JP4912013B2 - Manufacturing method of press-bend cold-formed circular steel pipe with excellent earthquake resistance - Google Patents

Manufacturing method of press-bend cold-formed circular steel pipe with excellent earthquake resistance Download PDF

Info

Publication number
JP4912013B2
JP4912013B2 JP2006099470A JP2006099470A JP4912013B2 JP 4912013 B2 JP4912013 B2 JP 4912013B2 JP 2006099470 A JP2006099470 A JP 2006099470A JP 2006099470 A JP2006099470 A JP 2006099470A JP 4912013 B2 JP4912013 B2 JP 4912013B2
Authority
JP
Japan
Prior art keywords
less
steel
temperature
steel pipe
steel slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006099470A
Other languages
Japanese (ja)
Other versions
JP2007270304A (en
Inventor
豊明 塩飽
光明 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006099470A priority Critical patent/JP4912013B2/en
Priority to CNB2007100890272A priority patent/CN100487151C/en
Priority to KR1020070031001A priority patent/KR100904581B1/en
Publication of JP2007270304A publication Critical patent/JP2007270304A/en
Application granted granted Critical
Publication of JP4912013B2 publication Critical patent/JP4912013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel

Description

本発明は、鋼板を冷間成形によって鋼管に製造した後に熱処理を行なわずに、鋼管引張強さが490MPa級以上であるような冷間成形円形鋼管をプレスベンド冷間成形法を適用して製造する方法に関するものであり、特に耐震性に優れ、建築構造物に好適に用いることのできるプレスベンド冷間成形円形鋼管を製造するための有用な方法に関するものである。   The present invention produces a cold-formed circular steel pipe having a steel pipe tensile strength of 490 MPa class or higher by applying the press bend cold-forming method without performing heat treatment after the steel sheet is produced into a steel pipe by cold forming. In particular, the present invention relates to a useful method for manufacturing a press-bend cold-formed circular steel pipe that is excellent in earthquake resistance and can be suitably used for a building structure.

建築構造物の柱材に使用される円形鋼管には、耐震安全性の観点から降伏比YR(=降伏応力YS/引張強さTS)を85%以下とすることが要求されている。一方、冷間成形によって鋼管を製造する方法としては、ラインパイプ用鋼管に適用されているUOE成形法(Uing press−Oing press−expander法)の他、プレスベンド冷間成形法(以下、単に「プレスベンド法」と呼ぶことがある)が基本的に採用されている。   A circular steel pipe used for a pillar of a building structure is required to have a yield ratio YR (= yield stress YS / tensile strength TS) of 85% or less from the viewpoint of seismic safety. On the other hand, as a method of manufacturing a steel pipe by cold forming, in addition to a UOE forming method (Uing press-Oing press-expander method) applied to a steel pipe for line pipes, a press bend cold forming method (hereinafter, simply “ The “press bend method” is sometimes used.

上記成形法のうち、UOE成形法では高能率で精度の高い加工が可能であるが、設備能力の限界から、鋼板厚さtが40mm未満で、t/D(D:鋼管の外径)が0.05未満の場合に限られたものとなる。これに対してプレスベンド法は、鋼板の一部を(直線部)を型押し曲げ加工し、順次型押し位置移動させて円形に成形する方法であり、加工能力が高い方法である。従って、建築構造物の柱材に使用されるような、鋼板厚さtが40mm以上の厚鋼板でt/Dが0.05〜0.10のような強加工が要求される鋼管の成形には、プレスベンド法が適用されることになる。   Among the above forming methods, the UOE forming method enables high-efficiency and high-precision processing, but due to the limit of equipment capacity, the steel sheet thickness t is less than 40 mm, and t / D (D: outer diameter of steel pipe). Limited to less than 0.05. On the other hand, the press bend method is a method in which a part of a steel sheet is stamped and bent (straight line portion), and the stamping position is sequentially moved to form a circular shape, which is a method with high processing capability. Therefore, it is used for forming a steel pipe that is used for a pillar of a building structure and requires a strong work such as a thickness of 0.05 to 0.10 with a steel plate thickness t of 40 mm or more. The press bend method is applied.

こうしたプレスベンド法で、t/Dが0.05以上となるような曲げ成形を行った場合には、降伏比YRの上昇が大きくなって、85%を超えてしまうことが多いので、成形後(製管後)の鋼管には残留応力の除去を目的とした焼鈍(Stress Relieving:SR処理)を施さざるを得ず、高コスト化、工期の長期化および生産性の低下を招いていた。   In such a press bend method, when bending is performed such that t / D is 0.05 or more, the yield ratio YR increases greatly and often exceeds 85%. The steel pipe (after pipe making) had to be subjected to annealing (Stress Relieving: SR treatment) for the purpose of removing residual stress, resulting in higher costs, longer construction period and lower productivity.

また冷間成形後に熱処理を行なわない方法では、加工度(t/D)が小さい(例えば、0.05未満)鋼管では、降伏比YRを85%以下に確保できても、加工度(t/D)が大きくなると(例えば、0.05以上)、降伏比YRを85%以下に確保した鋼管は製造できないのが実情である。   Further, in a method in which heat treatment is not performed after cold forming, in a steel pipe having a small workability (t / D) (for example, less than 0.05), even if the yield ratio YR can be secured to 85% or less, the workability (t / D When D) increases (for example, 0.05 or more), it is a fact that a steel pipe having a yield ratio YR of 85% or less cannot be manufactured.

冷間成形鋼管やこうした鋼管に適用する鋼板に関する技術として、これまでにも様々なものが提案されている。例えば、特許文献1には、590MPa級の建築用低降伏比鋼管に用いる鋼板を製造する技術として、熱間圧延後Ar3温度以下から直接焼入れし、その後焼き戻しを行わない方法や、Ac〜Ac3の温度範囲に再加熱して焼入れし、その後焼き戻しを行わない方法等によって、引張強さが680MPa以上で降伏比YRが80%以下である鋼板を製造し、鋼管への冷間成形後Ac1以下の温度で熱処理することによって鋼管の引張強さTSを適正な範囲に調整することが開示されている。 Various technologies have been proposed so far as technologies relating to cold-formed steel pipes and steel plates applied to such steel pipes. For example, in Patent Document 1, as a technique for producing a steel plate used for a 590 MPa class low yield ratio steel pipe for construction, a method of directly quenching from Ar 3 temperature or less after hot rolling and thereafter not tempering, or Ac 1 A steel sheet having a tensile strength of 680 MPa or more and a yield ratio YR of 80% or less is manufactured by reheating to a temperature range of to Ac 3 and quenching and thereafter not tempering. It is disclosed that the tensile strength TS of a steel pipe is adjusted to an appropriate range by heat treatment at a temperature of Ac 1 or less after forming.

しかしながら、この技術は、冷間成形後Ac1以下の温度で鋼管を熱処理することを前提にしたものであり、鋼板段階での降伏比YRは低いが靭性が低く、しかも引張強さTSが高くなりすぎるため、製管した後の熱処理が必須となり、高コスト化、工期の長期化および生産性の低下という問題は解消されないままである。 However, this technique is based on the premise that the steel pipe is heat-treated at a temperature of Ac 1 or less after cold forming. The yield ratio YR at the steel plate stage is low but the toughness is low, and the tensile strength TS is high. Therefore, the heat treatment after pipe making becomes indispensable, and the problems of high cost, long construction period, and low productivity remain unresolved.

特許文献2には、建築用低降伏比鋼管の製造方法として、熱間圧延後、空冷または水冷した鋼板を加工度(t/D)が0.10以下(10%以下)の範囲で冷間成形により製管し、その鋼管を700〜850℃の温度に再加熱して焼きならす方法が提案されている。また特許文献3には、鋼板をAc3以上の温度に加熱した後室温まで急冷し、その後Ac〜Ac3の二相域温度に加熱した後空冷した鋼板を製管し、更に500〜600℃の温度範囲に再加熱する方法が開示されている。これらの技術も、上記特許文献1と同様に、冷間成形後(製管後)に熱処理することを前提にした技術であり、高コスト化、工期の長期化および生産性の低下という問題がある。 In Patent Document 2, as a method of manufacturing a low yield ratio steel pipe for construction, a steel sheet that has been air-cooled or water-cooled after hot rolling is cold-worked in a range of workability (t / D) of 0.10 or less (10% or less). A method has been proposed in which a pipe is formed by molding, and the steel pipe is reheated to a temperature of 700 to 850 ° C. to normalize it. In Patent Document 3, a steel sheet is heated to a temperature of Ac 3 or higher, rapidly cooled to room temperature, then heated to a two-phase temperature range of Ac 1 to Ac 3 , and then air-cooled steel sheet is formed, and further, 500 to 600 is manufactured. A method of reheating to a temperature range of ° C. is disclosed. These techniques are also techniques based on the premise that heat treatment is performed after cold forming (after pipe making), as in Patent Document 1, and there are problems of high cost, long construction period, and low productivity. is there.

一方、鋼管に成形後に熱処理を施さない方法として、例えば特許文献4のような技術も提案されている、この技術では、熱間圧延後にAc3〜1000℃に再加熱して焼入れし、引き続き700〜850℃の温度に再加熱して焼入れし、更にAc1点以下で焼戻し処理を行うことによって、鋼板の降伏比YRをYR(%)≦80−0.8×[(t/D)×100]に制御し、この鋼板を用いて、t/D≦0.10の範囲で冷間成形によって鋼管を製作するものであり、これによって板厚:100mm以下、管軸方向のYRが80%以下である建築用低降伏比600MPa級鋼管を得るものである。 On the other hand, as a method of not performing heat treatment after forming the steel pipe, for example, a technique such as Patent Document 4 is also proposed. In this technique, after hot rolling, it is reheated to Ac 3 to 1000 ° C. and quenched, and then 700 By reheating to a temperature of ˜850 ° C. and quenching, and further tempering at Ac 1 point or less, the yield ratio YR of the steel sheet is YR (%) ≦ 80−0.8 × [(t / D) × 100], and using this steel plate, a steel pipe is manufactured by cold forming in the range of t / D ≦ 0.10, whereby the plate thickness is 100 mm or less and the YR in the pipe axis direction is 80%. An architectural low yield ratio 600 MPa class steel pipe is obtained as follows.

また、特許文献5には、熱間圧延後、750℃以上の温度から常温まで焼入れし、引き続き700〜850℃の温度に再加熱して焼入れし、更にAc1点以下で焼戻し処理を行うことによって、鋼板の降伏比YRをYR(%)≦80−0.8×[(t/D)×100]に制御し、この鋼板を冷間成形によって鋼管を製作する方法が開示されている。 In Patent Document 5, after hot rolling, quenching is performed from a temperature of 750 ° C. or higher to room temperature, followed by reheating to a temperature of 700 to 850 ° C. and further tempering at Ac 1 point or less. , The yield ratio YR of the steel sheet is controlled to YR (%) ≦ 80−0.8 × [(t / D) × 100], and a method of manufacturing a steel pipe by cold forming the steel sheet is disclosed.

更に、特許文献6には、仕上げ温度をAr3+120℃〜Ar3+20℃として圧延を行なった後空冷し、Ar3−20℃〜Ar3−100℃から200℃以下まで焼入れし、更にAr3以下の温度で焼き戻すことによって、鋼板の降伏比YRをYR(%)≦80−0.8×[(t/D)×100]に制御し、その鋼板を冷間成形して鋼管とする方法が開示されている。 Furthermore, Patent Document 6, air cooled after performing rolling finishing temperature as Ar 3 + 120 ℃ ~Ar 3 + 20 ℃, quenching from Ar 3 -20 ℃ ~Ar 3 -100 ℃ to 200 ° C. or less, further Ar By tempering at a temperature of 3 or less, the yield ratio YR of the steel sheet is controlled to YR (%) ≦ 80−0.8 × [(t / D) × 100], and the steel sheet is cold-formed to form a steel pipe A method is disclosed.

