JPH10310821A - Manufacture of high tensile strength steel tube for construction use - Google Patents

Manufacture of high tensile strength steel tube for construction use

Info

Publication number
JPH10310821A
JPH10310821A JP12051797A JP12051797A JPH10310821A JP H10310821 A JPH10310821 A JP H10310821A JP 12051797 A JP12051797 A JP 12051797A JP 12051797 A JP12051797 A JP 12051797A JP H10310821 A JPH10310821 A JP H10310821A
Authority
JP
Japan
Prior art keywords
steel
pipe
steel pipe
sec
accelerated cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12051797A
Other languages
Japanese (ja)
Inventor
Ryuji Muraoka
隆二 村岡
Noriki Wada
典己 和田
Shinichi Suzuki
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP12051797A priority Critical patent/JPH10310821A/en
Publication of JPH10310821A publication Critical patent/JPH10310821A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of a high tensile strength steel tube for construction use, capable of stably and inexpensively mass-producing a 60kg-class low-yield-ratio steel tube of <=50 mm tube thickness, used for a concrete-filling-type composite steel tube pillar, etc., while obviating the necessity of plate heat treatment after rolling and heat treatment after cold forming. SOLUTION: A steel, having a composition consisting of, by weight. 0.06-0.17% C, 0.06-0.5% Si, 0.5-1.6% Mn, <=0.05% P, <=0.01% S, <=0.07% Al, <=0.006% N, further one or <=2 kinds among 0.05-0.5% Mo, 0.01-0.1% V, and 0.005-0.015% Ti, and the balance Fe with inevitable impurities, is heated to >=1000 deg.C and hot rolled in the temp. region not lower than the Ar3 point. The resultant steel plate is subjected to accelerated cooling down to the temp. region of Ar3 -50 deg.C±30 deg.C at a rate of (1 to 40) deg.C/sec. Subsequently, the acceleratedly cooled steel plate is held in the temp. region of Ar3 -50 deg.C±30 deg.C for 1-150 sec and subjected to accelerated cooling down to 400-600 deg.C at a rate of (1 to 40 deg.C)/sec. The resultant steel plate is cold-formed into steel tube, and further, the tube expanding rate in the final stage of tube manufacture is regulated to >=0.8%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築物などの鉄鋼
構造物に用いられる特に管厚50mm以下、外径400
〜2000mm程度の比較的薄肉の建築用高張力鋼管の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel structure, such as a building, having a pipe thickness of 50 mm or less and an outer diameter of 400 mm or less.
The present invention relates to a method of manufacturing a relatively thin high-strength steel pipe for construction of about 2000 mm.

【0002】[0002]

【従来の技術】今日の高層建築物には、巨大地震に見舞
われた時、柱・梁部材の塑性変形により地盤エネルギー
を吸収させ、大崩壊を回避するという人的安全性を重視
した限界状態設計法が適用される。したがって、限界状
態設計法で使用される柱・梁部材には、高い塑性変形能
の目安として降伏比(YR)が80%以下であることが
望まれる。柱・梁接合部では構造物に衝撃がかかる際、
その応力は鋼管柱の管軸方向に主にかかるため、管軸方
向でのYRが構造物の塑性変形能の目安となる。また、
今日の建築物での意匠性重視の傾向や梁取付などの構造
の自由度の高さから、従来の正方形断面を持つボックス
柱よりも円形の断面を持つ鋼管の需要の伸びが大きい。
円形鋼管の製造方法としては、遠心鋳造法と厚鋼板の冷
間成形法があるが、後者の方が耐震性の面で重要である
靭性に優れているほか、生産性、寸法精度、溶接性の面
でも有利である。
2. Description of the Related Art In today's high-rise buildings, when a huge earthquake is hit, the ground energy is absorbed by plastic deformation of columns and beams to avoid large collapses. The design method is applied. Therefore, it is desired that the column / beam member used in the limit state design method has a yield ratio (YR) of 80% or less as a measure of high plastic deformability. When impact is applied to the structure at the column / beam joint,
Since the stress is mainly applied in the pipe axis direction of the steel pipe column, YR in the pipe axis direction is a measure of the plastic deformability of the structure. Also,
Due to the tendency of design emphasis in today's buildings and the high degree of freedom of structures such as beam mounting, the demand for steel pipes having a circular cross section has increased more than conventional box columns having a square cross section.
There are two methods for manufacturing circular steel pipes: centrifugal casting and cold forming of thick steel plates.The latter is superior in toughness, which is important in terms of seismic resistance, as well as productivity, dimensional accuracy, and weldability. This is also advantageous.

【0003】この場合において、鋼管製造時の冷間成形
による鋼板の歪量は、板厚をt、鋼管外径をDとすると
t/Dで表されるが、このt/Dの上昇に伴い加工硬化
により丸柱の管軸方向のYRが上昇し、YR≦80%と
いう要求値を満足することができなくなる。したがっ
て、限界状態設計法に使用される柱としては十分なもの
とは言えなくなる。また、加工硬化により靭性も劣化し
てしまい、耐震安全性が懸念される。
[0003] In this case, the strain amount of the steel sheet due to the cold forming during the production of the steel pipe is represented by t / D where t is the thickness of the steel pipe and D is the outer diameter of the steel pipe. Due to the work hardening, the YR in the tube axis direction of the round column increases, and the required value of YR ≦ 80% cannot be satisfied. Therefore, it cannot be said that the pillar used in the limit state design method is sufficient. In addition, the toughness is deteriorated by work hardening, and there is a concern about earthquake-resistant safety.

