JP3468072B2 - Manufacturing method of low yield ratio section steel - Google Patents

Manufacturing method of low yield ratio section steel

Info

Publication number
JP3468072B2
JP3468072B2 JP34515697A JP34515697A JP3468072B2 JP 3468072 B2 JP3468072 B2 JP 3468072B2 JP 34515697 A JP34515697 A JP 34515697A JP 34515697 A JP34515697 A JP 34515697A JP 3468072 B2 JP3468072 B2 JP 3468072B2
Authority
JP
Japan
Prior art keywords
steel
yield ratio
low yield
cooling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34515697A
Other languages
Japanese (ja)
Other versions
JPH11172328A (en
Inventor
定弘 山本
隆二 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP34515697A priority Critical patent/JP3468072B2/en
Publication of JPH11172328A publication Critical patent/JPH11172328A/en
Application granted granted Critical
Publication of JP3468072B2 publication Critical patent/JP3468072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高層建築物などの
鉄鋼構造物に用いられる低降伏比形鋼の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low yield ratio section steel used for steel structures such as high-rise buildings.

【0002】[0002]

【従来の技術】今日の高層建築物には、巨大地震に見舞
われた時、柱・梁部材の塑性変形により地震エネルギー
を吸収させ、大崩壊を回避するという人的安全性を重視
した限界状態設計法が適用される。したがって、限界状
態設計法で使用される柱・梁部材には、高い塑性変形能
の目安として降伏比(YR)が低いこと、つまり低降伏
比が望まれ、降伏比が低い材料ほど塑性変形能が優れて
いると言われている。
2. Description of the Related Art In today's high-rise buildings, when a huge earthquake strikes, the plastic energy of the columns and beams absorbs the seismic energy and avoids a major collapse. Design method is applied. Therefore, the column / beam members used in the limit state design method should have a low yield ratio (YR) as a measure of high plastic deformability, that is, a low yield ratio is desired. Is said to be excellent.

【0003】この建築構造の設計サイドからのYRに対
する要望としては、塑性変形の観点から強度を確保でき
る範囲で可能な限り低い方が好ましく、590N/mm
2 級の場合でYRの許容範囲としては80%以下として
いるものの、75%が目標値として挙げられている。低
降伏比化については、一般的に焼入れと焼戻し処理の間
に二相域に加熱する中間熱処理を施す方法等に代表され
るように、軟質相としてのフェライトと硬質相としての
ベイナイトあるいはマルテンサイトを混在させたフェラ
イト+硬質相組織により達成されることが知られてい
る。このフェライト+硬質相組織を得るための従来技術
としては、上述した焼入れ−二相域焼入れ−焼戻し処理
する方法や、熱間圧延後フェライトとオーステナイトの
二相域まで待機した後加速冷却する方法などが挙げられ
るが、これらの技術では複雑な熱処理工程の必要や焼き
入れ開始までの待機時間の長期化による生産性の低下が
避けられない。
From the viewpoint of plastic deformation, it is preferable that YR from the design side of this building structure is as low as possible within the range in which strength can be secured, and 590 N / mm.
In the case of the second class, the allowable range of YR is 80% or less, but 75% is listed as the target value. Regarding the low yield ratio, generally, as represented by a method of performing an intermediate heat treatment of heating in a two-phase region during quenching and tempering, ferrite as a soft phase and bainite or martensite as a hard phase are generally used. It is known that this is achieved by a ferrite + hard phase structure in which a mixture of As a conventional technique for obtaining this ferrite + hard phase structure, the above-mentioned method of quenching-two-phase region quenching-tempering, a method of accelerating cooling after waiting until the two-phase region of ferrite and austenite after hot rolling, etc. However, these techniques inevitably reduce productivity due to the need for complicated heat treatment steps and the long waiting time before the start of quenching.

【0004】これを回避する方法として、鋼板に関して
は特公平7−74379号公報や特開平5−27176
1号公報の技術が開示されている。特公平7−7437
9号公報、特開平5−271761号公報とも、熱間圧
延後にAr3 −20℃以下、Ar3 −100℃以上まで
予備冷却を行った後鋼板表面がAr3 −100℃以上に
復熱させ、再び15℃/秒を超える冷却速度で400〜
600℃まで冷却するというものである。
As a method of avoiding this, Japanese Patent Publication No. 7-74379 and Japanese Unexamined Patent Publication No. 5-27176 disclose a steel sheet.
The technique of Japanese Patent No. 1 is disclosed. Japanese Patent Fair 7-7437
In both No. 9 and JP-A-5-271761, after hot rolling, pre-cooling is performed to Ar 3 −20 ° C. or lower and Ar 3 −100 ° C. or higher, and then the steel sheet surface is reheated to Ar 3 −100 ° C. or higher. , Again at a cooling rate of over 15 ° C./sec.
It is to cool to 600 ° C.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特公平
7−74379号公報、特開平5−271761号公報
には冷却間の復熱時間についての規定がないため、低降
伏比に適した組織に制御し難く、低降伏比鋼の製造安定
性の低下は避けられない。また、形鋼の製造における水
冷設備は一般には鋼板の水冷設備に比べ冷却能力が劣
り、15℃/秒を超える冷却速度で冷却することは難し
い。従って、このような高冷却速度を用いなくても、低
降伏比形鋼を生産性を損なうことなく安価にかつ大量に
製造し得る技術が必要となっている。本発明の目的は、
高層建築物などに用いる降伏比が75%以下の形鋼を安
価で大量に安定して製造できる、低降伏比形鋼の製造方
法を提供することにある。
However, Japanese Patent Publication No. 7-74379 and Japanese Unexamined Patent Publication No. 5-271761 do not specify the reheat time during cooling, so that the structure is controlled to a suitable low yield ratio. It is difficult to do so, and a decrease in the manufacturing stability of low yield ratio steel is inevitable. Further, the water cooling equipment in the production of shaped steel generally has a lower cooling capacity than the water cooling equipment for steel plates, and it is difficult to cool at a cooling rate exceeding 15 ° C / sec. Therefore, there is a need for a technique capable of producing a low yield ratio section steel inexpensively and in large quantities without impairing the productivity without using such a high cooling rate. The purpose of the present invention is to
It is an object of the present invention to provide a method for producing a low yield ratio shaped steel, which can inexpensively and stably produce a large amount of shaped steel having a yield ratio of 75% or less used for high-rise buildings and the like.

