JP4687153B2 - Production method of low yield ratio high strength steel - Google Patents

Production method of low yield ratio high strength steel Download PDF

Info

Publication number
JP4687153B2
JP4687153B2 JP2005064924A JP2005064924A JP4687153B2 JP 4687153 B2 JP4687153 B2 JP 4687153B2 JP 2005064924 A JP2005064924 A JP 2005064924A JP 2005064924 A JP2005064924 A JP 2005064924A JP 4687153 B2 JP4687153 B2 JP 4687153B2
Authority
JP
Japan
Prior art keywords
less
cooling
steel
temperature
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005064924A
Other languages
Japanese (ja)
Other versions
JP2006249468A (en
Inventor
康宏 室田
公宏 西村
和秀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005064924A priority Critical patent/JP4687153B2/en
Publication of JP2006249468A publication Critical patent/JP2006249468A/en
Application granted granted Critical
Publication of JP4687153B2 publication Critical patent/JP4687153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、海洋構造物、橋梁、造船、ラインパイプ、建産機械、主に耐震性を必要とする建築用鋼材として使用される非調質高張力鋼の製造方法に関し、特に板厚40mm以下で降伏比80%以下となるものの製造方法として好適なものに関する。   The present invention relates to a method for producing off-tempered high-tensile steel used as offshore structures, bridges, shipbuilding, line pipes, construction machinery, and steel materials for construction that mainly require earthquake resistance, and in particular, plate thickness of 40 mm or less. And a suitable manufacturing method for those having a yield ratio of 80% or less.

近年、建築構造物などでは地震時の安全性確保の観点から優れた耐震性を有する鋼板が要求されている。また、降伏比の低い鋼板ほど耐震性に優れることが明らかとされており、建築用鋼材などでは、降伏比が80%以下の鋼材を使用することが義務付けられている。さらに、地震発生時に最も塑性変形能が要求される梁材などに使用される部材は、より低降伏比であることが望ましい。   In recent years, steel sheets having excellent earthquake resistance are required for building structures and the like from the viewpoint of ensuring safety during an earthquake. In addition, it is clear that steel plates with lower yield ratios are more excellent in earthquake resistance, and steel materials for construction and the like are obliged to use steel materials with a yield ratio of 80% or less. Furthermore, it is desirable that a member used for a beam material that is most required to have plastic deformability when an earthquake occurs, has a lower yield ratio.

耐震性を確保するための低降伏比鋼材に関しては、特許文献1〜9などが提案されている。
特許文献1には、スラブ加熱温度を低温化し、さらに未再結晶温度域での圧下率を30%以上と規定することにより靭性を改善し、冷却速度、冷却停止温度を制御することにより、高強度、低降伏比、高靭性を両立させることが記載されている。
Patent Documents 1 to 9 and the like have been proposed for low yield ratio steel materials for ensuring earthquake resistance.
In Patent Document 1, the slab heating temperature is lowered, and the reduction rate in the non-recrystallization temperature range is defined as 30% or more to improve toughness, and by controlling the cooling rate and cooling stop temperature, It describes that the strength, the low yield ratio, and the high toughness are compatible.

しかし、特許文献1記載の方法では、スラブの低温加熱により、変形抵抗が高く圧延装置に負荷をかけることや仕上温度が低いため、厳密な温度管理が必要となり、安定製造が困難である。   However, in the method described in Patent Document 1, since the deformation resistance is high due to low temperature heating of the slab and a load is applied to the rolling mill and the finishing temperature is low, strict temperature control is required, and stable production is difficult.

特許文献2には、加速冷却時の冷却速度を、水量密度を変化させることにより制御し、異なる板厚においてもほぼ同一の冷却速度で冷却することができ、板厚によらず同一の強度、降伏比を得ることが可能となる技術が記載されている。   In Patent Document 2, the cooling rate during accelerated cooling is controlled by changing the water density, and cooling can be performed at almost the same cooling rate even in different plate thicknesses, with the same strength regardless of the plate thickness, A technique is described that makes it possible to obtain a yield ratio.

しかし、特許文献2記載の方法では、板厚40mm以下の薄物材を水量密度を減少させて低冷却速度で冷却する場合、鋼板全面に渡って均一冷却をすることは困難であり、冷却歪が大きくなる。   However, in the method described in Patent Document 2, when a thin material having a thickness of 40 mm or less is cooled at a low cooling rate by reducing the water density, it is difficult to perform uniform cooling over the entire surface of the steel plate, and cooling strain is not generated. growing.

特許文献3には、熱間圧延終了後の加速冷却速度を1℃/s以上に制御し、750〜600℃まで冷却することにより低降伏比高強度鋼を製造することが記載されている。しかし、冷却停止温度が600℃以上で高強度を得ようとする場合、Cu、Ni、Moなどの高価な元素を多量に添加する必要があり、その結果、大幅に製造コストが増加する。   Patent Document 3 describes that high-strength steel with a low yield ratio is manufactured by controlling the accelerated cooling rate after hot rolling to 1 ° C./s or more and cooling to 750 to 600 ° C. However, in order to obtain high strength at a cooling stop temperature of 600 ° C. or higher, it is necessary to add a large amount of expensive elements such as Cu, Ni, and Mo, and as a result, the manufacturing cost is greatly increased.