【0004】これを回避する方法として、板厚100m
m程度までの厚肉鋼管の製造方法に関して以下に示す種
々の技術が開示されてきた。特開平3−173719号
公報には冷間成形後鋼管にテンパーを施すものが、特開
平5−65535号公報、特開平5−117746号公
報、特開平5−117747号公報には鋼板にテンパー
や二相域加熱焼入処理を施し、さらに成形後鋼管にSR
(応力除去焼鈍)を施すものが、特開平6−49540
号公報、特開平6−49541号公報、特開平6−12
8641号公報には鋼板に熱処理を施した後、さらに鋼
管を焼ならし処理するものが、また特開平6−2641
43号公報、特開平6−264144号公報には鋼板を
テンパーしたり二相域加熱焼入−テンパー処理を施して
成形前の降伏比を厳しく規制したものが、特開平6−3
40922号公報には鋼板圧延時の1パス当たりの圧下
量を厳しく規定するものが開示されている。
As a method of avoiding this, a sheet thickness of 100 m
Various techniques described below have been disclosed with respect to a method for producing a thick steel pipe up to about m. Japanese Patent Application Laid-Open No. 3-173719 discloses a method in which a steel pipe is subjected to tempering after cold forming. Japanese Patent Application Laid-Open Nos. 5-65535, 5-117746, and 5-117747 disclose tempering steel sheets. After two-phase heating and quenching, and after forming, SR
(Stress relief annealing) is disclosed in JP-A-6-49540.
JP, JP-A-6-49541, JP-A-6-1212
JP-A-8641 discloses a method of subjecting a steel sheet to a heat treatment and then normalizing the steel pipe.
JP-A-6-3264 and JP-A-6-264144 disclose a method in which the yield ratio before forming is strictly controlled by tempering a steel sheet or performing a two-phase heating quenching-tempering treatment.
Japanese Patent No. 40922 discloses a technique that strictly defines the amount of reduction per pass when rolling a steel sheet.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た従来の板厚100mm程度までの厚肉鋼管の製造方法
に関する技術は、いずれも極厚鋼管で60キロ級の高強
度と低降伏比を達成するために手間や費用のかかる熱処
理を必要としたり、圧延能率の低下などの犠牲を強いら
れる製造方法となり、工業的な見地からは改善の余地を
多く残している。一方、圧延まま・冷間成形ままでも低
YRを具備する鋼管としては特開平5−156357号
公報が開示されているが、強度レベルは50キロ級に限
定されている。
However, the above-mentioned techniques relating to the conventional method for manufacturing a thick steel pipe having a thickness of up to about 100 mm achieve a high strength and a low yield ratio of 60 kg class with an extremely thick steel pipe. For this reason, the production method requires labor and costly heat treatment, or requires a sacrifice such as a reduction in rolling efficiency, and leaves much room for improvement from an industrial viewpoint. On the other hand, JP-A-5-156357 discloses a steel pipe having a low YR even as it is rolled or cold formed, but its strength level is limited to a 50 kg class.

【0006】ところで、鋼管柱の一種として、鋼管の内
部にコンクリートを充填し、合成構造として剛性・耐力
をもたせる新タイプの柱の実用化が検討されている。こ
の場合、鋼管とコンクリートとの複合材となるため、同
じ耐荷重性能を得るための鋼管の厚さは鋼管単体の場合
の約1/2とすることが可能となる。このため例えば5
0mm以下の比較的薄肉の60キロ級低降伏比鋼管が必
要となってくるが、前述の開示済みの厚肉鋼管製造技術
では経済性と生産性に問題があり、薄肉の60キロ級低
降伏比鋼管を安価にかつ大量に製造し得る技術が必要と
なっている。
[0006] As a kind of steel pipe column, practical use of a new type of column which is filled with concrete inside a steel pipe and has rigidity and strength as a composite structure has been studied. In this case, since the composite material is a steel pipe and concrete, the thickness of the steel pipe for obtaining the same load-bearing performance can be reduced to about の of the thickness of the steel pipe alone. Therefore, for example, 5
Although a relatively thin 60 kg class low yield ratio steel pipe having a thickness of 0 mm or less is required, the disclosed thick wall steel pipe manufacturing technology has problems in economy and productivity, and the thin wall 60 kg class low yield ratio steel pipe has problems. There is a need for a technology that can produce a specific steel pipe at low cost and in large quantities.

【0007】本発明の目的は、コンクリート充填型複合
鋼管柱などに用いる管厚50mm以下の低降伏比60キ
ロ級鋼管を、圧延後の板熱処理及び冷間成形後の熱処理
を必要とすることなく安価で大量に安定して製造でき
る、建築用高張力鋼管の製造方法を提供することにあ
る。
An object of the present invention is to provide a low-yield-ratio 60-kilometer steel pipe having a pipe thickness of 50 mm or less used for a concrete-filled composite steel pipe column or the like without requiring sheet heat treatment after rolling and heat treatment after cold forming. An object of the present invention is to provide a method for manufacturing a high-strength steel pipe for building, which can be stably manufactured at a low cost and in large quantities.

【0008】[0008]

【課題を解決するための手段】前記課題を解決し目標を
達成するために、本発明は以下に示す手段を用いてい
る。
The present invention uses the following means to solve the above-mentioned problems and achieve the object.

【0009】(1)本発明の鋼管の製造方法は、重量%
で、C:0.06〜0.17%と、Si:0.06〜
0.5%と、Mn:0.5〜1.6%と、P≦0.05
%と、S≦0.01%と、Al≦0.07%と、N≦
0.006%と、さらに、Mo:0.05〜0.5%、
V:0.01〜0.1%、及びTi:0.005〜0.
015%の群から選択された1種または2種以上と、残
部がFe及び不可避的不純物とからなる鋼組成を有する
鋼管を製造する方法において、鋼を1000℃以上に加
熱後Ar3 以上の温度域において熱間圧延する工程と、
熱間圧延された鋼板をAr3 −50℃±30℃の温度
域まで1〜40℃/秒で加速冷却する工程と、加速冷却
された鋼板をAr3 −50℃±30℃の温度域で1〜1
50秒間待機した後、400〜600℃の温度域まで1
〜40℃/秒で加速冷却する工程と、得られた鋼板を冷
間成形して鋼管とし、造管最終工程における拡管率を
0.8%以上とする工程と、を備えたことを特徴とする
建築用高張力鋼管の製造方法である。
(1) The method for producing a steel pipe according to the present invention is characterized in that
And C: 0.06 to 0.17% and Si: 0.06 to
0.5%, Mn: 0.5 to 1.6%, and P ≦ 0.05
%, S ≦ 0.01%, Al ≦ 0.07%, and N ≦
0.006%, and further, Mo: 0.05 to 0.5%,
V: 0.01-0.1%, and Ti: 0.005-0.
In a method for producing a steel pipe having a steel composition composed of one or more selected from the group of 015% and a balance of Fe and unavoidable impurities, the steel is heated to 1000 ° C. or more and then heated to a temperature of Ar 3 or more. Hot rolling in the zone,
A step of accelerated cooling the hot rolled steel sheet by Ar 3 -50 ℃ ± 30 ℃ temperature range up to 1 to 40 ° C. / sec, the accelerated cooled steel sheet at a temperature range of Ar 3 -50 ℃ ± 30 ℃ 1 to 1
After waiting for 50 seconds, until the temperature range of 400-600 ° C
A step of accelerating cooling at 4040 ° C./sec, and a step of cold-forming the obtained steel sheet into a steel pipe, and setting a pipe expansion ratio to 0.8% or more in a final pipe-forming step. This is a method for producing a high-strength steel pipe for construction.