上記特許文献4〜6の技術は、590MPa級の鋼管に関するものであるが、降伏比YRの低減を図るだけのものであり、鋼管規格の降伏応力YSや引張強さTSをそのまま鋼板に適用したものである。従って、鋼板での適正な降伏応力YSや引張強さTSが達成されているとは言いがたいものである。こうしたことから、鋼管への成形後に降伏応力YSと引張強さ度TSが鋼管での最適値から大きく外れて大幅に上回ることになる。鋼管の強度が高くなりすぎると、鋼管柱の耐震性(降伏比YR、靭性)か劣化すると共に、鋼板段階での降伏応力YSと引張強さTSの制御を行なっていないために、鋼管への成形後の降伏応力YSと引張強さTSの変動が大きくなって、建築構造物の均一な塑性変形能が低下し、構造物としての耐震性に問題が生じることになる。こうした問題を回避するためには、結局のところ鋼管成形後の熱処理が必要になってしまうことになる。   The techniques of the above Patent Documents 4 to 6 relate to a 590 MPa class steel pipe, but are only intended to reduce the yield ratio YR, and the steel pipe standard yield stress YS and tensile strength TS are applied to the steel sheet as they are. Is. Therefore, it cannot be said that appropriate yield stress YS and tensile strength TS are achieved in the steel sheet. For these reasons, the yield stress YS and the tensile strength TS greatly deviate from the optimum values for the steel pipe after forming into the steel pipe and greatly exceed. If the strength of the steel pipe becomes too high, the earthquake resistance (yield ratio YR, toughness) of the steel pipe column deteriorates and the yield stress YS and tensile strength TS at the steel plate stage are not controlled. Fluctuations in the yield stress YS and the tensile strength TS after forming become large, the uniform plastic deformability of the building structure is lowered, and a problem arises in the earthquake resistance as the structure. In order to avoid such problems, after all, heat treatment after forming the steel pipe is required.

また降伏比YRのみを80−0.8[(t/D)×100](%)にまで低減した程度(例えば、t/Dが0.1%のときにはYR72%程度になる)の鋼板では、加工度(t/D)の小さい鋼管では製管できたとしても、加工度(t/D)が0.1の強曲げ加工をしたときには、降伏比YRが大きく上昇し過ぎて、降伏比YRの上限(85%)を遥かに上回る場合が多くなり、結果的に鋼管の熱処理が必要になってしまうことになる。従って、鋼板の降伏比をこの程度に規定しただけでは、冷間成形ままで熱処理を不要とする鋼管を確実に得ることは不可能である。   In the case of a steel sheet in which only the yield ratio YR is reduced to 80-0.8 [(t / D) × 100] (%) (for example, YR is about 72% when t / D is 0.1%). Even if a steel pipe with a small workability (t / D) can be made, when the bending work with a workability (t / D) of 0.1 is performed, the yield ratio YR rises so much that the yield ratio In many cases, the upper limit (85%) of YR is far exceeded, and as a result, heat treatment of the steel pipe is required. Therefore, it is impossible to reliably obtain a steel pipe that does not require heat treatment while still being cold formed only by specifying the yield ratio of the steel sheet to this level.

上記の技術の他、鋼管成形条件をも含めた技術として、例えば特許文献7には、Ar以上の温度で熱間圧延後、Ar−50℃±30℃まで加速冷却し、その後1〜150秒保持した後、400〜600℃まで1〜40℃/秒の冷却速度で加速冷却し、得られた鋼板を製管し、更に拡管することで、製管後熱処理を必要としない鋼管の製造方法について提案されている。しかしながら、この技術はラインパイプ用鋼管の製造を想定してものであり、鋼板厚さも50mmまでに限定されるものであって、しかも造管後に拡管率0.8%以上の拡管工程が必要なものである。 In addition to the above technique, as a technique including steel pipe forming conditions, for example, in Patent Document 7, after hot rolling at a temperature of Ar 3 or higher, accelerated cooling to Ar 3 −50 ° C. ± 30 ° C. After holding for 150 seconds, accelerated cooling to 400 to 600 ° C. at a cooling rate of 1 to 40 ° C./second is performed, and the obtained steel plate is piped and further expanded to make a steel pipe that does not require heat treatment after pipe making. A manufacturing method has been proposed. However, this technology assumes the production of steel pipes for line pipes, and the thickness of the steel sheet is limited to 50 mm, and a pipe expansion process with a pipe expansion ratio of 0.8% or more is necessary after pipe formation. Is.

また特許文献8には、780℃以上の温度で圧延を終了し、その後空冷した鋼板をUOE法によって製管することによって、製管後熱処理を必要としない490MPa級鋼管の製造方法について提案されている。しかしながら、この技術もラインパイプ用鋼管の製造を想定してものであり、UOE法では鋼板厚さが50mm程度までであり、鋼板厚さが50〜100mmまでの厚鋼板には適用できないものである。
特開2005−163159号公報 特許請求の範囲等 特開平6−128641号公報 特許請求の範囲等 特開2004−300461号公報 特許請求の範囲等 特開平7−109521号公報 特許請求の範囲等 特開平6−264144号公報 特許請求の範囲等 特開平6−264143号公報 特許請求の範囲等 特開平10−31081号公報 特許請求の範囲等 特開平5−156357号公報 特許請求の範囲等
Further, Patent Document 8 proposes a method for producing a 490 MPa class steel pipe that does not require heat treatment after pipe making by rolling a steel sheet after completion of rolling at a temperature of 780 ° C. or higher and then air-cooled steel sheet by the UOE method. Yes. However, this technology also assumes the production of steel pipes for line pipes, and the UOE method has a steel plate thickness of up to about 50 mm and cannot be applied to steel plates with a steel plate thickness of 50 to 100 mm. .
JP, 2005-163159, A Claims etc. Japanese Patent Application Laid-Open No. 6-128641 JP, 2004-300461, A Claims etc. Japanese Patent Laid-Open No. 7-109521 JP, 6-264144, A Claims etc. JP, 6-264143, A Claims etc. Japanese Patent Application Laid-Open No. 10-31081 JP, 5-156357, A Claim etc.

本発明は、こうした状況の下でなされたものであって、その目的は、板厚が50mm以上であるような厚鋼板をプレスベンド法によって鋼管に成形するに際して、成形後にSR処理を施さなくても、所定の機械的特性を発揮することができる引張強さ490MPa級以上の低降伏比冷間成形円形鋼管を製造するための有用な方法を提供することにある。   The present invention has been made under such circumstances. The purpose of the present invention is to perform SR treatment after forming a thick steel plate having a thickness of 50 mm or more into a steel pipe by the press bend method. Another object of the present invention is to provide a useful method for producing a cold formed round steel pipe having a low yield ratio of 490 MPa class or more capable of exhibiting predetermined mechanical properties.

上記目的を達成し得た本発明の製造方法とは、C:0.02〜0.20%(質量%の意味、以下同じ)、Si:0.05〜0.5%、Mn:0.50〜2.0%、Al:0.01〜0.1%およびN:0.002〜0.007%を夫々含有すると共に、P:0.02%以下(0%を含まない)およびS:0.008%以下(0%を含まない)に夫々抑制したものであり、残部がFeおよび不可避的不純物からなる鋼スラブを用い、下記(1)〜(3)のいずれかの熱処理を施して厚鋼板を製造することによって、
円形鋼管の板厚をt(mm)、外径をD(mm)、鋼管製品規格の降伏強さをYS0(MPa)以上、引張強さをTS0(MPa)以上、降伏比を85%以下としたとき、前記鋼板における降伏強さが(YS0−980t/D)〜(YS0−980t/D+120)(MPa)、鋼板の引張強さが(TS0−560t/D)〜(TS0−560t/D+100)(MPa)、鋼板の降伏比が(75−82t/D)(%)以下、鋼板表裏面から深さ1mmでの硬さ(ビッカース硬さ)がHV140〜200となるように夫々制御し、
該鋼板をプレスベント冷間成形で円形鋼管し、その後の熱処理を行なわない点に要旨を有するものである。
The production method of the present invention that can achieve the above-mentioned object includes C: 0.02 to 0.20% (meaning of mass%, the same shall apply hereinafter), Si: 0.05 to 0.5%, Mn: 0.00. 50 to 2.0%, Al: 0.01 to 0.1% and N: 0.002 to 0.007%, respectively, P: 0.02% or less (excluding 0%) and S : 0.008% or less (excluding 0%), respectively, and using a steel slab whose balance is Fe and inevitable impurities, heat treatment of any of (1) to (3) below is performed By manufacturing thick steel plate
Round steel pipe thickness is t (mm), outer diameter is D (mm), steel pipe product standard yield strength is YS 0 (MPa) or more, tensile strength is TS 0 (MPa) or more, yield ratio is 85% In the following, the yield strength in the steel sheet is (YS 0 -980 t / D) to (YS 0 -980 t / D + 120) (MPa), and the tensile strength of the steel sheet is (TS 0 -560 t / D) to (TS 0 -560t / D + 100) ( MPa), yield ratio of the steel sheet (75-82t / D) (%) or less, so that the hardness at a depth of 1mm from the steel plate front and back surfaces (Vickers hardness) is HV140~200 To control each
The steel sheet has a gist in that a circular steel pipe is formed by press vent cold forming and no subsequent heat treatment is performed.

(1)鋼スラブを1000〜1250℃に加熱して圧延した後、800℃以上の温度から空冷し、850℃以上の温度に再加熱後、1〜50℃/秒の冷却速度で200℃以下まで冷却し、引き続き700〜850℃の二相域温度に再加熱した後、1〜50℃/秒の冷却速度で200℃以下まで冷却し、更に500〜700℃の温度に加熱した後空冷する。   (1) After heating and rolling a steel slab to 1000 to 1250 ° C, air cooling from a temperature of 800 ° C or higher, reheating to a temperature of 850 ° C or higher, and 200 ° C or lower at a cooling rate of 1 to 50 ° C / sec. After cooling to 700 to 850 ° C. in a two-phase region temperature, cooling to 200 ° C. or less at a cooling rate of 1 to 50 ° C./second, further heating to a temperature of 500 to 700 ° C. and then air cooling. .

(2)鋼スラブを1000〜1250℃に加熱して圧延した後、800℃以上の温度から1〜50℃/秒の冷却速度で200℃以下まで冷却し、引き続き700〜850℃の二相域温度に再加熱した後、1〜50℃/秒の冷却速度で200℃以下まで冷却し、更に500〜700℃の温度に加熱した後空冷する。   (2) After heating and rolling the steel slab to 1000 to 1250 ° C., the steel slab is cooled from a temperature of 800 ° C. or more to 200 ° C. or less at a cooling rate of 1 to 50 ° C./second, and subsequently in a two-phase region of 700 to 850 ° C. After reheating to temperature, it is cooled to 200 ° C. or lower at a cooling rate of 1 to 50 ° C./second, further heated to a temperature of 500 to 700 ° C. and then air-cooled.