特許文献4には、熱間圧延終了後の加速冷却時の冷却速度を1〜5℃/sに制御することにより、高強度と低YRを両立させることが記載されている。しかし、1〜5℃/sの遅い冷却速度では、高強度確保のためにCu、Ni、Moなどの高価な元素を多量に添加する必要があり、その結果、大幅に製造コストが増加する。   Patent Document 4 describes that both high strength and low YR are achieved by controlling the cooling rate during accelerated cooling after the end of hot rolling to 1 to 5 ° C./s. However, at a slow cooling rate of 1 to 5 ° C./s, it is necessary to add a large amount of expensive elements such as Cu, Ni, and Mo in order to ensure high strength, and as a result, the manufacturing cost increases significantly.

特許文献5には、熱間圧延終了後の加速冷却速度または、再加熱焼入れ時の冷却速度を5℃/s以上に制御し、さらに焼戻し時の昇温速度を制御することにより、低降伏比を達成することが記載されている。しかし、焼戻し時の昇温速度制御は、実製造上厳密な温度管理、時間管理が必要であり、安定製造が困難である。   Patent Document 5 includes a low yield ratio by controlling the accelerated cooling rate after completion of hot rolling or the cooling rate during reheating and quenching to 5 ° C / s or more, and further controlling the temperature rising rate during tempering. Is described. However, temperature rise rate control during tempering requires strict temperature management and time management in actual production, and stable production is difficult.

特許文献6には、低降伏比を確保するために、二相域熱処理を実施することが記載されている。しかし、二相域熱処理は、低降伏比を安定に確保できる手法であるものの、オフラインでの熱処理回数の増加により、製造コストが上昇し、製造工期が長期化する。   Patent Document 6 describes that a two-phase region heat treatment is performed in order to ensure a low yield ratio. However, although the two-phase region heat treatment is a technique that can stably secure a low yield ratio, the increase in the number of heat treatments performed offline increases the manufacturing cost and prolongs the manufacturing period.

特許文献7には、熱間圧延終了後の加速冷却時の冷却速度を0.3〜3℃/sに制御することにより高強度、低降伏比を確保することが記載されている。しかし、このような遅い冷却速度では、高強度確保のために多量の合金元素添加が必須となり、その結果、大幅に製造コストが増加する。   Patent Document 7 describes securing a high strength and a low yield ratio by controlling the cooling rate during accelerated cooling after the end of hot rolling to 0.3 to 3 ° C./s. However, at such a slow cooling rate, a large amount of alloying element is indispensable for securing high strength, and as a result, the manufacturing cost is greatly increased.

特許文献8や特許文献9には、圧延後、予備冷却を実施し所定の温度になり次第、空冷し、その後再度冷却することにより、低降伏比を達成することが記載されている。予備冷却後の空冷時間を予備冷却停止温度と変態点をパラメータとする式で管理するが、実質的に空冷時間が非常に長くなり、その結果、生産性が低下する。   Patent Documents 8 and 9 describe that after rolling, preliminary cooling is performed, air cooling is performed as soon as a predetermined temperature is reached, and then cooling is performed again to achieve a low yield ratio. Although the air cooling time after the pre-cooling is managed by a formula using the pre-cooling stop temperature and the transformation point as parameters, the air cooling time is substantially increased, resulting in a decrease in productivity.

特に、板厚40mm以下の薄物材に特許文献8や特許文献9に記載されている技術を適用すると、空冷時間が非常に長い場合、鋼板上下面に温度差が若干存在するだけでも鋼板に歪が発生し、平坦な鋼板が製造できない。
特開平5-320752号公報 特開平5-339631号公報 特開平6-340924号公報 特開平9-3596号公報 特開平9-3595号公報 特開平10-306316号公報 特開2001-226737号公報 特開2000-256736号公報 特開2000-87138号公報
In particular, when the technology described in Patent Document 8 and Patent Document 9 is applied to a thin material having a thickness of 40 mm or less, if the air cooling time is very long, the steel sheet is distorted even if there is a slight temperature difference between the upper and lower surfaces of the steel sheet. Occurs, and a flat steel plate cannot be manufactured.
JP-A-5-320752 JP-A-5-339631 JP-A-6-340924 Japanese Unexamined Patent Publication No. 9-3596 Japanese Patent Laid-Open No. 9-3595 Japanese Patent Laid-Open No. 10-306316 JP 2001-226737 A JP 2000-256736 JP 2000-87138 A

上述したように、特許文献1から9に記載された技術は高価な合金元素添加や厳密な製造条件管理、さらには、オフライン二相域熱処理や焼戻し熱処理を必要とし、大量に使用される厚鋼板の製造方法としては必ずしも妥当な方法ではなかった。   As described above, the techniques described in Patent Documents 1 to 9 require expensive alloy element addition, strict production condition management, and further, off-line two-phase region heat treatment and tempering heat treatment, and are used in large quantities. However, it was not always a reasonable method for the production.

そこで、本発明は、安価かつ簡便に低降伏比高張力鋼を製造する方法を提供することを目的とする。   Then, this invention aims at providing the method of manufacturing a low yield ratio high tensile steel cheaply and simply.