【0010】(2)本発明の鋼管の製造方法は、重量%
で、C:0.06〜0.17%と、Si:0.06〜
0.5%と、Mn:0.5〜1.6%と、P≦0.05
%と、S≦0.01%と、Al≦0.07%と、N≦
0.006%と、さらに、Cu:0.05〜0.5%、
Ni:0.05〜0.8%、Cr:0.05〜0.5
%、及びNb:0.005〜0.05%の群から選択さ
れた1種または2種以上と、残部がFe及び不可避的不
純物とからなる鋼組成を有する鋼管を製造する方法にお
いて、鋼を1000℃以上に加熱後Ar3 以上の温度域
において熱間圧延する工程と、熱間圧延された鋼板をA
3 −50℃±30℃の温度域まで1〜40℃/秒で加
速冷却する工程と、加速冷却された鋼板をAr3 −50
℃±30℃の温度域で1〜150秒間待機した後、40
0〜600℃の温度域まで1〜40℃/秒で加速冷却す
る工程と、得られた鋼板を冷間成形して鋼管とし、造管
最終工程における拡管率を0.8%以上とする工程と、
を備えたことを特徴とする建築用高張力鋼管の製造方法
である。
(2) The method for producing a steel pipe according to the present invention comprises:
And C: 0.06 to 0.17% and Si: 0.06 to
0.5%, Mn: 0.5 to 1.6%, and P ≦ 0.05
%, S ≦ 0.01%, Al ≦ 0.07%, and N ≦
0.006%, and further, Cu: 0.05 to 0.5%,
Ni: 0.05 to 0.8%, Cr: 0.05 to 0.5
%, And Nb: in a method for producing a steel pipe having a steel composition comprising one or more selected from the group of 0.005 to 0.05% and a balance of Fe and inevitable impurities, A step of hot rolling in a temperature range of Ar 3 or more after heating to 1000 ° C. or more;
r 3 -50 ° C. a step of accelerated cooling to a temperature range of ± 30 ℃ 1~40 ℃ / sec, the accelerated cooled steel plate Ar 3 -50
After waiting for 1 to 150 seconds in the temperature range of
A step of accelerated cooling at a temperature of 1 to 40 ° C./sec to a temperature range of 0 to 600 ° C., and a step of cold-forming the obtained steel sheet to form a steel pipe, and a pipe expansion ratio of 0.8% or more in a final pipe forming step. When,
A method for producing a high-strength steel pipe for buildings, characterized by comprising:

【0011】(3)本発明の鋼管の製造方法は、鋼が、
重量%で、さらに、Cu:0.05〜0.5%、Ni:
0.05〜0.8%、Cr:0.05〜0.5%、及び
Nb:0.005〜0.05%の群から選択された1種
または2種以上を含有していることを特徴とする、上記
(1)に記載の建築用高張力鋼管の製造方法である。
(3) In the method for producing a steel pipe according to the present invention,
% By weight, Cu: 0.05 to 0.5%, Ni:
Contains one or more selected from the group consisting of 0.05 to 0.8%, Cr: 0.05 to 0.5%, and Nb: 0.005 to 0.05%. A method for producing a high-strength steel pipe for construction according to the above (1), which is characterized by the following.

【0012】[0012]

【発明の実施の形態】本発明者は、圧延後や造管後に鋼
板ないし鋼管を熱処理することなく、圧延まま・造管ま
まで管厚50mm以下の低降伏比60キロ級鋼管を製造
するために、圧延・加速冷却条件について検討した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has proposed a method for producing a low yield ratio 60 kg class steel pipe having a pipe thickness of 50 mm or less without heat treatment of a steel sheet or a steel pipe after rolling or pipe forming without heat treatment. Next, the rolling and accelerated cooling conditions were examined.

【0013】その結果、特定量の化学成分を有する鋼を
しかるべき圧延・加速冷却条件で圧延することにより、
鋼組織をフェライト+ベイナイトの二相混合組織として
圧延ままで60キロ級の引張強度と80%以下の低降伏
比を達成し、さらに造管最終工程での拡管率を適正化す
ることにより、造管時の加工硬化による降伏比の上昇を
抑制して成形ままで管軸方向の低降伏比を達成できると
いう知見が得られた。以上の知見に基づき本発明者は、
鋼組成、圧延・加速冷却条件及び造管最終工程における
拡管率を一定範囲内に制御するようにして、圧延まま・
造管ままで管厚50mm以下の低降伏比60キロ級の建
築用高張力鋼管の製造方法を見出し、本発明を完成させ
た。
As a result, by rolling steel having a specific amount of chemical components under appropriate rolling and accelerated cooling conditions,
As a two-phase mixed structure of ferrite and bainite, the steel structure achieves a tensile strength of 60 kg class and a low yield ratio of 80% or less as rolled, and further optimizes the expansion ratio in the final tube forming process to improve the structure. It has been found that it is possible to suppress a rise in the yield ratio due to work hardening during pipe formation and achieve a low yield ratio in the pipe axis direction as it is formed. Based on the above findings, the present inventor:
The steel composition, rolling / accelerated cooling conditions, and the expansion ratio in the final pipe forming process are controlled within certain ranges,
The present inventors have found a method of manufacturing a high-strength steel pipe for building having a low yield ratio of 60 kg and a pipe thickness of 50 mm or less as it is, and completed the present invention.

【0014】すなわち、本発明は、鋼組成及び製造条件
を下記範囲に限定することにより、コンクリート充填型
複合鋼管柱などに用いる管厚50mm以下の低降伏比6
0キロ級鋼管を、圧延後の板熱処理及び冷間成形後の熱
処理を必要とすることなく安価で大量に安定して製造で
きる、建築用高張力鋼管の製造方法を得ることができ
る。以下、本発明の成分添加理由、成分限定理由、及び
製造条件の限定理由について説明する。
That is, according to the present invention, the steel composition and the production conditions are limited to the following ranges, so that a low yield ratio of not more than 50 mm and a pipe thickness of 50 mm or less used for a concrete-filled composite steel pipe column or the like is provided.
It is possible to obtain a method for manufacturing a high-strength steel pipe for building, which can stably manufacture a 0-kilometer steel pipe inexpensively and in large quantities without requiring sheet heat treatment after rolling and heat treatment after cold forming. Hereinafter, the reasons for adding the components, the reasons for limiting the components, and the reasons for limiting the production conditions of the present invention will be described.

