JP2000239743A - Manufacture of high tensile steel of low yield ratio, reduced in difference in material quality in plate thickness direction - Google Patents

Manufacture of high tensile steel of low yield ratio, reduced in difference in material quality in plate thickness direction

Info

Publication number
JP2000239743A
JP2000239743A JP4494599A JP4494599A JP2000239743A JP 2000239743 A JP2000239743 A JP 2000239743A JP 4494599 A JP4494599 A JP 4494599A JP 4494599 A JP4494599 A JP 4494599A JP 2000239743 A JP2000239743 A JP 2000239743A
Authority
JP
Japan
Prior art keywords
temperature
cooling
transformation point
steel material
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4494599A
Other languages
Japanese (ja)
Inventor
Shinichi Suzuki
伸一 鈴木
Minoru Suwa
稔 諏訪
Ryuji Muraoka
隆二 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4494599A priority Critical patent/JP2000239743A/en
Publication of JP2000239743A publication Critical patent/JP2000239743A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for manufacturing a high tensile steel, capable of giving a stable material quality uniform in a plate-thickness direction and low yield ratio. SOLUTION: This process comprises steps of: producing a slab having a composition consisting of, by weight, 0.02-0.18% C, 0.05-0.5% Si, 0.6-1.7% Mn, <=0.08% Al and the balance Fe with inevitable impurities; heating the slab to >=1000 deg.C; hot rolling the heated slab at a temperature not lower than the Ar3 point at >=50% draft; cooling the hot rolled steel from a surface temperature of >=Ar3 down to <=(Ar3-150 deg.C) at a rate of (2 to 5) deg.C/s; cooling the cooled steel down to a temperature T deg.C between Ar3 and (Ar3-100 deg.C) at a rate of (2 to 15) deg.C/s; air cooling the steel of T deg.C for (t)s satisfying inequality 101.3-0.006×ΔT<=t<=150, wherein ΔT means (Ar3 transformation point -T)[ deg.C]; cooling the air cooled steel down to <400 deg.C at a rate of (2 to 15) deg.C/s; and tempering the cooled steel at a temperature between >500 deg.C and a temperature not higher than the Ac1 point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高層建築物などの
鋼構造物に用いられる低降伏比高張力鋼材、特に、板厚
方向材質差の小さい低降伏比高張力鋼材の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low-yield-ratio high-strength steel material used for steel structures such as high-rise buildings, and more particularly to a method for producing a low-yield-ratio high-strength steel material having a small material difference in a thickness direction.

【0002】[0002]

【従来の技術】近年、建築物の高層化、大型化にともな
い、それに使用される構造部材には厚肉化、高張力化が
要求され、引張強度が490N/mm2以上の高張力鋼材が普及
してきている。また、今日の高層建築物には、巨大地震
に見舞われた時、柱や梁部材の塑性変形により地震エネ
ルギーを吸収させて大崩壊を回避するという人的安全性
を重視した限界状態設計法が適用されているが、それに
は柱や梁部材に低降伏比の鋼材を用いるのが望ましいと
言われている。
2. Description of the Related Art In recent years, as buildings have become higher in height and larger in size, structural members used have been required to be thicker and have higher tensile strength. High tensile steel materials having a tensile strength of 490 N / mm 2 or more have been used. It is becoming popular. In addition, today's high-rise buildings have a critical state design method that emphasizes human safety, which avoids large collapse by absorbing seismic energy by plastic deformation of columns and beam members when a huge earthquake is hit. Although it is applied, it is said that it is desirable to use a steel material having a low yield ratio for a column or a beam member.

【0003】鋼材の低降伏化は、一般的には、圧延後の
鋼材を焼入れと焼戻し処理の間でフェライト+オーステ
ナイトの二相域に加熱するという複雑な熱処理を施す方
法や、熱間圧延後の鋼材をフェライト+オーステナイト
の二相域まで空冷した後加速冷却する方法により、軟質
なフェライト相と硬質なベイナイト相またはマルテンサ
イト相を混在させたフェライト+硬質相の混合組織を形
成することにより達成されることが知られている。しか
し、こうした方法では、複雑な熱処理や加速冷却開始前
に長時間の待機が必要なため生産性の低下や製造コスト
の増加が避けられない。
[0003] Low yielding of a steel material is generally performed by a method of performing a complicated heat treatment in which a steel material after rolling is heated to a two-phase region of ferrite and austenite between quenching and tempering, or after hot rolling. Achieved by forming a mixed structure of ferrite + hard phase in which soft ferrite phase and hard bainite phase or martensite phase are mixed by air cooling the steel material to the two-phase region of ferrite + austenite and then accelerated cooling. Is known to be. However, in such a method, a complicated heat treatment or a long waiting time is required before the start of accelerated cooling, so that a reduction in productivity and an increase in manufacturing cost cannot be avoided.

