JP2000192142A - Production of low yield ratio fire resistant steel - Google Patents

Production of low yield ratio fire resistant steel

Info

Publication number
JP2000192142A
JP2000192142A JP36921898A JP36921898A JP2000192142A JP 2000192142 A JP2000192142 A JP 2000192142A JP 36921898 A JP36921898 A JP 36921898A JP 36921898 A JP36921898 A JP 36921898A JP 2000192142 A JP2000192142 A JP 2000192142A
Authority
JP
Japan
Prior art keywords
temperature
steel
steel material
range
standby
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36921898A
Other languages
Japanese (ja)
Inventor
Shinichi Suzuki
伸一 鈴木
Ryuji Muraoka
隆二 村岡
Minoru Suwa
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP36921898A priority Critical patent/JP2000192142A/en
Publication of JP2000192142A publication Critical patent/JP2000192142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably mass-produce steel at a low cost without deteriorating the productivity by subjecting a slab having a specified compsn. to hot rolling under specified conditions, thereafter executing accelerated cooling and waiting under specified conditions and successively executing further accelerated cooling. SOLUTION: This steel contains, by weight, 0.04 to 0.20% C, 0.05 to 1.0% Si, 0.5 to 2.0% Mn, 0.2 to 0.8% Mo, 0.002 to 0.1% Al and <=0.020% N. The slab having this compsn. is heated to >=100 deg.C and is thereafter hot-rolled at >=Ar3 at a draft of >=50%. Next, it is subjected to accelerated cooling to the temp. range of Ar3-100 deg.C at >=2 deg.C/sec, and waiting is executed in this temp. range for a waiting time(t) (sec) satisfying the following inequality: the inequality: 1.3-0.006×ΔT<=logt<=log150, where ΔT( deg.C) denotes the temp. difference between Ar3 and the average temp. T( deg.C) of the steel at the time of the waiting. Then, the waited steel is subjected to accelerated cooling to the temp. range of 400 to 650 deg.C average temp. at >=2 deg.C/sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、火災等で数時間
程度、高温状態になることが懸念される建築物や橋梁等
の鋼構造物に用いられる、低降伏比耐火鋼材の製造技術
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for producing a low yield ratio refractory steel material used for a steel structure such as a building or a bridge which is likely to be in a high temperature state for several hours due to a fire or the like. It is.

【0002】[0002]

【従来の技術】近年、建築物の高層化及び大型化に伴
い、これに使用される部材にも厚肉化、高張力化が要求
され、引張強度490N/mm2 以上の高張力厚鋼板が
普及してきている。また、今日の高層建築物には、巨大
地震に見舞われたとき、柱・梁部材の塑性変形により地
震エネルギーを吸収させ、大崩壊を回避するという人的
安全性を重視した限界状態設計法が適用される。従っ
て、限界状態設計法で使用される柱・梁部材には、高い
塑性変形能の目安として、降伏比(YR)が低いこと、
つまり低降伏比であることが望まれ、降伏比が低い材料
ほど塑性変形能が優れていると言われている。
2. Description of the Related Art In recent years, with the increase in height and size of buildings, members used for the same have been required to be thicker and have higher tensile strength, and high-strength steel plates having a tensile strength of 490 N / mm 2 or more have been developed. It is becoming popular. In addition, today's high-rise buildings are subject to a critical state design method that emphasizes human safety, which is to absorb large amounts of seismic energy by plastic deformation of columns and beams to avoid large collapses when a huge earthquake is hit. Applied. Therefore, the column / beam member used in the limit state design method has a low yield ratio (YR) as a measure of high plastic deformability,
In other words, it is desired that the material has a low yield ratio, and it is said that a material having a lower yield ratio has better plastic deformability.

【0003】低降伏比化については、一般的に焼入れと
焼戻し処理との間に二相域加熱する中間熱処理を施す方
法等に代表されるように、軟質相としてのフェライトと
硬質相としてのベイナイトあるいはマルテンサイトとを
混在させた、フェライト+硬質相組織により達成される
ことが知られている。このフェライト+硬質相組織を得
るための従来技術としては、上述した焼入れ−二相域焼
入れ−焼戻し処理をする方法や、熱間圧延後フェライト
とオーステナイトとの二相域まで空冷した後、加速冷却
する方法等があげられる。
In order to reduce the yield ratio, a ferrite as a soft phase and a bainite as a hard phase are generally used, as represented by a method of performing an intermediate heat treatment of heating in a two-phase region between quenching and tempering. Alternatively, it is known that this is achieved by a ferrite + hard phase structure in which martensite is mixed. Conventional techniques for obtaining the ferrite + hard phase structure include the above-described quenching, two-phase quenching, and tempering treatments, and air cooling to a two-phase region of ferrite and austenite after hot rolling, followed by accelerated cooling. And the like.

【0004】一方、建築物の火災に関して、耐火設計の
見直しが行なわれたことにより、高温強度に優れた耐火
鋼を用いて耐火被覆を減らすことが可能となっており、
工期の短縮、工事費の削減、建築物内の有効面積の拡張
等の効果があるので、その適用が盛んになってきてい
る。
[0004] On the other hand, with respect to fires in buildings, a review of fire-resistant design has made it possible to reduce fire-resistant coatings by using fire-resistant steel excellent in high-temperature strength.
Because of the effects of shortening the construction period, reducing the construction cost, expanding the effective area in the building, and the like, its application is becoming active.

【0005】[0005]

【発明が解決しようとする課題】耐火性に優れた低降伏
比鋼材については、特開平3−130319号公報、及
び特開平4−56721号公報等に開示されている。し
かしながら、これらは圧延終了後の冷却を空冷としてい
るので、板厚によっては低降伏比が得られない。
SUMMARY OF THE INVENTION Low yield ratio steels having excellent fire resistance are disclosed in Japanese Patent Application Laid-Open Nos. 3-130319 and 4-56721. However, since the cooling after the rolling is air-cooled, a low yield ratio cannot be obtained depending on the sheet thickness.

【0006】また、特開平5−339633号公報、及
び特開平5−339644号公報等には、熱間圧延後、
直接焼入れもしくは再加熱焼入れしてから、更に二相域
焼入れ・焼戻しを行なう方法が開示されている。しかし
ながら、これらは複雑な熱処理を必要とし、製造コスト
が多大になるのみならず、生産性の低下が避けられな
い。
[0006] Further, JP-A-5-339633 and JP-A-5-339644 disclose, after hot rolling,
A method is disclosed in which direct quenching or reheating quenching is performed, followed by two-phase quenching and tempering. However, these require complicated heat treatment, which not only increases the production cost but also inevitably lowers productivity.