【0015】(1)成分組成範囲 C:0.06〜0.17% Cは鋼の強度を確保するために0.06%以上添加する
が、多量に含有させると靭性あるいは溶接性が劣化する
ため、その上限はそのような影響のない限界の0.17
%である。
(1) Component composition range: C: 0.06 to 0.17% C is added in an amount of 0.06% or more in order to secure the strength of steel, but if contained in a large amount, toughness or weldability deteriorates. Therefore, the upper limit is 0.17 of the limit without such an effect.
%.

【0016】Si:0.06〜0.5% Siは脱酸のために鋼に必然的に含まれる元素であり、
低降伏比確保の観点からその含有量は0.06%以上で
あるが、Siは多すぎるとHAZ(熱影響部)靭性及び
溶接性の観点から好ましくない影響を及ぼすため、その
上限はそのような影響の現れない限界の0.5%であ
る。
Si: 0.06 to 0.5% Si is an element that is inevitably contained in steel for deoxidation.
From the viewpoint of ensuring a low yield ratio, the content is 0.06% or more. However, too much Si has an unfavorable effect from the viewpoint of HAZ (heat affected zone) toughness and weldability. It is 0.5% of the limit at which no significant effect appears.

【0017】Mn:0.5〜1.6% Mnは鋼板の強度・靭性の向上ならびにFeSの生成抑
制のため、0.5%以上は必要であるが、多量の添加は
鋼の焼入性の増加を引き起こし、溶接時に硬化層が出現
して割れ感受性が高くなるため、その上限はそのような
悪影響を及ぼさない限界の1.6%である。
Mn: 0.5 to 1.6% Mn is required to be 0.5% or more in order to improve the strength and toughness of the steel sheet and to suppress the generation of FeS. The upper limit is 1.6% of the limit that does not have such an adverse effect because a hardened layer appears at the time of welding to increase the crack sensitivity.

【0018】P≦0.05%、S≦0.01% P,Sは鋼中に混入する不純物として不可避的に存在す
るが、Pの低減は粒界破壊の防止に有効であり、Sの低
減は溶接熱影響部の水素割れ防止に有効であるため、そ
れぞれそのような効果が発揮される0.05%以下、
0.01%以下である。
P ≦ 0.05%, S ≦ 0.01% P and S are inevitably present as impurities mixed in the steel, but the reduction of P is effective in preventing grain boundary destruction, and Since the reduction is effective in preventing hydrogen cracking in the heat affected zone, 0.05% or less, at which such effects are exhibited,
It is 0.01% or less.

【0019】Al≦0.07% Alは脱酸上鋼に含まれる元素であるが、多量に含有さ
せると鋼の清浄度を悪くし、溶接部の靭性劣化を招くた
め、その上限はそのような影響がない限界の0.07%
である。
Al ≦ 0.07% Al is an element contained in the deoxidized steel, but if contained in a large amount, the cleanliness of the steel is deteriorated and the toughness of the weld is deteriorated. 0.07% of the limit without significant influence
It is.

【0020】N≦0.006% Nは鋼中に含まれる不可避的な不純物元素であるが、N
量が多くなるとHAZ靭性の劣化や連続鋳造スラブ疵の
発生を助長するため、その上限はそのような影響のない
限界の0.006%である。
N ≦ 0.006% N is an unavoidable impurity element contained in steel.
If the amount increases, it promotes deterioration of HAZ toughness and generation of flaws in continuously cast slabs, so the upper limit is 0.006% of the limit without such influence.

【0021】本発明は以上を基本成分とし、以下の選択
成分群A,Bのいずれか、または両方を添加する。
In the present invention, the above components are used as basic components, and one or both of the following selected component groups A and B are added.

【0022】(選択成分群A)Mo:0.05〜0.5
%、V:0.01〜0.1%、及びTi:0.005〜
0.015%の群から選択された1種または2種以上 Mo:0.05〜0.5% Moは焼入性を高めるとともに焼戻し軟化抵抗を高め、
強度上昇に有効であるが、その含有量が0.05%未満
ではその効果が十分に発揮されず、0.5%を越えると
溶接性を劣化させるとともに、炭化物の析出により降伏
比が上昇するため、Moを添加する場合にはその量は
0.05〜0.5%の範囲である。
(Selective component group A) Mo: 0.05 to 0.5
%, V: 0.01 to 0.1%, and Ti: 0.005 to
One or more selected from the group of 0.015% Mo: 0.05 to 0.5% Mo enhances hardenability and increases temper softening resistance,
Although effective for increasing the strength, if the content is less than 0.05%, the effect is not sufficiently exhibited. If the content exceeds 0.5%, the weldability is deteriorated, and the yield ratio is increased due to precipitation of carbide. Therefore, when Mo is added, its amount is in the range of 0.05 to 0.5%.

【0023】V:0.01〜0.1% Vは少量の添加により焼入性を向上させ、焼戻し軟化抵
抗を高める元素であるが、その含有量が0.01%未満
ではその効果が十分に発揮されず、0.1%を越えて添
加すると溶接性を劣化させるため、Vを添加する場合に
はその量は0.01〜0.1%の範囲である。
V: 0.01% to 0.1% V is an element that improves hardenability and increases temper softening resistance by adding a small amount, but if its content is less than 0.01%, the effect is sufficient. When V is added, the amount is in the range of 0.01 to 0.1%.

【0024】Ti:0.005〜0.015% Tiは、TiNの溶接HAZ部の組織粗大化を抑制して
HAZ靭性の向上に寄与する元素である。0.005%
未満のTi添加ではHAZ靭性向上効果が発揮されな
い。0.015%を越えて添加すると、溶接の冷却過程
でTiCが析出し、HAZ靭性の劣化を招く。したがっ
て、Tiを添加する場合には0.005〜0.015%
の範囲である。
Ti: 0.005 to 0.015% Ti is an element that contributes to improving the HAZ toughness by suppressing the coarsening of the structure of the welded HAZ of TiN. 0.005%
If less than Ti is added, the effect of improving the HAZ toughness is not exhibited. If it is added in excess of 0.015%, TiC precipitates during the cooling process of welding, leading to deterioration of HAZ toughness. Therefore, when Ti is added, 0.005 to 0.015%
Range.

【0025】(選択成分群B)Cu:0.05〜0.5
%、Ni:0.05〜0.8%、Cr:0.05〜0.
5%、及びNb:0.005〜0.05%の群から選択
された1種または2種以上 Cu:0.05〜0.5% Cuは強度上昇および靭性改善に非常に有効な元素であ
るが、含有量が0.05%未満では十分な効果が発揮さ
れず、0.5%を越えると析出効果が著しく、また鋼板
表面に割れが生じやすいため、Cuを添加する場合には
その量は0.05〜0.5%の範囲である。
(Selective component group B) Cu: 0.05 to 0.5
%, Ni: 0.05-0.8%, Cr: 0.05-0.
5% and Nb: one or more selected from the group of 0.005 to 0.05% Cu: 0.05 to 0.5% Cu is a very effective element for increasing the strength and improving the toughness. However, when the content is less than 0.05%, a sufficient effect is not exhibited, and when the content exceeds 0.5%, the precipitation effect is remarkable, and cracks are easily generated on the steel sheet surface. Amounts range from 0.05 to 0.5%.