【0006】[0006]

【課題を解決するための手段】前記課題を解決し目的を
達成するため、本発明は以下に示す手段を用いている。 (1)本発明の製造方法は、重量%で、C:0.04〜
0.18%と、Si:0.05〜0.5%と、Mn:
0.6〜1.7%と、P≦0.05%と、S≦0.01
%と、Al≦0.08%と、N≦0.008%とを含有
し、残部がFe及び不可避的不純物からなる形鋼を製造
する方法において、鋼を1000℃以上に加熱後、Ar
3以上の温度域において減面率が50%以上の熱間圧延
を行う工程と、熱間圧延された鋼材をAr3以上からA
3−100℃〜Ar3−20℃の温度域まで1℃/秒以
上の冷却速度で加速冷却し、待機温度:T(℃)=Ar
3−100℃〜Ar3−20℃において下記(1)式を満
たす待機時間:t(秒)の待機を行う工程と、フランジ
厚さ:h(mm)の鋼材を400〜600℃の温度域ま
で、下記(2)式を満たす冷却速度:v(℃/秒)で加
速冷却し、引張強度が490N/mm 2 以上で、かつ降
伏比が75%以下の低降伏比形鋼とする工程と、を備え
たことを特徴とする低降伏比形鋼の製造方法である。
In order to solve the above problems and achieve the object, the present invention uses the following means. (1) In the manufacturing method of the present invention, C: 0.04% by weight.
0.18%, Si: 0.05 to 0.5%, Mn:
0.6-1.7%, P ≦ 0.05%, S ≦ 0.01
%, Al ≤ 0.08%, N ≤ 0.008%, and the balance is Fe and inevitable impurities.
A step of performing hot rolling with a surface reduction rate of 50% or more in a temperature range of 3 or more, and a hot rolled steel material from Ar 3 or more to A
Accelerated cooling to a temperature range of r 3 -100 ° C to Ar 3 -20 ° C at a cooling rate of 1 ° C / sec or more, standby temperature: T (° C) = Ar
3 -100 ℃ ~Ar 3 -20 below in ° C. (1) satisfies the formula waiting time: the step of performing standby in t (seconds), the flange
A steel material having a thickness: h (mm) is acceleratedly cooled to a temperature range of 400 to 600 ° C. at a cooling rate satisfying the following expression (2): v (° C./sec), and a tensile strength is 490 N / mm 2 or more, Katsuri
And a step of forming a low yield ratio shaped steel having a yield ratio of 75% or less, and a method for producing a low yield ratio shaped steel.

【0007】10 1.2-0.01×ΔT ≦t≦150秒 …(1) 但し、ΔT=Ar3(℃)−T(℃) 0.9−0.4logh≦logv≦2.6−0.9l
ogh …(2) 但し、h:フランジ厚さ(mm) (2)本発明の製造方法は、鋼成分として、重量%でさ
らに、Cu:0.05〜1%、Ni:0.05〜0.8
%、Cr:0.05〜1%、Mo:0.01〜1%、N
b:0.005〜0.1%、V:0.005〜0.1%
及びTi:0.005〜0.03%の群から選択された
1種または2種以上を含有することを特徴とする、上記
(1)に記載の低降伏比形鋼の製造方法である。
10 1.2-0.01 × ΔT ≦ t ≦ 150 seconds (1) where ΔT = Ar 3 (° C.) − T (° C.) 0.9-0.4 logh ≦ logv ≦ 2.6-0.9 l
oh ... (2) However, h: Flange thickness (mm) (2) In the manufacturing method of the present invention, as a steel component, further, by weight%, Cu: 0.05 to 1%, Ni: 0.05 to 0. .8
%, Cr: 0.05 to 1%, Mo: 0.01 to 1%, N
b: 0.005-0.1%, V: 0.005-0.1%
And Ti: one or two or more selected from the group of 0.005 to 0.03% is contained, and the method for producing a low yield ratio section steel according to the above (1) is characterized.

【0008】[0008]

【発明の実施の形態】本発明者らは、圧延後長時間の待
機及び熱処理することなく、低降伏比形鋼を製造する技
術を得るため、鋼材の強度、降伏比に及ぼす待機温度と
待機時間、さらに待機後の冷却速度の影響について鋭意
検討した結果、以下の知見を得るに至った。図1は、
0.14C−0.25Si−1.2Mn鋼を1250℃
に加熱し、減面率80%の圧下を加え、Ar3点(771
℃)より高い900℃でフランジ厚さ20mmのH形鋼
に圧延し、その後2℃/秒で所定の温度まで冷却、保持
し、さらに550℃まで冷却した場合の引張特性(引張
強度、降伏比(YR))を示す。図1に示すように、待
機温度:T(℃)=Ar3−100℃〜Ar3−20℃に
おいて10 1.2-0.01×ΔT ≦t≦150秒(ΔT=Ar
3−T)待機することにより引張強度が490N/mm2
以上(強度確保)で、かつ降伏比が75%以下となるこ
とが明らかである。
BEST MODE FOR CARRYING OUT THE INVENTION In order to obtain a technique for producing a low yield ratio section steel without waiting for a long time and heat treatment after rolling, the present inventors have made a study on the standby temperature and the standby temperature that affect the strength and yield ratio of steel materials. As a result of diligent examination of the influence of time and the cooling rate after waiting, the following findings have been obtained. Figure 1
0.14C-0.25Si-1.2Mn steel at 1250 ° C
And reduce the surface area by 80% to reduce the Ar 3 point (771
Tensile strength (tensile strength, yield ratio) when rolled into 900 mm higher H-section steel with a flange thickness of 20 mm, cooled to a predetermined temperature at 2 ° C./sec and held, and further cooled to 550 ° C. (YR)) is shown. As shown in FIG. 1, 10 1.2-0.01 × ΔT ≦ t ≦ 150 seconds (ΔT = Ar) at standby temperature: T (° C.) = Ar 3 −100 ° C. to Ar 3 −20 ° C.
3- T) Waiting for tensile strength of 490 N / mm 2
It is clear that above (strength is secured) and the yield ratio is 75% or less.