【0007】また、特開平3−6322号公報には、熱
間圧延後、フェライトとオーステナイトとの二相域まで
空冷してから加速冷却する方法が開示されている。しか
しながら、この方法では、加速冷却開始前の空冷に長時
間を有し、生産性を大きく低下させる。
Japanese Patent Laid-Open Publication No. Hei 3-6322 discloses a method in which after hot rolling, air cooling is performed to a two-phase region of ferrite and austenite, followed by accelerated cooling. However, in this method, air cooling before the start of accelerated cooling has a long time, and productivity is greatly reduced.

【0008】本発明は、上述した問題点を解決し、建築
物や橋梁等の鋼構造物に用いる低降伏比耐火鋼材を、生
産性を損なうことなく、安価で大量に安定して製造する
方法を開発することを目的とする。
The present invention solves the above-mentioned problems and provides a method for stably producing low-yield-ratio refractory steel for use in steel structures such as buildings and bridges at low cost and in large quantities without impairing productivity. The purpose is to develop.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上述した
観点から鋭意研究を重ねた結果、Mo等の高温強度を上
昇させる元素を適量含有する鋼片の熱間圧延工程におい
て、適切な圧下条件と2段の加速冷却とを適用すること
により、上記目的を達成し得る鋼材の製造技術を開発し
た。この発明の要旨は次の通りである。
Means for Solving the Problems As a result of intensive studies from the above-mentioned viewpoints, the present inventors have found that, in the hot rolling step of a steel slab containing an appropriate amount of an element such as Mo, which increases the high-temperature strength, an appropriate amount is obtained. By applying the rolling conditions and the two-stage accelerated cooling, a steel material manufacturing technique that can achieve the above object was developed. The gist of the present invention is as follows.

【0010】請求項1記載の低降伏比耐火鋼材の製造方
法は、重量%で、C:0.04〜0.20%、Si:
0.05〜1.0%、Mn:0.5〜2.0 %、M
o:0.2〜0.8%、Al:0.002〜0.1%を
含有し、N :0.020%以下とする鋼片を、100
0℃以上に加熱後、Ar3 以上の温度域で圧下率50%
以上の熱間圧延を行なう工程と、熱間圧延された鋼材
を、Ar3 以上の温度から、Ar3 からAr3 −100
℃の温度範囲まで2℃/秒以上の冷却速度で加速冷却
し、当該温度範囲において、下記(1)式を満たす待機
時間:t(秒)の待機を行なう工程と、 1.3−0.006×ΔT≦logt≦log150 ----------(1) ここで、ΔT(℃):Ar3 と待機時の鋼材の平均温度
T(℃)との温度差(=Ar3 −T) t(秒) :待機時間 待機された鋼材を、平均温度が400〜650℃の範囲
の温度まで2℃/秒以上の冷却速度で加速冷却する工程
と、を備えたことに特徴を有するものである。
The method for producing a low yield ratio refractory steel material according to the first aspect of the present invention is characterized in that, by weight%, C: 0.04 to 0.20%, Si:
0.05-1.0%, Mn: 0.5-2.0%, M
o: A steel slab containing 0.2 to 0.8%, Al: 0.002 to 0.1%, and N: 0.020% or less,
After heating to 0 ° C or higher, reduction rate 50% in a temperature range of Ar 3 or higher
And performing hot rolling of the above, the hot rolled steel, the Ar 3 temperature above, Ar 3 -100 from Ar 3
Cooling at a cooling rate of 2 ° C./sec or more to a temperature range of 2 ° C., and performing a standby time of t (seconds) satisfying the following expression (1) in the temperature range: 1.3-0. 006 × ΔT ≦ logt ≦ log150 (1) Here, ΔT (° C.): temperature difference between Ar 3 and the average temperature T (° C.) of the steel material during standby (= Ar 3) -T) t (second): standby time A step of accelerating and cooling the standby steel material to a temperature in the range of 400 to 650 ° C. at a cooling rate of 2 ° C./second or more. Have

【0011】請求項2記載の低降伏比耐火鋼材の製造方
法は、請求項1記載の発明において、鋼片成分として、
重量%で、Cu:0.03〜1.0%、Ni:0.03
〜0.5%、Cr:0.03〜0.6%の群から選択さ
れた1種または2種以上を含有することに特徴を有する
ものである。
[0011] The method for producing a low yield ratio refractory steel material according to claim 2 is the method according to claim 1, wherein
By weight%, Cu: 0.03 to 1.0%, Ni: 0.03
0.5%, Cr: 0.03 to 0.6%, characterized by containing one or more selected from the group.

【0012】請求項3記載の低降伏比耐火鋼材の製造方
法は、請求項1又は2記載の発明において、鋼片成分と
して、重量%で、更に、Nb:0.005〜0.05
%、V:0.01〜0.1%、Ti:0.003〜0.
1%の群から選択された1種または2種以上を含有する
ことに特徴を有するものである。
The method for producing a refractory steel material having a low yield ratio according to a third aspect of the present invention is the method according to the first or second aspect, wherein the steel slab component is expressed by weight% and Nb: 0.005 to 0.05.
%, V: 0.01 to 0.1%, Ti: 0.003 to 0.
It is characterized by containing one or more selected from the group of 1%.

【0013】請求項4記載の低降伏比耐火鋼材の製造方
法は、請求項1又は2記載の発明において、鋼片成分と
して、重量%で、更に、Ca:0.0005〜0.00
5%、REM:0.001〜0.02%の群から選択さ
れた1種または2種以上を含有することに特徴を有する
ものである。
According to a fourth aspect of the present invention, there is provided a method for producing a low yield ratio refractory steel material according to the first or second aspect of the present invention, wherein the steel billet component is expressed by weight% and Ca: 0.0005 to 0.005.
5%, REM: one or more selected from the group of 0.001 to 0.02%.