【0026】Ni:0.05〜0.8% Niは母材の強度ならびに靭性を向上させる効果を有す
るが、その含有量が0.05%未満では十分な効果が得
られず、0.8%を越える添加はコストアップにつなが
るため、Niを添加する場合にはその量は0.05〜
0.8%の範囲である。
Ni: 0.05-0.8% Ni has the effect of improving the strength and toughness of the base material, but if its content is less than 0.05%, a sufficient effect cannot be obtained. %, Leads to an increase in cost.
The range is 0.8%.

【0027】Cr:0.05〜0.5% Crは焼入性向上に有効な元素であるが、その含有量が
0.05%未満では効果が小さく、0.5%を越えると
溶接性やHAZ靭性を劣化させるため、Crを添加する
場合にはその量は0.05〜0.5%の範囲である。
Cr: 0.05 to 0.5% Cr is an effective element for improving hardenability, but if its content is less than 0.05%, the effect is small, and if it exceeds 0.5%, the weldability is increased. When Cr is added to deteriorate the HAZ toughness, the amount is in the range of 0.05 to 0.5%.

【0028】Nb:0.005〜0.05% Nbは微細炭窒化物の析出効果により強度上昇、靭性向
上に有効に作用する元素であるが、その含有量が0.0
05%未満では効果が発揮されず、0.05%を越える
添加は過度の析出効果により降伏比低下の妨げになるた
め、Nbを添加する場合には、その量は0.005〜
0.05%の範囲である。
Nb: 0.005 to 0.05% Nb is an element that effectively acts to increase strength and improve toughness due to the precipitation effect of fine carbonitrides.
If the content is less than 0.05%, the effect is not exhibited, and if the content exceeds 0.05%, an excessive precipitation effect prevents the reduction of the yield ratio.
The range is 0.05%.

【0029】上記の成分組成範囲に調整することによ
り、コンクリート充填型複合鋼管柱用などに用いる管厚
50mm以下の低降伏比60キロ級鋼管を、圧延後の板
熱処理及び冷間成形後の熱処理を必要とすることなく安
価で大量に安定して得ることが可能となる。
By adjusting the component composition to the above range, a steel pipe having a low yield ratio of 60 kg and a pipe thickness of 50 mm or less used for a concrete-filled composite steel pipe column or the like can be subjected to sheet heat treatment after rolling and heat treatment after cold forming. , And can be stably obtained in large quantities at low cost without the need for.

【0030】このような特性の鋼管は以下の製造方法に
より、製造することができる。
A steel pipe having such characteristics can be manufactured by the following manufacturing method.

【0031】(2)鋼管製造工程 (製造条件)上記の成分組成範囲に調整した鋼を100
0℃以上に加熱後Ar3 以上の温度域において熱間圧延
した鋼板をAr3 −50℃±30℃の温度域まで1〜4
0℃/秒で加速冷却する。次に、加速冷却された鋼板を
Ar3 −50℃±30℃の温度域で1〜150秒間待機
した後、400〜600℃の温度域まで1〜40℃/秒
で加速冷却し、得られた鋼板を冷間成形して鋼管とし、
造管最終工程における拡管率を0.8%以上とする。 a.鋼の加熱温度:1000℃以上 鋼を1000℃以上に加熱するのは、最終的に低YRを
得るために前組織を粗粒にしておくためである。
(2) Steel Pipe Manufacturing Process (Manufacturing conditions) 100% of steel adjusted to the above component composition range was used.
After heating to 0 ° C. or higher, the steel sheet hot-rolled in a temperature range of Ar 3 or higher is heated to a temperature range of Ar 3 −50 ° C. ± 30 ° C. in a range of 1 to 4
Accelerate cooling at 0 ° C / sec. Next, after accelerating and cooling the steel sheet after waiting for 1 to 150 seconds in a temperature range of Ar 3 -50 ° C. ± 30 ° C., the steel sheet is accelerated and cooled to a temperature range of 400 to 600 ° C. at 1 to 40 ° C./sec. Cold-formed steel sheet into steel pipe,
The expansion ratio in the final pipe-making process is set to 0.8% or more. a. Heating temperature of steel: 1000 ° C. or higher The purpose of heating steel to 1000 ° C. or higher is to coarsen the prestructure in order to finally obtain a low YR.

【0032】b.熱間圧延終了温度:Ar3 以上 Ar3 以上の温度域で圧延を終了させるのは、集合組織
の発達を抑制して、超音波探傷の測定精度に悪影響を及
ぼす音響異方性をなくすためである。
B. Hot rolling termination temperature: Ar 3 or more The reason for terminating rolling in the temperature range of Ar 3 or more is to suppress the development of texture and eliminate acoustic anisotropy that adversely affects the measurement accuracy of ultrasonic flaw detection. is there.

【0033】c.待機温度:Ar3 −50±30℃ 圧延終了後Ar3 −50±30℃まで加速冷却するのは
生産性を低下させることなく、フェライトが析出する温
度まで冷却させるためである。
C. Standby temperature: Ar 3 -50 ± 30 ° C. After rolling, accelerated cooling to Ar 3 -50 ± 30 ° C. is for cooling to a temperature at which ferrite precipitates without lowering productivity.