(3)鋼スラブを1000〜1250℃に加熱して圧延した後、650〜800℃の二相域温度から1〜50℃/秒の冷却速度で200℃以下まで冷却し、更に500〜700℃の温度に加熱した後空冷する。   (3) After heating and rolling the steel slab to 1000 to 1250 ° C, the steel slab is cooled from a two-phase region temperature of 650 to 800 ° C to 200 ° C or less at a cooling rate of 1 to 50 ° C / second, and further 500 to 700 ° C. After heating to the temperature of, cool with air.

本発明で対象とする鋼スラブには、必要によって更に、(a)Cu:1%以下(0%を含まない)、Ni:1.5%以下(0%を含まない)、Cr:1%以下(0%を含まない)およびMo:1%以下(0%を含まない)よりなる群から選ばれる1種以上,(b)Nb:0.05%以下(0%を含まない)、(c)V:0.1%以下(0%を含まない)、(d)B:0.003%以下(0%を含まない)、(e)Ca:0.005%以下(0%を含まない)および/または希土類元素:0.05%以下(0%を含まない)、(f)Ti:0.025%以下(0%を含まない)、等を含有することも有効であり、これら含有される成分に応じて鋼管の特性を更に向上させることができる。   The steel slab to be used in the present invention further includes (a) Cu: 1% or less (not including 0%), Ni: 1.5% or less (not including 0%), Cr: 1%, if necessary. 1 or more selected from the group consisting of the following (not including 0%) and Mo: 1% or less (not including 0%), (b) Nb: 0.05% or less (not including 0%), ( c) V: 0.1% or less (excluding 0%), (d) B: 0.003% or less (not including 0%), (e) Ca: 0.005% or less (including 0%) And / or rare earth elements: 0.05% or less (not including 0%), (f) Ti: 0.025% or less (not including 0%), etc. are also effective. The properties of the steel pipe can be further improved depending on the components contained.

本発明によれば、鋼板の化学成分組成を適正に調整すると共に、適切な熱処理を施した厚鋼板を用いることによって、プレスベンド法によって鋼管に成形後に、SR処理を施さずとも、低降伏比で490MPa以上の冷間成形円形鋼管を得ることができ、この鋼管は耐震性が要求される建徳構造物に好適に用いることができる。   According to the present invention, by appropriately adjusting the chemical composition of the steel sheet and using a thick steel sheet that has been subjected to appropriate heat treatment, a low yield ratio can be obtained without forming the steel pipe by the press bend method and without performing SR treatment. Thus, a cold-formed circular steel pipe of 490 MPa or more can be obtained, and this steel pipe can be suitably used for a virtue structure that requires earthquake resistance.

建築構造物用の円形鋼管柱材は、厚鋼板を素材として用いてプレスベンド法が適用されてプレス曲げ加工によって製管されることになるが、こうした方法で強加工(前記加工度t/Dで0.5以上)すれば、製管後の降伏比YRの上昇が大きくなるので、降伏比YRを低減するために冷間成形(製管)後にSR処理が行われるのが一般的である。しかしながら、製管後に熱処理を施すことはコスト的にも生産性の点でも問題がある。こうしたことから、本発明者らは、製管後にSR処理を省略できる方法について様々な角度から検討した。特に、上記熱処理は、冷間成形後の鋼管品質を安定化させる効果もあるので、製管後熱処理を省略するためには、製管後の品質を安定化させることが重要であるとの知見に基づいて検討した。   Circular steel pipe columns for building structures are produced by press bending using a thick steel plate as a raw material and applied by the press bending method. 0.5 or more), the increase in the yield ratio YR after pipe making becomes large. Therefore, in order to reduce the yield ratio YR, SR processing is generally performed after cold forming (tube making). . However, performing heat treatment after pipe production has problems in terms of cost and productivity. For these reasons, the present inventors examined a method that can omit the SR treatment after pipe making from various angles. In particular, the above heat treatment also has the effect of stabilizing the steel pipe quality after cold forming, so the knowledge that it is important to stabilize the quality after pipe making in order to omit the heat treatment after pipe making Based on the study.

本発明者らが検討したところによれば、冷間成形後の機械的特性(降伏応力YS、引張強さTSおよび降伏比YR)の変化量は、単なる引張歪みでの変化量の測定では把握(予測)できないことが判明した。例えば、引張予歪後の降伏応力YSや引張強さTSの変化量は、日本溶接協会のWES規格(WES2808−2003)に記載されているが、製管後の変化量はWES規格の記載からでは予測できない事情が存在する。こうした事情として下記(a)〜(c)の3点が挙げられる。   According to the study by the present inventors, the amount of change in the mechanical properties (yield stress YS, tensile strength TS, and yield ratio YR) after cold forming is grasped by simply measuring the amount of change in tensile strain. (Predicted) turned out to be impossible. For example, the amount of change in yield stress YS and tensile strength TS after tensile pre-strain is described in the WES standard (WES2808-2003) of the Japan Welding Association, but the amount of change after pipe making is described in the WES standard. There are circumstances that cannot be predicted. Such circumstances include the following three points (a) to (c).

(a)WES規格では引張予歪の方向と予歪後の引張試験の方向が同一方向であるが、製管での曲げ歪み方向と製管後の引張試験方向は直角方向である。   (A) In the WES standard, the direction of tensile pre-strain and the direction of tensile test after pre-strain are the same direction, but the direction of bending strain in pipe making and the direction of tensile test after pipe making are perpendicular directions.

(b)WES規格での引張予歪は、全板厚に均一に付与されているため、予歪後の引張試験では均一な予歪材での試験であるが、曲げ加工での歪は最表面での歪が最も大きく、板厚方向に歪分布が傾斜しているので、曲げ加工後の引張試験では試験片の断面方向に予歪分布がある材料の引張特性を評価することになる。   (B) Since the tensile pre-strain in the WES standard is uniformly applied to the entire plate thickness, the tensile test after pre-strain is a test with a uniform pre-strained material, but the strain in bending is the highest. Since the strain on the surface is the largest and the strain distribution is inclined in the plate thickness direction, the tensile property of the material having the pre-strain distribution in the cross-sectional direction of the test piece is evaluated in the tensile test after bending.

(c)WES規格では、理想的な均一引張予歪後の引張特性であるが、実際の曲げ加工では、プレス曲げの型押しをした部分と型押しをしない部分で歪が大きく異なり、内周方向で均一な予歪になっていない。   (C) In the WES standard, ideal tensile properties after uniform tensile pre-strain, but in actual bending, the strain greatly differs between the part where the press bending is embossed and the part where the embossing is not performed. Uniform pre-strain in the direction.

このように、プレス曲げ加工後の機械的特性(降伏応力YS、引張強さTSおよび降伏比YR)の変化量は、予歪方向が異なることによるハウジンガー効果や、板厚方向の歪分布が異なること、型曲げ歪の影響等、理想的な引張予歪後の機械的特性(降伏応力YS、引張強さTSおよび降伏比YR)の変化量とは異なるので、製管後の機械的特性を正確に予測することはできない。   Thus, the amount of change in mechanical properties (yield stress YS, tensile strength TS, and yield ratio YR) after press bending differs in the Hazinger effect due to the different pre-strain directions and the strain distribution in the plate thickness direction. This is different from the amount of change in mechanical properties (yield stress YS, tensile strength TS and yield ratio YR) after ideal tensile pre-strain, such as the influence of mold bending strain. It cannot be predicted accurately.

WES規格によれば、予歪量をεとしたとき、降伏応力YSの変化量ΔYS、引張強さTSの変化量ΔTSは、夫々ΔYS=4400ε、ΔTS=800εで与えられるとされている。しかし、引張歪と曲げ歪みとは根本的に異なる概念であり、その対応させることはできない。即ち、引張歪量はなく、曲げ加工度(t/D)という要件を考慮しなければ、成形後の鋼管の機械的特性の変化量を正確に評価できないのである。   According to the WES standard, when the pre-strain amount is ε, the yield stress YS variation ΔYS and the tensile strength TS variation ΔTS are given by ΔYS = 4400ε and ΔTS = 800ε, respectively. However, tensile strain and bending strain are fundamentally different concepts and cannot be made to correspond to each other. That is, there is no tensile strain amount, and the amount of change in the mechanical properties of the steel pipe after forming cannot be accurately evaluated without considering the requirement of the degree of bending (t / D).

そこで、本発明者らは、予歪方向の違いの影響、実際の曲げ加工後の引張性能の変化量について様々な実験を行った。そして、引張予歪の方向を直角方向にした実験結果では、降伏応力YSの変化量(ΔYS)は、同じ予歪にも拘わらず、半分以下という結果になった。こうした現状が生じる理由については、明らかにハウジンガー効果のような新たな現象によるものと考えられ、これではWES規格のような予歪式では到底予測できないことが判明した。   Therefore, the present inventors conducted various experiments on the influence of the difference in the pre-strain direction and the amount of change in the tensile performance after actual bending. In the experimental result in which the direction of the tensile pre-strain is a right-angle direction, the yield stress YS change amount (ΔYS) is less than half despite the same pre-strain. The reason why such a situation occurs is apparently due to a new phenomenon such as the Hausinger effect, and it has been found that this cannot be predicted with a predistortion type such as the WES standard.

また曲げ加工という未知の要素を加えた場合、曲げ加工による加工硬化は引張りよる加工硬化よりも大きいことが判明したのである。即ち、引張強さTSの変化量(ΔTS)は、WES規格予測される変化量と比べて1.5倍程度大きくなるという結果が得られたのである。こうした結果が生じるのは、プレス曲げ成形では塑性変形量が大きくなることによるものと考えられた。   In addition, when an unknown element called bending is added, it has been found that the work hardening by bending is larger than the work hardening by pulling. That is, the result is that the change amount (ΔTS) of the tensile strength TS is about 1.5 times larger than the change amount predicted by the WES standard. Such a result was considered to be caused by an increase in the amount of plastic deformation in press bending.

曲げ加工後に熱処理を施さない場合には、曲げ加工後の引張特性の変化量を正確に予測しなければ、鋼管の引張特性を安定確保できないのであるが、これまでの技術では曲げ加工後の機械的特性を予測して鋼管を製造することは困難である。   If heat treatment is not performed after bending, the tensile properties of steel pipes cannot be secured stably unless the amount of change in tensile properties after bending is accurately predicted. It is difficult to produce steel pipes by predicting mechanical characteristics.

本発明者らが、様々な鋼板(本発明で規定する化学成分を満足するもの)についてプレス曲げ加工成形したときの、機械的特性の変化量(前記ΔYS、ΔTS、ΔYR)と加工度(t/D)の関係について調査した(引張試験条件は後記実施例参照)。その結果を、図1〜3に示す(x軸にt/D、y軸にΔYS、ΔTSまたはΔYRとしたもの)。即ち、図1は加工度(t/D)と成形後の降伏応力変化量ΔYSとの関係、図2は加工度(t/D)と成形後の引張強さ変化量ΔTSとの関係、図3は加工度(t/D)と成形後の降伏比変化量ΔYRとの関係、を夫々示すグラフである。   The amount of change in mechanical properties (the ΔYS, ΔTS, ΔYR) and the degree of work (t) when the present inventors are press-bending-molded various steel plates (those satisfying the chemical components defined in the present invention). / D) was investigated (see Examples below for tensile test conditions). The results are shown in FIGS. 1 to 3 (t / D on the x-axis and ΔYS, ΔTS or ΔYR on the y-axis). That is, FIG. 1 shows the relationship between the working degree (t / D) and the yield stress change amount ΔYS after forming, FIG. 2 shows the relationship between the working degree (t / D) and the tensile strength change amount ΔTS after forming, 3 is a graph showing the relationship between the working degree (t / D) and the yield ratio change amount ΔYR after forming.