【0009】図2は、0.14C−0.25Si−1.
4Mn−0.04V鋼を1280℃に加熱し、Ar3
(757℃)より高い950℃で、フランジ厚さ(h)
16mm、40mm、100mmのH形鋼に圧延し、そ
の後1.2℃/秒で700℃まで冷却し、20秒保持
後、種々の冷却速度で500℃まで冷却した場合の引張
特性を示す。図2に示されるように形鋼においてlog
v≧0.9−0.4loghとすることにより降伏比が
75%以下となることが明らかである。
FIG. 2 shows that 0.14C-0.25Si-1.
4Mn-0.04V steel is heated to 1280 ° C, and the flange thickness (h) is 950 ° C higher than Ar 3 point (757 ° C).
The tensile properties are shown when H-section steels of 16 mm, 40 mm, and 100 mm are rolled, then cooled to 700 ° C. at 1.2 ° C./sec, held for 20 seconds, and then cooled to 500 ° C. at various cooling rates. As shown in FIG. 2, log in shaped steel
It is clear that the yield ratio becomes 75% or less by setting v ≧ 0.9−0.4logh.

【0010】以上の知見に基づき、本発明者らは、特定
量の化学成分を有する鋼に施す熱間圧延条件及び加速冷
却条件(2段冷却時の待機温度、待機時間と2段目の冷
却速度を含む)を一定範囲内に制御するようにして、鋼
組織をフェライト+ベイナイトの混合組織とし、圧延ま
まで490N/mm2 以上の引張強度と75%以下の低
降伏比を達成できる低降伏比形鋼の製造方法を見出し、
本発明を完成させた。
Based on the above findings, the present inventors have found that hot rolling conditions and accelerated cooling conditions (standby temperature during second stage cooling, standby time and second stage cooling) to be applied to steel having a specific amount of chemical composition. (Including speed) is controlled within a certain range, and the steel structure has a mixed structure of ferrite and bainite, and low yield that can achieve tensile strength of 490 N / mm 2 or more and low yield ratio of 75% or less as rolled. Finding a manufacturing method for ratio steel,
The present invention has been completed.

【0011】すなわち、本発明は、鋼組成及び製造条件
を下記範囲に限定することにより、高層建築物などに用
いる降伏比が75%以下の形鋼を安価で大量に安定して
製造できる、低降伏比形鋼の製造方法を提供することが
できる。以下に本発明の成分添加理由、成分限定理由、
及び製造条件の限定理由について説明する。
That is, according to the present invention, by limiting the steel composition and the manufacturing conditions to the following ranges, it is possible to inexpensively and stably manufacture a large amount of shaped steel having a yield ratio of 75% or less, which is used for high-rise buildings, etc. A method for manufacturing a yield ratio section steel can be provided. Reasons for adding the components of the present invention, reasons for limiting the components,
The reason for limiting the manufacturing conditions will be described.

【0012】(1)成分組成範囲 C:0.04〜0.18% Cは、鋼の強度を確保するために0.04%以上添加す
るが、0.18%を超えて多量に含有させると靭性ある
いは溶接性が劣化するため、その範囲は0.04〜0.
18%である。
(1) Component composition range C: 0.04 to 0.18% C is added in an amount of 0.04% or more in order to secure the strength of the steel, but is contained in a large amount exceeding 0.18%. Since the toughness or weldability deteriorates, the range is 0.04 to 0.
18%.

【0013】Si:0.05〜0.5% Siは、脱酸のために鋼に必然的に含まれる元素であ
り、低降伏比確保の観点からその含有量は0.05%以
上であるが、Si含有量が0.5%を超えるとHAZ
(熱影響部)靭性及び溶接性の観点から好ましくない影
響を及ぼすため、その範囲は0.05〜0.5%であ
る。
Si: 0.05 to 0.5% Si is an element necessarily contained in steel for deoxidation, and its content is 0.05% or more from the viewpoint of ensuring a low yield ratio. However, if the Si content exceeds 0.5%, HAZ
(Heat-affected zone) Since it has an unfavorable influence from the viewpoint of toughness and weldability, its range is 0.05 to 0.5%.

【0014】Mn:0.6〜1.7% Mnは、鋼材の強度・靭性の向上ならびにFeSの生成
抑制のため0.6%以上は必要であるが、1.7%を超
える多量の添加は鋼の焼入れ性の増加を引き起こし、溶
接時に硬化層が出現して割れ感受性が高くなるため、そ
の範囲は0.6〜1.7%である。 P≦0.05%、S≦0.01% P、Sは、鋼中に混入する不純物として不可避的に存在
するが、Pの低減は粒界破壊の防止に有効であり、Sの
低減は溶接熱影響部の水素割れ防止に有効であるため、
P、Sの含有範囲はそれぞれ0.05%以下、0.01
%以下である。
Mn: 0.6 to 1.7% Mn is required to be 0.6% or more for improving the strength and toughness of steel and suppressing FeS formation, but a large amount of addition exceeding 1.7%. Causes an increase in the hardenability of the steel, and a hardened layer appears during welding to increase the crack susceptibility, so the range is 0.6 to 1.7%. P ≦ 0.05%, S ≦ 0.01% P and S inevitably exist as impurities mixed in the steel, but reduction of P is effective in preventing intergranular fracture, and reduction of S is Since it is effective in preventing hydrogen cracking in the weld heat affected zone,
The P and S content ranges are 0.05% or less and 0.01, respectively.
% Or less.