【0014】請求項5記載の低降伏比耐火鋼材の製造方
法は、請求項1又は2記載の発明において、鋼片成分と
して、重量%で、更に、Nb:0.005〜0.05
%、V:0.01〜0.1%、Ti:0.003〜0.
1%の群から選択された1種または2種以上、及び、C
a:0.0005〜0.005%、REM:0.001
〜0.02%の群から選択された1種または2種以上を
含有することに特徴を有するものである。
According to a fifth aspect of the present invention, there is provided a method for producing a low yield ratio refractory steel material according to the first or second aspect of the present invention, wherein the steel slab component is expressed by weight% and Nb: 0.005 to 0.05.
%, V: 0.01 to 0.1%, Ti: 0.003 to 0.
One or more selected from the group of 1%, and C
a: 0.0005 to 0.005%, REM: 0.001
It is characterized by containing one or more selected from the group of ~ 0.02%.

【0015】[0015]

【発明の実施の形態】本発明者等は、熱間圧延された高
温鋼材を加速冷却する前に、長時間の待機及び熱処理を
行なうことなく、低降伏比耐火鋼材を製造する技術を検
討した。その結果、特定組成の化学成分を設計し、圧延
条件及び加速冷却条件を適切に制御することにより、圧
延ままで490N/mm2 以上の引張強度と、80%以
下の低降伏比をもつ耐火鋼材を得ることができた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have studied a technique for producing a low yield ratio refractory steel material without performing a long-time standby and heat treatment before accelerating and cooling a hot-rolled high-temperature steel material. . As a result, a refractory steel material having a tensile strength of 490 N / mm 2 or more and a low yield ratio of 80% or less as-rolled by designing a chemical composition of a specific composition and appropriately controlling rolling conditions and accelerated cooling conditions. Could be obtained.

【0016】以下、この発明の構成要件及びその限定理
由につき説明する。鋼片の成分組成については次の通り
である。なお、本明細書では以後鋼の成分組成はすべて
重量%である。
The components of the present invention and the reasons for limiting the components will be described below. The composition of the billet is as follows. In the present specification, hereinafter, all the component compositions of steel are% by weight.

【0017】(1)C Cは鋼の強度を確保するために、0.04%以上添加す
る。しかし、0.20%を超えて多量に含有させると、
靱性あるいは溶接性が劣化する。従って、C含有率は
0.04〜0.20%の範囲とする。
(1) C C is added in an amount of 0.04% or more to secure the strength of the steel. However, if it is contained in a large amount exceeding 0.20%,
The toughness or weldability deteriorates. Therefore, the C content is in the range of 0.04 to 0.20%.

【0018】(2)Si Siは、鋼の脱酸のために0.05%以上の添加が必要
である。しかし、1.0%を超えると、鋼材の溶接熱影
響部の靱性、及び溶接性が劣化する。従って、Si含有
率は0.05〜1.0%の範囲とする。
(2) Si Si needs to be added in an amount of 0.05% or more to deoxidize steel. However, if it exceeds 1.0%, the toughness and weldability of the heat affected zone of the steel material deteriorate. Therefore, the Si content is in the range of 0.05 to 1.0%.

【0019】(3)Mn Mnは、鋼材の強度・靱性の向上、並びにFeSの生成
抑制のため0.5%以上必要である。しかし、2.0%
を超える多量の添加は、鋼の焼入れ性の増加を引き起こ
し、溶接時に硬化相が生成して、割れ感受性が高くな
る。従って、Mn含有率は0.5〜2.0%の範囲とす
る。
(3) Mn Mn is required to be 0.5% or more to improve the strength and toughness of the steel material and to suppress the production of FeS. But 2.0%
The addition of a large amount exceeding the above causes an increase in the hardenability of the steel, a hardened phase is formed at the time of welding, and the crack susceptibility is increased. Therefore, the Mn content is in the range of 0.5 to 2.0%.

【0020】(4)Mo Moは焼入性の向上、析出強化等により、鋼の強度を上
昇させるのに有効な元素であり、特に中・高温強度に対
しては極めて有効である。しかし、Mo含有率が0.2
%未満では、その効果を得ることは困難である。一方、
0.8%より多量に添加しても、添加コストに見合った
効果が見られないだけでなく、溶接性も劣化する。従っ
て、Mo含有率は0.2〜0.8%の範囲とする。
(4) Mo Mo is an element effective for increasing the strength of steel by improving hardenability, precipitation strengthening, etc., and is extremely effective especially for medium-high temperature strength. However, when the Mo content is 0.2
%, It is difficult to obtain the effect. on the other hand,
Even if it is added in excess of 0.8%, not only the effect corresponding to the addition cost is not seen, but also the weldability is deteriorated. Therefore, the Mo content is in the range of 0.2 to 0.8%.

【0021】(5)Al Alは鋼の脱酸のために必要な元素である。しかし、多
量に含有すると鋼の清浄度を悪化させる。上記観点か
ら、Al含有率は0.002〜0.1%の範囲とする。
(5) Al Al is an element necessary for deoxidizing steel. However, when contained in a large amount, the cleanliness of the steel is deteriorated. From the above viewpoint, the Al content is in the range of 0.002 to 0.1%.

【0022】(6)N Nは、不可避不純物として鋼中に含まれる元素である。
多量に含まれると母材及び溶接熱影響部の靱性を劣化さ
せる。上記観点から、その範囲は0.020%以下と
し、0%を含む。
(6) NN is an element contained in steel as an unavoidable impurity.
If contained in a large amount, the toughness of the base metal and the weld heat affected zone deteriorates. From the above viewpoint, the range is set to 0.020% or less and includes 0%.

【0023】この発明では、上記成分を基本成分とす
る。一方、Cu、Ni及びCrに共通の作用としてフェ
ライトに固溶し、鋼の強度向上効果がある。Cu、Ni
及びCrの内1種以上を添加することにより、本発明鋼
材の特性を一層向上させる。
In the present invention, the above components are used as basic components. On the other hand, Cu, Ni and Cr have a common effect of solid solution in ferrite and have an effect of improving the strength of steel. Cu, Ni
By adding one or more of Cr and Cr, the properties of the steel material of the present invention are further improved.

【0024】(7)Cu Cuは、強度上昇及び靱性改善に非常に有効な元素であ
る。Cu含有率が0.03%未満では十分な効果が発揮
されない。一方、1.0%を超えると、析出硬化が著し
く、また鋼材表面に割れが生じ易い。従って、Cu含有
率は0.03〜1.0%の範囲とする。
(7) Cu Cu is a very effective element for increasing strength and improving toughness. If the Cu content is less than 0.03%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 1.0%, precipitation hardening is remarkable, and cracks are easily generated on the surface of the steel material. Therefore, the Cu content is in the range of 0.03 to 1.0%.