鋼板厚さをt、鋼管の外径をDとしたとき、曲げ加工度(t/D)に応じた変化量(ΔYS、ΔTS、ΔYR)を最小二乗法で近似式を算出した結果、加工度(t/D)が0.05〜0.1の範囲では、下記(1)〜(3)式の関係が成立することが判明した(前記図1〜3参照)。
ΔYS=980(t/D)+40(MPa) …(1)
ΔTS=560(t/D)(MPa) …(2)
ΔYR=82(t/D)+8(%) …(3)
Assuming that the thickness of the steel sheet is t and the outer diameter of the steel pipe is D, the amount of change (ΔYS, ΔTS, ΔYR) corresponding to the degree of bending work (t / D) is calculated by the least square method. When (t / D) is in the range of 0.05 to 0.1, it has been found that the following relationships (1) to (3) are established (see FIGS. 1 to 3).
ΔYS = 980 (t / D) +40 (MPa) (1)
ΔTS = 560 (t / D) (MPa) (2)
ΔYR = 82 (t / D) +8 (%) (3)

これらの関係式から、鋼管成形後の機械的特性を鋼管の曲げ加工度に応じて予測することが可能となるので、鋼板での目標品質を設定することと、鋼板の品質を制御することによって、鋼管での品質を精度良く管理することが可能となる。即ち、鋼管製品規格の降伏応力YSの下限をYS0(MPa)、引張強さTSの下限をTS0(MPa)、降伏比YRの上限を85%としたとき、目標とする降伏比YRを83%とすれば、490〜550MPa級の鋼板規格での降伏応力YSと引張強さTSのバランスから、鋼管での目標となる降伏応力YSはYS0(MPa)+100(MPa)、鋼管での目標となる引張強さTSはTS0+50(MPa)と設定できる。 From these relational expressions, it is possible to predict the mechanical properties after forming the steel pipe according to the bending degree of the steel pipe, so by setting the target quality in the steel plate and controlling the quality of the steel plate It becomes possible to accurately manage the quality of the steel pipe. That is, when the lower limit of the yield stress YS of the steel pipe product standard is YS 0 (MPa), the lower limit of the tensile strength TS is TS 0 (MPa), and the upper limit of the yield ratio YR is 85%, the target yield ratio YR is If it is 83%, the target yield stress YS in the steel pipe is YS 0 (MPa) +100 (MPa) from the balance between the yield stress YS and the tensile strength TS in the steel plate standard of 490 to 550 MPa class. The target tensile strength TS can be set as TS 0 +50 (MPa).

更に、鋼板自体の機械的特性のバラツキや、鋼管への成形後の機械的特性のバラツキを考慮し、鋼板の目標YSレンジを120MPa、目標TSレンジを100MPaとすれば、使用される鋼板における目標として管理される機械的特性は下記(4)〜(6)式の範囲とする必要がある。
YS:(YS0−980t/D)〜(YS0−980t/D+120)(MPa)…(4)
TS:(TS0−560t/D)〜(TS0−560t/D+100)(MPa)…(5)
YR:(75−82t/D)[即ち、(83−82(t/D)−8)]%以下 …(6)
Furthermore, if the target YS range of the steel plate is 120 MPa and the target TS range is 100 MPa in consideration of the variation in the mechanical properties of the steel plate itself and the mechanical properties after forming into the steel pipe, the target for the steel plate to be used The mechanical characteristics managed as follows must be in the range of the following formulas (4) to (6).
YS: (YS 0 -980 t / D) to (YS 0 -980 t / D + 120) (MPa) (4)
TS: (TS 0 −560 t / D) to (TS 0 −560 t / D + 100) (MPa) (5)
YR: (75-82t / D) [ie (83-82 (t / D) -8)]% or less (6)

鋼管規格にとらわれることなく、鋼板段階での目標性能を明確化して製造管理することが、冷間成形後の鋼管の機械的特性を安定化させ、製管後に熱処理を省略できることになるのである。即ち、製管後の熱処理を省略し、且つ製管後の品質を安定化させるためには、製管後の機械的特性の変化量を高い精度で予測し、この予測に基づいて鋼板段階で適正な品質を作り込むことが極めて重要である。   Regardless of the steel pipe standard, clarifying and managing the target performance at the steel sheet stage stabilizes the mechanical properties of the steel pipe after cold forming, and the heat treatment can be omitted after pipe making. That is, in order to omit the heat treatment after pipe making and stabilize the quality after pipe making, the amount of change in mechanical properties after pipe making is predicted with high accuracy, and based on this prediction, at the steel plate stage. Creating the right quality is extremely important.

尚、製管前の鋼板表裏面の硬さが高すぎると、プレス曲げ加工時に割れが発生するので、鋼板の表裏面から1mmでの断面硬さをビッカース硬さHVで200以下とする必要がある。但し、表裏面硬さが低すぎると、プレス曲げ加工後の鋼管の引張強さTSを490MPa級以上に確保できなくなるので、鋼板段階での表裏面硬さは140HV以上とする必要がある。   In addition, since the crack generate | occur | produces at the time of press bending if the hardness of the steel plate front and back before pipe making is too high, it is necessary to make the cross-sectional hardness at 1 mm from the front and back of the steel plate 200 or less in terms of Vickers hardness HV. is there. However, if the front and back surface hardness is too low, the tensile strength TS of the steel pipe after press bending cannot be ensured to be 490 MPa or higher, so the front and back surface hardness at the steel plate stage needs to be 140 HV or higher.

次に、本発明で上記のような鋼板を得るための鋼スラブにおける化学成分組成の限定理由について説明する。本発明で対象とする鋼スラブは、上記のようにC:0.02〜0.20%、Si:0.05〜0.5%、Mn:0.50〜2.0%、Al:0.01〜0.1%およびN:0.002〜0.007%を夫々含有すると共に、P:0.02%以下(0%を含まない)およびS:0.008%以下(0%を含まない)に夫々抑制したものであるが、これら元素の範囲限定理由は、次の通りである。   Next, the reason for limiting the chemical component composition in the steel slab for obtaining the above steel plate in the present invention will be described. As described above, the steel slab to be used in the present invention is C: 0.02 to 0.20%, Si: 0.05 to 0.5%, Mn: 0.50 to 2.0%, Al: 0 0.01 to 0.1% and N: 0.002 to 0.007%, respectively, P: 0.02% or less (excluding 0%) and S: 0.008% or less (0% The reasons for limiting the ranges of these elements are as follows.

[C:0.02〜0.20%]
Cは強度上昇に有効な元素であるが、過剰に含有されるとマルテンサイト組織等の硬化組織が発生するため、焼入れ後の表面近くが硬くなり、曲げ加工性が劣化してだけでなく、溶接性や靭性が劣化する原因となるので、C含有量の上限を0.20%とする。しかしながら、C含有量が0.02%未満になると、強度不足(引張強さで490MPa未満)が生じることになる。尚、C含有量の好ましい下限は0.05%であり、好ましい上限は0.16%である。
[C: 0.02 to 0.20%]
C is an element effective for increasing the strength, but if it is contained excessively, a hardened structure such as a martensite structure is generated, so that the vicinity of the surface after quenching becomes hard and bending workability deteriorates. Since it causes deterioration of weldability and toughness, the upper limit of the C content is set to 0.20%. However, when the C content is less than 0.02%, insufficient strength (less than 490 MPa in tensile strength) occurs. In addition, the minimum with preferable C content is 0.05%, and a preferable upper limit is 0.16%.

[Si:0.05〜0.5%]
Siは脱酸のために0.05%以上含有させることが必要であるが、0.5%を超えて過剰に含有させると溶接性が低下することになる。こうしたことから、Si含有量は0.05〜0.5%とする必要がある。尚、Si含有量の好ましい下限は0.1%であり、好ましい上限は0.4%である。
[Si: 0.05 to 0.5%]
Si needs to be contained in an amount of 0.05% or more for deoxidation, but if it exceeds 0.5% and it is contained excessively, the weldability is lowered. For these reasons, the Si content needs to be 0.05 to 0.5%. In addition, the minimum with preferable Si content is 0.1%, and a preferable upper limit is 0.4%.

[Mn:0.50〜2.0%]
Mnは強度と靭性を共に高める元素として有効である。こうした効果を発揮させるためには、Mnは0.50%以上含有させる必要がある。しかしながらMnを過剰に含有させると、溶接性が劣化するので、上限を2.0%とする。尚、Mn含有量の好ましい下限は0.8%であり、好ましい上限は1.6%である。
[Mn: 0.50 to 2.0%]
Mn is effective as an element that increases both strength and toughness. In order to exhibit such an effect, it is necessary to contain 0.50% or more of Mn. However, if Mn is contained excessively, weldability deteriorates, so the upper limit is made 2.0%. In addition, the minimum with preferable Mn content is 0.8%, and a preferable upper limit is 1.6%.

[Al:0.01〜0.1%]
Alは脱酸のために、少なくとも0.01%含有させる必要があるが、過剰に含有させると、非金属介在物が増加して靭性が低下するので、0.1%以下とする必要がある。尚、Al含有量の好ましい下限は0.02%であり、好ましい上限は0.05%である。
[Al: 0.01 to 0.1%]
Al needs to be contained at least 0.01% for deoxidation, but if it is contained excessively, nonmetallic inclusions increase and toughness decreases, so it is necessary to make it 0.1% or less. . In addition, the minimum with preferable Al content is 0.02%, and a preferable upper limit is 0.05%.

[N:0.002〜0.007%]
Nは製鋼時に不可避的に混入し、完全に除去することが困難であるので、その下限は0.002%とした。またN含有量が過剰になると、冷間曲げ加工後の歪時効による靭性劣化するので、0.007%以下とする必要がある。尚、N含有量の好ましい上限は0.006%である。
[N: 0.002 to 0.007%]
Since N is inevitably mixed during steelmaking and it is difficult to completely remove N, the lower limit was made 0.002%. Further, if the N content is excessive, the toughness deteriorates due to strain aging after cold bending, so it is necessary to make it 0.007% or less. In addition, the upper limit with preferable N content is 0.006%.

[P:0.02%以下(0%を含まない)]
Pは不可避的に混入してくる不純物であるが、その含有量が過剰になると鋼板の靭性を劣化させるので、0.02%以下に抑制する必要がある。尚、P含有量は、好ましくは0.015%以下に抑制するのが良い。
[P: 0.02% or less (excluding 0%)]
P is an impurity inevitably mixed in, but if its content is excessive, the toughness of the steel sheet is deteriorated, so it is necessary to suppress it to 0.02% or less. The P content is preferably suppressed to 0.015% or less.

[S:0.008%以下(0%を含まない)]
Sも不可避的に混入してくる不純物であるが、その含有量が過剰になると鋼板厚み方向の性能を劣化させると共に、板厚中心部にMnSの介在物を生成させて曲げ加工時にその界面からの割れ発生を招くので、0.008%以下に抑制する必要がある。尚、S含有量は、好ましくは0.006%以下に抑制するのが良い。
[S: 0.008% or less (excluding 0%)]
S is also an impurity that is inevitably mixed in, but if its content is excessive, the performance in the thickness direction of the steel sheet is deteriorated, and inclusions of MnS are generated in the center of the thickness of the sheet, and from the interface during bending processing. Therefore, it is necessary to suppress it to 0.008% or less. The S content is preferably suppressed to 0.006% or less.