【0034】d.待機時間:1〜150秒 Ar3 −50±30℃の温度域で1〜150秒待機する
のはフェライトを一部析出させるためで、その後の更な
る加速冷却により残りのオーステナイトをベイナイト組
織とし、最終的にフェライト+ベイナイトの二相混合組
織として低降伏比を達成する。待機温度がAr3 −20
℃より高温になるとフェライトの生成が遅いため、1〜
150秒の待機時間では十分なフェライトが得られず、
十分なフェライトを得るためには多くの待機時間が必要
となり生産性を損なう。一方、Ar3 −80℃未満とな
るとフェライトが過度に生成しすぎて60キロ級の引張
強度を得難くなる。なお±30℃は実製造時のばらつき
を考慮したものである。 e.加速冷却速度 e−1.待機前の加速冷却速度:1〜40℃/秒 待機前の加速冷却速度は生産性を損なわない程度の冷却
速度でよく、空冷よりも速い1〜40℃/秒である。
D. Standby time: 1 to 150 seconds The reason for waiting for 1 to 150 seconds in the temperature range of Ar 3 -50 ± 30 ° C. is to precipitate a part of ferrite, and the remaining austenite is made into a bainite structure by further accelerated cooling. Finally, a low yield ratio is achieved as a two-phase mixed structure of ferrite and bainite. Standby temperature is Ar 3 -20
If the temperature is higher than ℃, ferrite formation is slow,
With a standby time of 150 seconds, sufficient ferrite cannot be obtained,
In order to obtain sufficient ferrite, a lot of waiting time is required, which impairs productivity. On the other hand, when Ar 3 is lower than −80 ° C., ferrite is excessively generated, and it is difficult to obtain a 60 kg class tensile strength. Note that ± 30 ° C. takes into account variations during actual manufacturing. e. Accelerated cooling rate e-1. Accelerated cooling rate before standby: 1 to 40 ° C./sec The accelerated cooling rate before standby may be a cooling rate that does not impair productivity, and is 1 to 40 ° C./sec faster than air cooling.

【0035】e−2.待機後の加速冷却速度:1〜40
℃/秒 待機後の加速冷却での適正な冷却速度は成分系によって
異なるが、前記の成分範囲でベイナイト組織を得るため
には1℃/秒以上は必要である。一方40℃/秒を越え
ると板表面近傍が異常に硬化するような板厚方向の硬さ
の不均一が生じ、本発明の特徴である圧延まま、すなわ
ちテンパーフリーの状態で造管成形を行うと割れ等の欠
陥が発生するため、上限の冷却速度は40℃/秒であ
る。
E-2. Accelerated cooling rate after standby: 1 to 40
The appropriate cooling rate in accelerated cooling after standby at ° C./sec depends on the component system, but at least 1 ° C./sec is required to obtain a bainite structure within the above component range. On the other hand, when the temperature exceeds 40 ° C./sec, the hardness in the thickness direction such that the vicinity of the plate surface is abnormally hardened is generated, and the tube forming is performed as-rolled, that is, a temper-free state, which is a feature of the present invention. Therefore, the upper limit of the cooling rate is 40 ° C./sec.

【0036】f.加速冷却停止温度:400〜600℃ 待機後の加速冷却の停止温度は常温とせずに400〜6
00℃であるが、これも本発明の特徴である圧延まま
(テンパーフリー)の状態で造管成形を行うために必須
の条件である。すなわち、加速冷却停止温度を400℃
未満とすると、加速冷却時に生成した島状マルテンサイ
トが分解せずに残存するため、靭性が悪く造管成形時に
割れ等の欠陥が発生する。一方、加速冷却停止温度が6
00℃越えでは、ベイナイト変態が十分に終了せずに6
0キロ級の強度を確保することが難しくなる。
F. Accelerated cooling stop temperature: 400 to 600 ° C. After the standby, the accelerated cooling stop temperature is 400 to 6 instead of normal temperature.
Although it is 00 ° C., this is also an essential condition for performing tube forming in an as-rolled (temper-free) state, which is a feature of the present invention. That is, the accelerated cooling stop temperature is set to 400 ° C.
If it is less than 1, since the island-like martensite generated during accelerated cooling remains without being decomposed, the toughness is poor and defects such as cracks are generated during pipe forming. On the other hand, the accelerated cooling stop temperature is 6
Above 00 ° C, bainite transformation is not sufficiently completed and
It is difficult to secure a strength of 0 kilo class.

【0037】g.造管最終工程における拡管率:0.8
%以上 造管成形は所定の寸法が得られる方法であればUOE、
プレスベンド、ロールベンドなどいずれの冷間成形法で
もかまわない。ただし、成形ままで低降伏比を得るため
には、成形の最終工程で拡管を施さなければならない。
これは拡管による円周方向の引張変形は長手方向の圧縮
変形をもたらし、再度長手方向に外力が加わった際にバ
ウシンガー効果により降伏強度が低下し、結果として低
降伏比が達成されることを狙ったものである。ここで、
図2に示すように拡管率が0.8%以上となると80%
以下の低降伏比(YR)が容易に達成されるため、拡管
率の下限は0.8%である。以上により、上記成分系と
圧延・加速冷却条件の採用により圧延ままで60キロ級
の強度と低降伏比を確保でき、さらに拡管率を0.8%
以上とすることにより造管時の加工硬化による降伏比の
上昇を抑制できるため、造管成形ままで低降伏比が達成
できる。以下に本発明の実施例を挙げ、本発明の効果を
立証する。
G. Expansion ratio in final pipe making process: 0.8
% Or more UOE,
Any cold forming method such as press bend and roll bend may be used. However, in order to obtain a low yield ratio as it is, the pipe must be expanded in the final step of molding.
This means that the tensile deformation in the circumferential direction due to expansion causes compression in the longitudinal direction, and when external force is applied in the longitudinal direction again, the yield strength decreases due to the Bauschinger effect, and as a result, a low yield ratio is achieved. It was aimed. here,
As shown in FIG. 2, 80% when the expansion ratio is 0.8% or more.
Since the following low yield ratio (YR) is easily achieved, the lower limit of the pipe expansion ratio is 0.8%. As described above, by employing the above-mentioned components and rolling / accelerated cooling conditions, it is possible to secure a strength of 60 kg class and a low yield ratio as rolled, and to further increase the pipe expansion ratio by 0.8%.
With the above, an increase in the yield ratio due to work hardening at the time of pipe forming can be suppressed, and thus a low yield ratio can be achieved while the pipe is being formed. Hereinafter, examples of the present invention will be described to demonstrate the effects of the present invention.

【0038】[0038]

【実施例】表1に、本発明鋼No.1〜10及び比較鋼
No.11〜20の化学成分及びAr3 温度を、また表
2に各鋼の圧延・造管条件と引張及びシャルピー衝撃試
験の結果を示す(引張試験はJIS Z 2241に準
拠して行った)。
EXAMPLES Table 1 shows the steel No. of the present invention. Nos. 1 to 10 and Comparative Steel Nos. The chemical components and Ar 3 temperature of 11 to 20, also the tensile and rolling and pipe forming conditions of each steel shown in Table 2 and shows the results of Charpy impact test (tensile test was carried out in accordance with JIS Z 2241).