本発明の課題は以下の手段により達成される。
1.質量%で、C:0.05〜0.18%
Si:0.05〜0.5%,
Mn:0.6〜2.0%,
P:0.02%以下
S:0.005%以下
Al:0.1%以下
を含有し、残部がFeおよび不可避的不純物からなり、式(1)で示される炭素当量Ceqが0.3〜0.45%の鋼を1000〜1250℃の範囲に加熱後、圧延終了温度が鋼板表面で800〜950℃となるように熱間圧延した後に、板厚中心部で550〜650℃となるまで冷却し、ついで4〜20s空冷保持後、再び500℃以下まで冷却をすることを特徴とする板厚40mm以下、降伏比80%以下の高張力鋼の製造方法。
The object of the present invention is achieved by the following means.
1. % By mass, C: 0.05 to 0.18%
Si: 0.05-0.5%
Mn: 0.6-2.0%
P: 0.02% or less
S: 0.005% or less
Al: Contains 0.1% or less, the balance is Fe and inevitable impurities, and the steel with a carbon equivalent Ceq of 0.3 to 0.45% represented by the formula (1) is heated in the range of 1000 to 1250 ° C, and then the rolling finish temperature After hot rolling to a temperature of 800 to 950 ° C on the steel sheet surface, cool to 550 to 650 ° C at the center of the plate thickness, and then cool to 500 ° C or less again after holding for 4 to 20s air cooling. A method for producing high-tensile steel with a sheet thickness of 40 mm or less and a yield ratio of 80% or less.

Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 (1)
ここで,C,Si,Mn,Ni,Cr,Mo,V:各元素の含有量(質量%)
2.鋼成分として、更に
Cu:0.1〜1.0%
Ni:0.1〜2.0%
Cr:0.05〜1.0%
Mo:0.05〜1.0%
B:0.0005〜0.002%
Nb:0.005〜0.05%
Ti:0.005〜0.05%
V:0.005〜0.1%
の1種または2種以上含有することを特徴とする1記載の、板厚40mm以下、降伏比80%以下の高張力鋼の製造方法。
3.500℃以下まで冷却後、200〜Ac1(℃)の温度範囲で焼戻すことを特徴とする1または2記載の板厚40mm以下、降伏比80%以下の高張力鋼の製造方法。
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Where C, Si, Mn, Ni, Cr, Mo, V: Content of each element (% by mass)
2. As a steel component,
Cu: 0.1 to 1.0%
Ni: 0.1-2.0%
Cr: 0.05-1.0%
Mo: 0.05-1.0%
B: 0.0005-0.002%
Nb: 0.005-0.05%
Ti: 0.005-0.05%
V: 0.005-0.1%
The method for producing high-tensile steel according to 1, wherein the sheet thickness is 40 mm or less and the yield ratio is 80% or less.
3. The method for producing a high-strength steel having a thickness of 40 mm or less and a yield ratio of 80% or less according to 1 or 2, characterized by tempering in a temperature range of 200 to Ac1 (° C.) after cooling to 500 ° C. or less.

本発明によれば、安価かつ簡便に薄物で低降伏比の高張力鋼を製造することが可能となり、産業上極めて有用である。   According to the present invention, it is possible to produce a high strength steel having a low yield ratio with a thin material at low cost and easily, which is extremely useful industrially.

本発明では成分組成と製造条件を規定する。   In this invention, a component composition and manufacturing conditions are prescribed | regulated.

[成分組成] %は全て質量%とする。   [Ingredient composition] All% are mass%.

C:0.05〜0.18%
Cは、鋼の強度を増加させる元素であり、一般的に使用される鋼板の引張強度である490MPa以上確保するためには、0.05%以上が必要である.しかし,過剰に添加すると低温溶接割れ感受性を増大させる。そのため,0.05〜0.18%の範囲に限定する。
C: 0.05-0.18%
C is an element that increases the strength of steel, and 0.05% or more is necessary to secure 490 MPa or more, which is the tensile strength of a generally used steel sheet. However, excessive addition increases the low-temperature weld crack sensitivity. Therefore, it is limited to the range of 0.05 to 0.18%.

Si:0.05〜0.5%
Siは、脱酸元素として作用し、製鋼上0.05%以上の含有が必要であるが、0.5%を超えて含有すると母材靭性が低下する。このため,0.05〜0.5%の範囲に限定する。
Si: 0.05-0.5%
Si acts as a deoxidizing element and needs to be contained in an amount of 0.05% or more in terms of steelmaking, but if it exceeds 0.5%, the base material toughness decreases. For this reason, it is limited to a range of 0.05 to 0.5%.

Mn:0.6〜2.0%
Mnは、鋼の焼入れ性を増加し強度を向上させる元素であり、この効果を確保するために0.6%以上の含有を必要とする。一方,2.0%を超えての含有は、溶接性を著しく劣化させる。このため,0.6〜2.0%の範囲に限定する。
Mn: 0.6-2.0%
Mn is an element that increases the hardenability of the steel and improves the strength. In order to secure this effect, Mn is required to be contained in an amount of 0.6% or more. On the other hand, if the content exceeds 2.0%, the weldability deteriorates remarkably. For this reason, it limits to the range of 0.6 to 2.0%.

P:0.02%以下
Pは、不純物として鋼中に不可避的に含有される元素であり,鋼の靭性を劣化させるためにできるだけ低減することが望ましい。特に、0.02%を越えての含有は、著しく靭性を劣化する。そのため、Pは0.02%以下に限定する。
P: 0.02% or less P is an element inevitably contained in steel as an impurity, and is desirably reduced as much as possible in order to deteriorate the toughness of steel. In particular, the content exceeding 0.02% significantly deteriorates toughness. Therefore, P is limited to 0.02% or less.

S:0.005%以下
Sは、不純物として鋼中に不可避的に含有される元素であり、鋼の靭性や板厚方向引張試験における絞りを劣化させるためできるだけ低減することが望ましい。特に、0.005%を越えての含有は、上記特性を著しく劣化する。そのため、Sは0.005%以下に限定する。
S: 0.005% or less
S is an element inevitably contained in steel as an impurity, and is desirably reduced as much as possible in order to deteriorate the toughness of steel and the drawing in the thickness direction tensile test. In particular, the content exceeding 0.005% significantly deteriorates the above characteristics. Therefore, S is limited to 0.005% or less.

Al:0.1%以下
Alは,脱酸材として作用し,溶鋼の脱酸プロセス上もっとも汎用的に使われる。0.1%を越えての含有は、粗大な酸化物を形成して、母材の延性を著しく劣化させる。そのため、Alは0.1%以下に限定する。
Al: 0.1% or less
Al acts as a deoxidizer and is most commonly used in the deoxidation process of molten steel. If the content exceeds 0.1%, a coarse oxide is formed, and the ductility of the base material is remarkably deteriorated. Therefore, Al is limited to 0.1% or less.

Ceq:0.3〜0.42%
Ceqは、溶接構造物として必要不可欠である溶接継手の強度を確保するために0.3%以上必要である。しかし、0.42%以上とすると、溶接性を劣化させる。そのため、Ceqは0.3〜0.42%とする。但し、 Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 ここで, C,Si,Mn,Ni,Cr,Mo,V:各元素の含有量(質量%)とする。
Ceq: 0.3-0.42%
Ceq is required to be 0.3% or more to ensure the strength of the welded joint, which is indispensable as a welded structure. However, if it is 0.42% or more, the weldability deteriorates. Therefore, Ceq is set to 0.3 to 0.42%. However, Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 where C, Si, Mn, Ni, Cr, Mo, V: Content of each element Amount (mass%).

以上が本発明の基本成分組成であるが、更に特性を向上させる場合、Cu,Ni,Cr,Mo,B,Ti,Nb,Vの一種または二種以上を添加することができる。
Cu:0.1〜1.0%
Cuは、靭性を劣化させずに強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.1%以上の添加が必要である。しかし、1.0%以上の添加により、熱間圧延時に表面疵が多発する。そのため、添加する場合は、Cuは0.1〜1.0%とする。
The above is the basic component composition of the present invention. When further improving the characteristics, one or more of Cu, Ni, Cr, Mo, B, Ti, Nb, and V can be added.
Cu: 0.1 to 1.0%
Cu is an element effective for increasing the strength without deteriorating the toughness, and in order to exert its effect, addition of 0.1% or more is necessary. However, the addition of 1.0% or more frequently causes surface defects during hot rolling. Therefore, when added, Cu is made 0.1 to 1.0%.

Ni:0.1〜2.0%
Niは、靭性を劣化させずに強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.1%以上の添加が必要である。しかし、2.0%以上の添加により、合金コストが上昇する。そのため、添加する場合は、Niは、0.1〜2.0%とする。
Ni: 0.1-2.0%
Ni is an element effective for increasing the strength without deteriorating the toughness, and 0.1% or more of addition is necessary to exert the effect. However, the addition of 2.0% or more increases the alloy cost. Therefore, when Ni is added, the content of Ni is set to 0.1 to 2.0%.

Cr:0.05〜1.0%
Crは、合金コストを著しく上昇させることなく強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.05%以上の添加が必要である。しかし、1.0%以上の添加により、溶接性が劣化する。そのため、添加する場合は、Crは、0.05〜1.0%とする。
Cr: 0.05-1.0%
Cr is an element effective for increasing the strength without significantly increasing the alloy cost, and 0.05% or more of addition is necessary to exert the effect. However, weldability deteriorates when 1.0% or more is added. Therefore, when added, Cr is made 0.05 to 1.0%.

Mo:0.05〜1.0%
Moは、焼入れ性を増加させ、強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.05%以上の添加が必要である。しかし、1.0%以上の添加により、溶接性が劣化する。そのため、添加する場合は、Moは、0.05〜1.0%とする。
Mo: 0.05-1.0%
Mo is an element effective for increasing the hardenability and increasing the strength, and 0.05% or more of addition is necessary to exert the effect. However, weldability deteriorates when 1.0% or more is added. Therefore, when added, Mo is made 0.05 to 1.0%.

B:0.0005〜0.002%
Bは、極微量の添加で焼入れ性を増加させ、強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.005%以上必要である。しかし、0.002%以上の添加は溶接性を劣化させる。そのため、添加する場合は、Bは0.0005〜0.0020%とする。
B: 0.0005-0.002%
B is an element effective for increasing the hardenability and increasing the strength by adding a very small amount, and 0.005% or more is necessary to exert the effect. However, addition of 0.002% or more deteriorates weldability. Therefore, when adding, B is made into 0.0005 to 0.0020%.

Nb:0.005〜0.05%
Nbは、析出強化により強度を上昇されるのに有効な元素であり、その効果を発揮するためには、0.005%以上必要である。しかし、0.05%以上の添加により、溶接性が劣化する。そのため、添加する場合は、Nbは0.005〜0.05%とする。
Ti:0.005〜0.05%
Tiは、母材および溶接継手部の靭性向上に有効な元素であり、その効果を発揮するためには0.005%以上必要である。しかし、0.05%以上の添加により、溶接性が劣化する。そのため、添加する場合は、Tiは0.005〜0.05%とする。
Nb: 0.005-0.05%
Nb is an element effective for increasing the strength by precipitation strengthening, and 0.005% or more is necessary to exert the effect. However, when 0.05% or more is added, the weldability deteriorates. Therefore, when adding, Nb shall be 0.005-0.05%.
Ti: 0.005-0.05%
Ti is an element effective for improving the toughness of the base metal and the welded joint, and 0.005% or more is necessary to exert the effect. However, when 0.05% or more is added, the weldability deteriorates. Therefore, when Ti is added, Ti is made 0.005 to 0.05%.

V:0.005〜0.1%
Vは、析出強化により強度を上昇させるのに有効な元素であり、その効果を発揮するためには、0.005%以上必要である。しかし、0.1%以上の添加により、溶接性が劣化する。そのため、添加する場合は、Vは0.005〜0.1%とする。
[製造条件]
加熱温度:1000〜1250℃
スラブの加熱温度は、1000℃以下では変形抵抗が大きくなり、圧延装置に負荷をかける。また、1250℃以上では、熱間加工時に表面疵が多発する。そのため、スラブの加熱温度は1000〜1250℃とする。
V: 0.005-0.1%
V is an element effective for increasing the strength by precipitation strengthening, and 0.005% or more is necessary to exert the effect. However, the weldability is deteriorated by addition of 0.1% or more. Therefore, when added, V is 0.005 to 0.1%.
[Production conditions]
Heating temperature: 1000-1250 ° C
When the heating temperature of the slab is 1000 ° C. or less, the deformation resistance increases, and a load is applied to the rolling mill. Also, at 1250 ° C or higher, surface flaws occur frequently during hot working. Therefore, the heating temperature of a slab shall be 1000-1250 degreeC.

熱間圧延終了温度:800〜950℃
熱間圧延終了温度は、800℃以下では強度が確保できず、950℃以上では靭性が劣化する。そのため、熱間圧延終了温度は、800〜950℃とする。尚、温度は、鋼板表面での温度とする。
Hot rolling finish temperature: 800 ~ 950 ℃
When the hot rolling end temperature is 800 ° C. or lower, the strength cannot be secured, and when it is 950 ° C. or higher, the toughness deteriorates. Therefore, the hot rolling end temperature is set to 800 to 950 ° C. The temperature is the temperature at the steel sheet surface.

冷却条件
冷却は鋼板の板厚中心部で550〜650℃となるまで冷却後(一次冷却後)、該温度域で4〜20s空冷保持し、その後500℃以下まで再び冷却(二次冷却)し、低YR化を達成する。
Cooling conditions Cooling is performed until the temperature reaches 550 to 650 ° C (after primary cooling) at the center of the plate thickness of the steel sheet (after primary cooling), then kept in the temperature range for 4 to 20 seconds, and then cooled again to 500 ° C or less (secondary cooling). , Achieve low YR.

板厚中心部を550〜650℃に冷却することにより、過冷却オーステナイトの状態が得られ、この状態から空冷保持することによりフェライト生成を促進することが可能となる。   By cooling the central portion of the plate thickness to 550 to 650 ° C., a state of supercooled austenite is obtained, and it is possible to promote the formation of ferrite by maintaining air cooling from this state.

該温度域で、4s以上空冷保持することによりフェライト分率が20%以上となり低降伏比が得られる。一方、20sを超えて空冷保持するとフェライト分率が60%以上となり引張強さが低下し降伏比が上昇する。そのため550〜650℃に冷却し、4〜20s間空冷保持する。   By keeping the air cooling for 4 s or more in this temperature range, the ferrite fraction becomes 20% or more and a low yield ratio is obtained. On the other hand, if air cooling is maintained for more than 20 s, the ferrite fraction becomes 60% or more, the tensile strength decreases, and the yield ratio increases. Therefore, it is cooled to 550 to 650 ° C. and kept air cooled for 4 to 20 seconds.

図1に一次冷却停止温度と引張特性の関係を示す。供試鋼は化学成分として0.08C-0.25Si-1.35Mn-0.018P-0.002S-0.20Ni-0.20Cu(数字は質量%)を有する鋼で、1150℃に加熱後、鋼板表面温度が850℃になったところで圧延を終了し、板厚25mmとした後に、板厚中心部で500〜700℃の温度範囲まで加速冷却し、10s空冷保持後、再び400℃まで加速冷却した。   Figure 1 shows the relationship between the primary cooling stop temperature and tensile properties. The test steel is 0.08C-0.25Si-1.35Mn-0.018P-0.002S-0.20Ni-0.20Cu (number is mass%) as a chemical component. After heating to 1150 ℃, the steel plate surface temperature is 850 ℃ Then, the rolling was finished and the plate thickness was reduced to 25 mm, and then accelerated cooling to a temperature range of 500 to 700 ° C. at the center of the plate thickness. After holding the air cooling for 10 seconds, accelerated cooling to 400 ° C. was performed again.

得られた鋼板よりJIS Z2201 5号試験片を採取し、一次冷却停止温度と引張特性の関係を調査した(一次冷却停止温度とは、圧延完了直後の冷却停止温度のことを指し、本試験は500〜700℃で実施した。)。その結果、一次冷却停止温度を550〜650℃とすることにより低YR化が達成されることを確認した。   JIS Z2201 No. 5 test piece was collected from the obtained steel sheet, and the relationship between the primary cooling stop temperature and the tensile properties was investigated. (The primary cooling stop temperature refers to the cooling stop temperature immediately after the completion of rolling. Carried out at 500-700 ° C.). As a result, it was confirmed that low YR was achieved by setting the primary cooling stop temperature to 550 to 650 ° C.

一次冷却停止温度が550〜650℃の場合に低YR化が達成される理由は、この温度域に停止した場合、適切なフェライト分率のミクロ組織が得られるためである。550℃以下まで冷却した場合および650℃以上で冷却を停止した場合には、フェライト分率が20%未満となるため低YR化が達成されない。   The reason why low YR is achieved when the primary cooling stop temperature is 550 to 650 ° C. is that when the temperature is stopped in this temperature range, a microstructure with an appropriate ferrite fraction can be obtained. When cooling to 550 ° C. or lower and when cooling is stopped at 650 ° C. or higher, the ferrite fraction becomes less than 20%, so low YR cannot be achieved.

図2に、一次冷却停止後の空冷保持時間(空冷時間)と引張特性の関係を調査した結果を示す。図1の供試鋼と同成分を有する鋼を1150℃に加熱後、鋼板の表面温度で850℃で圧延を終了し、板厚20mmとした後に、板厚中心部で600℃まで加速冷却(一次冷却)し、該温度域で0〜30s空冷保持後、再び400℃まで加速冷却(二次冷却)した。   FIG. 2 shows the results of investigating the relationship between the air cooling holding time (air cooling time) after the primary cooling stop and the tensile properties. After heating the steel having the same composition as the test steel in Fig. 1 to 1150 ° C, finishing rolling at 850 ° C at the surface temperature of the steel sheet to a plate thickness of 20mm, accelerated cooling to 600 ° C at the center of the plate thickness ( (Primary cooling), and after maintaining air cooling for 0 to 30 seconds in the temperature range, accelerated cooling (secondary cooling) to 400 ° C. was performed again.

得られた鋼板よりJIS Z2201 5号試験片を採取し、空冷保持時間(空冷時間)と引張特性の関係を調査した。その結果、空冷保持時間(空冷時間)を4〜20sとすることにより低YR化が達成されることを確認した。   JIS Z2201 No. 5 test specimen was collected from the obtained steel sheet, and the relationship between the air cooling holding time (air cooling time) and the tensile properties was investigated. As a result, it was confirmed that low YR was achieved by setting the air cooling holding time (air cooling time) to 4 to 20 s.

これは、上記の通り、空冷保持時間(空冷時間)を4〜20sとすることにより適切なフェライト分率のミクロ組織が得られるためである。   This is because, as described above, a microstructure with an appropriate ferrite fraction can be obtained by setting the air cooling holding time (air cooling time) to 4 to 20 s.

図3に二次冷却停止温度と引張特性の関係を調査した。図1、2の供試鋼と同成分を有する鋼を1150℃に加熱後、表面温度で850℃で圧延を終了し、板厚32mmとした後に、板厚中心部で600℃まで加速冷却(一次冷却)し、15s空冷保持後、再び300〜550℃まで冷却した(二次冷却)。   Figure 3 investigated the relationship between the secondary cooling stop temperature and tensile properties. After heating the steel with the same composition as the test steels in Figs. 1 and 2 to 1150 ° C, rolling at a surface temperature of 850 ° C and finishing to a plate thickness of 32 mm, accelerated cooling to 600 ° C at the center of the plate thickness ( (Primary cooling), and after cooling for 15 seconds, the mixture was cooled again to 300 to 550 ° C. (secondary cooling).

得られた鋼板よりJIS Z2201 5号試験片を採取し、二次冷却停止温度と引張特性の関係を調査した。二次冷却停止温度は、空冷保持後2回目の冷却の停止温度で、本試験は300〜550℃で実施した。その結果、二次冷却停止温度を500℃以下とすることにより、低YR化が達成されることを確認した。   A JIS Z2201 No. 5 test piece was collected from the obtained steel sheet, and the relationship between the secondary cooling stop temperature and the tensile properties was investigated. The secondary cooling stop temperature was the second cooling stop temperature after holding the air cooling, and this test was performed at 300 to 550 ° C. As a result, it was confirmed that a low YR was achieved by setting the secondary cooling stop temperature to 500 ° C. or lower.

したがって、本発明では、冷却条件は、550〜650℃となるまで冷却後(一次冷却後)、4〜20s空冷保持し、再び500℃以下まで冷却することとする(二次冷却)。尚、以上の説明において、一次冷却、二次冷却を加速冷却としたが、本発明では、適切なフェライト分率のミクロ組織が得られるように冷却速度は適宜選択することができる。   Accordingly, in the present invention, the cooling condition is that after cooling to 550 to 650 ° C. (after primary cooling), the air cooling is maintained for 4 to 20 seconds, and cooling is again performed to 500 ° C. or less (secondary cooling). In the above description, the primary cooling and the secondary cooling are accelerated cooling. However, in the present invention, the cooling rate can be appropriately selected so that a microstructure with an appropriate ferrite fraction can be obtained.

焼戻し温度:200℃〜Ac1
焼戻し熱処理は、水冷による鋼板内の残留応力を軽減するために実施する。200℃を下回る温度では、残留応力軽減効果が得られず、Ac1点以上では強度などの材質が著しく変化する。そのため、200℃〜Ac1とする。
Tempering temperature: 200 ℃ ~ Ac1
The tempering heat treatment is performed to reduce residual stress in the steel sheet due to water cooling. At temperatures below 200 ° C, the residual stress reduction effect cannot be obtained, and the strength and other materials change significantly above the Ac1 point. Therefore, it is set to 200 ° C. to Ac1.

表1に示した化学成分を有する鋼を、表2に示した条件で種々の板厚(40mm以下)の鋼板に製造した。供試鋼の成分組成はいずれも本発明範囲内とし、製造条件を広範囲に変化させて、鋼板を製造した。表2に引張特性も合わせて示す。引張試験は、JIS Z2201 5号試験片で実施した。   Steels having the chemical components shown in Table 1 were produced into steel plates having various plate thicknesses (40 mm or less) under the conditions shown in Table 2. The component compositions of the test steel were all within the scope of the present invention, and the steel sheet was manufactured by changing the manufacturing conditions over a wide range. Table 2 also shows the tensile properties. The tensile test was carried out with JIS Z2201 No. 5 test piece.

本開発鋼は、いずれもYRが80%以下を満足し、一方、比較鋼は、一次冷却停止温度、空冷保持時間、または、二次冷却停止温度の少なくとも一つが本発明範囲外であるため降伏比が80%を上回っている。   All of the developed steels satisfy YR of 80% or less, while the comparative steel yields because at least one of the primary cooling stop temperature, the air cooling holding time, or the secondary cooling stop temperature is outside the scope of the present invention. The ratio is over 80%.

Figure 0004687153
Figure 0004687153

Figure 0004687153
Figure 0004687153

引張特性におよぼす一次冷却停止温度の影響を示す図で、(a)はYR(%)におよぼす一次冷却停止温度の影響、(b)はYS,TS(MPa)に及ぼす一次冷却停止温度の影響を示す図。FIG. 5 is a graph showing the influence of the primary cooling stop temperature on the tensile properties, where (a) shows the influence of the primary cooling stop temperature on YR (%), and (b) shows the effects of the primary cooling stop temperature on YS and TS (MPa). FIG. 引張特性におよぼす空冷保持時間(空冷時間)の影響を示す図で、(a)はYR(%)におよぼす空冷保持時間(空冷時間)の影響、(b)はYS,TS(MPa)に及ぼす空冷保持時間(空冷時間)の影響を示す図。It is a figure which shows the influence of the air-cooling holding time (air-cooling time) on a tensile characteristic, (a) is the influence of the air-cooling holding time (air-cooling time) on YR (%), (b) is on YS and TS (MPa). The figure which shows the influence of air cooling holding time (air cooling time). 引張特性におよぼす二次冷却停止温度の影響を示す図で、(a)はYR(%)におよぼす二次冷却停止温度の影響、(b)はYS,TS(MPa)に及ぼす二次冷却停止温度の影響を示す図。The figure which shows the influence of the secondary cooling stop temperature on the tensile properties, (a) is the influence of the secondary cooling stop temperature on YR (%), (b) is the secondary cooling stop on YS, TS (MPa) The figure which shows the influence of temperature.

Claims (3)

質量%で、C:0.05〜0.18%
Si:0.05〜0.5%,
Mn:0.6〜2.0%,
P:0.02%以下
S:0.005%以下
Al:0.1%以下
を含有し、残部がFeおよび不可避的不純物からなり、式(1)で示される炭素当量Ceqが0.3〜0.45%の鋼を1000〜1250℃の範囲に加熱後、圧延終了温度が鋼板表面で800〜950℃となるように熱間圧延した後に、板厚中心部で550〜650℃となるまで冷却し、ついで4〜20s空冷保持後、再び500℃以下まで冷却をすることを特徴とする板厚40mm以下、降伏比80%以下の高張力鋼の製造方法。
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 (1)
ここで,C,Si,Mn,Ni,Cr,Mo,V:各元素の含有量(質量%)
% By mass, C: 0.05 to 0.18%
Si: 0.05-0.5%
Mn: 0.6-2.0%
P: 0.02% or less
S: 0.005% or less
Al: Contains 0.1% or less, the balance is Fe and inevitable impurities, and the steel with a carbon equivalent Ceq of 0.3 to 0.45% represented by the formula (1) is heated in the range of 1000 to 1250 ° C, and then the rolling finish temperature After hot rolling to a temperature of 800 to 950 ° C on the steel sheet surface, cool to 550 to 650 ° C at the center of the plate thickness, and then cool to 500 ° C or less again after holding for 4 to 20s air cooling. A method for producing high-tensile steel with a sheet thickness of 40 mm or less and a yield ratio of 80% or less.
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Where C, Si, Mn, Ni, Cr, Mo, V: Content of each element (% by mass)
鋼成分として、更に
Cu:0.1〜1.0%
Ni:0.1〜2.0%
Cr:0.05〜1.0%
Mo:0.05〜1.0%
B:0.0005〜0.002%
Nb:0.005〜0.05%
Ti:0.005〜0.05%
V:0.005〜0.1%
の1種または2種以上含有することを特徴とする請求項1記載の、板厚40mm以下、降伏比80%以下の高張力鋼の製造方法。
As a steel component,
Cu: 0.1 to 1.0%
Ni: 0.1-2.0%
Cr: 0.05-1.0%
Mo: 0.05-1.0%
B: 0.0005-0.002%
Nb: 0.005-0.05%
Ti: 0.005-0.05%
V: 0.005-0.1%
The method for producing a high-strength steel having a thickness of 40 mm or less and a yield ratio of 80% or less according to claim 1, wherein one or more of these are contained.
500℃以下まで冷却後、200〜Ac1(℃)の温度範囲で焼戻すことを特徴とする請求項1または2記載の板厚40mm以下、降伏比80%以下の高張力鋼の製造方法。 The method for producing a high-strength steel having a thickness of 40 mm or less and a yield ratio of 80% or less according to claim 1 or 2, wherein the steel is cooled to 500 ° C or less and then tempered in a temperature range of 200 to Ac1 (° C).
JP2005064924A 2005-03-09 2005-03-09 Production method of low yield ratio high strength steel Active JP4687153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064924A JP4687153B2 (en) 2005-03-09 2005-03-09 Production method of low yield ratio high strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064924A JP4687153B2 (en) 2005-03-09 2005-03-09 Production method of low yield ratio high strength steel

Publications (2)

Publication Number Publication Date
JP2006249468A JP2006249468A (en) 2006-09-21
JP4687153B2 true JP4687153B2 (en) 2011-05-25

Family

ID=37090264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064924A Active JP4687153B2 (en) 2005-03-09 2005-03-09 Production method of low yield ratio high strength steel

Country Status (1)

Country Link
JP (1) JP4687153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950973B (en) * 2016-05-13 2018-08-31 江阴兴澄特种钢铁有限公司 The excellent think gauge X80 pipeline steels of ultralow temperature block hammer performance and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087137A (en) * 1998-09-08 2000-03-28 Nkk Corp Manufacture of steel with low yield ratio
JP2002294338A (en) * 2001-03-30 2002-10-09 Nkk Corp Method for producing low yield ratio steel having excellent fire resistance
JP2003253331A (en) * 2002-03-05 2003-09-10 Nippon Steel Corp Method for manufacturing high-tensile-strength steel with high toughness and high ductility

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318024A (en) * 1986-07-11 1988-01-25 Kawasaki Steel Corp Manufacture of steel plate with high tensile strength and high toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087137A (en) * 1998-09-08 2000-03-28 Nkk Corp Manufacture of steel with low yield ratio
JP2002294338A (en) * 2001-03-30 2002-10-09 Nkk Corp Method for producing low yield ratio steel having excellent fire resistance
JP2003253331A (en) * 2002-03-05 2003-09-10 Nippon Steel Corp Method for manufacturing high-tensile-strength steel with high toughness and high ductility

Also Published As

Publication number Publication date
JP2006249468A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
KR100799421B1 (en) Cold-formed steel pipe and tube having excellent in weldability with 490MPa-class of low yield ratio, and manufacturing process thereof
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP4730088B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP4329583B2 (en) Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof
JP5045073B2 (en) Non-tempered high-tensile steel plate with low yield ratio and method for producing the same
JP5045074B2 (en) High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP5157257B2 (en) Low yield ratio steel sheet
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP5369462B2 (en) Low yield ratio high strength steel sheet and method for producing the same
JP4358898B1 (en) Method for producing high-tensile thick steel plate having a tensile strength of 780 MPa or more, excellent in weldability and joint low-temperature toughness
JP4848960B2 (en) Thin-walled low-yield-ratio high-tensile steel plate and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP3737300B2 (en) Non-tempered low yield ratio high tensile strength steel plate with excellent weldability
JP4687153B2 (en) Production method of low yield ratio high strength steel
JP4951938B2 (en) Manufacturing method of high toughness high tensile steel sheet
JP7493138B2 (en) Ultra-low yield ratio high tensile steel plate and its manufacturing method
KR20040004137A (en) STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL
JP4830318B2 (en) Method for producing non-tempered high-tensile steel with excellent surface properties
JP4474967B2 (en) Manufacturing method of low yield ratio high strength steel sheet with low toughness degradation due to cold working

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Ref document number: 4687153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250