本発明で対象とする鋼スラブにおいて、上記成分の他は、Feおよび不可避的不純物からなるものであるが、溶製上不可避的に混入する微量成分(許容成分)も含み得るものであり(例えば、Co,Mg,Zr等)、こうした鋼スラブも本発明の範囲に含まれるものである。また、本発明で対象とする鋼スラブには、必要によって、更に、(a)Cu:1%以下(0%を含まない)、Ni:1.5%以下(0%を含まない)、Cr:1%以下(0%を含まない)およびMo:1%以下(0%を含まない)よりなる群から選ばれる1種以上、(b)Nb:0.05%以下(0%を含まない)、(c)V:0.1%以下(0%を含まない)、(d)B:0.003%以下(0%を含まない)、(e)Ca:0.005%以下(0%を含まない)および/または希土類元素:0.05%以下(0%を含まない)、(f)Ti:0.025%以下(0%を含まない)、等を含有することも有効であるが、これらの成分を含有させるときの範囲限定理由は、次の通りである。   In the steel slab which is the subject of the present invention, in addition to the above components, it is composed of Fe and unavoidable impurities, but may contain trace components (allowable components) that are inevitably mixed for melting (for example, , Co, Mg, Zr, etc.), such steel slabs are also included in the scope of the present invention. Further, the steel slab to be used in the present invention may further include (a) Cu: 1% or less (not including 0%), Ni: 1.5% or less (not including 0%), Cr if necessary. 1% or less (not including 0%) and Mo: 1% or more selected from the group consisting of 1% or less (not including 0%), (b) Nb: 0.05% or less (not including 0%) ), (C) V: 0.1% or less (not including 0%), (d) B: 0.003% or less (not including 0%), (e) Ca: 0.005% or less (0 %) And / or rare earth elements: 0.05% or less (not including 0%), (f) Ti: 0.025% or less (not including 0%), etc. are also effective. However, the reasons for limiting the range when these components are contained are as follows.

[Cu:1%以下(0%を含まない)、Ni:1.5%以下(0%を含まない)、Cr:1%以下(0%を含まない)およびMo:1%以下(0%を含まない)よりなる群から選ばれる1種以上]
これらの元素は、鋼板の強度を向上させるのに有効な元素であるが、その含有量が過剰になると溶接性を劣化させることになる。こうしたことから、Cu,CrおよびMoについては1%以下、Niについては1.5%以下とする必要がある。
[Cu: 1% or less (not including 0%), Ni: 1.5% or less (not including 0%), Cr: 1% or less (not including 0%), and Mo: 1% or less (0% 1 or more selected from the group consisting of
These elements are effective elements for improving the strength of the steel sheet. However, if the content is excessive, the weldability is deteriorated. Therefore, Cu, Cr and Mo need to be 1% or less, and Ni needs to be 1.5% or less.

[Nb:0.05%以下(0%を含まない)]
Nbは加熱時に固溶させて圧延することによって、オーステナイトの再結晶を遅らせ、オーステナイトの中に歪を導入し、室温まで冷却した後の鋼板の強度と靭性を向上させる効果を発揮する。こうした効果は、その含有量が増加するにつれて増大するが、過剰に含有されると溶接部のHAZ(熱影響部)靭性が劣化することになる。こうしたことから、Nbを含有させる場合には、0.05%程度までとすることが好ましい。Nb含有量のより好ましい上限は0.025%程度である。
[Nb: 0.05% or less (excluding 0%)]
Nb is dissolved and rolled during heating, thereby delaying the recrystallization of austenite, introducing strain into the austenite, and improving the strength and toughness of the steel sheet after cooling to room temperature. Such an effect increases as the content thereof increases, but if it is excessively contained, the HAZ (heat affected zone) toughness of the welded portion deteriorates. For these reasons, when Nb is contained, the content is preferably up to about 0.05%. A more preferable upper limit of the Nb content is about 0.025%.

[V:0.1%以下(0%を含まない)]
Vは、鋼板の強度と靭性を向上させるのに有効な元素であるが、その含有量が過剰になると溶接部のHAZ靭性を劣化させることになる。こうしたことから、Vを含有させる場合には、0.1%程度までとすることが好ましい。
[V: 0.1% or less (excluding 0%)]
V is an element effective for improving the strength and toughness of the steel sheet, but if its content is excessive, the HAZ toughness of the welded portion is deteriorated. For these reasons, when V is contained, the content is preferably up to about 0.1%.

[B:0.003%以下(0%を含まない)]
Bは少量の含有量で鋼板強度を大幅に向上させるのに有効な元素であるが、その含有量が過剰になると溶接性が劣化するので、0.003%程度までとすることが好ましい。
[B: 0.003% or less (excluding 0%)]
B is an element effective for significantly improving the strength of the steel sheet with a small content. However, since the weldability deteriorates when the content is excessive, it is preferable to be up to about 0.003%.

[Ca:0.005%以下(0%を含まない)および/または希土類元素:0.05%以下(0%を含まない)]
Caと希土類元素(以下、「REM」と略記する)は、MnS系介在物の形態を制御し、鋼板厚さ方向の特性を改善するのに有効な元素である。こうした効果は、その含有量が増加するにすれて増大するが、過剰に含有させると、粗大な介在物が生成して割れの原因となる。こうしたことから、CaやREMを含有させるときには、Caでは0.005%以下、REMで0.05%以下とすることが好ましい。尚、REMは、周期律表第3属に属するスカンジウム(Sc)、イットリウム(Y)およびランタノイド系列希土類元素[例えばセリウム(Ce)やランタン(La)等]のいずれも使用できる。
[Ca: 0.005% or less (not including 0%) and / or rare earth element: 0.05% or less (not including 0%)]
Ca and rare earth elements (hereinafter abbreviated as “REM”) are effective elements for controlling the morphology of MnS inclusions and improving the properties in the thickness direction of the steel sheet. Such an effect increases as its content increases, but if it is excessively contained, coarse inclusions are generated and cause cracks. For these reasons, when Ca or REM is contained, it is preferable that Ca is 0.005% or less and REM is 0.05% or less. Note that REM can use any of scandium (Sc), yttrium (Y) and lanthanoid series rare earth elements [for example, cerium (Ce), lanthanum (La), etc.] belonging to Group 3 of the periodic table.

[Ti:0.025%以下(0%を含まない)]
Tiは、溶接継手部のHAZ靭性を向上させる効果がある。こうした効果はその含有量が増加するにつれて増大するが、Tiを過剰に含有させてもその効果が飽和するので、その上限を0.025%とする。尚、Ti含有量の好ましい下限は0.005%であり、より好ましい上限は0.020%である。
[Ti: 0.025% or less (excluding 0%)]
Ti has the effect of improving the HAZ toughness of the welded joint. Such an effect increases as the content increases, but even if Ti is excessively contained, the effect is saturated, so the upper limit is made 0.025%. In addition, the minimum with preferable Ti content is 0.005%, and a more preferable upper limit is 0.020%.

冷間成形円形鋼管を製造するには、上記のような要件を満足する鋼板を用いてプレスベント法で円形鋼管に冷間成形すればよいが、こうした鋼板を製造するには、上記化学成分を満足する鋼スラブを用いて下記に示す(1)〜(3)のいずれかの熱処理を施す必要がある。   In order to produce a cold-formed round steel pipe, it is sufficient to cold-form the round steel pipe by a press vent method using a steel sheet that satisfies the above requirements. It is necessary to perform any one of the following heat treatments (1) to (3) using a satisfactory steel slab.

(1)鋼スラブを1000〜1250℃に加熱して圧延した後、800℃以上の温度から空冷し、850℃以上の温度に再加熱後、1〜50℃/秒の冷却速度で200℃以下まで冷却し、引き続き700〜850℃の二相域温度に再加熱した後、1〜50℃/秒の冷却速度で200℃以下まで冷却し、更に500〜700℃の温度に加熱した後空冷する。   (1) After heating and rolling a steel slab to 1000 to 1250 ° C, air cooling from a temperature of 800 ° C or higher, reheating to a temperature of 850 ° C or higher, and 200 ° C or lower at a cooling rate of 1 to 50 ° C / sec. After cooling to 700 to 850 ° C. in a two-phase region temperature, cooling to 200 ° C. or less at a cooling rate of 1 to 50 ° C./second, further heating to a temperature of 500 to 700 ° C. and then air cooling. .

(2)鋼スラブを1000〜1250℃に加熱して圧延した後、800℃以上の温度から1〜50℃/秒の冷却速度で200℃以下まで冷却し、引き続き700〜850℃の二相域温度に再加熱した後、1〜50℃/秒の冷却速度で200℃以下まで冷却し、更に500〜700℃の温度に加熱した後空冷する。   (2) After heating and rolling the steel slab to 1000 to 1250 ° C., the steel slab is cooled from a temperature of 800 ° C. or more to 200 ° C. or less at a cooling rate of 1 to 50 ° C./second, and subsequently in a two-phase region of 700 to 850 ° C. After reheating to temperature, it is cooled to 200 ° C. or lower at a cooling rate of 1 to 50 ° C./second, further heated to a temperature of 500 to 700 ° C. and then air-cooled.

(3)鋼スラブを1000〜1250℃に加熱して圧延した後、650〜800℃の二相域温度から1〜50℃/秒の冷却速度で200℃以下まで冷却し、更に500〜700℃の温度に加熱した後空冷する。   (3) After heating and rolling the steel slab to 1000 to 1250 ° C, the steel slab is cooled from a two-phase region temperature of 650 to 800 ° C to 200 ° C or less at a cooling rate of 1 to 50 ° C / second, and further 500 to 700 ° C. After heating to the temperature of, cool with air.

上記(1)の熱処理は、通常のスラブ加熱後、800℃以上(Ar3以上)の温度で圧延を終了し、これを空冷した鋼板を用い、オンラインの3回熱処理で低降伏比YRの鋼板を作り込むものである。まず圧延後の鋼板を、850℃以上(Ar3以上)の温度に再加熱し、完全にオーステナイト化した後、200℃以下まで1〜50℃/秒の冷却速度で冷却することによってベースとなる組織が形成される。このときの冷却速度は、遅ければ遅いほど軟らかい組織が多く形成され、降伏応力YS、引張強さTSおよび降伏比YRのいずれも低めのものとなる。続いて、700〜850℃の二相域温度に再加熱することによって、ベース組織の軟化と共に、一部の組織をオーステナイト化させる。そして、その後の冷却によって、オーステナイト化した組織を硬化させるために1〜50℃/秒の冷却速度で200℃以下まで冷却して焼入れする。この段階での熱処理が、低降伏比YR鋼を製造すう上で最も重要な工程であり、この処理によって硬質相と軟質相を形成することができる。この冷却までの再加熱の際に、上記二相域温度(700〜850℃)を外れると、目標とする硬質相と軟質相は形成されない。更に500〜700℃(Ac1)の温度に加熱した後空冷(焼戻し熱処理)することによって、鋼板組織内の残留応力の緩和と硬化組織を回復させ、目標とする鋼板特性(降伏応力YS、引張強さTSおよび降伏比YR)を確保することができる。 In the heat treatment (1), after normal slab heating, rolling is completed at a temperature of 800 ° C. or higher (Ar 3 or higher), and this is air-cooled steel plate. Is what makes it. First, the steel sheet after rolling is reheated to a temperature of 850 ° C. or higher (Ar 3 or higher), completely austenitized, and then cooled to 200 ° C. or lower at a cooling rate of 1 to 50 ° C./second to become a base. An organization is formed. At this time, the slower the cooling rate, the more soft structure is formed, and the yield stress YS, the tensile strength TS, and the yield ratio YR are all lower. Subsequently, by reheating to a two-phase temperature of 700 to 850 ° C., a part of the structure is austenitized together with the softening of the base structure. And in order to harden the austenitic structure | tissue by subsequent cooling, it cools and quenches to 200 degrees C or less with the cooling rate of 1-50 degrees C / sec. Heat treatment at this stage is the most important step in producing a low yield ratio YR steel, and a hard phase and a soft phase can be formed by this treatment. If the two-phase region temperature (700 to 850 ° C.) is deviated during the reheating until the cooling, the target hard phase and soft phase are not formed. Further, by heating to a temperature of 500 to 700 ° C. (Ac 1 ) and then air cooling (tempering heat treatment), the residual stress in the steel sheet structure is relaxed and the hardened structure is recovered, and the target steel sheet characteristics (yield stress YS, tensile stress) are recovered. Strength TS and yield ratio YR) can be ensured.