【0004】より生産性に優れ、低コストな方法とし
て、特公平7-74379号公報や特開平5-271761号公報に
は、熱間圧延後の鋼材を(Ar3変態点−100℃)〜(Ar3変態
点−20℃)の温度まで予備冷却を行った後、鋼材表面の
温度が(Ar3変態点−100℃)以上になるまで復熱させ、再
び15℃/秒を越える冷却速度で400℃未満の温度に冷却
後、400℃〜Ac1変態点の温度で焼戻して低降伏比化を図
る方法が提案されている。
[0004] As a method of higher productivity and lower cost, Japanese Patent Publication No. 7-74379 and Japanese Patent Application Laid-Open No. Hei 5-21761 disclose that a steel material after hot rolling is (Ar 3 transformation point -100 ° C) or less. After pre-cooling to the temperature of (Ar 3 transformation point −20 ° C.), the steel material is reheated until the temperature of the steel surface becomes (Ar 3 transformation point −100 ° C.) or more, and the cooling rate again exceeds 15 ° C./sec. After cooling to a temperature of less than 400 ° C. by tempering at a temperature of 400 ° C. to the Ac 1 transformation point, a method of lowering the yield ratio has been proposed.

【0005】しかし、特公平7-74379号公報や特開平5-2
71761号公報に記載された方法では、鋼材表層で著しい
強度上昇が生じて板厚方向で均一な材質が得られなかっ
たり、予備冷却後の復熱時間によっては低降伏比が得ら
れないといった問題がある。
However, Japanese Patent Publication No. 7-74379 and Japanese Patent Laid-Open No.
According to the method described in Japanese Patent No. 71761, there is a problem that a remarkable rise in strength occurs on the surface of the steel material, so that a uniform material cannot be obtained in the thickness direction, or that a low yield ratio cannot be obtained depending on a recuperation time after pre-cooling. There is.

【0006】一方、板厚方向の材質均一化を図る方法と
して、特開平3-188216号公報には、オーステナイトの再
結晶域で圧延された鋼材をAr3変態点以上の温度から水
冷し、表面温度が(Ar3変態点−150℃)以下の温度になっ
たところで水冷を中止し、表面温度がAc1変態点〜Ar3
態点の温度に復熱した後水冷を再開する方法が、特開平
4-224623号公報には、炭素当量を規定した鋼を850〜900
℃の温度で圧延後、(圧延温度−50℃)以上の温度から40
0〜500℃の温度まで冷却速度3〜12℃/秒で冷却する方法
が、また、特開昭57-152430号公報には、Ar3変態点以上
の温度で圧延後、表面が所望の硬さになる水量密度で水
冷し、表面の最終硬さを決める温度に達したところで水
量密度を増して急冷し中央部の硬さを表面の硬さとほぼ
同一にする方法が開示されている。
On the other hand, Japanese Patent Application Laid-Open No. Hei 3-188216 discloses a method of achieving a uniform material in the thickness direction by water cooling a steel material rolled in an austenite recrystallization region from a temperature not lower than the Ar 3 transformation point. Water cooling is stopped when the temperature reaches (Ar 3 transformation point-150 ° C) or less, and water cooling is resumed after the surface temperature has returned to the temperature from the Ac 1 transformation point to the Ar 3 transformation point. Kaiping
No. 4-224623 discloses that steel having a specified carbon equivalent is 850-900.
After rolling at a temperature of ℃, from the temperature of (rolling temperature -50 ℃) or more to 40
How is cooled at 0 to 500 ° C. cooling rate 3 to 12 ° C. / sec until the temperature, also in JP-A-57-152430, after rolling in than the Ar 3 transformation point temperature, the surface of the desired hard There is disclosed a method in which water is cooled at a water density that becomes small, and when the temperature reaches a temperature that determines the final hardness of the surface, the water density is increased to rapidly cool to make the hardness at the center almost equal to the hardness of the surface.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記特
開平3-188216号公報に記載された方法では、Ac1変態点
〜Ar3変態点の温度に復熱する過程で最初の制御冷却で
生成した硬質ベイナイト組織の一部を逆変態させた後、
水量密度0.6m3/(m2・min)以上で急冷しているため、逆
変態したオーステナイトが再び硬質のマルテンサイトや
ベイナイト組織に変態して板厚方向の硬度差を安定して
低減できない場合がある。また、特開平4-224623号公報
に記載された方法では、鋼板表面と鋼板内部の硬度をそ
れぞれ同時に制御することが難しく、冷却速度が速くな
り上限に近づくと板厚方向の硬度差が大きくなることは
避けられない。さらに、特開昭57-152430号公報に記載
された方法では、冷却停止温度が規定されておらず、停
止温度が低い場合には鋼板内部の硬度がかえって上昇す
るばかりでなく、連続的に冷却するため低降伏比鋼を得
ることが困難である。
However, according to the method described in Japanese Patent Application Laid-Open No. Hei 3-188216, the gas is generated by the first controlled cooling in the process of regaining the temperature from the Ac 1 transformation point to the Ar 3 transformation point. After reverse transformation of part of the hard bainite structure,
Reverse cooling austenite is transformed into hard martensite or bainite structure again due to rapid cooling at a water density of 0.6m 3 / (m 2・ min) or more, and the hardness difference in the sheet thickness direction cannot be reduced stably. There is. Further, in the method described in JP-A-4-224623, it is difficult to simultaneously control the hardness of the steel sheet surface and the hardness of the inside of the steel sheet at the same time, and the difference in hardness in the thickness direction increases as the cooling rate approaches the upper limit and becomes higher. That is inevitable. Furthermore, in the method described in JP-A-57-152430, the cooling stop temperature is not specified, and when the stop temperature is low, not only the hardness inside the steel sheet rather increases but also the continuous cooling. Therefore, it is difficult to obtain a low yield ratio steel.