【0025】(8)Ni Niは、母材の強度及び靱性を向上させる効果を有する
が、その含有率が0.03%未満では十分な効果が得ら
れない。一方、Niが0.5%を超える添加はコストア
ップにつながる。従って、Ni含有率は0.03〜0.
5%の範囲とする。
(8) Ni Ni has the effect of improving the strength and toughness of the base material, but if the content is less than 0.03%, a sufficient effect cannot be obtained. On the other hand, the addition of Ni exceeding 0.5% leads to an increase in cost. Therefore, the Ni content is 0.03-0.
The range is 5%.

【0026】(9)Cr Crは、焼入性向上に有効な元素である。しかし、その
含有率が0.03%未満ではその効果が小さく、一方、
0.6%を超えると、溶接性や溶接熱影響部の靱性を劣
化させる。従って、Cr含有率は0.03〜0.6%の
範囲とする。
(9) Cr Cr is an element effective for improving hardenability. However, if the content is less than 0.03%, the effect is small, while
If it exceeds 0.6%, the weldability and the toughness of the heat affected zone are deteriorated. Therefore, the Cr content is in the range of 0.03 to 0.6%.

【0027】Nb、V、Tiに共通の作用として結晶粒
微細化作用、Ca、REMに共通の作用として介在物の
形状制御があり、いずれも鋼の靱性向上効果がある。こ
の発明では、更に、Nb、V、Ti、Ca及びREMの
内1種以上を添加することにより、本発明鋼材の特性を
一層向上させる。
An action common to Nb, V, and Ti is a grain refinement action, and an action common to Ca and REM is shape control of inclusions, all of which have an effect of improving the toughness of steel. In the present invention, the properties of the steel material of the present invention are further improved by adding one or more of Nb, V, Ti, Ca and REM.

【0028】(10)Nb Nbは、微量添加により靱性並びに常温強度及び高温強
度の上昇に有効な元素である。しかし、その含有率が
0.005%未満では、その効果を十分発揮することが
できない。一方、Nbは0.05%を超えると、溶接部
靱性を劣化させると共に、降伏比低下の妨げになる。従
って、Nb含有率は0.005〜0.05%の範囲とす
る。
(10) Nb Nb is an element that is effective for increasing toughness and room-temperature strength and high-temperature strength by adding a small amount. However, if the content is less than 0.005%, the effect cannot be sufficiently exhibited. On the other hand, when Nb exceeds 0.05%, the toughness of the welded portion is deteriorated and the reduction of the yield ratio is hindered. Therefore, the Nb content is in the range of 0.005 to 0.05%.

【0029】(11)V Vは、常温強度及び高温強度の上昇に有効な元素であ
る。しかし、その含有率が0.01%未満では、その効
果を十分に発揮することができない。一方、Vは含有率
が0.1%を超えると、溶接部の靱性を劣化させる。従
って、V含有率は0.01〜0.1%の範囲とする。
(11) V V is an element effective in increasing the strength at normal temperature and high temperature. However, if the content is less than 0.01%, the effect cannot be sufficiently exhibited. On the other hand, if the content of V exceeds 0.1%, the toughness of the weld is deteriorated. Therefore, the V content is in the range of 0.01 to 0.1%.

【0030】(12)Ti Tiは、微量添加により、靱性並びに常温及び高温強度
の向上に有効な元素である。しかし、その含有率が0.
003%未満では、その効果を十分に発揮することがで
きない。一方、Ti含有率が0.10%を超えると、溶
接部の靱性を劣化させる。従って、Ti含有率は0.0
03〜0.10%の範囲とする。
(12) Ti Ti is an element effective for improving toughness and strength at room temperature and high temperature by adding a small amount of Ti. However, the content is less than 0.1.
If it is less than 003%, the effect cannot be sufficiently exhibited. On the other hand, if the Ti content exceeds 0.10%, the toughness of the weld is deteriorated. Therefore, the Ti content is 0.0
The range is 03 to 0.10%.

【0031】(13)Ca Caは、機械的性質の改善や耐ラメラティア特性の向上
に有効な元素である。しかし、その含有率が0.000
5%未満では、その効果を十分に発揮することができな
い。一方、Caは含有率が0.005%を超えると、粗
大な介在物を生じさせ、延靱性を劣化させる。従って、
Ca含有率は0.0005〜0.005%の範囲とす
る。
(13) Ca Ca is an element effective for improving mechanical properties and lamella tear resistance. However, its content is 0.000
If it is less than 5%, the effect cannot be sufficiently exhibited. On the other hand, if the content of Ca exceeds 0.005%, coarse inclusions are generated and the ductility is deteriorated. Therefore,
The Ca content is in the range of 0.0005 to 0.005%.

【0032】(14)REM REMは、Caと同様に機械的性質の改善や耐ラメラテ
ィア特性の向上に有効な元素である。しかし、その含有
率が0.001%未満では、その効果を十分に発揮する
ことができない。一方、REMは含有率が0.02%を
超えると、粗大な介在物を生じさせ、延靱性を劣化させ
る。従って、REM含有率は0.001〜0.02%の
範囲とする。
(14) REM REM, like Ca, is an element effective for improving mechanical properties and improving lamella tear resistance. However, if the content is less than 0.001%, the effect cannot be sufficiently exhibited. On the other hand, when the content of REM exceeds 0.02%, coarse inclusions are generated, and the ductility is deteriorated. Therefore, the REM content is in the range of 0.001 to 0.02%.

【0033】次に、上記成分組成の鋼片の熱間圧延条件
及び冷却条件の限定理由は次の通りである。
Next, the reasons for limiting the hot rolling condition and the cooling condition of the steel slab having the above-mentioned composition are as follows.

【0034】(15)鋼片の加熱温度 鋼片の加熱温度が1000℃未満では、良好な熱間加工
性が得られない。よって、鋼片の加熱温度は1000℃
以上とする。
(15) Heating temperature of steel slab If the heating temperature of the steel slab is less than 1000 ° C., good hot workability cannot be obtained. Therefore, the heating temperature of the billet is 1000 ° C.
Above.