【0015】Al≦0.08% Alは、脱酸上鋼に含まれる元素であるが、多量に含有
させると鋼の清浄度を悪くし、溶接部の靭性劣化を招く
ため、その範囲は0.08%以下である。
Al ≦ 0.08% Al is an element contained in the deoxidized upper steel, but if contained in a large amount, the cleanliness of the steel is deteriorated and the toughness of the welded portion is deteriorated, so the range is 0. It is 0.08% or less.

【0016】N≦0.008% Nは、鋼中に含まれる不可避的な不純物元素であるが、
N量が多くなるとHAZ靭性の劣化や連続鋳造スラブキ
ズの発生を助長するため、その範囲は0.008%以下
である。
N ≦ 0.008% N is an unavoidable impurity element contained in steel,
If the amount of N is large, the deterioration of the HAZ toughness and the occurrence of continuous cast slab scratches are promoted, so the range is 0.008% or less.

【0017】本発明は以上を基本成分とし、以下の選択
成分群の1種または2種以上を添加してもよい。 (選択成分群) Cu:0.05〜1% Cuは、強度上昇及び靭性改善に非常に有効な元素であ
るが、含有量が0.05%未満では十分な効果が発揮さ
れず、1%を超えると析出硬化が著しくまた鋼材表面に
割れが生じやすいため、Cuを添加する場合には、その
範囲は0.05〜1%である。
In the present invention, the above is the basic component, and one or more of the following selective component groups may be added. (Selected component group) Cu: 0.05 to 1% Cu is an element that is very effective in increasing strength and improving toughness, but if the content is less than 0.05%, sufficient effect is not exhibited and 1%. When the content of Cu is more than 0.03%, the precipitation hardening is remarkable and the surface of the steel material is apt to crack.

【0018】Ni:0.05〜0.8% Niは、母材の強度ならびに靭性を向上させる効果を有
するが、その含有量が0.05%未満では十分な効果が
得られず、0.8%を超える添加はコストアップにつな
がるため、Niを添加する場合には、その範囲は0.0
5〜0.8%である。 Cr:0.05〜1% Crは、焼入性向上に有効な元素であるが、その含有量
が0.05%未満では効果が小さく、1%を超えると溶
接性やHAZ靭性を劣化させるため、Crを添加する場
合には、その範囲は0.05〜1%である。 Mo:0.01〜1% Moは、焼入性を高めるとともに焼戻し軟化抵抗を高
め、強度上昇に有効であるが、その含有量が0.01%
未満ではその効果が十分に発揮されず、1%を超えると
溶接性を劣化させるとともに炭化物の析出により降伏比
が上昇するため、Moを添加する場合にはその範囲は
0.01〜1%である。
Ni: 0.05 to 0.8% Ni has the effect of improving the strength and toughness of the base material, but if its content is less than 0.05%, a sufficient effect cannot be obtained. Since the addition of more than 8% leads to cost increase, the range is 0.0 when Ni is added.
5 to 0.8%. Cr: 0.05 to 1% Cr is an element effective for improving hardenability, but if its content is less than 0.05%, the effect is small, and if it exceeds 1%, weldability and HAZ toughness are deteriorated. Therefore, when Cr is added, the range is 0.05 to 1%. Mo: 0.01 to 1% Mo enhances hardenability and temper softening resistance, and is effective in increasing strength, but its content is 0.01%.
If it is less than 1%, the effect is not sufficiently exhibited, and if it exceeds 1%, the weldability is deteriorated and the yield ratio increases due to the precipitation of carbides. Therefore, when Mo is added, the range is 0.01 to 1%. is there.

【0019】Nb:0.005〜0.1% Nbは、微細炭窒化物の析出効果により強度上昇、靭性
向上に有効に作用する元素であるが、その含有量が0.
005%未満では効果が発揮されず、0.1%超えの添
加は過度の析出効果により降伏比低下の妨げになるた
め、Nbを添加する場合には、その範囲は0.005〜
0.1%である。
Nb: 0.005 to 0.1% Nb is an element that effectively acts to increase strength and toughness due to the precipitation effect of fine carbonitrides, but its content is 0.
If it is less than 005%, the effect is not exhibited, and if it exceeds 0.1%, the precipitation ratio is hindered by the excessive precipitation effect. Therefore, when Nb is added, the range is 0.005 to 0.005.
It is 0.1%.

【0020】V:0.005〜0.1% Vは、少量の添加により焼入性を向上させ、焼戻し軟化
抵抗を高める元素であるが、その含有量が0.005%
未満ではその効果が十分に発揮されず、0.1%を超え
て添加すると溶接性を劣化させるため、Vを添加する場
合にはその範囲は0.005〜0.1%である。
V: 0.005 to 0.1% V is an element that improves the hardenability and the temper softening resistance by adding a small amount, but its content is 0.005%.
If less than 0.1%, the effect is not sufficiently exhibited, and if added over 0.1%, the weldability deteriorates. Therefore, when V is added, the range is 0.005 to 0.1%.