【0008】本発明は、このような課題を解決するため
になされたもので、安定して板厚方向に均一な材質およ
び低降伏比の得られる高張力鋼材の製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a high-strength steel material stably having a uniform material in a thickness direction and a low yield ratio. And

【0009】[0009]

【課題を解決するための手段】上記課題は、重量%で、
C:0.02〜0.18%、Si:0.05〜0.5%、Mn:0.6〜1.7%、A
l:0.08%以下、を含有し、残部がFeおよび不可避的不純
物からなるスラブを製造する工程と、前記スラブを1000
℃以上の温度に加熱する工程と、前記加熱されたスラブ
を、Ar3変態点以上の温度、50%以上の圧下率で熱間圧延
する工程と、前記熱間圧延後の鋼材を、その表面温度が
Ar3変態点以上の温度から(Ar3変態点−150℃)以下の温
度になるまで2〜5℃/秒の冷却速度で冷却する工程と、
前記冷却された鋼材を、Ar3変態点〜(Ar3変態点−100
℃)の温度T℃になるまで2〜15℃/秒の冷却速度で冷却す
る工程と、前記T℃の鋼材を、下記の式(1)を満足する時
間t秒の間放冷する工程と、前記保持後の鋼材を、400℃
未満の温度になるまで2〜15℃/秒の冷却速度で冷却する
工程と、前記冷却された鋼材を、500℃を越えAc1変態点
以下の温度で焼戻す工程と、を有してなる板厚方向材質
差の小さい低降伏比高張力鋼材の製造方法により解決さ
れる。
Means for Solving the Problems The above problems are expressed in terms of% by weight,
C: 0.02-0.18%, Si: 0.05-0.5%, Mn: 0.6-1.7%, A
l: a step of producing a slab containing 0.08% or less, with the balance being Fe and unavoidable impurities;
Step of heating to a temperature of not less than ° C., the step of hot-rolling the heated slab, at a temperature of not less than the Ar 3 transformation point, at a rolling reduction of 50% or more, the steel material after the hot rolling, the surface thereof temperature
A step of cooling at a cooling rate of 2 to 5 ° C./sec from a temperature of Ar 3 transformation point or higher to a temperature of (Ar 3 transformation point −150 ° C.) or less,
The cooled steel material is changed from the Ar 3 transformation point to (Ar 3 transformation point −100).
(C) at a cooling rate of 2 to 15 ° C / sec until the temperature reaches T ° C, and a step of allowing the steel material at T ° C to cool for a time t seconds satisfying the following equation (1). , The steel material after the holding, 400 ℃
A step of cooling at a cooling rate of 2 to 15 ° C./sec until a temperature of less than, and a step of tempering the cooled steel material at a temperature higher than 500 ° C. and lower than the Ac 1 transformation point. The problem is solved by a method for manufacturing a high yield strength low tensile steel material having a small difference in material in the thickness direction.

【0010】101.3-0.006×ΔT≦t≦150 …(1) ただし、ΔTは(Ar3変態点−T)[℃] なお、上記温度は、特にことわらない限り鋼材板厚方向
の計算により求めた平均温度を表す。
[0010] 10 1.3-0.006 × Δ T ≦ t ≦ 150 ... (1) However, [Delta] T is (Ar 3 transformation point -T) [° C.] Note that the above temperature, the calculation of the steel plate thickness direction unless otherwise stated Represents the average temperature determined by

【0011】以下に、成分および製造条件の限定理由に
ついて説明する。 C:490N/mm2以上の引張強度を得るには0.02%以上にする
必要があるが、0.18%を越えると靭性および溶接性が劣
化するので、0.02〜0.18%とする。
The reasons for limiting the components and the production conditions will be described below. C: To obtain a tensile strength of 490 N / mm 2 or more, it is necessary to make it 0.02% or more. However, if it exceeds 0.18%, toughness and weldability deteriorate, so it is made 0.02 to 0.18%.

【0012】Si:脱酸のために0.05%以上にする必要が
あるが、0.5%を越えると溶接HAZ部靭性および溶接性が
劣化するので、0.05〜0.5%とする。
Si: 0.05% or more must be used for deoxidation, but if it exceeds 0.5%, the toughness and weldability of the welded HAZ are deteriorated.

【0013】Mn:強度確保、靭性向上およびFeSの生成抑
制のために0.6%以上にする必要があるが、1.7%を越える
と焼入れ性が増加し溶接時に硬化層が生成して割れ感受
性が高くなるので、0.6〜1.7%とする。
Mn: To secure strength, improve toughness and suppress generation of FeS, it is necessary to increase the content to 0.6% or more. However, if it exceeds 1.7%, hardenability increases, a hardened layer is formed during welding, and cracking sensitivity is high. Therefore, it is set to 0.6 to 1.7%.

