JP6649187B2 - Method for estimating tensile properties - Google Patents

Method for estimating tensile properties Download PDF

Info

Publication number
JP6649187B2
JP6649187B2 JP2016126501A JP2016126501A JP6649187B2 JP 6649187 B2 JP6649187 B2 JP 6649187B2 JP 2016126501 A JP2016126501 A JP 2016126501A JP 2016126501 A JP2016126501 A JP 2016126501A JP 6649187 B2 JP6649187 B2 JP 6649187B2
Authority
JP
Japan
Prior art keywords
working
post
tensile
estimated
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016126501A
Other languages
Japanese (ja)
Other versions
JP2018004261A (en
Inventor
山本 伸一
伸一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016126501A priority Critical patent/JP6649187B2/en
Publication of JP2018004261A publication Critical patent/JP2018004261A/en
Application granted granted Critical
Publication of JP6649187B2 publication Critical patent/JP6649187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、引張特性の推定方法に関する。   The present invention relates to a method for estimating tensile properties.

例えば、建築用鋼管では、鋼管に作用する荷重は管軸方向がほとんどであるため、鋼管強度は管軸方向の引張試験で規定されている。具体的には、例えば管軸方向の降伏応力、引張強さ、および降伏比が規定されている。一般にこのような引張試験では、鋼管の周方向の一カ所から切り出した管軸方向を長手とする全厚試験片、または外側から板厚の1/4の位置で切り出した丸棒試験片が使用される。また、ラインパイプ用鋼管では、従来から規定されている管周方向の特性だけでなく、管軸方向についても諸元として要求されている。従って、鋼板から鋼管への曲げ加工方向と直交する方向(管軸方向)における鋼管の引張特性を推定することが要求されている。   For example, in a steel pipe for a building, since the load acting on the steel pipe is mostly in the pipe axis direction, the strength of the steel pipe is specified by a tensile test in the pipe axis direction. Specifically, for example, the yield stress, tensile strength, and yield ratio in the tube axis direction are specified. In general, in such a tensile test, a full-thickness test piece cut out from one location in the circumferential direction of the steel pipe and having a length in the pipe axis direction or a round bar test piece cut out from the outside at a position 1/4 of the plate thickness is used. Is done. Further, in steel pipes for line pipes, not only characteristics in the circumferential direction of the pipe, which have been conventionally defined, but also specifications in the axial direction of the pipe are required. Therefore, it is required to estimate the tensile properties of the steel pipe in a direction (pipe axis direction) orthogonal to the bending direction from the steel plate to the steel pipe.

特許文献1には、鋼板の曲げ加工における機械的性質に及ぼす加工度と焼き鈍し処理の影響評価法が開示されている。特許文献2には、鋼板の曲げ加工後における、曲げ加工方向と直交する方向の引張特性の推定方法が開示されている。   Patent Literature 1 discloses a method for evaluating the influence of the degree of work and the annealing treatment on the mechanical properties in bending of a steel sheet. Patent Literature 2 discloses a method for estimating tensile properties in a direction orthogonal to a bending direction after bending a steel sheet.

特許第3721517号公報Japanese Patent No. 3721517 特開2014−222160号公報JP 2014-222160 A

特許文献1の影響評価法では、曲げ加工に伴うバウシンガー効果が考慮されておらず、引張特性の推定精度に改善の余地がある。また、この影響評価法では、多くの実製品データを収集する必要があり、多くの時間と費用を要する。   In the influence evaluation method of Patent Document 1, the Bauschinger effect accompanying bending is not taken into consideration, and there is room for improvement in the estimation accuracy of tensile properties. In addition, this impact assessment method needs to collect a lot of actual product data, which requires much time and cost.

特許文献2の推定方法では、バウシンガー効果は考慮されているが、鋼板から鋼管への曲げ方向と、鋼管の管軸方向とが異なることは考慮されていない。また、推定結果として、降伏応力の推定精度のみ言及されており、引張強さや降伏比の推定精度は言及されていない。そのため、特許文献2の推定方法では、引張強さや降伏比の推定精度が不明である。   In the estimation method of Patent Document 2, the Bauschinger effect is considered, but the difference between the bending direction from the steel plate to the steel pipe and the pipe axis direction of the steel pipe is not considered. Further, as the estimation result, only the estimation accuracy of the yield stress is mentioned, and the estimation accuracy of the tensile strength and the yield ratio is not mentioned. Therefore, in the estimation method of Patent Literature 2, the estimation accuracy of the tensile strength and the yield ratio is unknown.

本発明は、鋼板の引張特性から、鋼板を曲げ加工して鋼管とした場合の鋼板から鋼管への加工方向と直交する方向(管軸方向)における鋼管の引張特性を高精度に推定することを課題とする。   The present invention provides a method for accurately estimating, from the tensile properties of a steel sheet, the tensile properties of a steel pipe in a direction (pipe axis direction) perpendicular to the processing direction from the steel sheet to the steel pipe when the steel sheet is bent into a steel pipe. Make it an issue.

本発明の引張特性の推定方法は、鋼板を曲げ加工して鋼管とした場合の前記鋼板から前記鋼管への曲げ加工方向と直交する方向における前記鋼管の引張特性の推定方法であって、前記鋼板の加工前引張特性である加工前降伏応力と、加工前引張強さと、加工前降伏比とを実測により取得し、前記鋼板から前記鋼管への加工方向と直交する方向の加工後引張特性である加工後降伏応力と、加工後引張強さと、加工後降伏比とを実測により取得し、前記鋼板から前記鋼管への前記曲げ加工を解析上で前記加工前引張特性を使用して再現し、前記解析により評価点の相当塑性ひずみと背応力を算出し、前記背応力の関数としてバウシンガー効果量を規定し、前記バウシンガー効果量および前記加工前降伏比の関数として前記加工後降伏応力を推定加工後降伏応力として推定し、前記加工前降伏比の関数として前記加工後引張強さを推定加工後引張強さとして推定し、前記推定加工後降伏応力を前記推定加工後引張強さで除算し、前記加工後降伏比を推定加工後降伏比として推定することを含む。   The method for estimating tensile properties of the present invention is a method for estimating tensile properties of the steel pipe in a direction perpendicular to a bending direction from the steel sheet to the steel pipe when bending the steel sheet into a steel pipe, Yield stress before working, which is the tensile property before working, tensile strength before working, and yield ratio before working are obtained by actual measurement, and are tensile properties after working in a direction orthogonal to the working direction from the steel sheet to the steel pipe. The post-working yield stress, the post-working tensile strength, and the post-working yield ratio are obtained by actual measurement, and the bending from the steel sheet to the steel pipe is reproduced on the analysis using the pre-working tensile properties, Calculate the equivalent plastic strain and the back stress at the evaluation points by analysis, define the Bauschinger effect as a function of the back stress, and estimate the post-working yield stress as a function of the Bauschinger effect and the pre-working yield ratio. Addition Estimate as post-yield stress, estimate the post-working tensile strength as an estimated post-working tensile strength as a function of the pre-working yield ratio, divide the estimated post-working yield stress by the estimated post-working tensile strength, Estimating the post-machining yield ratio as an estimated post-machining yield ratio.

この方法によれば、鋼板を曲げ加工して鋼管とした場合の鋼板から鋼管への加工方向と直交する方向(管軸方向)における鋼管の引張特性を高精度に推定できる。この高精度の推定は、移動硬化則を考慮することで実現されている。移動硬化則の考慮には、背応力が使用されている。背応力は移動硬化則における降伏曲面の移動量に対応する要素であるため、背応力の関数として規定されたバウシンガー効果量を推定に使用することで、移動硬化則に基づいて、鋼板の曲げ加工により得られた鋼管の管軸方向の引張特性の変化を考慮できる。さらに、本願発明者は、数多くの試行により、バウシンガー効果量だけでなく、加工前降伏比も含めた関数として推定加工後降伏応力を推定することで推定精度が向上することを見出しており、推定精度を一層向上させている。また、バウシンガー効果量を背応力および加工前降伏応力の関数として規定してもよい。   According to this method, it is possible to accurately estimate the tensile properties of a steel pipe in a direction (pipe axis direction) orthogonal to the direction in which the steel sheet is formed into a steel pipe by bending the steel sheet. This highly accurate estimation is realized by considering the kinematic hardening rule. Back stress is used to consider the kinematic hardening law. Since the back stress is an element corresponding to the amount of displacement of the yield surface in the kinematic hardening law, by using the Bauschinger effect amount specified as a function of the back stress for estimation, the bending of the steel sheet based on the kinematic hardening law It is possible to consider changes in the tensile properties in the pipe axis direction of the steel pipe obtained by processing. Furthermore, the inventor of the present application has found through numerous trials that the estimation accuracy is improved by estimating not only the Bauschinger effect amount but also the estimated post-processing yield stress as a function including the pre-processing yield ratio, The estimation accuracy is further improved. Further, the Bauschinger effect amount may be defined as a function of the back stress and the yield stress before processing.

複数の対応する前記加工後降伏応力と前記推定加工後降伏応力とに対し、以下の第1評価関数を最小化する定数a,b,cを決定し、前記定数a,b,cを代入した以下の前記推定加工後降伏応力の算出式(1)に基づいて、前記加工前引張特性から前記推定加工後降伏応力を算出してもよい。

Figure 0006649187
For a plurality of corresponding post-working yield stresses and the estimated post-working yield stress, constants a, b, and c that minimize the following first evaluation function were determined, and the constants a, b, and c were substituted. Based on the following formula (1) for calculating the post-working yield stress, the estimated post-working yield stress may be calculated from the pre-working tensile properties.
Figure 0006649187

この方法によれば、加工前降伏比と、バウシンガー効果量と、加工硬化量とを含む推定加工後降伏応力の具体的な算出式(1)を規定できる。算出式(1)がこれらの要素含むことで、鋼板の曲げ加工方向と、曲げ加工により得られた鋼管の引張試験方向(管軸方向)とが異なる場合でも、バウシンガー効果と加工硬化を受けて複雑に変化する鋼管の管軸方向の降伏応力を、鋼板の引張特性から高精度に推定できる。   According to this method, a specific calculation formula (1) of the estimated post-working yield stress including the yield ratio before working, the Bauschinger effect amount, and the work hardening amount can be defined. When the calculation formula (1) includes these elements, even when the bending direction of the steel sheet is different from the tensile test direction (tube axis direction) of the steel pipe obtained by the bending, the Bauschinger effect and work hardening are obtained. It is possible to estimate the yield stress in the pipe axis direction of a steel pipe, which varies in a complicated manner, from the tensile properties of the steel sheet with high accuracy.

複数の対応する前記加工後引張強さと前記推定加工後引張強さとに対し、以下の第2評価関数を最小化する定数s,t,uを決定し、前記定数s,t,uを代入した以下の前記推定加工後引張強さの算出式(2)に基づいて、前記加工前引張特性から前記推定加工後引張強さを算出してもよい。

Figure 0006649187
For a plurality of the corresponding post-working tensile strengths and the estimated post-working tensile strengths, constants s, t, and u for minimizing the following second evaluation function were determined, and the constants s, t, and u were substituted. The estimated tensile strength after processing may be calculated from the tensile properties before processing based on the following formula (2) for calculating the estimated tensile strength after processing.
Figure 0006649187

この方法によれば、加工前降伏比と、相当塑性ひずみとを含む推定加工後引張強さの具体的な算出式(2)を規定できる。算出式(2)がこれらの要素を含むことで、上記と同様に、複雑に変化する鋼管の管軸方向の引張強さを、鋼板の引張特性から高精度に推定できる。   According to this method, it is possible to define a specific calculation formula (2) of the estimated post-working tensile strength including the yield ratio before working and the equivalent plastic strain. When the calculation formula (2) includes these elements, similarly to the above, the tensile strength in the pipe axis direction of the steel pipe that changes in a complicated manner can be estimated with high accuracy from the tensile properties of the steel sheet.

本発明によれば、移動硬化則に基づいて鋼板から鋼管への曲げ加工方向と直交する方向(管軸方向)の引張特性の変化を考慮できるため、管軸方向における鋼管の引張特性を高精度に推定できる。   According to the present invention, it is possible to consider a change in tensile properties in a direction (pipe axis direction) orthogonal to a bending direction from a steel sheet to a steel pipe based on the kinematic hardening law. Can be estimated.

本発明の実施形態で使用される鋼板の斜視図。The perspective view of the steel plate used by embodiment of this invention. 図1の鋼板を曲げ加工して得られた鋼管の斜視図。The perspective view of the steel pipe obtained by bending the steel plate of FIG. 本発明の実施形態に係る引張特性の推定方法を示すフローチャート。5 is a flowchart illustrating a method for estimating tensile properties according to the embodiment of the present invention. 加工硬化量を示す応力−ひずみ線図。FIG. 4 is a stress-strain diagram showing the amount of work hardening. 塑性ひずみに対する推定加工後降伏応力の近似式を示すグラフ。4 is a graph showing an approximate expression of an estimated post-working yield stress with respect to plastic strain. 加工後降伏応力と推定加工後降伏応力の差を示すグラフ。5 is a graph showing a difference between a post-working yield stress and an estimated post-working yield stress. 加工後引張強さと推定加工後引張強さの差を示すグラフ。5 is a graph showing a difference between the tensile strength after processing and the estimated tensile strength after processing.

以下、添付図面を参照して本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1に示すように鋼板10の状態から図2に示すような鋼管20の状態に曲げ加工した場合、引張特性が変化する。特に、鋼板10から鋼管20への曲げ加工方向と直交する方向(管軸方向、即ち図1,2のZ軸方向)の引張特性は加工硬化により複雑に変化する。本実施形態では、鋼板10の引張特性から、加工硬化則(移動硬化則)を考慮したバウシンガー効果量を推定に使用することで、鋼管20の管軸方向の引張特性を高精度に推定する。   When bending is performed from the state of the steel sheet 10 as shown in FIG. 1 to the state of the steel pipe 20 as shown in FIG. 2, the tensile properties change. In particular, the tensile properties in the direction (tube axis direction, that is, the Z-axis direction in FIGS. 1 and 2) perpendicular to the bending direction from the steel plate 10 to the steel pipe 20 are complicatedly changed by work hardening. In the present embodiment, the tensile property of the steel pipe 20 in the pipe axis direction is estimated with high accuracy by using the Bauschinger effect amount in consideration of the work hardening law (movement hardening law) from the tensile properties of the steel sheet 10. .

ここでの引張特性は、降伏応力と、引張強さと、降伏比とを含む。また、説明上および後述する解析座標の設定上、曲げ加工方向(鋼板10の幅方向および鋼管20の周方向)をX方向、板厚方向をY方向、引張試験方向(鋼板10の長手方向および圧延方向、並びに鋼管20の管軸方向)をZ方向と定義している。   Here, the tensile properties include the yield stress, the tensile strength, and the yield ratio. In addition, in the setting of analysis coordinates described below and later, the bending direction (the width direction of the steel plate 10 and the circumferential direction of the steel pipe 20) is the X direction, the thickness direction is the Y direction, and the tensile test direction (the longitudinal direction and the The rolling direction and the pipe axis direction of the steel pipe 20) are defined as the Z direction.

図3に示すフローチャートに従って、鋼管20の管軸方向の引張特性の推定方法を説明する。   The method for estimating the tensile properties of the steel pipe 20 in the pipe axis direction will be described with reference to the flowchart shown in FIG.

推定を開始すると(ステップS3−1)、鋼板10の引張特性(加工前引張特性)を実測により取得する(ステップS3−2)。使用される鋼板10の厚みは、10〜100mm程度であり、曲げ加工可能な厚みである。取得する鋼板10の引張特性には、例えば鋼材メーカ等で示されている諸元等が使用されてもよい。以下の表1には、本実施形態で取得した異なる5種類の鋼板A〜Eの引張特性である降伏応力(加工前降伏応力)YSと、引張強さ(加工前引張強さ)TSと、降伏比(加工前降伏比)YRとが示されている。ここで、加工前降伏比YRは、加工前降伏応力YSを加工前引張強さTSで除算した百分率で求められる(YR=YS/TS×100)。本実施形態では、高低2種類の加工前降伏比YRを有する鋼板A〜Eが準備されている。具体的には、鋼板A〜Cの加工前降伏比YRは相対的に低く、鋼板D,Eの加工前降伏比YRは相対的に高い。 When the estimation is started (Step S3-1), the tensile properties (tensile properties before working) of the steel sheet 10 are obtained by actual measurement (Step S3-2). The thickness of the steel plate 10 used is about 10 to 100 mm, which is a thickness that can be bent. As the tensile properties of the steel plate 10 to be acquired, for example, specifications indicated by a steel material maker or the like may be used. Table 1 below, the yield stress (before processing yield stress) YS p is the tensile properties of the obtained five different steel A~E in this embodiment, the tensile strength (tensile before processing strength) TS p And the yield ratio (yield ratio before processing) YR p are shown. Here, the unprocessed yield ratio YR p is determined as a percentage obtained by dividing the unprocessed yield stress YS p in unprocessed tensile strength TS p (YR p = YS p / TS p × 100). In the present embodiment, the steel plate A~E having high and low two kinds of unprocessed yield ratio YR p is prepared. Specifically, before processing yield ratio of the steel sheet A through C YR p is relatively low, the steel plate D, unprocessed yield ratio YR p of E is relatively high.

Figure 0006649187
Figure 0006649187

表1に示された内容を含む鋼板10の引張特性を取得した後、鋼板10から鋼管20への曲げ加工を行い、鋼管20の管軸方向の引張特性(加工後引張特性)を実測により取得する(ステップS3−3)。鋼板10から鋼管20への曲げ加工は、例えばプレスベンド、ロールベンド、またはU−O曲げ等によって行われる。なお、本実施形態では、鋼管20は円管であるが、その形状は特に限定されず、例えば、楕円管または角管であってもよい。以下の表2には、表1の鋼板A〜Eを曲げ加工して得られた鋼管の加工後引張特性が示されている。具体的には、鋼管20の管軸方向の降伏応力(加工後降伏応力)YSoと、引張強さ(加工後引張強さ)TSoとがそれぞれ示されている。なお、加工後降伏比YRoは、表2に記載されていないが、加工後降伏応力YSoを加工後引張強さTSoで除算した百分率で求められる(YRo=YSo/TSo×100)。鋼板10から鋼管20への曲げ加工にはばらつきが生じるため、表2には各鋼板A〜Eを曲げ加工して得られた鋼管それぞれの4ないしは6箇所ずつから試験片を採取して引張特性を取得した結果が示されている。 After acquiring the tensile properties of the steel sheet 10 including the contents shown in Table 1, the steel sheet 10 is bent into a steel pipe 20, and the tensile properties in the pipe axis direction of the steel pipe 20 (post-processing tensile properties) are obtained by actual measurement. (Step S3-3). The bending from the steel plate 10 to the steel pipe 20 is performed by, for example, press bend, roll bend, UO bending, or the like. In the present embodiment, the steel pipe 20 is a circular pipe, but the shape is not particularly limited, and may be, for example, an elliptical pipe or a square pipe. Table 2 below shows the post-working tensile properties of the steel pipes obtained by bending the steel plates A to E in Table 1. Specifically, the yield stress (after processing yield stress) YS o in the tube axis direction of the steel pipe 20, the tensile strength (tensile after working strength) and TS o are shown. The processing after the yield ratio YR o is not listed in Table 2, obtained by the percentage obtained by dividing the post-processing yield stress YS o by machining after the tensile strength TS o (YR o = YS o / TS o × 100). Since the bending process from the steel plate 10 to the steel tube 20 varies, Table 2 shows test pieces taken from four or six places of each of the steel pipes obtained by bending each of the steel plates A to E. Are obtained.

Figure 0006649187
Figure 0006649187

表2に示された内容を含む鋼管20の加工後引張特性を取得した後、鋼板10から鋼管20への曲げ加工を解析上で再現する(ステップS3−4)。この解析では、工具形状、工具サイズ、曲げ加工方法、ストローク、およびプレスピッチ等について、可能な限り実際の製管条件が模擬されることが好ましい。この解析は平面ひずみ要素を用いた2D解析またはソリッド要素を用いた3D解析であり、解析にはステップS3−2で取得した加工前引張特性(表1参照)が使用される。また、この解析では、曲げ加工に伴う加工硬化則として、汎用の有限要素解析ソフトウェアに用意されている一般的な移動硬化則を使用する。解析が完了すると、応力および塑性ひずみの他、背応力を出力するように設定し、解析完了時に評価点の相当塑性ひずみεと、背応力αとを取得する(ステップS3−5)。ここで、背応力とは、降伏曲面の動きを示す要素である。   After acquiring the post-processing tensile properties of the steel pipe 20 including the contents shown in Table 2, the bending from the steel plate 10 to the steel pipe 20 is reproduced on an analysis (step S3-4). In this analysis, it is preferable to simulate actual pipe making conditions as much as possible with respect to the tool shape, the tool size, the bending method, the stroke, the press pitch, and the like. This analysis is a 2D analysis using a plane strain element or a 3D analysis using a solid element, and the analysis uses the tensile properties before processing (see Table 1) acquired in step S3-2. In this analysis, a general kinematic hardening rule prepared in general-purpose finite element analysis software is used as a work hardening rule accompanying bending. When the analysis is completed, a setting is made so as to output the back stress in addition to the stress and the plastic strain, and at the completion of the analysis, the equivalent plastic strain ε at the evaluation point and the back stress α are obtained (step S3-5). Here, the back stress is an element indicating the movement of the yield surface.

一般に引張試験では、鋼管10の外側から板厚の1/4の位置で切り出した丸棒試験片が使用される。そのため、解析上の評価点は、実際の評価対象である丸棒採取位置の最も近い節点または要素中心に設定される。なお、評価点の相当塑性ひずみεは、この丸棒採取位置にどれだけの加工が加えられたかを意味するので、加工度と言われることもあり、以降の説明でも両記載は区別することなく使用する。   Generally, in the tensile test, a round bar test piece cut out from the outside of the steel pipe 10 at a position of 1/4 of the plate thickness is used. Therefore, the evaluation point in the analysis is set at the nearest node or element center of the round bar sampling position which is the actual evaluation target. In addition, the equivalent plastic strain ε of the evaluation point means how much processing was applied to this round bar sampling position, so it is sometimes called the degree of processing, and in the following description, the two descriptions are not distinguished. use.

解析が完了すると、以下の式(3)に基づいてバウシンガー効果量Bを算出する(ステップS3−6)。バウシンガー効果量Bの算出には、本実施形態においては、背応力αおよび加工前降伏応力YSが使用されている。以下の式(3)では、背応力αのX,Y,Z成分がそれぞれα,α,αに対応する。 When the analysis is completed, the Bauschinger effect amount B is calculated based on the following equation (3) (step S3-6). The calculation of the Bauschinger effect size B, in the present embodiment, the back stress α and processed before yield stress YS p is used. In the following equation (3), the X, Y, and Z components of the back stress α correspond to α x , α y , and α z , respectively.

Figure 0006649187
Figure 0006649187

次いで、以下の式(4)に基づいて加工硬化量Hを算出する(ステップS3−7)。ここでは、上記評価点の相当応力(例えばミーゼス応力)をσFとし、相当応力σFから加工前降伏応力YSを減算した値を加工硬化量Hと定義している。なお、図4に示すように、解析により得られた応力−ひずみ線図と、評価点の相当塑性ひずみεとから図のように加工硬化量Hを導出しても同じ解が得られる。 Next, the work hardening amount H is calculated based on the following equation (4) (step S3-7). Here, the equivalent stress of the evaluation point (e.g. Mises stress) and? F, and define by subtracting the unprocessed yield stress YS p from the equivalent stress? F value and work hardening amount H. As shown in FIG. 4, the same solution can be obtained even if the work hardening amount H is derived from the stress-strain diagram obtained by the analysis and the equivalent plastic strain ε at the evaluation point as shown in the figure.

Figure 0006649187
Figure 0006649187

バウシンガー効果量Bと加工硬化量Hを算出した後、以下の式(5)に示す第1評価関数fを最小化する定数a,b,cを算出する(ステップS3−8)。第1評価関数fは、推定加工後降伏応力YSと加工後降伏応力YSの差の二乗和として定義されている。推定加工後降伏応力YSは、加工前降伏応力YSを使用して、バウシンガー効果量B、加工硬化量H、および加工前降伏比YRの関数として以下の式(5)のように定義されている。第1評価関数fを最小化する定数a,b,cの算出には、最小二乗法等を使用すればよい。 After calculating the Bauschinger effect amount B and work hardening amount H, the constant a that minimizes the first evaluation function f 1 as shown in formula (5), b, calculates the c (step S3-8). The first evaluation function f 1 is defined as the sum of the squares of the difference between the estimated post-process yield stress YS e and post-process yield stress YS o. The estimated post-working yield stress YS e is calculated by using the pre-working yield stress YS p as a function of the Bauschinger effect amount B, the work hardening amount H, and the pre-working yield ratio YR p as in the following equation (5). Is defined. Constant a that minimizes the first evaluation function f 1, b, the calculation of c, it is sufficient to use a method of least squares.

Figure 0006649187

Figure 0006649187
Figure 0006649187

Figure 0006649187

同様に、以下の式(6)に基づいて、第2評価関数fを最小化する定数s,t,uを算出する(ステップS3−8)。第2評価関数fは、推定加工後引張強さTSと加工後引張強さTSの差の二乗和として定義されている。推定加工後引張強さTSは、加工前引張強さTSを使用して、相当塑性ひずみεおよび加工前降伏比YRの関数として以下の式(6)のように定義されている。第2評価関数fを最小化する定数s,t,uの算出には、最小二乗法等を使用すればよい。 Similarly, based on the following equation (6), the constant s that minimizes the second evaluation function f 2, t, and calculates the u (step S3-8). Second evaluation function f 2 is defined as the sum of the squares of the difference between the estimated post-process the tensile strength TS e and processing after the tensile strength TS o. Tensile After estimating machining strength TS e uses strength TS p tensile before processing, are defined as the following equation (6) as a function of the equivalent plastic strain ε and unprocessed yield ratio YR p. Constant s that minimizes the second evaluation function f 2, t, the calculation of u, it is sufficient to use a method of least squares.

Figure 0006649187

Figure 0006649187
Figure 0006649187

Figure 0006649187

以下の表3には、このようにして求めた相当塑性ひずみε、背応力α(α,α,α)、バウシンガー効果量B、加工硬化量H、推定加工後降伏応力YS、および推定加工後引張強さTSが示されている。このとき、推定加工後降伏比YRは、推定加工後降伏応力YS推定加工後引張強さTSで除算した百分率で求められる(YR=YS/TS×100)。なお、本実施形態では、最小二乗法により定数a,b,c,s,t,uが算出されており、その値は、a=0.2980、b=0.6464、c=0.6600、s=1.0209、t=0.0293、u=0.0355である。
Table 3 below shows the equivalent plastic strain ε, back stress α (α x , α y , α z ), Bauschinger effect amount B, work hardening amount H, estimated yield stress YS e obtained in this manner. , and the estimated post-process the tensile strength TS e is shown. At this time, the estimated post-process yield ratio YR e is determined as a percentage obtained by dividing the estimated post-process yield stress YS e estimated machining after the tensile strength TS e (YR e = YS e / TS e × 100). In the present embodiment, the constants a, b, c, s, t, and u are calculated by the least square method, and the values are a = 0.2980, b = 0.6464, and c = 0.6600. , S = 1.0209, t = 0.0293, and u = 0.0355.

Figure 0006649187
Figure 0006649187

また、図5に示すように、本実施形態では、表3に示す加工前降伏比YRが低い鋼板10の5点のデータ(A5,B1,B4,C2,C5)に基づいて、任意の相当塑性ひずみεに対する推定加工後降伏応力YSの値を示す近似式を算出している。本実施形態では、二次関数を使用して近似式(YS=−13385ε+2822.5ε+376.37)を算出しているが、近似式は二次関数に限らず、任意の関数を使用できる。同様に、詳細は省略するが、表3に示す加工前降伏比YRが高い鋼板10の3点のデータ(D4,E2,E6)に基づいて、任意の相当塑性ひずみεに対する推定加工後降伏応力YSの値を示す近似式を算出している。このように、同鋼種の複数のデータにて、相当塑性ひずみεと、推定加工後降伏応力YSとの関係を近似式で表現することで、任意の相当塑性ひずみεでの推定加工後降伏応力YSを推定できる。また、同様にして任意の相当塑性ひずみεでの推定加工後引張強さTSを推定できる。 Further, as shown in FIG. 5, in the present embodiment, based on the data of five points before processing yield ratio YR p is lower steel sheet 10 shown in Table 3 (A5, B1, B4, C2, C5), any calculates the approximate expression indicating the value of the estimated post-process yield stress YS e for equivalent plastic strain epsilon. In the present embodiment, the approximate expression (YS e = -13385ε 2 + 2822.5ε + 376.37) is calculated using the quadratic function. However, the approximate expression is not limited to the quadratic function, and any function can be used. . Similarly, although not described in detail, based on the data (D4, E2, E6) of three points of the steel sheet 10 having a high yield ratio YR p before processing shown in Table 3, the estimated yield after processing for any equivalent plastic strain ε and we calculate an approximate expression indicating the value of the stress YS e. In this way, by expressing the relationship between the equivalent plastic strain ε and the estimated yield stress YS e by an approximate expression using a plurality of data of the same steel type, the estimated yield after machining at any equivalent plastic strain ε is obtained. The stress YS e can be estimated. Furthermore, we estimate the estimation processing after the tensile strength TS e at any equivalent plastic strain ε in the same manner.

図6,7に示しているのは、上記のような近似式を使用し、表2に示す全ての鋼管20のデータ(A1〜E6)を対象に引張特性を推定した結果である。   FIGS. 6 and 7 show the results of estimating the tensile properties of all the steel pipe 20 data (A1 to E6) shown in Table 2 using the above-described approximate expression.

図6に示すように、推定加工後降伏応力YSと、加工後降伏応力YSとの誤差は、±20MPa以内(図6の破線内)である。また、図7に示すように、推定加工後引張強さTSと、加工後引張強さTSとの誤差は、±20MPa以内(図7の破線内)である。従って、推定加工後降伏応力YSの推定誤差について、特許文献1に開示された誤差±50MPaおよび特許文献2に開示された誤差−30〜+20MPaと比較して、本実施形態は高い推定精度を有している。また、推定加工後引張強さTSの推定誤差について、特許文献1に開示された誤差±50MPaと比較して本実施形態は高い推定精度を有している。なお、特許文献2では、推定加工後引張強さTSの推定誤差は開示されていない。 As shown in FIG. 6, the error between the estimated post-processing yield stress YS e and the post-processing yield stress YS o is within ± 20 MPa (within the broken line in FIG. 6). Further, as shown in FIG. 7, the error of the intensity TS e tensile after estimation processing, the strength TS o tensile after processing is within ± 20 MPa (in the broken line in FIG. 7). Therefore, the estimation error of the estimated post-process yield stress YS e, compared to the error -30 to + 20 MPa disclosed error ± 50 MPa disclosed in Patent Document 1 and Patent Document 2, the present embodiment the high estimation accuracy Have. Further, the estimation error of the tensile after estimating machining strength TS e, the present embodiment as compared to the error ± 50 MPa disclosed in Patent Document 1 has high estimation accuracy. In Patent Document 2, the estimation error of the tension after the estimated machining strength TS e is not disclosed.

以上より、本実施形態の方法によれば、鋼板10から鋼管20への加工方向と直交する方向(管軸方向)における鋼管20の引張特性を高精度に推定できる。この高精度の推定は、移動硬化則を考慮することで実現されている。移動硬化則の考慮には、背応力αが使用されている。背応力αは移動硬化則における降伏曲面の移動量に対応する要素であるため、背応力αの関数として規定されたバウシンガー効果量Bを推定に使用することで、移動硬化則に基づいて、鋼板10の曲げ加工により得られた鋼管20の管軸方向の引張特性の変化を考慮できる。さらに、本願発明者は、数多くの試行により、バウシンガー効果量Bだけでなく、加工前降伏比YRも含めた関数として推定加工後降伏応力YSを推定することで推定精度が向上することを見出しており、推定精度を一層向上させている。 As described above, according to the method of the present embodiment, the tensile properties of the steel pipe 20 in the direction (tube axis direction) orthogonal to the processing direction of the steel sheet 10 into the steel pipe 20 can be estimated with high accuracy. This highly accurate estimation is realized by considering the kinematic hardening rule. The back stress α is used for consideration of the kinematic hardening rule. Since the back stress α is an element corresponding to the amount of movement of the yield surface in the kinematic hardening law, by using the Bauschinger effect amount B defined as a function of the back stress α for estimation, based on the kinematic hardening law, It is possible to consider changes in the tensile properties in the pipe axis direction of the steel pipe 20 obtained by bending the steel plate 10. Furthermore, the inventor of the present application has found that the estimation accuracy is improved by estimating the post-machining yield stress YS e as a function including not only the Bauschinger effect amount B but also the yield ratio YR p before machining through numerous trials. Are found, and the estimation accuracy is further improved.

また、本実施形態では、加工前降伏比YRと、バウシンガー効果量Bと、加工硬化量Hとを含む推定加工後降伏応力YSの具体的な算出式(5)を規定している。算出式(5)がこれらの要素を含むことで、鋼板10の曲げ加工方向と、曲げ加工により得られた鋼管20の引張試験方向(管軸方向)とが異なる場合でも、バウシンガー効果と加工硬化を受けて複雑に変化する鋼管20の管軸方向の降伏応力を、鋼板10の引張特性から高精度に推定できる。 Further, in this embodiment, defines a front yield ratio YR p machining, the Bauschinger effect size B, specific calculation equation of the estimated post-process yield stress YS e including a work hardening amount H (5) . When the calculation formula (5) includes these elements, even when the bending direction of the steel plate 10 is different from the tensile test direction (tube axis direction) of the steel pipe 20 obtained by the bending, the Bauschinger effect and the processing are obtained. The yield stress in the pipe axis direction of the steel pipe 20, which changes in a complicated manner due to the hardening, can be estimated with high accuracy from the tensile properties of the steel sheet 10.

また、本実施形態では、加工前降伏比YRと、相当塑性ひずみεとを含む推定加工後引張強さTSの具体的な算出式(6)を規定している。算出式(6)がこれらの要素を含むことで、上記と同様に、複雑に変化する鋼管20の管軸方向の引張強さを、鋼板10の引張特性から高精度に推定できる。 Further, in this embodiment, it defines a front yield ratio YR p processed, specific calculation formula for equivalent plastic strain ε and the estimated post-process the tensile strength TS e containing a (6). When the calculation formula (6) includes these elements, the tensile strength in the tube axis direction of the steel pipe 20 that changes in a complicated manner can be estimated from the tensile properties of the steel plate 10 with high accuracy, similarly to the above.

10 鋼板
20 鋼管
10 steel plate 20 steel pipe

Claims (4)

鋼板を曲げ加工して鋼管とした場合の前記鋼板から前記鋼管への曲げ加工方向と直交する方向における前記鋼管の引張特性の推定方法であって、
前記鋼板の加工前引張特性である加工前降伏応力と、加工前引張強さと、加工前降伏比とを実測により取得し、
前記鋼板から前記鋼管への加工方向と直交する方向の加工後引張特性である加工後降伏応力と、加工後引張強さと、加工後降伏比とを実測により取得し、
前記鋼板から前記鋼管への前記曲げ加工を解析上で前記加工前引張特性を使用して再現し、前記解析により評価点の相当塑性ひずみと背応力を算出し、
前記背応力の関数としてバウシンガー効果量を規定し、
前記バウシンガー効果量および前記加工前降伏比の関数として前記加工後降伏応力を推定加工後降伏応力として推定し、
前記加工前降伏比の関数として前記加工後引張強さを推定加工後引張強さとして推定し、
前記推定加工後降伏応力を前記推定加工後引張強さで除算し、前記加工後降伏比を推定加工後降伏比として推定する
ことを含む、引張特性の推定方法。
A method for estimating the tensile properties of the steel pipe in a direction orthogonal to a bending direction from the steel sheet to the steel pipe when bending the steel sheet into a steel pipe,
The pre-working yield stress, which is the pre-working tensile property of the steel sheet, the pre-working tensile strength, and the pre-working yield ratio are obtained by actual measurement,
The post-processing yield stress, which is the post-processing tensile property in a direction orthogonal to the processing direction from the steel sheet to the steel pipe, the post-processing tensile strength, and the post-processing yield ratio are obtained by actual measurement,
The bending process from the steel plate to the steel pipe is reproduced on the analysis using the tensile property before the processing, and the equivalent plastic strain and the back stress at the evaluation point are calculated by the analysis,
The Bauschinger effect amount is defined as a function of the back stress,
Estimating the post-working yield stress as a post-working yield stress as a function of the Bauschinger effect amount and the pre-working yield ratio,
Estimating the post-working tensile strength as a function of the pre-working yield ratio as an estimated post-working tensile strength,
A method for estimating tensile properties, comprising: dividing the estimated post-working yield stress by the estimated post-working tensile strength, and estimating the post-working yield ratio as the estimated post-working yield ratio.
前記バウシンガー効果量が、前記背応力および前記加工前降伏応力の関数である、請求項1に記載の引張特性の推定方法。   The method for estimating tensile properties according to claim 1, wherein the Bauschinger effect amount is a function of the back stress and the yield stress before processing. 複数の対応する前記加工後降伏応力と前記推定加工後降伏応力とに対し、以下の第1評価関数を最小化する定数a,b,cを決定し、
前記定数a,b,cを代入した以下の前記推定加工後降伏応力の算出式に基づいて、前記加工前引張特性から前記推定加工後降伏応力を算出する、請求項1または請求項2に記載の引張特性の推定方法。
Figure 0006649187
For a plurality of corresponding post-working yield stresses and the estimated post-working yield stress, determine constants a, b, and c that minimize the following first evaluation function:
3. The estimated post-working yield stress is calculated from the pre-working tensile characteristics based on the following calculation formula of the estimated post-working yield stress into which the constants a, b, and c are substituted. Method for estimating tensile properties of steel.
Figure 0006649187
複数の対応する前記加工後引張強さと前記推定加工後引張強さとに対し、以下の第2評価関数を最小化する定数s,t,uを決定し、
前記定数s,t,uを代入した以下の前記推定加工後引張強さの算出式に基づいて、前記加工前引張特性から前記推定加工後引張強さを算出する、請求項1から請求項3のいずれか1項に記載の引張特性の推定方法。
Figure 0006649187
For a plurality of corresponding post-working tensile strengths and the estimated post-working tensile strengths, determine constants s, t, u that minimize the following second evaluation function;
4. The estimated tensile strength after machining is calculated from the tensile properties before machining based on the following equation for calculating the estimated tensile strength after machining into which the constants s, t, and u are substituted. The method for estimating tensile properties according to any one of the above.
Figure 0006649187
JP2016126501A 2016-06-27 2016-06-27 Method for estimating tensile properties Active JP6649187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126501A JP6649187B2 (en) 2016-06-27 2016-06-27 Method for estimating tensile properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126501A JP6649187B2 (en) 2016-06-27 2016-06-27 Method for estimating tensile properties

Publications (2)

Publication Number Publication Date
JP2018004261A JP2018004261A (en) 2018-01-11
JP6649187B2 true JP6649187B2 (en) 2020-02-19

Family

ID=60946463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126501A Active JP6649187B2 (en) 2016-06-27 2016-06-27 Method for estimating tensile properties

Country Status (1)

Country Link
JP (1) JP6649187B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509335B (en) * 2020-11-16 2024-04-30 中国石油天然气集团有限公司 Method for detecting Bactger effect value of steel plate for welded pipe
CN113139238B (en) * 2021-04-29 2022-09-27 四川大学 Automobile high-strength steel stamping springback optimization method based on material constitutive optimization model
CN117129335B (en) * 2023-10-27 2024-01-02 沈阳飞机工业(集团)有限公司 Method for obtaining circumferential mechanical performance parameters of pipe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897477B2 (en) * 1999-03-25 2007-03-22 トヨタ自動車株式会社 Stress-strain relationship simulation method and springback amount prediction method
JP4912013B2 (en) * 2006-03-31 2012-04-04 株式会社神戸製鋼所 Manufacturing method of press-bend cold-formed circular steel pipe with excellent earthquake resistance
JP5582211B1 (en) * 2013-03-14 2014-09-03 Jfeスチール株式会社 Stress-strain relationship simulation method, springback amount prediction method, and springback analysis device
JP5983527B2 (en) * 2013-05-13 2016-08-31 Jfeスチール株式会社 Method for estimating tensile properties in the direction perpendicular to the working direction after bending a steel plate

Also Published As

Publication number Publication date
JP2018004261A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US7870792B2 (en) Forming limit strain analysis
Aerens et al. Force prediction for single point incremental forming deduced from experimental and FEM observations
KR101949070B1 (en) Residual stress estimation method and residual stress estimation apparatus
JP6649187B2 (en) Method for estimating tensile properties
JP6516323B2 (en) Residual stress estimation method and residual stress estimation device
Gothivarekar et al. Advanced FE model validation of cold-forming process using DIC: Air bending of high strength steel
Simunek et al. Fatigue crack growth under constant and variable amplitude loading at semi-elliptical and V-notched steel specimens
Harsch et al. Influence of scattering material properties on the robustness of deep drawing processes
JP2008058179A (en) Method of evaluating residual stress
JP6399269B1 (en) Hardness estimation method for cold-worked parts and hardness-equivalent plastic strain curve acquisition method for steel
US8601854B2 (en) Method of bending sheet metal
ÖZDEMİR Optimization of spring back in air v bending processing using Taguchi and RSM method
JP6140863B1 (en) Constant identification method and constant identification system for material constitutive law in friction stir welding analysis
JP7316278B2 (en) Determining the bending shortening of the sheet workpiece to be bent
JP2006284199A (en) Apparatus and method for measurement of residual stress
Groseclose et al. Determination of biaxial flow stress using frictionless dome test
Slota et al. Experimental and numerical analysis of springback prediction in U-bendings of anisotropic sheet metals
JPS6182933A (en) Three roll bending device
JP2005233862A (en) Method of preparing material characteristic distribution map
WO2024062822A1 (en) Press forming fracture determination method, device and program, and method for manufacturing press formed part
Groche et al. Five ways to determine the initial sheet width in bending
SLOTA et al. EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE DEEP DRAWING PROCESS USING OPTICAL MEASURING SYSTEM
JP2008262263A (en) Calculation method for contact surface pressure and subsurface stress
Saravanan et al. REVIEW–METHODS AND MEASUREMENTS OF SPRINGBACK EVALUATION
Rao et al. Direct evaluation of sheet metal forming properties under various deformation conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200116

R151 Written notification of patent or utility model registration

Ref document number: 6649187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151