【0021】Ti:0.005〜0.03% Tiは、TiNの溶接HAZ部の組織粗大化を抑制して
HAZ靭性の向上に寄与する元素である。0.005%
未満のTi添加ではHAZ靭性向上効果が発揮されな
い。0.03%を超えて添加すると、溶接の冷却過程で
TiCが析出し、HAZ靭性の劣化を招くため、Tiを
添加する場合にはその範囲は0.005〜0.03%で
ある。
Ti: 0.005-0.03% Ti is an element that suppresses the coarsening of the structure of the welded HAZ part of TiN and contributes to the improvement of HAZ toughness. 0.005%
If the amount of Ti is less than the above, the effect of improving the HAZ toughness will not be exhibited. If added in excess of 0.03%, TiC precipitates in the cooling process of welding, leading to deterioration of HAZ toughness. Therefore, when Ti is added, the range is 0.005-0.03%.

【0022】上記の成分組成範囲に調整することによ
り、高層建築物などに用いる降伏比が75%以下の形鋼
を、圧延後の板熱処理を必要とすることなく安価で大量
に安定して得ることが可能となる。
By adjusting the compositional range to the above range, shaped steel having a yield ratio of 75% or less, which is used for high-rise buildings and the like, can be stably obtained in large quantities at low cost without the need for plate heat treatment after rolling. It becomes possible.

【0023】このような特性の鋼材は、以下の製造方法
により、製造することができる。 (2)鋼材製造工程 (製造方法)上記の成分組成範囲に調整した鋼を溶製
し、連続鋳造で得られた鋼材を1000℃以上に加熱
後、Ar3 以上の温度域において減面率が50%以上の
熱間圧延を行い、次いでAr3 −100℃〜Ar3 −2
0℃の温度域まで1℃/秒以上の冷却速度で加速冷却す
る。続いて、加速冷却された鋼材を待機温度:T(℃)
=Ar3 −100℃〜Ar3 −20℃において下記
(1)式を満たす時間t秒の待機を行った後、400〜
600℃の温度域まで、下記(2)式を満たす冷却速度
v(℃/秒)で加速冷却を行う。
The steel material having such characteristics can be manufactured by the following manufacturing method. (2) Steel material manufacturing process (manufacturing method) After the steel adjusted to the above component composition range is melted and the steel material obtained by continuous casting is heated to 1000 ° C. or higher, the area reduction rate is increased in the temperature range of Ar 3 or higher. subjected to hot rolling 50% or more, then Ar 3 -100 ℃ ~Ar 3 -2
Accelerated cooling to a temperature range of 0 ° C at a cooling rate of 1 ° C / sec or more. Subsequently, the steel material that has been accelerated and cooled has a standby temperature of T (° C).
= Ar 3 −100 ° C. to Ar 3 −20 ° C., after waiting for time t seconds satisfying the following formula (1), 400 to
Accelerated cooling is performed up to a temperature range of 600 ° C. at a cooling rate v (° C./sec) that satisfies the following expression (2).

【0024】10 1.2-0.01×ΔT ≦t≦150秒 …(1) 但し、ΔT=Ar3(℃)−T(℃) 0.9−0.4logh≦logv≦2.6−0.9l
ogh …(2) 但し、h:フランジ厚さ(mm) a.鋼の加熱温度:1000℃以上 鋼を1000℃以上に加熱するのは、良好な熱間加工性
を得るためである。
10 1.2-0.01 × ΔT ≦ t ≦ 150 seconds (1) where ΔT = Ar 3 (° C.) − T (° C.) 0.9-0.4 logh ≦ logv ≦ 2.6-0.9 l
oh ... (2) where h: flange thickness (mm) a. Steel heating temperature: 1000 ° C. or higher The steel is heated to 1000 ° C. or higher in order to obtain good hot workability.

【0025】b.熱間圧延終了温度:Ar3 以上 Ar3 以上の温度域で圧延を終了させるのは、集合組織
の発達を抑制して、超音波探傷の測定精度に悪影響を及
ぼす音響異方性をなくすためである。
B. Hot rolling end temperature: to terminate the rolling at Ar 3 or more than the Ar 3 temperature zone, to suppress the development of texture, in order to eliminate the adverse effect sound anisotropy measurement accuracy of the ultrasonic flaw detection is there.

【0026】c.Ar3 以上の減面率:50%以上 Ar3 以上の減面率を50%以上とするのは、加熱によ
り粗大化した組織を再結晶させ、強度と靭性を向上させ
るためである。 d.待機前の加速冷却速度:1℃/秒以上 圧延終了後からAr3 −100℃〜Ar3 −20℃まで
の加速冷却速度を1℃/秒以上とするのは、圧延後から
Ar3 −100℃〜Ar3 −20℃までの加速冷却過程
においてフェライトが多量に析出することを抑えるため
である。これにより、組織が主にその後の待機中での等
温変態によって制御されることとなり、組織制御の精度
を向上させることが可能となる。 e.待機温度T(℃):Ar3 −100℃〜Ar3 −2
0℃、待機時間t(秒):10 1.2-0.01×ΔT ≦t≦1
50秒、但し、ΔT=Ar3 (℃)−T(℃) 前記図1で説明したように、待機温度T(℃)を比較的
短時間でフェライトが析出するAr3 −100℃〜Ar
3 −20℃とし、待機時間を10 1.2-0.01×ΔT ≦t≦
150秒(ΔT=Ar3 −T)とすることにより所定の
フェライト分率に制御し、その後の更なる加速冷却によ
り残りのオーステナイトを硬質のベイナイトとし最終的
にフェライト+ベイナイト組織として降伏比≦75%を
達成する。また、待機時間の上限は生産性を損なわない
ように150秒である。待機温度がAr3 −20℃より
高温になるとフェライトの生成速度が遅いため、低降伏
比に有効な十分なフェライトを得るためには多くの待機
時間が必要となり生産性を損なう。一方、Ar3 −10
0℃未満となると短時間の待機においてもフェライトが
過度に生成するため、強度を確保し難くなる。
C. Ar 3 or more reduction of area: the 50% or Ar 3 or more reduction of area is 50% or more, the tissue was recrystallized with coarsened by heating, in order to improve the strength and toughness. d. It accelerated cooling speed before waiting: 1 ° C. / sec or more after the end of rolling to the accelerated cooling rate to Ar 3 -100 ℃ ~Ar 3 -20 ℃ and 1 ° C. / sec or more, Ar 3 -100 from after rolling This is to prevent precipitation of a large amount of ferrite in the accelerated cooling process from ℃ to Ar 3 -20 ℃. As a result, the structure is controlled mainly by the subsequent isothermal transformation during standby, and the accuracy of structure control can be improved. e. Standby temperature T (° C): Ar 3 -100 ° C to Ar 3 -2
0 ° C, standby time t (second): 10 1.2-0.01 × ΔT ≤t≤1
50 seconds, where ΔT = Ar 3 (° C.) − T (° C.) As described in FIG. 1, the standby temperature T (° C.) is such that ferrite precipitates in a relatively short time Ar 3 −100 ° C. to Ar
3 -20 ℃, standby time 10 1.2-0.01 × ΔT ≤ t ≤
By controlling to a predetermined ferrite fraction by setting it to 150 seconds (ΔT = Ar 3 −T), the remaining austenite is made hard bainite by further accelerated cooling, and finally the ferrite + bainite structure yield ratio ≦ 75. Achieve%. The upper limit of the waiting time is 150 seconds so as not to impair the productivity. When the standby temperature is higher than Ar 3 −20 ° C., the rate of ferrite formation is slow, so a long standby time is required to obtain sufficient ferrite effective for a low yield ratio, and productivity is impaired. On the other hand, Ar 3 -10
If the temperature is lower than 0 ° C., ferrite is excessively generated even in a short standby time, so that it becomes difficult to secure the strength.