上記(2)の熱処理は、通常のスラブ加熱後、800℃以上(Ar3以上)の温度で圧延を終了し、800℃以上から水冷(直接焼入れDQまたは加速冷却)で200℃以下まで冷却した鋼板を用い、オンラインの2回熱処理で低降伏比YRの鋼板を作り込むものである。まず圧延後の鋼板を、オーステナイト状態(Ar3以上)から200℃以下までの冷却によってベースとなる組織が形成される。このときの冷却速度は、遅ければ遅いほど軟らかい組織が多く形成され、降伏応力YS、引張強さTSおよび降伏比YRのいずれも低めのものとなる。続いて、700〜850℃の二相域温度に加熱することによって、ベース組織の軟化と共に、一部の組織をオーステナイト化させる。そして、その後の冷却によって、オーステナイト化した組織を硬化させるために1〜50℃/秒の冷却速度で200℃以下まで冷却して焼入れする。上記(1)の熱処理と同様に、この段階での熱処理が、低降伏比YR鋼を製造する上で最も重要な工程であり、この処理によって硬質相と軟質相を形成することができる。この冷却までの再加熱の際に、上記二相域温度(700〜850℃)を外れると、目標とする硬質相と軟質相は形成されない。更に500〜700℃(Ac1)の温度に加熱した後空冷(焼戻し熱処理)することによって、鋼板組織内の残留応力の緩和と硬化組織を回復させ、目標とする鋼板特性(降伏応力YS、引張強さTSおよび降伏比YR)を確保することができる。 In the heat treatment of (2) above, after normal slab heating, the rolling was finished at a temperature of 800 ° C. or higher (Ar 3 or higher), and cooled from 800 ° C. or higher to 200 ° C. or lower by water cooling (direct quenching DQ or accelerated cooling). A steel plate is used, and a steel plate with a low yield ratio YR is made by online two-time heat treatment. First, the base steel is formed by cooling the rolled steel sheet from the austenite state (Ar 3 or higher) to 200 ° C. or lower. At this time, the slower the cooling rate, the more soft structure is formed, and the yield stress YS, the tensile strength TS, and the yield ratio YR are all lower. Subsequently, by heating to a two-phase region temperature of 700 to 850 ° C., a part of the structure is austenitized together with the softening of the base structure. And in order to harden the austenitic structure | tissue by subsequent cooling, it cools and quenches to 200 degrees C or less with the cooling rate of 1-50 degrees C / sec. Similar to the heat treatment of (1) above, the heat treatment at this stage is the most important step in producing the low yield ratio YR steel, and a hard phase and a soft phase can be formed by this treatment. If the two-phase region temperature (700 to 850 ° C.) is deviated during the reheating until the cooling, the target hard phase and soft phase are not formed. Further, by heating to a temperature of 500 to 700 ° C. (Ac 1 ) and then air cooling (tempering heat treatment), the residual stress in the steel sheet structure is relaxed and the hardened structure is recovered, and the target steel sheet characteristics (yield stress YS, tensile stress) are recovered. Strength TS and yield ratio YR) can be ensured.

上記(3)の熱処理は、通常のスラブ加熱した後圧延を行い、650〜800℃の二相域温度から水冷(直接焼入れDQまたは加速冷却)で200℃以下の温度まで冷却した鋼板を用い、オンラインでの焼戻し熱処理で低降伏比YRの鋼板を作り込むものである。まず圧延は、800℃以上のオーステナイト温度域で完了しても、一部二相温度域(Ar3以下 )で完了しても良い。その後の冷却開始温度を650〜800℃の二相域温度とすることが重要であり、圧延完了後650〜800℃までの冷却は、空冷でも水冷のどちらでも良い。この二相域温度の状態で、すでに一部がフェライトの軟質相に変態し、残部が変態前のオーステナイト状態の二相組織となっている。650〜800℃からの冷却は、水冷(直接焼入れDQまたは加速冷却)を行なう必要があり、この冷却によってオーステナイト組織の部分を硬化組織とするため、200℃以下の温度まで1〜50℃/秒の冷却速度で水冷する。この段階での熱処理が、低降伏比YR鋼を製造する上で最も重要な工程であり、この処理によって硬質相と軟質相を形成することができる。更に、500〜700℃(Ac1)の温度に加熱した後空冷(焼戻し熱処理)することによって、鋼板組織内の残留応力の緩和と硬化組織を回復させ、目標とする鋼板特性(降伏応力YS、引張強さTSおよび降伏比YR)を確保することができる。 The heat treatment of the above (3) is performed after performing normal slab heating and rolling, and using a steel plate cooled from a two-phase region temperature of 650 to 800 ° C. to a temperature of 200 ° C. or less by water cooling (direct quenching DQ or accelerated cooling), A steel plate with a low yield ratio YR is made by online tempering heat treatment. First, rolling may be completed in an austenite temperature range of 800 ° C. or higher, or partially in a two-phase temperature range (Ar 3 or lower). It is important that the subsequent cooling start temperature is a two-phase region temperature of 650 to 800 ° C, and the cooling to 650 to 800 ° C after completion of rolling may be either air cooling or water cooling. In this state of the two-phase region temperature, a part has already transformed into a soft phase of ferrite, and the rest has a two-phase structure of an austenite state before transformation. Cooling from 650 to 800 ° C. requires water cooling (direct quenching DQ or accelerated cooling), and this cooling makes the austenite structure part a hardened structure, so that it is 1 to 50 ° C./second up to a temperature of 200 ° C. or less. Cool with water at a cooling rate of. Heat treatment at this stage is the most important step in producing a low yield ratio YR steel, and a hard phase and a soft phase can be formed by this treatment. Furthermore, by heating to a temperature of 500 to 700 ° C. (Ac 1 ) and then air cooling (tempering heat treatment), the residual stress in the steel sheet structure is relaxed and the hardened structure is recovered, and the target steel sheet characteristics (yield stress YS, Tensile strength TS and yield ratio YR) can be ensured.

以下、実施例によって本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で変更を加えて実施することは勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail by way of examples.However, the present invention is not limited by the following examples as a matter of course, and may be implemented with modifications within a range that can meet the gist of the preceding and following descriptions. Of course, they are all possible and are included in the technical scope of the present invention.

下記表1に示す化学成分組成の各種の鋼スラブ(鋼種)を用いて、圧延および熱処理を行なって、所定の鋼板特性となるように造り込み、各種鋼板を製造した。このときの製造条件(圧延と熱処理の条件)は、下記に示すいずれかの方法によった。   Using various steel slabs (steel types) having the chemical composition shown in Table 1 below, rolling and heat treatment were performed so as to obtain predetermined steel sheet characteristics, and various steel sheets were manufactured. The manufacturing conditions (rolling and heat treatment conditions) at this time were in accordance with one of the following methods.

[製造条件]
(a)QQ’T:鋼スラブを1100℃に加熱した後、900℃で熱間圧延を終了した鋼板を空冷後、900℃に再加熱して焼入れ(Q)を行い、その後780℃に再加熱して焼入れ(Q’)を行い、550℃で焼戻し(T)を行った(本発明による熱処理)。
[Production conditions]
(A) QQ′T: After heating the steel slab to 1100 ° C., the steel sheet that has been hot-rolled at 900 ° C. is air-cooled, then reheated to 900 ° C. and quenched (Q), and then reheated to 780 ° C. Heating and quenching (Q ′) were performed, and tempering (T) was performed at 550 ° C. (heat treatment according to the present invention).

(b)DQQ’T:鋼スラブを1100℃に加熱した後、900℃で熱間圧延を終了した鋼板を、直接焼入れ(DQ)によって室温まで冷却後、780℃に再加熱して焼入れ(Q’)を行い、550℃で焼戻し(T)を行った(本発明による熱処理)。   (B) DQQ'T: After the steel slab was heated to 1100 ° C., the steel plate that had been hot-rolled at 900 ° C. was cooled to room temperature by direct quenching (DQ) and then reheated to 780 ° C. and quenched (Q ') And tempering (T) was performed at 550 ° C (heat treatment according to the present invention).

(c)CR−DQ’T:鋼スラブを1100℃に加熱した後、所定の板厚まで最終仕上げ圧延温度が800℃以上となるように制御圧延(CR)を行なった後、空冷して700℃になってから室温まで水冷(DQ’)し、550℃で焼戻し(T)を行った(本発明による熱処理)。   (C) CR-DQ′T: After heating the steel slab to 1100 ° C., controlled rolling (CR) is performed so that the final finish rolling temperature is 800 ° C. or higher up to a predetermined plate thickness, and then air-cooled to 700 After the temperature reached 0 ° C., it was water-cooled (DQ ′) to room temperature and tempered (T) at 550 ° C. (heat treatment according to the present invention).

(d)DQT:鋼スラブを1100℃に加熱した後、900℃で熱間圧延を終了した鋼板を、直接焼入れ(DQ)によって室温まで冷却後、600℃で焼戻し(T)を行った(比較例による熱処理)。   (D) DQT: After the steel slab was heated to 1100 ° C., the steel plate that had been hot-rolled at 900 ° C. was cooled to room temperature by direct quenching (DQ) and then tempered (T) at 600 ° C. (Comparison Heat treatment by example).

(e)DQT:鋼スラブを1100℃に加熱した後、900℃で熱間圧延を終了した鋼板を、直接焼入れ(DQ)によって室温まで冷却後、600℃で焼戻し(T)を行った(比較例による熱処理)。   (E) DQT: After the steel slab was heated to 1100 ° C., the steel plate that had been hot-rolled at 900 ° C. was cooled to room temperature by direct quenching (DQ) and then tempered (T) at 600 ° C. (Comparison Heat treatment by example).

(f)TMCP(熱加工制御):鋼スラブを1100℃に加熱した後、最終圧延温度が850℃となるように熱間圧延を終了した鋼板を、その後加速冷却によって500℃まで水冷し、その後室温まで空冷した。   (F) TMCP (thermal processing control): After heating the steel slab to 1100 ° C., the steel sheet that has been hot-rolled so that the final rolling temperature is 850 ° C. is then cooled to 500 ° C. by accelerated cooling, and then Air-cooled to room temperature.