【0014】Al:脱酸のために必要な元素であるが、0.
08%を越えると清浄度が悪化し溶接部の靭性劣化を招く
ので、0.08%以下とする。
Al: an element necessary for deoxidation,
If the content exceeds 08%, the cleanliness deteriorates and the toughness of the welded portion is deteriorated. Therefore, the content is set to 0.08% or less.

【0015】こうした成分からなり残部がFeおよび不可
避的不純物からなるスラブを熱間圧延するに際しては、
良好な熱間加工性を確保するためにスラブを1000℃以上
の温度に加熱する必要がある。
When hot-rolling a slab consisting of these components and the balance consisting of Fe and unavoidable impurities,
It is necessary to heat the slab to a temperature of 1000 ° C. or higher to ensure good hot workability.

【0016】熱間圧延は、Ar3変態点未満の温度で圧延
すると溶接継手部の超音波探傷時に音響異方性が生じ、
また、圧下率を50%未満にすると圧延後のフェライト粒
が粗大化して靭性が劣化するので、Ar3変態点以上の温
度、50%以上の圧下率で行う必要がある。
In hot rolling, when rolling is performed at a temperature lower than the Ar 3 transformation point, acoustic anisotropy occurs during ultrasonic flaw detection of a welded joint,
If the rolling reduction is less than 50%, the ferrite grains after rolling become coarse and the toughness deteriorates. Therefore, it is necessary to perform the rolling at a temperature higher than the Ar 3 transformation point and at a rolling reduction of 50% or higher.

【0017】圧延後の鋼材は、板厚方向の材質均一化お
よび低降伏比化を図るために、以下に述べる種々の冷却
条件で冷却される必要がある。
The rolled steel material needs to be cooled under the following various cooling conditions in order to achieve a uniform material in the thickness direction and a low yield ratio.

【0018】第一の冷却:圧延後の鋼材を冷却するに当
たっては、鋼材の表面がAr3変態点未満の温度になって
から冷却すると粗大なフェライト粒が生成し靭性が劣化
するので、鋼材の表面がAr3変態点以上の温度で冷却を
開始する必要がある。このときの冷却速度は、2℃/秒未
満では粗大なフェライト粒が生成し靭性が劣化し、5℃/
秒以上では表面が硬化し過ぎて板厚方向に材質差が生じ
るので、2〜5℃/秒とする。そして、この速度における
冷却は、鋼材の表面が(Ar3変態点−150℃)より高い温度
で終了すると第二の冷却により表面が硬化し過ぎて板厚
方向に材質差が生じるので、鋼材の表面が(Ar3変態点−
150℃)以下の温度になったところで終了する必要があ
る。
First cooling: In cooling the rolled steel material, when the surface of the steel material is cooled to a temperature lower than the Ar 3 transformation point, coarse ferrite grains are formed and the toughness is deteriorated. It is necessary to start cooling the surface at a temperature equal to or higher than the Ar 3 transformation point. If the cooling rate at this time is less than 2 ° C / sec, coarse ferrite grains are formed, toughness is deteriorated, and 5 ° C /
If the time is longer than 2 seconds, the surface is excessively hardened and a material difference occurs in the thickness direction. When cooling at this rate, if the surface of the steel material is finished at a temperature higher than (Ar 3 transformation point -150 ° C.), the surface is excessively hardened by the second cooling and a material difference occurs in the sheet thickness direction. The surface is (Ar 3 transformation point-
It is necessary to terminate when the temperature reaches 150 ° C or lower.

【0019】第二の冷却:第一の冷却では鋼材の表面の
冷却条件を規定しているが、板厚方向の平均温度は表面
温度に連動して低下しない。そこで、第一の冷却に引き
続き冷却を行い平均温度の低下を図るのがこの冷却の目
的である。このときの冷却速度は、2℃/秒未満では粗大
なフェライト粒が生成し靭性が劣化し、15℃/秒以上で
は表面が硬化し過ぎて板厚方向に材質差が生じるので、
2〜15℃/秒とする必要がある。また、上述したように低
降伏化を図るにはフェライト+硬質相の混合組織にする
必要があるので、所定量のフェライトを析出させなけれ
ばならない。そこで、第二の冷却を、短時間でフェライ
トが析出し易い温度域であるAr3変態点〜(Ar3変態点−1
00℃)の温度T℃で終了させる必要がある。
Second cooling: In the first cooling, the cooling condition of the surface of the steel material is defined, but the average temperature in the thickness direction does not decrease in conjunction with the surface temperature. Therefore, the purpose of this cooling is to perform cooling following the first cooling to reduce the average temperature. At a cooling rate of less than 2 ° C / sec, coarse ferrite grains are formed and the toughness deteriorates, and at 15 ° C / sec or more, the surface hardens too much and a material difference occurs in the thickness direction.
It needs to be 2 to 15 ° C / sec. Further, as described above, a mixed structure of ferrite and a hard phase is required to reduce the yield, so that a predetermined amount of ferrite must be precipitated. Therefore, the second cooling is performed in a temperature range where the ferrite is easily precipitated in a short time, from the Ar 3 transformation point to the (Ar 3 transformation point −1).
(00 ° C.).