【0027】したがって、強度確保及び低降伏比(YR
≦75%)の観点から、待機温度T(℃)はAr3 −1
00℃〜Ar3 −20℃、待機時間t(秒)は10
1.2-0.01×ΔT ≦t≦150秒(但し、ΔT=Ar3
(℃)−T(℃))である。 f.待機後の加速冷却速度v(℃/秒):0.9−0.
4logh≦logv≦2.6−0.9logh ここ
で、h:フランジ厚さ(mm) 前記図2で説明したように、前記の成分範囲でフランジ
厚を考慮すると待機後の未変態オーステナイトから硬質
なベイナイトを得るためには、logv≧0.9−0.
4loghを満たす冷却速度が必要である。工業的に一
般に用いられている水冷設備では厚さが厚くなるほど高
冷却速度が得られ難い。本発明者らが鋭意検討した結
果、0.9−0.4logh≦logv≦2.6−0.
9logh(ここで、h:鋼材(フランジ)の厚さ(m
m))とすることにより、75%以下の降伏比が得られ
ることが明らかとなったため、待機後の加速冷却速度は
0.9−0.4logh≦logv≦2.6−0.9l
ogh(ここで、h:フランジ厚さ(mm))である。
Therefore, strength is secured and a low yield ratio (YR
≦ 75%), the standby temperature T (° C.) is Ar 3 −1.
00 ° C to Ar 3 -20 ° C, standby time t (second) is 10
1.2-0.01 × ΔT ≦ t ≦ 150 seconds (where ΔT = Ar 3
(° C) -T (° C)). f. Accelerated cooling rate v (° C / sec) after standby: 0.9-0.
4logh ≤ logv ≤ 2.6-0.9logh where : h: flange thickness (mm) As described in Fig. 2, considering the flange thickness in the above component range, the untransformed austenite after waiting becomes hard. To obtain bainite, logv ≧ 0.9−0.
A cooling rate satisfying 4 log is required. With water-cooling equipment generally used industrially, it becomes difficult to obtain a high cooling rate as the thickness increases. As a result of diligent study by the present inventors, 0.9-0.4logh≤logv≤2.6-0.
9 logh (here, h: thickness of steel material (flange) (m
m)), a yield ratio of 75% or less was obtained. Therefore, the accelerated cooling rate after waiting was 0.9-0.4logh≤logv≤2.6-0.9l.
and oh (here, h: flange thickness (mm) ).

【0028】g.待機後の加速冷却停止温度:400〜
600℃ 待機後の加速冷却停止温度を400℃未満とすると、加
速冷却時に生成した島状マルテンサイトが分解せずに残
存するため靭性が悪化する。一方、加速冷却停止温度が
600℃超えでは、ベイナイト変態が十分進行しないた
め強度を確保することが難しくなる。
G. Accelerated cooling stop temperature after standby: 400 ~
When the accelerated cooling stop temperature after standing by at 600 ° C. is less than 400 ° C., the island martensite generated during accelerated cooling remains without being decomposed, so that the toughness deteriorates. On the other hand, when the accelerated cooling stop temperature exceeds 600 ° C., it becomes difficult to secure the strength because the bainite transformation does not proceed sufficiently.

【0029】以上により、上記成分系と圧延・加速冷却
条件の採用により生産性を損なうことなく490N/m
2 以上の強度と75%以下の降伏比を確保できる。以
下に本発明の実施例を挙げ、本発明の効果を立証する。
As described above, by adopting the above component system and the rolling / accelerated cooling conditions, the productivity is 490 N / m without impairing the productivity.
It is possible to secure a strength of m 2 or more and a yield ratio of 75% or less. Examples of the present invention will be given below to prove the effects of the present invention.