【0035】(16)熱間圧延終了温度 熱間圧延終了温度がAr3 未満では、鋼材の超音波探傷
試験の測定精度に悪影響を及ぼす音響異方性が生じる。
従って、熱間圧延終了温度はAr3 以上の温度とする。
(16) Hot Rolling Completion Temperature If the hot rolling completion temperature is less than Ar 3 , acoustic anisotropy occurs which adversely affects the measurement accuracy of the ultrasonic flaw detection test for steel materials.
Therefore, the hot rolling end temperature is set to a temperature equal to or higher than Ar 3 .

【0036】(17)Ar3 以上での圧下率 Ar3 以上での圧下率が50%未満では、加熱により粗
大化した組織の再結晶が不十分であり、特に靱性が劣化
する。従って、Ar3 以上での圧下率を50%以上とす
る。
[0036] (17) rolling reduction at a reduction ratio Ar 3 or more at Ar 3 or more is less than 50%, recrystallization tissue coarsened by heating is insufficient, particularly toughness is degraded. Therefore, the rolling reduction at Ar 3 or more is set to 50% or more.

【0037】(18)加速冷却開始温度 加速冷却の開始温度がAr3 未満では、加速冷却開始前
に粗大なフェライトが生成し、靱性が劣化すると共に、
Ar3 未満まで低下するまでの冷却待ち時間を発生させ
ることになり、生産性が低下する。従って、加速冷却開
始温度は、Ar 3 以上とする。
(18) Accelerated cooling start temperature The accelerated cooling start temperature is ArThreeIf less than, before the start of accelerated cooling
Coarse ferrite is formed, and toughness is deteriorated.
ArThreeCause the cooling wait time to drop below
As a result, productivity decreases. Therefore, accelerated cooling
The starting temperature is Ar ThreeAbove.

【0038】(19)加速冷却速度 加速冷却速度が、2℃/秒未満では、加速冷却中に粗大
なフェライトが生成し、靱性が劣化する。従って、この
ときの加速冷却速度は2℃/秒以上とする。
(19) Accelerated Cooling Rate If the accelerated cooling rate is less than 2 ° C./sec, coarse ferrite is generated during accelerated cooling, and the toughness is deteriorated. Therefore, the accelerated cooling rate at this time is set to 2 ° C./sec or more.

【0039】(20)冷却待機時の温度、及び待機時間 本発明者等は、低降伏比・高強度鋼材を製造するため
に、軟質相としてのフェライトと、硬質相としてのベイ
ナイトとの混合組織であるフェライト+ベイナイト組織
をうるための圧延・冷却条件を見い出すために、更に試
験・検討を重ねた。
(20) Temperature during Cooling Standby and Standby Time In order to produce a low-yield-ratio high-strength steel material, the present inventors have studied a mixed structure of ferrite as a soft phase and bainite as a hard phase. In order to find out the rolling and cooling conditions for obtaining the ferrite + bainite structure as described above, further tests and examinations were repeated.

【0040】表1に示す成分組成が本発明の範囲の鋼A
を用い、上述した鋼片の加熱温度、熱間圧延終了温度、
Ar3 以上での圧下率、加速冷却開始温度、加速冷却速
度がいずれも、本発明の範囲を満たす条件下で、冷却待
機時の温度と待機時間とを各種水準に変化させた試験を
行なった。試験の水準は、引張強度490N/mm2
上、且つ降伏比80%以下を満たし、更に、生産性を阻
害しないようにするため、待機時間が比較的短時間で上
記引張強度及び降伏比を満たすように、上記待機温度と
待機時間との関係領域を決定した。
The steel A having the composition shown in Table 1 falls within the range of the present invention.
Using the above-mentioned heating temperature of the slab, hot rolling end temperature,
Tests were conducted in which the rolling reduction at Ar 3 or higher, the accelerated cooling start temperature, and the accelerated cooling rate were all varied under various conditions of cooling standby temperature and standby time under conditions that satisfy the range of the present invention. . The test level satisfies the tensile strength of 490 N / mm 2 or more and the yield ratio of 80% or less, and furthermore, the standby time satisfies the above-mentioned tensile strength and yield ratio in a relatively short time so as not to impair the productivity. As described above, the area between the standby temperature and the standby time is determined.

【0041】そして、待機中にオーステナイトの一部を
所要量のフェライトに変態させ、待機後の加速冷却(第
2段目加速冷却)により、残部オーステナイトをベイナ
イトに変態させて、フェライト+ベイナイト組織として
鋼材特性の上記目標値を達成する。
Then, a part of austenite is transformed into a required amount of ferrite during standby, and the remaining austenite is transformed into bainite by accelerated cooling after the standby (second stage accelerated cooling) to obtain a ferrite + bainite structure. Achieve the above target value of steel properties.

【0042】上記方針で行なった試験結果を、図1に示
す。同図は、待機温度及び待機時間が、鋼材特性に及ぼ
す影響の試験結果を示す。同図で斜線部は、強度及び降
伏比ともに目標値を達成する領域であり、引張強度49
0N/mm2 以上で且つ降伏比80%以下の領域であ
る。この結果より、本発明者等は、上記圧延後の鋼材
を、Ar3 以上の温度から、Ar3 からAr3 −100
℃までの温度範囲に2℃/秒以上の冷却速度で加速冷却
し、このAr3 からAr3 −100℃までの温度範囲
で、待機時間t(秒)が、下記(1)式 1.3−0.006×ΔT≦logt≦log150 ----------(1) を満たす時間だけ待機させることにより、引張強度49
0N/mm2 以上、且つ降伏比80%以下の熱間圧延鋼
材が得られることを見い出した。ここで、ΔT(℃):
Ar3 と待機時の鋼材の平均温度T(℃)との温度差
(=Ar3 −T)、但し、ΔT≦100℃である。
FIG. 1 shows the results of a test conducted in accordance with the above policy. The figure shows the test results of the effects of the standby temperature and the standby time on the steel material properties. In the figure, the shaded area is an area where both the strength and the yield ratio achieve the target values.
This is a region having a value of 0 N / mm 2 or more and a yield ratio of 80% or less. From this result, the present inventors have steel after the rolling, the Ar 3 temperature above, Ar 3 -100 from Ar 3
Temperature range up ° C. to accelerate cooling at a cooling rate higher than 2 ° C. / sec, at a temperature range from the Ar 3 to Ar 3 -100 ° C., the standby time t (second), the following equation (1) 1.3 −0.006 × ΔT ≦ logt ≦ log150 ---------- By waiting for a time that satisfies (1), a tensile strength of 49
It has been found that a hot-rolled steel material having a yield ratio of not less than 0 N / mm 2 and not more than 80% can be obtained. Here, ΔT (° C.):
Temperature difference (= Ar 3 −T) between Ar 3 and the average temperature T (° C.) of the steel material during standby, where ΔT ≦ 100 ° C.