【0039】表1、2より明らかなように、化学成分と
圧延・造管条件が本発明の範囲にある本発明鋼No.1
〜10はいずれも60キロ級(590N/mm2 以上)
の引張強度(TS)と80%以下の低降伏比(YR)、
さらに27%以上の優れた延性(El)と47J以上の
優れた靭性(vE0)を示している。
As is clear from Tables 1 and 2, the steel No. of the present invention whose chemical composition and rolling and pipe forming conditions fall within the scope of the present invention. 1
10 to 60 are all 60 kg class (590 N / mm 2 or more)
Tensile strength (TS) and low yield ratio (YR) of 80% or less,
Furthermore, it shows excellent ductility (El) of 27% or more and excellent toughness (vE0) of 47J or more.

【0040】一方、比較鋼No.11のように加熱温度
が本発明の範囲外の1000℃未満の場合、また、比較
鋼No.12、15のようにMo、Nbを本発明の範囲
を越えて過剰に添加した場合、あるいは比較鋼No.1
3のように圧延仕上温度が本発明の下限のAr3 よりも
低い場合、比較鋼No.19のように拡管率が本発明の
下限の0.8%に満たない場合には、降伏比が80%を
越えている。また、比較鋼No.14のように待機温度
が本発明の下限のAr3 −80℃より低い場合、あるい
は比較鋼No.16のように加速冷却の冷却速度が本発
明の下限の1℃/秒未満の場合には、引張強度が60キ
ロ級(590N/mm2 以上)としては不足している。
比較鋼No.17のように待機時間が本発明の下限の1
秒未満の場合、比較鋼No.18のように待機温度が本
発明の上限のAr3 −20℃より高い場合、比較鋼N
o.20のように加速冷却の停止温度が本発明の下限の
400℃未満の場合には、延性もしくは靭性が不足して
いる。
On the other hand, the comparative steel No. In the case where the heating temperature is less than 1000 ° C. outside the range of the present invention as in the case of Comparative Example No. 11, In the case where Mo and Nb were added in excess of the range of the present invention as in Examples 12 and 15, or when Comparative Steel No. 1
When the rolling finish temperature is lower than the lower limit of Ar 3 of the present invention, as in the case of Comparative Steel No. 3, as shown in FIG. When the pipe expansion ratio is less than the lower limit of 0.8% of the present invention as in 19, the yield ratio exceeds 80%. In addition, the comparative steel No. When the standby temperature is lower than the lower limit of Ar 3 -80 ° C. of the present invention as in the case of Comparative Steel No. When the cooling rate of the accelerated cooling is less than the lower limit of 1 ° C./sec of the present invention as in 16, the tensile strength is insufficient as a 60 kg class (590 N / mm 2 or more).
Comparative steel No. As shown in FIG. 17, the waiting time is one of the lower limits of the present invention.
In the case of less than seconds, the comparative steel No. When the standby temperature is higher than the upper limit of Ar 3 -20 ° C. of the present invention as in No. 18, the comparative steel N
o. When the stop temperature of the accelerated cooling is less than the lower limit of 400 ° C. of the present invention as in 20, ductility or toughness is insufficient.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明によれば、鋼組成及び製造条件を
特定することにより、コンクリート充填型複合鋼管柱な
どに用いる管厚が50mm以下の比較的薄肉の低降伏比
60キロ級鋼管を、圧延ままでかつ造管成形ままで製造
することができる。
According to the present invention, by specifying the steel composition and the production conditions, a relatively thin, low-yield-ratio 60-kilometer steel pipe having a pipe thickness of 50 mm or less used for a concrete-filled composite steel pipe column or the like can be obtained. It can be manufactured as-rolled and as-formed.

【0044】従って、本発明の製造方法を用いれば、造
管前の鋼板や造管後の鋼管を熱処理しなくてもよいた
め、生産性と経済性を著しく高めることができる。
Therefore, by using the manufacturing method of the present invention, it is not necessary to heat-treat the steel plate before pipe forming and the steel pipe after pipe forming, so that productivity and economic efficiency can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る拡管率と管軸方向の
降伏比(YR)との関係を示した図。
FIG. 1 is a view showing a relationship between a pipe expansion ratio and a yield ratio (YR) in a pipe axis direction according to an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/58 C22C 38/58 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/58 C22C 38/58