Figure 0004912013
Figure 0004912013

得られた各鋼板について、加工度(t/D)を変化させて、プレスベンド冷間成形によって鋼管を作製した。このとき、鋼管のプレス曲げ成形時の割れ発生の有無についても調査した。またいずれの場合も、鋼管へ成形した後は、熱処理を行なわなかった。   About each obtained steel plate, the workability (t / D) was changed and the steel pipe was produced by press bend cold forming. At this time, the presence or absence of cracking during press bending of the steel pipe was also investigated. In either case, no heat treatment was performed after forming the steel pipe.

鋼板の機械的特性(降伏応力YS、引張強さTSおよび降伏比YR)を測定すると共に、鋼管の管軸方向(L方向)の機械的特性(降伏応力YS、引張強さTS、降伏比YRおよび靭性)を測定した。また尚、いずれの場合も、鋼管へ成形した後は、熱処理を行なわないものである。機械的特性(鋼板および鋼管)の評価方法、鋼管の靭性評価方法は下記の通りである。   While measuring the mechanical properties (yield stress YS, tensile strength TS and yield ratio YR) of the steel plate, mechanical properties (yield stress YS, tensile strength TS, yield ratio YR) in the tube axis direction (L direction) of the steel pipe And toughness). In either case, heat treatment is not performed after forming into a steel pipe. The evaluation method of mechanical properties (steel plate and steel pipe) and the toughness evaluation method of steel pipe are as follows.

[機械的特性の評価方法]
鋼板のt/4部(tは板厚)からL方向(圧延方向)、および鋼管の外側t/4部の管軸に平行方向(鋼板の主圧延方向に相当)に、JIS Z 2201 4号試験片を採取してJIS Z 2241の要領で引張試験を行ない、鋼板の機械的特性(降伏応力YS、引張り強さTS、降伏比[降伏応力点/引張強度×100%:YR])、鋼管の機械的特性(降伏点YP、引張強さTS、降伏比[降伏応力YS/引張強度×100%:YR])を測定した。また鋼板については、断面方向表裏面下1mmの位置におけるビッカース硬さを荷重10N/mm2で測定した。
[Mechanical property evaluation method]
JIS Z 2201 No. 4 from t / 4 part (t is the plate thickness) of the steel plate to the L direction (rolling direction) and parallel to the tube axis of the outer t / 4 part of the steel pipe (corresponding to the main rolling direction of the steel plate) A specimen was taken and subjected to a tensile test in accordance with JIS Z 2241. The mechanical properties of the steel sheet (yield stress YS, tensile strength TS, yield ratio [yield stress point / tensile strength × 100%: YR]), steel pipe The mechanical properties (yield point YP, tensile strength TS, yield ratio [yield stress YS / tensile strength × 100%: YR]) were measured. Moreover, about the steel plate, the Vickers hardness in the position of 1 mm below cross-section direction front and back was measured with the load of 10 N / mm < 2 >.

[靭性評価方法]
鋼管の外側t/4部から管軸に平行方向(鋼板の主圧延方向)に、JIS Z 2202 4号試験片を採取してJIS Z 2242に準拠してシャルピー衝撃試験を行ない、破面遷移温度(vTrs)を測定した。
[Toughness evaluation method]
A specimen of JIS Z 2202 No. 4 was taken from the outer t / 4 part of the steel pipe in the direction parallel to the pipe axis (main rolling direction of the steel sheet), and Charpy impact test was conducted in accordance with JIS Z 2242. (VTrs) was measured.

鋼板の機械的特性(実測値)を、板厚、製造条件、鋼板の適正範囲[前記(4)式〜(6)式の範囲:計算値)および鋼板表裏面下1mmのビッカース硬さ(HV)と共に、下記表2に示す。また鋼管の機械的特性(実測値)を、鋼管の機械的特性(規格値)、加工度(t/D)、鋼管の衝撃特性(靭性値)および鋼板の曲げ成形時の割れの有無と共に、下記表3に示す。   The mechanical properties (actually measured values) of the steel sheet were measured as follows: plate thickness, manufacturing conditions, appropriate range of steel sheet [range of the above formulas (4) to (6): calculated value), and Vickers hardness (HV) of 1 mm below the front and back surfaces of the steel sheet. And in Table 2 below. In addition, the mechanical properties (measured values) of the steel pipe, along with the mechanical properties (standard value) of the steel pipe, the degree of work (t / D), the impact properties (toughness value) of the steel pipe, and the presence or absence of cracks during bending of the steel sheet, Shown in Table 3 below.

Figure 0004912013
Figure 0004912013

Figure 0004912013
Figure 0004912013

これらの結果から、次のように考察できる。まず鋼スラブに化学成分については、鋼種A〜C、G〜Qについては本発明で規定する化学組成範囲を満足するものであり、鋼種D、E、F、R、Sは本発明で規定する化学成分範囲を外れるものである。   From these results, it can be considered as follows. First, regarding the chemical components of the steel slab, the steel types A to C and G to Q satisfy the chemical composition range defined in the present invention, and the steel types D, E, F, R, and S are defined in the present invention. It is out of the chemical composition range.

このうち鋼種DはC含有量が過剰になったものであり、この鋼種を用いたものでは、製造条件が適切であっても鋼板の適正性能範囲を外れるものとなって、鋼管での降伏比YRが85%を超えたものとなる(実験No.11)。また靭性が悪くなっており、鋼管への曲げ時に割れが発生している。   Of these, steel type D has an excessive C content, and with this steel type, even if the manufacturing conditions are appropriate, the steel sheet is outside the proper performance range, and the yield ratio in the steel pipe YR exceeds 85% (Experiment No. 11). In addition, the toughness is poor and cracking occurs when bending into a steel pipe.

鋼種EはMn含有量が少なくなっているものであり、この鋼種を用いたものでは、製造条件が適切であっても鋼板の引張強さTSが低くなって適正性能範囲を外れることになり、鋼管成形後の引張強さTSが不足している(実験No.12)。   Steel type E has a reduced Mn content, and with this steel type, the tensile strength TS of the steel sheet is lowered even if the production conditions are appropriate, and the proper performance range is deviated. The tensile strength TS after forming the steel pipe is insufficient (Experiment No. 12).

鋼種FはS含有量が過剰になっているものであり、この鋼種を用いたものでは、鋼管成形後の靭性が低く、割れが発生している(実験No.13)。鋼種RはN含有量が過剰になっているものであり、この鋼種を用いたものでは、鋼管成形後の靭性が低く、割れが発生している(実験No.25)。鋼種SはMn含有量が過剰になっているものであり、この鋼種を用いたものでは、鋼板の降伏応力YSおよび引張強さTSが高くなり、鋼管成形後の降伏比YSが85%を超えており、靭性が低く、割れが発生している(実験No.26)。また鋼板表面下1mmの硬さが高い場合には、鋼管に曲げたときに割れが発生しやすい状況になっていることが分かる(実験No.11,25,26)。   Steel type F has an excessive S content, and in the case of using this steel type, the toughness after forming the steel pipe is low and cracking occurs (Experiment No. 13). Steel type R has an excessive N content, and in the case of using this steel type, the toughness after forming the steel pipe is low and cracking occurs (Experiment No. 25). Steel type S has an excessive Mn content. With this steel type, the yield stress YS and tensile strength TS of the steel sheet increase, and the yield ratio YS after forming the steel pipe exceeds 85%. The toughness is low and cracking occurs (Experiment No. 26). Moreover, when the hardness of 1 mm below the steel plate surface is high, it turns out that it is in the condition where it is easy to generate | occur | produce a crack when bent to a steel pipe (experiment No.11,25,26).

実験No.5,6,9のものは、鋼スラブの化学成分組成は本発明で規定する範囲を満足するものであるが、製造条件が本発明で規定する範囲を外れるものであり、鋼板の機械的特性が適正性能範囲を外れており、鋼管の機械的特性において規格値から外れたものとなっている。また鋼板表面下1mmの硬さが高い場合には、鋼管に曲げたときに割れが発生しやすい状況になっていることが分かる(実験No.11,25,26)。   Experiment No. Nos. 5, 6, and 9 are those in which the chemical composition of the steel slab satisfies the range specified by the present invention, but the manufacturing conditions are outside the range specified by the present invention, and the mechanical properties of the steel sheet Is out of the proper performance range, and the mechanical properties of the steel pipe are out of the standard value. Moreover, when the hardness of 1 mm below the steel plate surface is high, it turns out that it is in the condition where it is easy to generate | occur | produce a crack when bent to a steel pipe (experiment No.11,25,26).

これらに対し、実験No.1〜4,7,8,10,14〜24のものは、鋼スラブの化学成分組成および製造条件のいずれも本発明で規定する範囲を満足するものであり、鋼板の機械的特性が適正性能範囲を満足するものとなっており、その結、機械的特性において規格値を満足する鋼管が得られていることが分かる。   In contrast, Experiment No. 1 to 4, 7, 8, 10, 14 to 24 satisfy both the chemical component composition and the production conditions of the steel slab within the range specified in the present invention, and the mechanical properties of the steel sheet are appropriate. It can be seen that a steel pipe satisfying the standard value in the mechanical properties is obtained.

加工度(t/D)と成形後の降伏応力変化量ΔYSとの関係を示すグラフである。It is a graph which shows the relationship between a workability (t / D) and the yield stress variation | change_quantity (DELTA) YS after shaping | molding. 加工度(t/D)と成形後の引張強さ変化量ΔTSとの関係を示すグラフである。It is a graph which shows the relationship between a workability (t / D) and tensile strength change amount (DELTA) TS after shaping | molding. 加工度(t/D)と成形後の降伏比変化量ΔYRとの関係を示すグラフである。It is a graph which shows the relationship between a workability (t / D) and the yield ratio variation | change_quantity (DELTA) YR after shaping | molding.

Claims (7)