【0043】上記結果は、次の通り説明される。The above results are explained as follows.

【0044】待機温度TがAr3 より高温であると、
待機中にフェライトが生成せず、80%以下の低降伏比
が得られない。一方、待機温度TがAr3 −100℃よ
り低くなると、短時間の待機中においてもフェライトが
過度に生成するので、強度を確保し難くなる。従って、
待機温度は、Ar3 からAr3 −100℃の温度範囲が
適している。 一方、待機温度をAr3 からAr3 −100℃の温度
範囲に設定しても、待機時間t(秒)が、 1.3−0.006×ΔT>logt ------------------------(2) である場合には、待機時間が短すぎて所要のフェライト
が所要量生成しないので、強度は確保されるが、低降伏
比80%以下が確保されない。これに対して、待機時間
の上限は生産性を損なわないようにするため、150秒
以下が望ましい。従って、待機時間t(秒)は、 1.3−0.006×ΔT≦logt≦log150 ----------(1) を満たす時間が適している。
If the standby temperature T is higher than Ar 3 ,
No ferrite is formed during standby, and a low yield ratio of 80% or less cannot be obtained. On the other hand, when the standby temperature T is lower than Ar 3 -100 ° C., ferrite is excessively generated even during a short standby period, so that it is difficult to secure strength. Therefore,
The standby temperature is suitably in the range of Ar 3 to Ar 3 -100 ° C. On the other hand, even if the standby temperature is set in a temperature range from Ar 3 to Ar 3 -100 ° C., the standby time t (second) is 1.3-0.006 × ΔT> logt. --------------- (2) In the case of (2), the standby time is too short and the required amount of ferrite is not generated in the required amount, so the strength is secured, but the low yield ratio 80% or less is not secured. On the other hand, the upper limit of the waiting time is desirably 150 seconds or less so as not to impair productivity. Therefore, the standby time t (second) is suitably a time that satisfies 1.3-0.006 × ΔT ≦ logt ≦ log150 (1).

【0045】(21)待機後の加速冷却速度 待機後の加速冷却速度が、2℃/秒未満では、待機後の
未変態オーステナイトからベイナイトへの変態が起こり
難く、80%以下の低降伏比を得ることができない。従
って、待機後の加速冷却速度は、2℃/秒以上とする。
(21) Accelerated cooling rate after standby If the accelerated cooling rate after standby is less than 2 ° C./sec, transformation from untransformed austenite to bainite after standby is unlikely to occur, and a low yield ratio of 80% or less is obtained. I can't get it. Therefore, the accelerated cooling rate after standby is set to 2 ° C./sec or more.

【0046】(22)待機後の加速冷却停止温度 待機後の加速冷却停止温度を400℃/秒未満にする
と、加速冷却によりマルテンサイトが生成し、靱性が劣
化する。一方、加速冷却停止温度が650℃より高い
と、未変態オーステナイトのベイナイト変態が十分進行
しないため、高張力としての強度を確保することが難し
くなる。従って、待機後の加速冷却停止温度は400〜
650℃の範囲とする。
(22) Accelerated cooling stop temperature after standby When the accelerated cooling stop temperature after standby is set to less than 400 ° C./sec, martensite is generated by accelerated cooling and toughness is deteriorated. On the other hand, when the accelerated cooling stop temperature is higher than 650 ° C., bainite transformation of untransformed austenite does not proceed sufficiently, and it is difficult to secure high tensile strength. Therefore, the accelerated cooling stop temperature after standby is 400 to
The range is 650 ° C.

【0047】以上により、上記成分組成、並びに圧延及
び冷却条件を適用すれば、生産性を損なうことなく、4
90N/mm2 以上の強度と、80%以下の降伏比とを
有する耐火鋼材の製造が可能となる。
As described above, when the above-described composition of components and the rolling and cooling conditions are applied, the productivity is not impaired.
It is possible to produce a refractory steel having a strength of 90 N / mm 2 or more and a yield ratio of 80% or less.

【0048】[0048]

【実施例】次に、この発明を、実施例によって更に詳細
に説明すると共に、この発明の効果を立証する。
Next, the present invention will be described in more detail with reference to examples, and the effects of the present invention will be proved.

【0049】鋼片の成分組成並びに熱間圧延及び冷却条
件を種々変化させて、低降伏比耐火鋼材の製造試験を行
なった。得られた各鋼材から試験材を採取し、常温での
引張試験、シャルピー衝撃試験、及び600℃での引張
試験を行なった。
Production tests of low yield ratio refractory steels were conducted by changing the composition of the billets and the conditions of hot rolling and cooling. A test material was sampled from each of the obtained steel materials, and a tensile test at normal temperature, a Charpy impact test, and a tensile test at 600 ° C. were performed.

【0050】表1に、供試鋼片の成分組成及びAr3
態点を示す。鋼No.A〜Lは本発明の範囲の成分組成で
あり、鋼No.M〜Vは本発明の範囲外の成分組成であ
る。表2に、供試鋼材の熱間圧延工程における製造条件
及び製造された鋼片の機械的性質を示す。
Table 1 shows the component composition and the Ar 3 transformation point of the test slab. Steel Nos. A to L have composition compositions within the scope of the present invention, and steel Nos. M to V have composition compositions outside the scope of the invention. Table 2 shows the manufacturing conditions and the mechanical properties of the manufactured steel slab in the hot rolling step of the test steel material.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 成分組成及び熱間圧延工程の製造条件共に、本発明の範
囲である実施例1〜12はいずれも、490N/mm2
以上の十分な引張強度(TS)と80%以下の降伏比
(YR)とを有し、更に耐火鋼材特性として常温強度
(YS)の2/3以上の高温強度(600℃での0.2
%耐力)を有する。またいずれも優れた靱性(0℃での
シャルピー試験における吸収エネルギー V0 )を有す
る。そして、生産性においてもこれが損なわれることな
く、安定した操業が行われた。こうして、実施例におい
ては、この発明の目的が完全に達成された。
[Table 2] Both the component composition and the production conditions of the hot rolling step were within the scope of the present invention, and Examples 1 to 12 were all 490 N / mm 2.
It has a sufficient tensile strength (TS) and a yield ratio (YR) of 80% or less, and has a high-temperature strength (0.2% at 600 ° C.) of 2/3 or more of the normal temperature strength (YS) as a refractory steel material characteristic.
% Proof stress). Also having both excellent toughness (absorbed energy V E 0 in the Charpy test at 0 ° C.). In addition, stable operation was performed without any loss in productivity. Thus, in the embodiments, the object of the present invention has been completely achieved.

