以下、 Mn:0.9〜1.6%、 P :0.03%以下、 S :0.01%以下、 Nb:0.005〜0.05%、 Ti:0.005〜0.025%、 Al:0.1%以下、 N :0.006%以下 さらに Cu:0.05〜1.5%、 Ni:0.05〜2.0%、 Cr:0.05〜1.0%、 Mo:0.05〜1.0%、 V :0.005〜0.10%、 Ca:0.001〜0.006% の1種または2種以上を含有し、残部が鉄および不可避
的不純物からなる鋼を熱間圧延した後空冷あるいは水冷
を行い、Ac3 以上の温度に再加熱して焼きならしを行
った鋼板を、t/D(t:板厚、D:鋼管外径)≦10
%の範囲で冷間成形により鋼管を製作し、その後700
から850℃の温度範囲で焼きならしすることを特徴と
する建築用低降伏比鋼管の製造法。
2. C: 0.01 to 0.12%, Si: 0.5% or less, Mn: 0.9 to 1.6%, P: 0.03% or less, S: 0. 01% or less, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.025%, Al: 0.1% or less, N: 0.006% or less, Cu: 0.05 to 1. 5%, Ni: 0.05 to 2.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, V: 0.005 to 0.10%, Ca: 0 0.001% to 0.006%, the balance consisting of iron and unavoidable impurities is hot rolled, then air-cooled or water-cooled, and reheated to a temperature of Ac 3 or more. The normalized steel sheet is subjected to t / D (t: thickness, D: outer diameter of steel pipe) ≦ 10.
% Of the steel pipe by cold forming, and then 700
A method for producing a low yield ratio steel pipe for building, characterized by normalizing in a temperature range of from 850 ° C to 850 ° C.
JP20921692A 1992-08-05 1992-08-05 Manufacturing method of low yield ratio steel pipe for building by cold forming. Expired - Fee Related JP3245224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20921692A JP3245224B2 (en) 1992-08-05 1992-08-05 Manufacturing method of low yield ratio steel pipe for building by cold forming.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20921692A JP3245224B2 (en) 1992-08-05 1992-08-05 Manufacturing method of low yield ratio steel pipe for building by cold forming.

Publications (2)

Publication Number Publication Date
JPH0649541A JPH0649541A (en) 1994-02-22
JP3245224B2 true JP3245224B2 (en) 2002-01-07

Family

ID=16569278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20921692A Expired - Fee Related JP3245224B2 (en) 1992-08-05 1992-08-05 Manufacturing method of low yield ratio steel pipe for building by cold forming.

Country Status (1)

Country Link
JP (1) JP3245224B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646788B (en) * 2007-03-29 2011-04-13 住友金属工业株式会社 Case-hardened steel pipe excellent in workability and process for production thereof
CN111020371A (en) * 2019-10-31 2020-04-17 邯郸钢铁集团有限责任公司 Acid-resistant normalized medium plate pipeline steel and production method thereof
CN112322867B (en) * 2020-10-26 2023-03-21 武汉重工铸锻有限责任公司 Heat treatment process for improving comprehensive mechanical properties of Cr-Ni-Mo large-scale forging for nuclear power
CN115679203B (en) * 2022-09-15 2023-12-29 舞阳钢铁有限责任公司 Super-thick S355NLO steel plate for offshore oil storage ship and production method thereof

Also Published As

Publication number Publication date
JPH0649541A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP3247907B2 (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP3245224B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP3245223B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH07109521A (en) Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming
JP2529044B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH06128641A (en) Production of steel tube with low yield ratio for construction use by cold forming
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JPH06104861B2 (en) Manufacturing method of V added high toughness high strength steel sheet
JP3497250B2 (en) Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability
JP2529045B2 (en) Manufacturing method of low yield ratio 60kgf / mm2 grade steel pipe for construction by cold forming
JP3007247B2 (en) Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JP2528561B2 (en) Low yield ratio 70kgf / mm2 class high strength steel with excellent weldability
JP3426047B2 (en) Method for producing low yield ratio 590 N / mm2 class high strength steel with excellent weldability
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel
JP3208495B2 (en) Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability
JP3007246B2 (en) Method for producing 590 N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JP2546953B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JPH0737649B2 (en) Manufacturing method of fireproof steel plate for building with low yield ratio
JPH06264144A (en) Production of steel tube with low yield ratio for construction use by cold forming
JPH06248336A (en) Production of 780n/mm2 class high tensile strength steel excellent in weldability and reduced in yield ratio
JPH07233416A (en) Production of building low yield ratio ts (tensile strength) 590n/mm2 class steel tube by cold forming
JPH0737648B2 (en) Manufacturing method of fire-resistant steel plate for construction with excellent toughness
JPH07242941A (en) Production of low yield ratio 590n/mm2 class high tensile strength steel excellent in weldability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010918

LAPS Cancellation because of no payment of annual fees