C:0.02〜0.20%(質量%の意味、以下同じ)、Si:0.05〜0.5%、Mn:0.50〜2.0%、Al:0.01〜0.1%およびN:0.002〜0.007%を夫々含有すると共に、P:0.02%以下(0%を含まない)およびS:0.008%以下(0%を含まない)に夫々抑制したものであり、残部がFeおよび不可避的不純物からなる鋼スラブを用い、下記(1)〜(3)のいずれかの熱処理を施して厚鋼板を製造することによって、
円形鋼管の板厚をt(mm)、外径をD(mm)、鋼管製品規格の降伏強さをYS0(MPa)以上、引張強さをTS0(MPa)以上、降伏比を85%以下としたとき、前記鋼板における降伏強さが(YS0−980t/D)〜(YS0−980t/D+120)(MPa)、鋼板の引張強さが(TS0−560t/D)〜(TS0−560t/D+100)(MPa)、鋼板の降伏比が(75−82t/D)(%)以下、鋼板表裏面から深さ1mmでの硬さがHV140〜200となるように夫々制御し、
該鋼板をプレスベンド冷間成形で円形鋼管とし、その後の熱処理を行なわないことを特徴とする、引張強さが490MPa級以上で耐震性に優れたプレスベンド冷間成形円形鋼管の製造方法。
(1)鋼スラブを1000〜1250℃に加熱して圧延した後、800℃以上の温度から空冷し、850℃以上の温度に再加熱後、1〜50℃/秒の冷却速度で200℃以下まで冷却し、引き続き700〜850℃の二相域温度に再加熱した後、1〜50℃/秒の冷却速度で200℃以下まで冷却し、更に500〜700℃の温度に加熱した後空冷する。
(2)鋼スラブを1000〜1250℃に加熱して圧延した後、800℃以上の温度から1〜50℃/秒の冷却速度で200℃以下まで冷却し、引き続き700〜850℃の二相域温度に再加熱した後、1〜50℃/秒の冷却速度で200℃以下まで冷却し、更に500〜700℃の温度に加熱した後空冷する。
(3)鋼スラブを1000〜1250℃に加熱して圧延した後、650〜800℃の二相域温度から1〜50℃/秒の冷却速度で200℃以下まで冷却し、更に500〜700℃の温度に加熱した後空冷する。
C: 0.02 to 0.20% (meaning of mass%, the same applies hereinafter), Si: 0.05 to 0.5%, Mn: 0.50 to 2.0%, Al: 0.01 to 0. 1% and N: 0.002 to 0.007%, respectively, P: 0.02% or less (not including 0%) and S: 0.008% or less (not including 0%), respectively By using a steel slab composed of Fe and unavoidable impurities in the balance, and performing a heat treatment of any of the following (1) to (3) to produce a thick steel plate,
Round steel pipe thickness is t (mm), outer diameter is D (mm), steel pipe product standard yield strength is YS 0 (MPa) or more, tensile strength is TS 0 (MPa) or more, yield ratio is 85% In the following, the yield strength in the steel sheet is (YS 0 -980 t / D) to (YS 0 -980 t / D + 120) (MPa), and the tensile strength of the steel sheet is (TS 0 -560 t / D) to (TS 0 -560t / D + 100) ( MPa), yield ratio of the steel sheet (75-82t / D) (%) or less, hardness at a depth of 1mm from the steel plate front and back surfaces are the respective control so that HV140~200,
A method for producing a pressed bend cold-formed circular steel pipe having a tensile strength of 490 MPa or more and excellent in earthquake resistance, characterized in that the steel sheet is formed into a circular steel pipe by press-bending cold forming and no subsequent heat treatment is performed.
(1) After heating and rolling a steel slab to 1000 to 1250 ° C, air cooling from a temperature of 800 ° C or higher, reheating to a temperature of 850 ° C or higher, and 200 ° C or lower at a cooling rate of 1 to 50 ° C / sec. After cooling to 700 to 850 ° C. in a two-phase region temperature, cooling to 200 ° C. or less at a cooling rate of 1 to 50 ° C./second, further heating to a temperature of 500 to 700 ° C. and then air cooling. .
(2) After heating and rolling the steel slab to 1000 to 1250 ° C., the steel slab is cooled from a temperature of 800 ° C. or more to 200 ° C. or less at a cooling rate of 1 to 50 ° C./second, and subsequently in a two-phase region of 700 to 850 ° C. After reheating to a temperature, it is cooled to 200 ° C. or lower at a cooling rate of 1 to 50 ° C./second, further heated to a temperature of 500 to 700 ° C. and then air-cooled.
(3) After heating and rolling the steel slab to 1000 to 1250 ° C, the steel slab is cooled from a two-phase region temperature of 650 to 800 ° C to 200 ° C or less at a cooling rate of 1 to 50 ° C / second, and further 500 to 700 ° C. After heating to the temperature of
鋼スラブが、更にCu:1%以下(0%を含まない)、Ni:1.5%以下(0%を含まない)、Cr:1%以下(0%を含まない)およびMo:1%以下(0%を含まない)よりなる群から選ばれる1種以上を含有するものである請求項1に記載の製造方法。   Steel slab is further Cu: 1% or less (not including 0%), Ni: 1.5% or less (not including 0%), Cr: 1% or less (not including 0%), and Mo: 1% The manufacturing method according to claim 1, comprising one or more selected from the group consisting of the following (excluding 0%). 鋼スラブが、更にNb:0.05%以下(0%を含まない)を含有するものである請求項1または2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein the steel slab further contains Nb: 0.05% or less (not including 0%). 鋼スラブが、更にV:0.1%以下(0%を含まない)を含有するものである請求項1〜3のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the steel slab further contains V: 0.1% or less (not including 0%). 鋼スラブが、更にB:0.003%以下(0%を含まない)を含有するものである請求項1〜4のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the steel slab further contains B: 0.003% or less (not including 0%). 鋼スラブが、更にCa:0.005%以下(0%を含まない)および/または希土類元素:0.05%以下(0%を含まない)を含有するものである請求項1〜5のいずれかに記載の製造方法。   The steel slab further contains Ca: 0.005% or less (not including 0%) and / or rare earth elements: 0.05% or less (not including 0%). The manufacturing method of crab. 鋼スラブが、更にTi:0.025%以下(0%を含まない)を含有するものである請求項1〜6のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 6, wherein the steel slab further contains Ti: 0.025% or less (not including 0%).
JP2006099470A 2006-03-31 2006-03-31 Manufacturing method of press-bend cold-formed circular steel pipe with excellent earthquake resistance Active JP4912013B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006099470A JP4912013B2 (en) 2006-03-31 2006-03-31 Manufacturing method of press-bend cold-formed circular steel pipe with excellent earthquake resistance
CNB2007100890272A CN100487151C (en) 2006-03-31 2007-03-29 Manufacturing method for pressing-bend cool-forming round steel pipe with excellent shake proof property
KR1020070031001A KR100904581B1 (en) 2006-03-31 2007-03-29 Method of manufacturing a press bended cold formed circular steel excellent in earthquake-proof performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099470A JP4912013B2 (en) 2006-03-31 2006-03-31 Manufacturing method of press-bend cold-formed circular steel pipe with excellent earthquake resistance

Publications (2)

Publication Number Publication Date
JP2007270304A JP2007270304A (en) 2007-10-18
JP4912013B2 true JP4912013B2 (en) 2012-04-04

Family

ID=38673401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099470A Active JP4912013B2 (en) 2006-03-31 2006-03-31 Manufacturing method of press-bend cold-formed circular steel pipe with excellent earthquake resistance

Country Status (3)

Country Link
JP (1) JP4912013B2 (en)
KR (1) KR100904581B1 (en)
CN (1) CN100487151C (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235516A (en) * 2008-03-27 2009-10-15 Kobe Steel Ltd 590 MPa CLASS HIGH YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
KR101344638B1 (en) * 2010-09-29 2014-01-16 현대제철 주식회사 Line pipe steel with excellent hic resistance and method of manufacturing the line pipe steel
KR101277807B1 (en) 2010-10-27 2013-06-21 현대제철 주식회사 HIGH STRENGTH STRUCTURAL STEEL OF TENSILE STRENGTH OF 700MPa GRADE WITH HIGH STRENGTH AND LOW YIELD RATIO AND METHOD OF MANUFACTURING THE SAME
CN102653844B (en) * 2011-03-03 2014-06-04 中国石油天然气集团公司 Electric-resistance-welded steel pipe resisting acidic environment corrosion and preparation method thereof
JP5845989B2 (en) * 2011-03-18 2016-01-20 新日鐵住金株式会社 Welding method of heat-processed steel sheet
JP5794177B2 (en) * 2012-03-06 2015-10-14 新日鐵住金株式会社 Steel pipe manufacturing method
KR101467031B1 (en) * 2012-06-28 2014-12-01 현대제철 주식회사 Steel and method of manufacturing the same
CN103509997B (en) * 2013-09-25 2016-02-10 马钢(集团)控股有限公司 A kind of 440MPa level cold-rolled high-strength automobile structural steel and manufacture method thereof
CN104046889B (en) * 2014-06-09 2016-03-02 首钢总公司 A kind of guide rail cold rolled continuous annealing band steel and production method thereof
CN104117824A (en) * 2014-07-22 2014-10-29 上海加宁新技术研究所 Manufacturing method of super high pressure seamless alloy steel pipe
JP6649187B2 (en) * 2016-06-27 2020-02-19 株式会社神戸製鋼所 Method for estimating tensile properties
CN108486479A (en) * 2018-06-01 2018-09-04 张家港保税区恒隆钢管有限公司 A kind of nuclear power generating equipment seamless steel pipe and preparation method thereof
JP7034861B2 (en) * 2018-08-03 2022-03-14 株式会社神戸製鋼所 Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods
CN111766152B (en) * 2020-08-14 2023-05-09 中国石油天然气集团有限公司 Method for obtaining stress parameters of steel plate for pipe making and steel plate selecting method
CN111766153B (en) * 2020-08-14 2023-01-13 中国石油天然气集团有限公司 Method for obtaining stress characterization parameters of steel plate for pipe making and steel plate selection method
CN112921240A (en) * 2021-01-22 2021-06-08 江苏永钢集团有限公司 Hot-rolled round steel for automobile door hinge and production method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529044B2 (en) * 1991-10-24 1996-08-28 新日本製鐵株式会社 Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH05154544A (en) * 1991-12-04 1993-06-22 Nippon Steel Corp Production of plural layer type welded steel pipe having low yield ratio
JP2687841B2 (en) * 1993-06-01 1997-12-08 住友金属工業株式会社 Low yield ratio high strength steel pipe manufacturing method
JPH09165622A (en) * 1995-12-14 1997-06-24 Nkk Corp Production of stock plate for round column for building
JP3425517B2 (en) 1996-09-30 2003-07-14 Jfeスチール株式会社 High-strength section steel for supports with excellent ductility after cold working and supports
CN100434564C (en) 2001-10-23 2008-11-19 住友金属工业株式会社 Hot press forming method, and a plated steel material therefor and its manufacturing method
JP3779923B2 (en) 2001-12-27 2006-05-31 大同特殊鋼株式会社 High yield strength non-tempered steel

Also Published As

Publication number Publication date
KR20070098678A (en) 2007-10-05
CN101045974A (en) 2007-10-03
KR100904581B1 (en) 2009-06-25
JP2007270304A (en) 2007-10-18
CN100487151C (en) 2009-05-13

Similar Documents

Publication Publication Date Title
JP4912013B2 (en) Manufacturing method of press-bend cold-formed circular steel pipe with excellent earthquake resistance
US10876180B2 (en) Method of manufacturing hot rolled steel sheet for square column for building structural members
JP5069863B2 (en) 490 MPa class low yield ratio cold-formed steel pipe excellent in weldability and manufacturing method thereof
JP4947176B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet
JP5092358B2 (en) Manufacturing method of high strength and tough steel sheet
JP6282577B2 (en) High strength high ductility steel sheet
KR101899670B1 (en) High strength multi-phase steel having excellent burring property at low temperature and method for manufacturing same
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP2012237042A (en) High-strength cold-rolled steel sheet excellent in workability and method for production thereof
JP4329583B2 (en) Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
KR20130046941A (en) High strength steel sheet and method of manufacturing the steel sheet
JP2009235516A (en) 590 MPa CLASS HIGH YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JP2009174019A (en) Low-yield-ratio-type high-strength cold rolled steel sheet with excellent bake hardening characteristic and delayed natural aging characteristic, and its manufacturing method
JP5368820B2 (en) 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
JP2006144087A (en) Web thin high strength wide flange shape and its production method
JP6348436B2 (en) High strength high ductility steel sheet
JP2011144455A (en) Method for producing large thickness low yield ratio high-tensile steel plate
JP2005307342A (en) Manufacturing method of large thickness low yield ratio high-tensile steel plate
JP2003277829A (en) Method of producing high toughness, high tensile strength steel
JP6485125B2 (en) High carbon hot-rolled steel sheet with excellent cold workability
KR20180068087A (en) Ferritic stainless steel with improved impact toughness and method of manufacturing the same
JP4687153B2 (en) Production method of low yield ratio high strength steel
JP7034861B2 (en) Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods
JPH10310821A (en) Manufacture of high tensile strength steel tube for construction use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4912013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3