【0053】これに対して、本発明の範囲外の構成要件
を一つでも含む比較例1〜10はいずれも、この発明の
目的を完全には達成することはできなかった。即ち、 比較例1は、待機後の加速冷却停止温度が本発明の範
囲より高く、比較例5は、冷却待機時の鋼材の平均温度
が本発明の範囲より低く、比較例6は、圧延後の加速冷
却速度が本発明の範囲より小さかった。そのためいずれ
においても、引張強度が490N/mm2 以下であり、
高張力鋼としての強度が得られなかった。 比較例3は、圧延終了温度が本発明の範囲より低く、
比較例9は、冷却待機時の鋼材の平均温度が本発明の範
囲より高く、比較例10は、Nb含有率が本発明の範囲
より高かった。そのためいずれにおいても、降伏比が8
0%を超えており、低降伏比が得られなかった。 比較例7は、Ar3 以上の温度での圧下率が本発明の
範囲より低く、比較例8は、待機後の加速冷却停止温度
が本発明の範囲より低かった。そのためいずれにおいて
も、靱性が他の鋼材に比べて劣っている。 比較例2及び4は、Mo含有率が本発明の範囲よりも
低かった。そのためいずれにおいても、600℃での
0.2%耐力が常温での降伏強度の2/3に達せず、耐
火鋼としての性能を有していなかった。
On the other hand, none of Comparative Examples 1 to 10 including at least one constituent element outside the scope of the present invention could completely achieve the object of the present invention. That is, Comparative Example 1 has an accelerated cooling stop temperature after standby higher than the range of the present invention, Comparative Example 5 has an average temperature of the steel material during cooling standby lower than the range of the present invention, and Comparative Example 6 has Was lower than the range of the present invention. Therefore, in any case, the tensile strength is 490 N / mm 2 or less,
The strength as high strength steel was not obtained. In Comparative Example 3, the rolling end temperature was lower than the range of the present invention,
In Comparative Example 9, the average temperature of the steel material during cooling standby was higher than the range of the present invention, and in Comparative Example 10, the Nb content was higher than the range of the present invention. Therefore, in each case, the yield ratio is 8
It exceeded 0%, and a low yield ratio was not obtained. In Comparative Example 7, the rolling reduction at a temperature of Ar 3 or more was lower than the range of the present invention, and in Comparative Example 8, the accelerated cooling stop temperature after standby was lower than the range of the present invention. Therefore, in each case, the toughness is inferior to other steel materials. In Comparative Examples 2 and 4, the Mo content was lower than the range of the present invention. Therefore, in each case, the 0.2% proof stress at 600 ° C. did not reach 2 of the yield strength at room temperature, and did not have the performance as fire-resistant steel.

【0054】[0054]