【0030】[0030]

【実施例】(実施例1)表1に成分を示す490MPa
級の本発明鋼A及びBを用い、表2に示すように圧延、
冷却条件を変えて製造した形鋼(本発明例:No.1,
2,6〜8,10,11,13〜16、比較例:No.
3〜5,9,12)の機械的性質を調べた。表2に引張
特性(JIS Z 2241に準拠のYS,TS,Y
R)を併記する。
[Example] (Example 1) 490 MPa whose components are shown in Table 1
Rolling as shown in Table 2 using the present invention steels A and B,
Shaped steel manufactured under different cooling conditions (Example of the present invention: No. 1,
2, 6-8, 10, 11, 13-16, Comparative Example: No.
The mechanical properties of 3-5, 9, 12) were investigated. Table 2 shows the tensile properties (YS, TS, Y according to JIS Z 2241).
R) is also described.

【0031】表2に示すように、比較例No.3は本発
明の待機温度を満足しないため、フェライトが過度に生
成し、目標強度(490MPa)を確保できない。ま
た、比較例No.4は待機後の冷却速度が本発明条件よ
り遅いため、比較例No.5は待機時間が本発明条件よ
り短いためYR(降伏比)が高い。さらに、比較例N
o.9は圧延後放冷したため、目標強度(490MP
a)に達せず、比較例No.12は待機温度が本発明条
件より高いためフェライトが十分に生成せず、YRが高
い。
As shown in Table 2, Comparative Example No. Since No. 3 does not satisfy the standby temperature of the present invention, ferrite is excessively generated and the target strength (490 MPa) cannot be secured. In addition, Comparative Example No. In Comparative Example No. 4, the cooling rate after waiting was slower than that of the conditions of the present invention. In No. 5, the standby time is shorter than that of the conditions of the present invention, so the YR (yield ratio) is high. Furthermore, Comparative Example N
o. Since No. 9 was left to cool after rolling, the target strength (490MP
Comparative example No. In No. 12, since the standby temperature is higher than that of the conditions of the present invention, ferrite is not sufficiently generated and YR is high.

【0032】これに対し、本発明例:No.1,2,6
〜8,10,11,13〜16はいずれも本発明条件を
満たすため、490MPa以上の十分な引張強度(T
S)と75%以下の降伏比(YR)を示している。
On the other hand, the present invention example: No. 1, 2, 6
.About.8,10,11,13 to 16 all satisfy the conditions of the present invention, a sufficient tensile strength (T) of 490 MPa or more (T
S) and a yield ratio (YR) of 75% or less.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】(実施例2)表1に成分を示す490MP
a級の本発明鋼C及びD、590MPa級の本発明鋼E
を用い、表3に示すように圧延、冷却条件を変えて製造
した形鋼(本発明例:No.17〜28)の機械的性質
を調べた。表3に引張特性(JIS Z2241に準拠
のYS,TS,YR)を併記する。
(Example 2) 490MP showing the components in Table 1
a-class invention steels C and D, 590 MPa-class invention steel E
The mechanical properties of shaped steels (Examples of the present invention: Nos. 17 to 28) produced by changing the rolling and cooling conditions as shown in Table 3 were investigated using. Table 3 also shows tensile properties (YS, TS, YR according to JIS Z2241).