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.06〜0.17%
と、Si:0.06〜0.5%と、Mn:0.5〜1.
6%と、P≦0.05%と、S≦0.01%と、Al≦
0.07%と、N≦0.006%と、さらに、Mo:
0.05〜0.5%、V:0.01〜0.1%、及びT
i:0.005〜0.015%の群から選択された1種
または2種以上と、残部がFe及び不可避的不純物とか
らなる鋼組成を有する鋼管を製造する方法において、 鋼を1000℃以上に加熱後Ar3 以上の温度域におい
て熱間圧延する工程と、 熱間圧延された鋼板をAr3
−50℃±30℃の温度域まで1〜40℃/秒で加速冷
却する工程と、 加速冷却された鋼板をAr3 −50℃±30℃の温度域
で1〜150秒間待機した後、400〜600℃の温度
域まで1〜40℃/秒で加速冷却する工程と、 得られた鋼板を冷間成形して鋼管とし、造管最終工程に
おける拡管率を0.8%以上とする工程と、 を備えたことを特徴とする建築用高張力鋼管の製造方
法。
C: 0.06 to 0.17% by weight
, Si: 0.06-0.5%, and Mn: 0.5-1.
6%, P ≦ 0.05%, S ≦ 0.01%, Al ≦
0.07%, N ≦ 0.006%, and Mo:
0.05-0.5%, V: 0.01-0.1%, and T
i: In a method for producing a steel pipe having a steel composition composed of one or more selected from the group of 0.005 to 0.015% and the balance of Fe and unavoidable impurities, Ar 3 comprising the steps of hot rolling at heating after Ar 3 or more temperature range, the hot rolled steel sheet
Accelerated cooling to a temperature range of −50 ° C. ± 30 ° C. at a rate of 1 to 40 ° C./sec, and holding the accelerated cooled steel sheet at a temperature range of Ar 3 −50 ° C. ± 30 ° C. for 1 to 150 seconds; A step of accelerated cooling at a temperature of 1 to 40 ° C./sec to a temperature range of up to 600 ° C., and a step of cold-forming the obtained steel sheet to form a steel pipe, and a pipe expansion rate of 0.8% or more in a final pipe forming step. A method for producing a high-strength steel pipe for building, comprising:
【請求項2】 重量%で、C:0.06〜0.17%
と、Si:0.06〜0.5%と、Mn:0.5〜1.
6%と、P≦0.05%と、S≦0.01%と、Al≦
0.07%と、N≦0.006%と、さらに、Cu:
0.05〜0.5%、Ni:0.05〜0.8%、C
r:0.05〜0.5%、及びNb:0.005〜0.
05%の群から選択された1種または2種以上と、残部
がFe及び不可避的不純物とからなる鋼組成を有する鋼
管を製造する方法において、 鋼を1000℃以上に加熱後Ar3 以上の温度域におい
て熱間圧延する工程と、 熱間圧延された鋼板をAr3
−50℃±30℃の温度域まで1〜40℃/秒で加速冷
却する工程と、 加速冷却された鋼板をAr3 −50℃±30℃の温度域
で1〜150秒間待機した後、400〜600℃の温度
域まで1〜40℃/秒で加速冷却する工程と、 得られた鋼板を冷間成形して鋼管とし、造管最終工程に
おける拡管率を0.8%以上とする工程と、 を備えたことを特徴とする建築用高張力鋼管の製造方
法。
2. C: 0.06-0.17% by weight
, Si: 0.06-0.5%, and Mn: 0.5-1.
6%, P ≦ 0.05%, S ≦ 0.01%, Al ≦
0.07%, N ≦ 0.006%, and Cu:
0.05-0.5%, Ni: 0.05-0.8%, C
r: 0.05 to 0.5%, and Nb: 0.005 to 0.5%.
And one or more selected from 0.05% group, the method of the remainder to produce a steel pipe having a steel composition consisting of Fe and unavoidable impurities, after heating than the Ar 3 temperature of the steel above 1000 ° C. a step of hot rolling in range, the hot rolled steel sheet Ar 3
Accelerated cooling to a temperature range of −50 ° C. ± 30 ° C. at a rate of 1 to 40 ° C./sec, and holding the accelerated cooled steel sheet at a temperature range of Ar 3 −50 ° C. ± 30 ° C. for 1 to 150 seconds; A step of accelerated cooling at a temperature of 1 to 40 ° C./sec to a temperature range of up to 600 ° C., and a step of cold-forming the obtained steel sheet to form a steel pipe, and a pipe expansion rate of 0.8% or more in a final pipe forming step. A method for producing a high-strength steel pipe for building, comprising:
【請求項3】鋼は、重量%で、さらに、Cu:0.05
〜0.5%、Ni:0.05〜0.8%、Cr:0.0
5〜0.5%、及びNb:0.005〜0.05%の群
から選択された1種または2種以上を含有していること
を特徴とする、請求項1に記載の建築用高張力鋼管の製
造方法。
3. The steel, in weight%, further comprises: Cu: 0.05
0.5%, Ni: 0.05-0.8%, Cr: 0.0
2. The building height according to claim 1, comprising one or more selected from the group of 5 to 0.5% and Nb: 0.005 to 0.05%. Manufacturing method of tensile steel pipe.
JP12051797A 1997-05-12 1997-05-12 Manufacture of high tensile strength steel tube for construction use Pending JPH10310821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12051797A JPH10310821A (en) 1997-05-12 1997-05-12 Manufacture of high tensile strength steel tube for construction use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12051797A JPH10310821A (en) 1997-05-12 1997-05-12 Manufacture of high tensile strength steel tube for construction use

Publications (1)

Publication Number Publication Date
JPH10310821A true JPH10310821A (en) 1998-11-24

Family

ID=14788202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12051797A Pending JPH10310821A (en) 1997-05-12 1997-05-12 Manufacture of high tensile strength steel tube for construction use

Country Status (1)

Country Link
JP (1) JPH10310821A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043856A (en) * 2002-07-10 2004-02-12 Nippon Steel Corp Low yield ratio type steel pipe
JP2007015008A (en) * 2005-07-11 2007-01-25 Jfe Steel Kk Method for producing low yr electric resistance welded tube for line pipe
JP2007039811A (en) * 2006-09-01 2007-02-15 Nippon Steel Corp Low yield ratio type steel pipe
CN105970101A (en) * 2016-05-04 2016-09-28 芜湖市爱德运输机械有限公司 High-tenacity bucket elevator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043856A (en) * 2002-07-10 2004-02-12 Nippon Steel Corp Low yield ratio type steel pipe
JP2007015008A (en) * 2005-07-11 2007-01-25 Jfe Steel Kk Method for producing low yr electric resistance welded tube for line pipe
JP2007039811A (en) * 2006-09-01 2007-02-15 Nippon Steel Corp Low yield ratio type steel pipe
JP4571928B2 (en) * 2006-09-01 2010-10-27 新日本製鐵株式会社 Low yield ratio steel pipe
CN105970101A (en) * 2016-05-04 2016-09-28 芜湖市爱德运输机械有限公司 High-tenacity bucket elevator

Similar Documents

Publication Publication Date Title
JP5069863B2 (en) 490 MPa class low yield ratio cold-formed steel pipe excellent in weldability and manufacturing method thereof
JP2009235516A (en) 590 MPa CLASS HIGH YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JPH10195591A (en) High strength hot rolled steel sheet for thermal hardening excellent in stretch-flanging property and its production
JP5368820B2 (en) 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
CN113453816B (en) Square steel pipe, method for producing same, and building structure
JPH10310821A (en) Manufacture of high tensile strength steel tube for construction use
JP4957671B2 (en) Steel pipes for low yield ratio columns for construction, steel plates used therefor, and methods for producing them
JPH1068016A (en) Production of extra thick wide flange shape
JP2000192140A (en) Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity
JP3468072B2 (en) Manufacturing method of low yield ratio section steel
JP2000239743A (en) Manufacture of high tensile steel of low yield ratio, reduced in difference in material quality in plate thickness direction
JPH09111342A (en) Production of low yield ratio steel pipe
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JP3546721B2 (en) Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction
JP2002363642A (en) Method for producing rolled wide flange shape having low yield ratio and excellent toughness
JP3666457B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP2001247935A (en) Rolled shape steel excellent in earthquake resistance and weather resistance and its producing method
JPH08176660A (en) Production of high strength extremely thick rolled wide flange shape steel for construction use, having fire resistance and excellent weldability and reduced in change in strength in plate thickness direction
WO2023053837A1 (en) Rectangular steel pipe and method for manufacturing same, hot-rolled steel sheet and method for manufacturing same, and building structure
JP4218114B2 (en) Manufacturing method of low yield ratio refractory steel
JPH08283836A (en) Production of steel excellent in weldability and acoustic anisotropy
JP3911834B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP3302393B2 (en) Manufacturing method of high strength hardened steel pipe for automobile door reinforcement
JP4207760B2 (en) Steel plates used for the manufacture of steel pipes for low yield ratio columns for construction, and methods for their production
JP2023079163A (en) H-section steel and method of manufacturing same