【発明の効果】以上述べたように、この発明によれば、
建築物や橋梁等の鋼構造物に使用される低降伏比耐火鋼
材を、加速冷却前の鋼材製造ラインでの待機や熱処理に
よる生産性の低下をきたすことなく、安価で大量に安定
して製造することができる。このような低降伏比耐火鋼
材の製造方法を提供することができ、工業上有用な効果
がもたらされる。
As described above, according to the present invention,
Low-yield ratio refractory steels used for steel structures such as buildings and bridges can be manufactured stably at low cost and in large quantities without reducing productivity due to waiting on a steel production line before accelerated cooling or heat treatment. can do. A method for producing such a low yield ratio refractory steel material can be provided, and an industrially useful effect is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧延後引き続き行われた加速冷却後における待
機温度及び待機時間が、鋼材特性に及ぼす影響を示すグ
ラフである。
FIG. 1 is a graph showing the effect of a standby temperature and a standby time after accelerated cooling performed after rolling on steel material properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諏訪 稔 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K032 AA01 AA04 AA05 AA08 AA11 AA14 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 AA40 BA01 CA02 CB02 CC03 CD02 CD03  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Minoru Suwa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo F-term in Nihon Kokan Co., Ltd. 4K032 AA01 AA04 AA05 AA08 AA11 AA14 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 AA40 BA01 CA02 CB02 CC03 CD02 CD03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.04〜0.20%、 Si:0.05〜1.0 %、 Mn:0.5 〜2.0 %、 Mo:0.2 〜0.8 %、 Al:0.002〜0.1%を含有し、 N :0.020%以下とする 鋼片を、1000℃以上に加熱後、Ar3 以上の温度域
で圧下率50%以上の熱間圧延を行なう工程と、 熱間圧延された鋼材を、Ar3 以上の温度から、Ar3
からAr3 −100℃の温度範囲まで2℃/秒以上の冷
却速度で加速冷却し、当該温度範囲において、下記
(1)式を満たす待機時間:t(秒)の待機を行なう工
程と、 1.3−0.006×ΔT≦logt≦log150 ----------(1) ここで、ΔT(℃):Ar3 と待機時の鋼材の平均温度
T(℃)との温度差(=Ar3 −T) t(秒) :待機時間 待機された鋼材を、平均温度が400〜650℃の範囲
の温度まで2℃/秒以上の冷却速度で加速冷却する工程
と、を備えたことを特徴とする、低降伏比耐火鋼材の製
造方法。
C: 0.04 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.5 to 2.0%, Mo: 0.2 to 0% by weight%. 8%, Al: 0.002 to 0.1%, N: 0.020% or less After heating a steel slab to 1000 ° C or more, a reduction of 50% or more in a temperature range of Ar 3 or more. A step of performing hot rolling, and removing the hot-rolled steel material from a temperature of Ar 3 or more to Ar 3
From Ar to a temperature range of Ar 3 -100 ° C. by accelerated cooling at a cooling rate of 2 ° C./sec or more, and waiting in the temperature range for a waiting time: t (sec) satisfying the following expression (1): 0.3−0.006 × ΔT ≦ logt ≦ log150 ---------- (1) Here, ΔT (° C.): the temperature between Ar 3 and the average temperature T (° C.) of the steel material during standby. Difference (= Ar 3 −T) t (second): standby time A step of accelerating and cooling the standby steel material to a temperature in the range of 400 to 650 ° C. at a cooling rate of 2 ° C./second or more. A method for producing a low yield ratio refractory steel material.
【請求項2】 鋼片成分として、重量%で、 Cu:0.03〜1.0%、 Ni:0.03〜0.5%、 Cr:0.03〜0.6%、 の群から選択された1種または2種以上を含有すること
を特徴とする、請求項1記載の低降伏比耐火鋼材の製造
方法。
2. As a billet component, from the group of: Cu: 0.03 to 1.0%, Ni: 0.03 to 0.5%, Cr: 0.03 to 0.6% by weight%. The method for producing a low-yield-ratio refractory steel material according to claim 1, comprising one or more selected materials.
【請求項3】 鋼片成分として、重量%で、更に、 Nb:0.005〜0.05%、 V :0.01 〜0.1 %、 Ti:0.003〜0.1 %、 の群から選択された1種または2種以上を含有すること
を特徴とする、請求項1又は2記載の低降伏比耐火鋼材
の製造方法。
3. The steel slab component further includes: Nb: 0.005 to 0.05%, V: 0.01 to 0.1%, Ti: 0.003 to 0.1% by weight%. The method for producing a low-yield-ratio refractory steel material according to claim 1, wherein the method comprises one or more selected from the group.
【請求項4】 鋼片成分として、重量%で、更に、 Ca :0.0005〜0.005%、 REM:0.001 〜0.02 %、 の群から選択された1種または2種以上を含有すること
を特徴とする、請求項1又は2記載の低降伏比耐火鋼材
の製造方法。
4. As a billet component, one or more selected from the group consisting of Ca: 0.0005 to 0.005% and REM: 0.001 to 0.02% by weight. The method for producing a low-yield-ratio refractory steel material according to claim 1, comprising:
【請求項5】 鋼片成分として、重量%で、更に、 Nb:0.005〜0.05%、 V :0.01 〜0.1 %、 Ti:0.003〜0.1 %、 の群から選択された1種または2種以上、及び、 Ca :0.0005〜0.005%、 REM:0.001 〜0.02 %、 の群から選択された1種または2種以上を含有すること
を特徴とする、請求項1又は2記載の低降伏比耐火鋼材
の製造方法。
5. The steel slab component further includes: Nb: 0.005 to 0.05%, V: 0.01 to 0.1%, Ti: 0.003 to 0.1% by weight%. One or more selected from the group, and Ca: 0.0005 to 0.005%, REM: 0.001 to 0.02%, containing one or more selected from the group The method for producing a low-yield-ratio refractory steel material according to claim 1, wherein:
JP36921898A 1998-12-25 1998-12-25 Production of low yield ratio fire resistant steel Pending JP2000192142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36921898A JP2000192142A (en) 1998-12-25 1998-12-25 Production of low yield ratio fire resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36921898A JP2000192142A (en) 1998-12-25 1998-12-25 Production of low yield ratio fire resistant steel

Publications (1)

Publication Number Publication Date
JP2000192142A true JP2000192142A (en) 2000-07-11

Family

ID=18493879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36921898A Pending JP2000192142A (en) 1998-12-25 1998-12-25 Production of low yield ratio fire resistant steel

Country Status (1)

Country Link
JP (1) JP2000192142A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294338A (en) * 2001-03-30 2002-10-09 Nkk Corp Method for producing low yield ratio steel having excellent fire resistance
WO2006093282A1 (en) * 2005-03-04 2006-09-08 Nippon Steel Corporation High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP7334771B2 (en) 2020-12-18 2023-08-29 Jfeスチール株式会社 Steel for the shell of the container for the melt, the shell of the container for containing the melt, and the container for containing the melt

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294338A (en) * 2001-03-30 2002-10-09 Nkk Corp Method for producing low yield ratio steel having excellent fire resistance
JP4639508B2 (en) * 2001-03-30 2011-02-23 Jfeスチール株式会社 Manufacturing method of low yield ratio steel with excellent fire resistance
WO2006093282A1 (en) * 2005-03-04 2006-09-08 Nippon Steel Corporation High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP7334771B2 (en) 2020-12-18 2023-08-29 Jfeスチール株式会社 Steel for the shell of the container for the melt, the shell of the container for containing the melt, and the container for containing the melt

Similar Documents

Publication Publication Date Title
JP6795048B2 (en) Non-treated low yield ratio high-strength thick steel sheet and its manufacturing method
JP2002020835A (en) Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP2002053912A (en) Method for producing as rolled, low yield patio high tensile strength steel sheet having little acoustic anisotropy and excellent weldability
JP2000192142A (en) Production of low yield ratio fire resistant steel
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same
JP2002294391A (en) Steel for building structure and production method therefor
JP3468072B2 (en) Manufacturing method of low yield ratio section steel
JP2000192140A (en) Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity
JP2000239743A (en) Manufacture of high tensile steel of low yield ratio, reduced in difference in material quality in plate thickness direction
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JP3546721B2 (en) Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction
JP2002363642A (en) Method for producing rolled wide flange shape having low yield ratio and excellent toughness
JPH05117745A (en) Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JP4218114B2 (en) Manufacturing method of low yield ratio refractory steel
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP2000178644A (en) Production of low yield ratio high tensile strength steel small in difference in material in plate thickness direction
JPH10310821A (en) Manufacture of high tensile strength steel tube for construction use
JP3911834B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP2001247935A (en) Rolled shape steel excellent in earthquake resistance and weather resistance and its producing method
JP3454670B2 (en) Steel members with excellent buckling resistance
JP2000256737A (en) Production of low yield ratio high tensile thick steel
JP2001214244A (en) Rolled wide flange shape excellent in earthquake resistance and producing method therefor
JP2962110B2 (en) Manufacturing method of low yield ratio high strength steel sheet for box column

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040817

Free format text: JAPANESE INTERMEDIATE CODE: A02