【0020】第三の冷却:温度T℃の鋼材を放冷して緩
冷却し、所定量のフェライトを析出させるのがこの冷却
の目的である。490N/mm2以上の引張強度TSが得られ、か
つ降伏比YRが80%以下になる温度T℃と放冷時間t秒の関
係を調査したところ、図1に示すように、温度Tに応じて
上記式(1)を満足する時間t秒放冷すればよいことが明ら
かになった。なお、図1の結果を得るための他の条件は
すべて本発明範囲内としてある。また、生産性を考慮し
て放冷時間tの上限は150秒とする。第四の冷却:第三の
冷却で所定量のフェライトを析出させた後は、未変態の
オ−ステナイトをベイナイトまたはマルテンサイトの硬
質相に変態させるために、放冷後の鋼材を400℃未満の
温度になるまで2〜15℃/秒の冷却速度で冷却する必要が
ある。
Third cooling: The purpose of this cooling is to allow the steel material at a temperature of T ° C. to cool and slowly cool to precipitate a predetermined amount of ferrite. The relationship between the temperature T ° C at which the tensile strength TS of 490 N / mm 2 or more was obtained and the yield ratio YR was 80% or less and the cooling time t seconds was investigated. Thus, it was clarified that it is sufficient to allow the cooling to be performed for a time t seconds satisfying the above expression (1). All other conditions for obtaining the result of FIG. 1 are within the scope of the present invention. Further, in consideration of productivity, the upper limit of the cooling time t is set to 150 seconds. Fourth cooling: After a predetermined amount of ferrite is precipitated by the third cooling, the steel material after cooling is cooled to less than 400 ° C. in order to transform untransformed austenite into a hard phase of bainite or martensite. It is necessary to cool at a cooling rate of 2 to 15 ° C./sec until the temperature reaches the temperature of

【0021】第四の冷却で形成された変態ままの硬質相
は靭性に著しく劣るので、それを向上させるために500
℃を越える温度で焼戻し処理を行う必要がある。ただ
し、Ac1変態点を越えると硬質相が逆変態して軟質化し
高張力鋼材が得られなくなるので、焼戻しはAc1変態点
以下で行う必要がある。また、この焼戻し処理は板厚方
向の材質均一化にも効果がある。
Since the as-transformed hard phase formed by the fourth cooling has remarkably poor toughness, 500%
It is necessary to perform a tempering treatment at a temperature exceeding ℃. However, if the temperature exceeds the Ac 1 transformation point, the hard phase undergoes reverse transformation to become soft and a high-strength steel material cannot be obtained, so that tempering must be performed at the Ac 1 transformation point or less. In addition, this tempering treatment is also effective in making the material uniform in the thickness direction.

【0022】以上のように、成分、熱間圧延、冷却、焼
戻し処理を制御すれば、安定して板厚方向材質差の小さ
い低降伏比高張力鋼材を製造することができる。
As described above, by controlling the components, hot rolling, cooling, and tempering, a low-yield-ratio high-strength steel material having a small difference in material in the thickness direction can be stably manufactured.

【0023】上記第三段階で所定量のフェライトを析出
させた後、400℃未満の温度へ冷却するとき、15℃/秒を
越える冷却速度で行う場合は、焼戻し処理の下限温度を
「630℃を越え」にする必要がある。
When a predetermined amount of ferrite is precipitated in the third step and then cooled to a temperature lower than 400 ° C., if the cooling rate is higher than 15 ° C./sec, the lower limit temperature of the tempering treatment is set to “630 ° C. Beyond.

【0024】重量%で、Cu:0.05〜1.0%、Ni:0.05〜0.8
%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Nb:0.005〜0.10
%、V:0.005〜0.1%、Ti:0.005〜0.03%の中から選ばれ
た1種または2種以上の元素を添加すると、高強度化、靭
性向上、焼入れ性向上、焼戻し軟化防止に効果的であ
る。以下に、その添加量の限定理由を説明する。
By weight%, Cu: 0.05-1.0%, Ni: 0.05-0.8
%, Cr: 0.05-1.0%, Mo: 0.05-1.0%, Nb: 0.005-0.10
%, V: 0.005 to 0.1%, Ti: 0.005 to 0.03% Addition of one or more elements selected from the group is effective in increasing strength, improving toughness, improving hardenability, and preventing tempering softening. It is. The reason for limiting the amount of addition will be described below.

【0025】Cu:0.05%以上添加すると、高強度化が図
れるとともに靭性が向上する。しかし、1.0%を越えて添
加すると、析出硬化が著しくなるとともに表面割れが発
生し易くなる。
When Cu is added in an amount of 0.05% or more, high strength can be achieved and toughness is improved. However, if it is added in excess of 1.0%, precipitation hardening becomes remarkable and surface cracks easily occur.

【0026】Ni:0.05%以上添加すると、高強度化が図
れるとともに靭性が向上する。しかし、0.8%を越えて添
加すると、著しくコストアップになる。
When Ni: 0.05% or more is added, high strength can be achieved and toughness is improved. However, adding more than 0.8% significantly increases the cost.

【0027】Cr:0.05%以上添加すると、焼入れ性が向
上する。しかし、1.0%を越えて添加すると、溶接性や溶
接HAZ部の靭性が劣化する。
[0027] When Cr is added in an amount of 0.05% or more, hardenability is improved. However, if added over 1.0%, the weldability and the toughness of the welded HAZ deteriorate.

【0028】Mo:0.05%以上添加すると、焼入れ性が向
上するとともに焼戻し時の軟化が防止される。しかし、
1.0%を越えて添加すると、溶接性が劣化するとともに炭
化物の析出により降伏比が上昇する。
Mo: When added in an amount of 0.05% or more, hardenability is improved and softening during tempering is prevented. But,
If added in excess of 1.0%, the weldability deteriorates and the yield ratio increases due to the precipitation of carbides.

【0029】Nb:0.005%以上添加すると、微細炭窒化物
の形成により高強度化が図れるとともに、靭性が向上す
る。しかし、0.10%を越えて添加すると、析出硬化によ
り降伏比が上昇する。
When Nb: 0.005% or more is added, high strength can be achieved by formation of fine carbonitrides and toughness is improved. However, when added in excess of 0.10%, the yield ratio increases due to precipitation hardening.

【0030】V:0.005%以上添加すると、焼入れ性が向
上するとともに焼戻し時の軟化が防止される。微細炭窒
化物の形成により高強度化が図れるとともに、靭性が向
上する。しかし、0.1%を越えて添加すると、溶接性が劣
化する。
V: When added in an amount of 0.005% or more, hardenability is improved and softening during tempering is prevented. The formation of fine carbonitrides can increase the strength and improve the toughness. However, if it exceeds 0.1%, the weldability deteriorates.

【0031】Ti:0.005%以上添加すると、窒化物の形成
により溶接HAZ部の組織粗大化が抑制されてHAZ部の靭性
が向上する。しかし、0.03%を越えて添加すると、溶接
後の冷却中に炭化物が析出してHAZ部の靭性が劣化す
る。
When Ti: 0.005% or more is added, coarsening of the structure of the welded HAZ is suppressed by the formation of nitride, and the toughness of the HAZ is improved. However, if it is added in excess of 0.03%, carbides precipitate during cooling after welding and the toughness of the HAZ deteriorates.

【0032】[0032]

【実施例】表1に示す成分と変態点を有する鋼A〜N(A〜
L:本発明鋼、M,N:比較鋼)のスラブを製造し、表2に示
す熱間圧延条件、冷却条件、焼戻し条件で板厚25〜130m
mの試料1〜24を作製した。そして、機械的性質(降伏強
度YS、引張強度TS、降伏比YR、シャルピー衝撃値vE0)、
および表面と板厚中心部のビッカース硬度差ΔHvを調査
した。なお、表2の第一冷却〜第四冷却は、上述した第
一の冷却〜第四の冷却に対応している。
EXAMPLES Steels A to N (A to N) having components and transformation points shown in Table 1
L: Inventive steel, M, N: Comparative steel) slabs were manufactured and subjected to hot rolling conditions, cooling conditions, and tempering conditions shown in Table 2 under a thickness of 25 to 130 m.
m samples 1 to 24 were prepared. And mechanical properties (yield strength YS, tensile strength TS, yield ratio YR, Charpy impact value vE 0 ),
The Vickers hardness difference ΔHv between the surface and the center of the thickness was investigated. The first to fourth coolings in Table 2 correspond to the first to fourth coolings described above.

【0033】結果を表3に示す。本発明の製造条件で作
製された試料1〜12は、いずれも490N/mm2以上のTS、80%
以下のYR、24以下のΔHvを示し、高層建築物などに適し
た板厚方向材質差の小さい低降伏比高張力鋼材であるこ
とがわかる。また、vE0も260J以上あり、高層建築物な
どに用いるにあたり十分に良好な靭性を有する。
The results are shown in Table 3. Samples 1 to 12 produced under the production conditions of the present invention were all TS of 490 N / mm 2 or more, 80%
It shows the following YR and ΔHv of 24 or less, indicating that it is a low-yield-ratio high-tensile steel material with a small difference in material in the thickness direction suitable for high-rise buildings and the like. In addition, vE 0 is 260 J or more, and it has sufficiently good toughness for use in high-rise buildings and the like.

【0034】一方、本発明外の製造条件で作製された試
料14、18、22、23ではYRが80%を越えて低降伏比が得られ
ず、試料13、15、17、21、24ではΔHvが40以上となり板厚方
向の材質均一性に劣り、試料16、19ではTSが490N/mm2
満となり強度不足となり、試料17、20ではvE0が本発明鋼
に比べ著しく靭性が劣る。
On the other hand, in Samples 14, 18, 22, and 23 manufactured under manufacturing conditions outside the present invention, the YR exceeded 80% and a low yield ratio was not obtained, and in Samples 13, 15, 17, 21, and 24, ΔHv is 40 or more, resulting in inferior material uniformity in the plate thickness direction. In samples 16 and 19, TS is less than 490 N / mm 2 , resulting in insufficient strength. In samples 17 and 20, vE 0 is significantly inferior in toughness as compared with the steel of the present invention.

【0035】[0035]

【表1】 【table 1】

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【発明の効果】本発明は以上説明したように構成されて
いるので、安定して板厚方向に均一な材質および低降伏
比の得られ高張力鋼材の製造方法を提供できる。
Since the present invention is constructed as described above, it is possible to stably provide a uniform material in the thickness direction and a low yield ratio, and provide a method for producing a high-tensile steel material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】TS、YRとΔT、放冷時間tの関係を示す図である。FIG. 1 is a diagram showing a relationship between TS, YR, ΔT, and cooling time t.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村岡 隆二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K032 AA01 AA04 AA05 AA11 AA14 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CB02 CC03 CD02 CD03 CF01 CF02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Ryuji Muraoka 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. F-term (reference) 4K032 AA01 AA04 AA05 AA11 AA14 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CB02 CC03 CD02 CD03 CF01 CF02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.02〜0.18%、Si:0.05〜
0.5%、Mn:0.6〜1.7%、Al:0.08%以下、を含有し、残部
がFeおよび不可避的不純物からなるスラブを製造する工
程と、前記スラブを1000℃以上の温度に加熱する工程
と、前記加熱されたスラブを、Ar3変態点以上の温度、5
0%以上の圧下率で熱間圧延する工程と、前記熱間圧延後
の鋼材を、その表面温度がAr3変態点以上の温度から(Ar
3変態点−150℃)以下の温度になるまで2〜5℃/秒の冷却
速度で冷却する工程と、前記冷却された鋼材を、Ar3
態点〜(Ar3変態点−100℃)の温度T℃になるまで2〜15℃
/秒の冷却速度で冷却する工程と、前記T℃の鋼材を、下
記の式(1)を満足する時間t秒の間放冷する工程と、前記
放冷後の鋼材を、400℃未満の温度になるまで2〜15℃/
秒の冷却速度で冷却する工程と、前記冷却された鋼材
を、500℃を越えAc1変態点以下の温度で焼戻す工程と、
を有してなる板厚方向材質差の小さい低降伏比高張力鋼
材の製造方法。 101.3-0.006×ΔT≦t≦150 …(1) ただし、ΔTは(Ar3変態点−T)[℃]
C .: 0.02 to 0.18% by weight, Si: 0.05 to 1% by weight
A step of producing a slab containing 0.5%, Mn: 0.6 to 1.7%, and Al: 0.08% or less, with the balance being Fe and unavoidable impurities; and heating the slab to a temperature of 1000 ° C or higher, The heated slab is heated to a temperature not lower than the Ar 3 transformation point, 5
Hot rolling at a rolling reduction of 0% or more, and subjecting the steel material after the hot rolling to a surface temperature of the Ar 3 transformation point or higher (Ar
(3 transformation point -150 ° C.) step of cooling at a cooling rate of 2-5 ° C. / second until the temperature is not more than, the cooled steel material, Ar 3 transformation point ~ (Ar 3 transformation point -100 ℃) 2 ~ 15 ℃ until temperature T ℃
Cooling at a cooling rate of / sec, and a step of allowing the steel material at T ° C to cool for a time t seconds that satisfies the following formula (1); and 2 ~ 15 ℃ / until temperature
A step of cooling at a cooling rate of seconds, and a step of tempering the cooled steel material at a temperature of 500 ° C. or higher and an Ac 1 transformation point or lower,
A method for producing a low-yield-ratio high-tensile steel material having a small material difference in the thickness direction, comprising: 10 1.3-0.006 × Δ T ≦ t ≦ 150 ... (1) However, [Delta] T is (Ar 3 transformation point -T) [° C.]
【請求項2】 前記放冷後の鋼材を、400℃未満の温度に
なるまで15℃/秒を越える冷却速度で冷却後、630℃を越
えAc1変態点以下の温度で焼戻す請求項1に記載の板厚方
向材質差の小さい低降伏比高張力鋼材の製造方法。
2. The steel material after cooling is cooled at a cooling rate exceeding 15 ° C./sec until the temperature becomes less than 400 ° C., and then tempered at a temperature exceeding 630 ° C. and equal to or lower than an Ac 1 transformation point. The method for producing a low-yield-ratio high-tensile steel material having a small difference in material in the thickness direction according to the above item.
【請求項3】 重量%で、Cu:0.05〜1.0%、Ni:0.05〜
0.8%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Nb:0.005〜
0.10%、V:0.005〜0.1%、Ti:0.005〜0.03%の中から選
ばれた1種または2種以上の元素を含有するスラブを用い
る請求項1または請求項2に記載の板厚方向材質差の小さ
い低降伏比高張力鋼材の製造方法。
3. Cu: 0.05-1.0%, Ni: 0.05-% by weight.
0.8%, Cr: 0.05-1.0%, Mo: 0.05-1.0%, Nb: 0.005-
3. The material in the thickness direction according to claim 1 or 2, wherein a slab containing one or more elements selected from 0.10%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.03% is used. A method for producing a low-yield-ratio high-strength steel material with a small difference.
JP4494599A 1999-02-23 1999-02-23 Manufacture of high tensile steel of low yield ratio, reduced in difference in material quality in plate thickness direction Pending JP2000239743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4494599A JP2000239743A (en) 1999-02-23 1999-02-23 Manufacture of high tensile steel of low yield ratio, reduced in difference in material quality in plate thickness direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4494599A JP2000239743A (en) 1999-02-23 1999-02-23 Manufacture of high tensile steel of low yield ratio, reduced in difference in material quality in plate thickness direction

Publications (1)

Publication Number Publication Date
JP2000239743A true JP2000239743A (en) 2000-09-05

Family

ID=12705633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4494599A Pending JP2000239743A (en) 1999-02-23 1999-02-23 Manufacture of high tensile steel of low yield ratio, reduced in difference in material quality in plate thickness direction

Country Status (1)

Country Link
JP (1) JP2000239743A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307342A (en) * 2004-03-25 2005-11-04 Jfe Steel Kk Manufacturing method of large thickness low yield ratio high-tensile steel plate
JP2011144455A (en) * 2004-03-25 2011-07-28 Jfe Steel Corp Method for producing large thickness low yield ratio high-tensile steel plate
GB2548175A (en) * 2016-03-09 2017-09-13 Goodwin Plc A steel, a welding consumable and a cast steel product
JP2017186592A (en) * 2016-04-04 2017-10-12 新日鐵住金株式会社 Thick steel sheet excellent in hardness of surface layer and sheet thickness center part, small in hardness difference between the surface layer and the center and having sheet thickness of over 200 mm
JP2020020029A (en) * 2018-08-03 2020-02-06 株式会社神戸製鋼所 Steel sheet for circular steel tube having high strength, low yield ratio and excellent in weldability, circular steel tube, and methods of producing them
CN115710675A (en) * 2022-11-29 2023-02-24 莱芜钢铁集团银山型钢有限公司 500-550 ℃ tempering-resistant softened steel plate and production method thereof
CN115747661A (en) * 2022-11-29 2023-03-07 莱芜钢铁集团银山型钢有限公司 550-600 ℃ tempering-resistant softened steel plate and production method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307342A (en) * 2004-03-25 2005-11-04 Jfe Steel Kk Manufacturing method of large thickness low yield ratio high-tensile steel plate
JP2011144455A (en) * 2004-03-25 2011-07-28 Jfe Steel Corp Method for producing large thickness low yield ratio high-tensile steel plate
GB2548175A (en) * 2016-03-09 2017-09-13 Goodwin Plc A steel, a welding consumable and a cast steel product
GB2548175B (en) * 2016-03-09 2018-10-03 Goodwin Plc A steel, a welding consumable and a cast steel product
JP2017186592A (en) * 2016-04-04 2017-10-12 新日鐵住金株式会社 Thick steel sheet excellent in hardness of surface layer and sheet thickness center part, small in hardness difference between the surface layer and the center and having sheet thickness of over 200 mm
JP2020020029A (en) * 2018-08-03 2020-02-06 株式会社神戸製鋼所 Steel sheet for circular steel tube having high strength, low yield ratio and excellent in weldability, circular steel tube, and methods of producing them
JP7034862B2 (en) 2018-08-03 2022-03-14 株式会社神戸製鋼所 Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods
CN115710675A (en) * 2022-11-29 2023-02-24 莱芜钢铁集团银山型钢有限公司 500-550 ℃ tempering-resistant softened steel plate and production method thereof
CN115747661A (en) * 2022-11-29 2023-03-07 莱芜钢铁集团银山型钢有限公司 550-600 ℃ tempering-resistant softened steel plate and production method thereof
CN115747661B (en) * 2022-11-29 2023-11-24 莱芜钢铁集团银山型钢有限公司 Tempering softening steel plate resistant to 550-600 ℃ and production method thereof
CN115710675B (en) * 2022-11-29 2023-11-28 莱芜钢铁集团银山型钢有限公司 Anti-500-550 ℃ tempering softened steel plate and production method thereof

Similar Documents

Publication Publication Date Title
EP0792379B1 (en) Dual-phase steel and method thereof
KR102098482B1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP3417878B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
JPS6155572B2 (en)
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
JP2000239743A (en) Manufacture of high tensile steel of low yield ratio, reduced in difference in material quality in plate thickness direction
JP3951428B2 (en) Manufacturing method of high strength steel sheet with small material difference in thickness direction
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JP2002294391A (en) Steel for building structure and production method therefor
JPH08209239A (en) Production of thick steel for low temperature use having brittle fracture propagation stop characteristic at lower than-50×c
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JP3546721B2 (en) Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction
JP3468072B2 (en) Manufacturing method of low yield ratio section steel
JP2003277829A (en) Method of producing high toughness, high tensile strength steel
JP3666457B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP3911834B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP2001247935A (en) Rolled shape steel excellent in earthquake resistance and weather resistance and its producing method
JP2002012939A (en) High tensile steel excellent in hot strength and its production method
JP4218114B2 (en) Manufacturing method of low yield ratio refractory steel
JP2000282141A (en) Manufacture of high tensile strength steel product with low yield ratio
JP2003138316A (en) Method of producing ultrahigh tensile strength electric resistance welded tube
JP2601539B2 (en) Manufacturing method of high yield strength and high toughness steel sheet with low ultrasonic anisotropy
JPH10310821A (en) Manufacture of high tensile strength steel tube for construction use
JP2001303128A (en) Method for producing rolled weather resistant shape steel
JP2000178644A (en) Production of low yield ratio high tensile strength steel small in difference in material in plate thickness direction