【0036】表3に示すように、本発明例No.17〜
24(490MPa級の本発明鋼C,D)はいずれも本
発明条件を満たすため、490MPa以上の十分な引張
強度(TS)と75%以下の降伏比(YR)を示し、ま
た本発明例No.25〜28(590MPa級の本発明
鋼E)はいずれも本発明条件を満たすため、590MP
a以上の十分な引張強度(TS)と75%以下の降伏比
(YR)を示している。
As shown in Table 3, the invention sample No. 17-
24 (invention steels C and D of 490 MPa class) all satisfy the present invention conditions, so that they show sufficient tensile strength (TS) of 490 MPa or more and yield ratio (YR) of 75% or less, and invention example No. . All of 25 to 28 (invention steel E of 590 MPa class) satisfy the requirements of the present invention, and thus 590MP
It shows a sufficient tensile strength (TS) of a or more and a yield ratio (YR) of 75% or less.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【発明の効果】本発明によれば、鋼組成及び製造条件を
特定することにより、高層建築物などに使用される降伏
比が75%以下の低降伏比形鋼を、圧延ままで製造する
ことができ、熱処理を施す必要がないため、生産性と経
済性を著しく高めることができる。
According to the present invention, a low yield ratio shaped steel having a yield ratio of 75% or less, which is used for high-rise buildings and the like, can be produced as it is by specifying the steel composition and production conditions. Since there is no need for heat treatment, productivity and economic efficiency can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る鋼材の強度、降伏比
に及ぼす待機温度と待機時間の影響を示した図。
FIG. 1 is a diagram showing the effects of standby temperature and standby time on the strength and yield ratio of a steel material according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る鋼材の降伏比に及ぼ
す待機後の冷却速度の影響を示した図。
FIG. 2 is a diagram showing an influence of a cooling rate after standby on a yield ratio of a steel material according to an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−20819(JP,A) 特開 平6−240350(JP,A) 特開 平3−191020(JP,A) 特開 昭52−14517(JP,A) 特公 平7−74379(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10,9/00 B21B 1/08 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── --- Continuation of front page (56) References JP-A 8-20819 (JP, A) JP-A 6-240350 (JP, A) JP-A 3-191020 (JP, A) JP-A 52- 14517 (JP, A) Japanese Patent Publication 7-74379 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 8/00-8 / 10,9 / 00 B21B 1/08 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.04〜0.18%
と、Si:0.05〜0.5%と、Mn:0.6〜1.
7%と、P≦0.05%と、S≦0.01%と、Al≦
0.08%と、N≦0.008%とを含有し、残部がF
e及び不可避的不純物からなる形鋼を製造する方法にお
いて、 鋼を1000℃以上に加熱後、Ar3以上の温度域にお
いて減面率が50%以上の熱間圧延を行う工程と、 熱間圧延された鋼材をAr3以上からAr3−100℃〜
Ar3−20℃の温度域まで1℃/秒以上の冷却速度で
加速冷却し、待機温度:T(℃)=Ar3−100℃〜
Ar3−20℃において下記(1)式を満たす待機時
間:t(秒)の待機を行う工程と、フランジ厚さ:h(mm)の鋼材 を400〜600℃の
温度域まで、下記(2)式を満たす冷却速度:v(℃/
秒)で加速冷却し、引張強度が490N/mm 2 以上
で、かつ降伏比が75%以下の低降伏比形鋼とする工程
と、を備えたことを特徴とする低降伏比形鋼の製造方
法。10 1.2-0.01×ΔT ≦t≦150秒 …(1) 但し、ΔT=Ar3(℃)−T(℃) 0.9−0.4logh≦logv≦2.6−0.9l
ogh …(2) 但し、h:フランジ厚さ(mm)
1. C: 0.04 to 0.18% by weight
And Si: 0.05 to 0.5% and Mn: 0.6 to 1.
7%, P ≦ 0.05%, S ≦ 0.01%, Al ≦
0.08% and N ≦ 0.008% with the balance being F
In the method for producing a shaped steel consisting of e and unavoidable impurities, a step of heating the steel to 1000 ° C. or higher and then hot rolling at a surface reduction rate of 50% or higher in a temperature range of Ar 3 or higher, and hot rolling. The steel material that has been subjected to Ar 3 or more to Ar 3 -100 ° C.
Accelerated cooling to a temperature range of Ar 3 -20 ° C. at a cooling rate of 1 ° C./sec or more, standby temperature: T (° C.) = Ar 3 -100 ° C.
A waiting time for satisfying the following formula (1) at Ar 3 -20 ° C: waiting time t (seconds), and a steel material having a flange thickness h (mm) up to a temperature range of 400 to 600 ° C as described below (2 Cooling rate satisfying the formula: v (° C /
Seconds) accelerated cooling , tensile strength 490N / mm 2 or more
And a step of producing a low yield ratio shaped steel having a yield ratio of 75% or less, and a method for producing a low yield ratio shaped steel. 10 1.2-0.01 × ΔT ≦ t ≦ 150 seconds (1) However, ΔT = Ar 3 (° C.)-T (° C.) 0.9-0.4 logh ≦ log v ≦ 2.6-0.9 l
oh ... (2) where h: flange thickness (mm)
【請求項2】 鋼成分として、重量%でさらに、Cu:
0.05〜1%、Ni:0.05〜0.8%、Cr:
0.05〜1%、Mo:0.01〜1%、Nb:0.0
05〜0.1%、V:0.005〜0.1%及びTi:
0.005〜0.03%の群から選択された1種または
2種以上を含有することを特徴とする、請求項1に記載
の低降伏比形鋼の製造方法。
2. As a steel component, in addition to Cu:
0.05 to 1%, Ni: 0.05 to 0.8%, Cr:
0.05-1%, Mo: 0.01-1%, Nb: 0.0
05-0.1%, V: 0.005-0.1% and Ti:
The method for producing a low yield ratio section steel according to claim 1, characterized by containing one or more selected from the group of 0.005 to 0.03%.
JP34515697A 1997-12-15 1997-12-15 Manufacturing method of low yield ratio section steel Expired - Fee Related JP3468072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34515697A JP3468072B2 (en) 1997-12-15 1997-12-15 Manufacturing method of low yield ratio section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34515697A JP3468072B2 (en) 1997-12-15 1997-12-15 Manufacturing method of low yield ratio section steel

Publications (2)

Publication Number Publication Date
JPH11172328A JPH11172328A (en) 1999-06-29
JP3468072B2 true JP3468072B2 (en) 2003-11-17

Family

ID=18374671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34515697A Expired - Fee Related JP3468072B2 (en) 1997-12-15 1997-12-15 Manufacturing method of low yield ratio section steel

Country Status (1)

Country Link
JP (1) JP3468072B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081642A1 (en) * 2000-04-24 2001-11-01 Kawasaki Steel Corporation Linear shape steel excellent in joint fatigue characteristics and production method therefor
JP6354572B2 (en) * 2014-10-27 2018-07-11 新日鐵住金株式会社 Low-temperature H-section steel and its manufacturing method
JP6421907B1 (en) 2018-03-23 2018-11-14 新日鐵住金株式会社 Rolled H-section steel and its manufacturing method
CN110952037B (en) * 2019-11-18 2021-05-28 阳春新钢铁有限责任公司 400MPa hot-rolled refractory steel bar and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11172328A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP5069863B2 (en) 490 MPa class low yield ratio cold-formed steel pipe excellent in weldability and manufacturing method thereof
JP6795048B2 (en) Non-treated low yield ratio high-strength thick steel sheet and its manufacturing method
EP0761824B1 (en) Heavy-wall structural steel and method
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JPS62174322A (en) Manufacture of low yield ratio high tension steel plate superior in cold workability
JPH10195591A (en) High strength hot rolled steel sheet for thermal hardening excellent in stretch-flanging property and its production
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP3468072B2 (en) Manufacturing method of low yield ratio section steel
JPH1068016A (en) Production of extra thick wide flange shape
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JP4218114B2 (en) Manufacturing method of low yield ratio refractory steel
JP3546721B2 (en) Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction
JP2002363642A (en) Method for producing rolled wide flange shape having low yield ratio and excellent toughness
JP3911834B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP2905639B2 (en) Method for producing 780 N / mm2 grade steel sheet with extremely low yield ratio
JP3666457B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JPH10310821A (en) Manufacture of high tensile strength steel tube for construction use
KR20040004137A (en) STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL
JPH07233414A (en) Production of low yield ratio high tensile strength steel plate excellent in uniform elongation
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same
JP3666458B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP2023079163A (en) H-section steel and method of manufacturing same
JP2000192142A (en) Production of low yield ratio fire resistant steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees