JP2003253331A - Method for manufacturing high-tensile-strength steel with high toughness and high ductility - Google Patents

Method for manufacturing high-tensile-strength steel with high toughness and high ductility

Info

Publication number
JP2003253331A
JP2003253331A JP2002058985A JP2002058985A JP2003253331A JP 2003253331 A JP2003253331 A JP 2003253331A JP 2002058985 A JP2002058985 A JP 2002058985A JP 2002058985 A JP2002058985 A JP 2002058985A JP 2003253331 A JP2003253331 A JP 2003253331A
Authority
JP
Japan
Prior art keywords
temperature
cooling
toughness
steel
accelerated cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002058985A
Other languages
Japanese (ja)
Inventor
Toshinaga Hasegawa
俊永 長谷川
Masanori Minagawa
昌紀 皆川
Hiroyuki Shirahata
浩幸 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002058985A priority Critical patent/JP2003253331A/en
Publication of JP2003253331A publication Critical patent/JP2003253331A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently manufacture a high-tensile-strength steel with high toughness and high ductility, which has an adequate strength as a steel for a weld structure, is superior in ductility characteristics and low-temperature toughness, and has a high level of safety. <P>SOLUTION: This manufacturing method comprises heating a steel slab having an appropriate chemical composition and a carbon content, to an AC3 transformation temperature or higher but 1,300°C or lower, hot-rolling it so as to include rolling in an unrecrystallized region of austenite with accumulated rolling reduction of at least 30% in a range between 950°C and the Ar3 transformation temperature, then acceleratingly cooling it from the Ar3 transformation temperature or higher to a temperature in which the austenite fraction becomes 20-70%, at 3-100°C/s, stopping accelerated cooling, then keeping the steel temperature within the accelerated-cooling stopping temperature ±100°C, for 10 s-100 s after the above stop of accelerated cooling,,6y performing a combination of one or more of heating, holding, and cooling at a cooling rate of 0.5°C/s or lower, then cooling it, and tempering it as needed, at a heating temperature of 500°C or higher but the AC1 transformation temperature or lower. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、靭性に優れた高強
度の溶接用張力鋼の製造方法に関するものである。具体
的には、本発明は、引張強度が490MPa〜780M
Pa級で、靭性保証温度が0〜−40℃以下の優れた低
温靭性が要求され、さらに耐震特性等の観点から高一様
伸びが同時に要求される構造物全般に供される構造物用
鋼の製造方法に関するもので、用途としては、海洋構造
物、圧力容器、造船、橋梁、建築物、ラインパイプなど
の溶接鋼構造物一般に用いることができるが、高一様伸
びと靭性とが両立できることから、特に耐震性を必要と
する建築、橋梁等の構造物用鋼材として有用である。ま
た、鋼材の形態としては特に問わないが、構造部材とし
て用いられ、低温靭性が要求される鋼板、特に厚板、鋼
管素材、あるいは形鋼で特に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-strength welding tensile steel having excellent toughness. Specifically, the present invention has a tensile strength of 490 MPa to 780 M.
Steel for structures that is used in general structures that are Pa class and require excellent low-temperature toughness with a toughness assurance temperature of 0 to -40 ° C or less and high uniform elongation at the same time from the viewpoint of seismic resistance and the like. It can be used in general for welded steel structures such as marine structures, pressure vessels, shipbuilding, bridges, buildings, line pipes, etc., but it can have both high uniform elongation and toughness. Therefore, it is particularly useful as a steel material for structures such as buildings and bridges that require earthquake resistance. Further, the form of the steel material is not particularly limited, but it is particularly useful for a steel plate used as a structural member and requiring low temperature toughness, particularly a thick plate, a steel pipe material, or a shaped steel.

【0002】[0002]

【従来技術】最近、高層建築物を中心に安全性重視の観
点から、地震時を想定した変形に対しても建築物の崩壊
を招かないような設計がなされるようになってきてお
り、そのために、鋼材に必要な特性として、低降伏比
(降伏比=降伏応力/引張り強度)あるいは/および高
一様伸び特性が求められるようになっている。低降伏比
化、高一様伸び化によって、大きな変形が加わった際に
該鋼材のエネルギー吸収を大きくすることが可能とな
る。特に、耐破壊性能として考えた場合には、局部的な
延性破壊を抑制できる点で、高一様伸び化がより有効で
あると考えられる。一様伸びは強度が高くなるに伴って
確保が困難となるが、同じ強度でにおいて一様伸びを向
上させるには軟質相のフェライト(α)母相に適量のマ
ルテンサイト相等の硬質相を分散させることが有効であ
ることが知られている。この軟質フェライトと硬質相と
からなる二相鋼の製造方法は従来から種々提案されてい
るが、焼入れと焼戻し熱処理の間にフェライト(α)+
オーステナイト(γ)二相域に加熱する中間熱処理を施
す方法(以降、QLT処理)に代表されるように、基本
的には軟質相としてのフェライトと硬質相としてのベイ
ナイトあるいはマルテンサイト、あるいは両相の混合組
織を混在させることを目的としている。
2. Description of the Related Art Recently, from the viewpoint of safety, centering on high-rise buildings, designs have been designed to prevent collapse of the building even when it is deformed assuming an earthquake. In addition, low yield ratio (yield ratio = yield stress / tensile strength) or / and high uniform elongation property are required as properties required for steel materials. By lowering the yield ratio and increasing the uniform elongation, it becomes possible to increase the energy absorption of the steel material when a large deformation is applied. In particular, considering the fracture resistance, it is considered that high uniform elongation is more effective in that local ductile fracture can be suppressed. It is difficult to secure uniform elongation as the strength increases, but in order to improve uniform elongation at the same strength, an appropriate amount of hard phase such as martensite phase is dispersed in ferrite (α) matrix of soft phase. It is known to be effective. Various methods for producing a duplex stainless steel composed of soft ferrite and a hard phase have been proposed in the past, but ferrite (α) + was added during quenching and tempering heat treatment.
As typified by a method of performing an intermediate heat treatment for heating to an austenite (γ) two-phase region (hereinafter, QLT treatment), basically ferrite as a soft phase and bainite or martensite as a hard phase, or both phases The purpose is to mix mixed tissues.

【0003】そして、全体の強度レベルおよび降伏比、
延性特性はこれらの相の混在比率を変えることによって
制御されてきた。この軟質相と硬質相の混合組織を得る
ための製造方法は従来から種々提案されており、例え
ば、特開昭53−23817号公報には鋼板を再加熱焼
入れした後、Ac1変態点とAc3変態点の間に再加熱
してγとαの二相としてから空冷する方法が示されてお
り、また、特開平4−314824号公報には同様に二
相域に再加熱した後、焼入れる方法が開示されている。
また、再加熱処理を施さずにオンラインで製造する方法
としては、例えば、特開昭63−286517号公報に
はγ域から二相域にかけて熱間圧延を施した後、Ar3
変態点より20〜100℃低い温度まで空冷してα相を
生成させ、その後、急冷する方法が開示されている。再
加熱焼入れした後、さらにAc1変態点とAc3変態点
の間に再加熱してγとαの二相としてから空冷または水
冷する二相域熱処理を包含するQLT処理は組織制御が
比較的容易であるが、二相域熱処理ままでは靭性が極端
に劣化するため、さらにAC1変態点未満で焼戻し処理
を施すことが必須となる。このため、QLT処理は工程
が複雑であり、生産性の低下が大きい問題を有する。ま
た、AC1変態点未満で焼戻し処理を施すと、硬質相の
強度低下とフェライト相での析出強化のために、二相域
熱処理で得られた高い一様伸びがむしろ劣化する
And the overall strength level and yield ratio,
Ductile properties have been controlled by changing the mixing ratio of these phases. Various manufacturing methods for obtaining the mixed structure of the soft phase and the hard phase have hitherto been proposed. For example, in JP-A-53-23817, after reheating and quenching a steel sheet, the Ac1 transformation point and the Ac3 transformation point are set. A method of reheating between points to form two phases of γ and α and then air-cooling is disclosed. Further, JP-A-4-314824 discloses a method of reheating to a two-phase region and then quenching. Is disclosed.
As an on-line manufacturing method without performing reheating treatment, for example, in Japanese Patent Laid-Open No. 63-286517, after hot rolling from a γ region to a two-phase region, Ar3 is used.
A method is disclosed in which the α phase is generated by air cooling to a temperature 20 to 100 ° C. lower than the transformation point, and then rapidly cooled. After the reheating and quenching, the QLT process including the two-phase heat treatment of reheating between the Ac1 transformation point and the Ac3 transformation point to form two phases of γ and α and then air cooling or water cooling is relatively easy to control the structure. However, since the toughness is extremely deteriorated when the two-phase region heat treatment is left as it is, it is indispensable to further perform the tempering treatment below the AC1 transformation point. Therefore, the QLT process has a problem in that the process is complicated and the productivity is greatly reduced. Further, when the tempering treatment is performed below the AC1 transformation point, the high uniform elongation obtained in the two-phase region heat treatment rather deteriorates due to the strength reduction of the hard phase and the precipitation strengthening in the ferrite phase.

【0004】[0004]

【発明が解決しようとする課題】二相域熱処理を施し
て、一様伸びに代表される延性特性を高める鋼において
は、高一様伸びと靭性とを両立させることは、従来の技
術によっては困難であった。また、工程が多岐にわた
り、製造コストが高くなる問題もあった。そこで、本発
明は、従来の二相域熱処理材と同等以上の一様伸びを有
し、かつ良好な靭性を有する高張力鋼を、製造コストを
抑制できる、再加熱処理によらない加工熱処理法によっ
て製造する手段を提供することを課題とする。
In steels that undergo a two-phase zone heat treatment to enhance ductility characteristics represented by uniform elongation, it is not possible to achieve both high uniform elongation and toughness depending on the conventional techniques. It was difficult. In addition, there is a problem that the manufacturing cost becomes high due to various processes. Therefore, the present invention is a thermo-mechanical treatment method which does not rely on re-heating treatment, and which can suppress the manufacturing cost of a high-strength steel having a uniform elongation equal to or higher than that of a conventional two-phase heat treatment material and having good toughness. It is an object of the present invention to provide means for manufacturing by.

【0005】[0005]

【課題を解決するための手段】軟質相であるフェライト
と硬質相との二相組織化によって低降伏比化だけでな
く、高一様伸び化を図るための組織要件を詳細に検討し
た結果、光学顕微鏡組織的には硬質相の主要構成相とし
てはマルテンサイトあるいはベイナイト、あるいはさら
に両者の混合組織であることが好ましいが、さらに、該
硬質相を微細分散させることが一層好ましいことを知見
した。その一様伸び向上機構を金属組織学的に解析した
結果、硬質相を微細分散させることは該硬質相中に微量
ながら微細な残留オーステナイトが存在するようになっ
て、これが塑性変形中にマルテンサイトに変態する加工
誘起変態によって高一様伸びが達成されることを見出し
た。すなわち、同じ分率で比較しても、微細なオーステ
ナイトは粗大なオーステナイトに比べてオーステナイト
が安定化し、硬質相に変態後も硬質相中に残留オーステ
ナイト多く残存させることが可能となる。なお、残留オ
ーステナイトとは、冷却変態が室温まで終了しても未変
態で残存している安定なオーステナイト相のことを指し
ており、冷却変態中のある段階では未だ変態していない
が、室温までにはフェライトないしは硬質相へ変態する
オーステナイトとは異なる。変態途上で存在するオース
テナイトは単にオーステナイトあるいは未変態オーステ
ナイトと称する。
[Means for Solving the Problems] As a result of detailed examination of the structural requirements for achieving a high uniform elongation as well as a low yield ratio by a two-phase organization of a soft phase ferrite and a hard phase, From the viewpoint of the optical microscope, it is preferable that the main constituent phase of the hard phase is martensite, bainite, or a mixed structure of both, and it is further preferable that the hard phase is finely dispersed. As a result of the metallographic analysis of the uniform elongation improving mechanism, fine dispersion of the hard phase causes minute retained austenite to exist in the hard phase, but this causes martensite during plastic deformation. It has been found that a high uniform elongation can be achieved by the work-induced transformation that transforms into. That is, even when compared with the same fraction, fine austenite stabilizes austenite as compared with coarse austenite, and it becomes possible to leave a large amount of retained austenite in the hard phase even after transformation into the hard phase. Note that retained austenite refers to a stable austenite phase that remains untransformed even after the cooling transformation is completed up to room temperature, and has not yet transformed at some stage during the cooling transformation, but up to room temperature. Is different from austenite which transforms to ferrite or hard phase. The austenite existing during transformation is simply referred to as austenite or untransformed austenite.

【0006】硬質相を微細分散させる最も一般的な手段
としては、QLT処理において、L処理(二相域熱処
理)前の組織を微細化し、L処理の加熱中でのオーステ
ナイト核生成サイトを増やすことが考えられる。しか
し、再加熱処理によらない方法では、硬質相の微細分散
は容易ではない。例えば、特開昭63−286517号
公報にはγ域から二相域にかけて熱間圧延を施した後、
Ar3変態点より20〜100℃低い温度まで空冷して
α相を生成させ、その後、急冷する方法においては、オ
ーステナイト単相から徐冷中にフェライトが生成した後
の残部のオーステナイトから硬質相が生成することにな
るため、硬質相のサイズ、形態を制御し、微細化するこ
とは本質的に困難である。また、本手段では、フェライ
ト、硬質相とをともに微細化することが困難であるた
め、靱性確保も容易でない問題を有する。
As the most general means for finely dispersing the hard phase, in the QLT treatment, the structure before L treatment (heat treatment in the two-phase region) is refined to increase the austenite nucleation sites during the heating of L treatment. Can be considered. However, fine dispersion of the hard phase is not easy with a method that does not rely on reheating treatment. For example, in JP-A-63-286517, after hot rolling from the γ region to the two-phase region,
In the method of air-cooling to a temperature 20 to 100 ° C. lower than the Ar3 transformation point to generate an α phase, and then rapid cooling, a hard phase is generated from the remaining austenite after ferrite is generated from the austenite single phase during slow cooling. Therefore, it is essentially difficult to control the size and morphology of the hard phase to make it finer. Further, with this means, it is difficult to reduce the size of both the ferrite and the hard phase, so there is the problem that it is not easy to secure toughness.

【0007】本発明らは、再加熱処理を行わずに、熱間
圧延とその後の冷却行程の中だけで組織制御を行い、微
細な硬質相および残留オーステナイトを形成させること
によって、靱性の劣化を伴わずに一様伸びを高めること
が可能な新しい工業的手段を検討した結果、加速冷却中
の過冷却オーステナイトからの変態を制御することで、
変態組織の微細化と低降伏比化と高一様伸び化の前提と
なる軟質相としてのフェライトと硬質相との適正二相組
織化と硬質相の微細化と、さらに、その結果として、硬
質相中の残留オーステナイトの形成とを達成できる新た
な手段を見出した。その要旨とするところは以下の通り
である。
According to the present invention, deterioration of toughness is prevented by performing microstructure control only during hot rolling and subsequent cooling process without forming reheat treatment to form fine hard phase and retained austenite. As a result of investigating a new industrial means capable of increasing uniform elongation without accompanying, by controlling the transformation from supercooled austenite during accelerated cooling,
Appropriate two-phase microstructure of ferrite and hard phase as soft phase and refinement of hard phase, which are prerequisites for refinement of transformation structure, low yield ratio and high uniform elongation, and further, as a result, hard We have found a new way to achieve the formation of retained austenite in the phase. The summary is as follows.

【0008】(1)質量%で、C :0.01〜0.2
%、Si:0.01〜1%、Mn:0.1〜2%、A
l:0.001〜0.1%、N :0.001〜0.0
1%を含有し、不純物として、P :0.02%以下、
S :0.01%以下を含有し、以下の(A)式で示す
炭素当量(Ceq.)が0.3〜0.6%で、残部Fe
および不可避不純物からなる鋼片をAC3変態点以上、
1300℃以下の温度に加熱し、少なくとも開始温度が
950℃以下、終了温度がAr3変態点以上で累積圧下
率が30%以上のオーステナイトの未再結晶域圧延を含
む熱間圧延を行った後、冷速が3〜100℃/sの加速
冷却をAr3変態点以上の温度からオーステナイト分率
が20〜70%となる温度まで行い、加速冷却停止後、
昇温、保持、冷速0.5℃/s以下の冷却、の1種また
は2種以上の組み合わせを行って、前記加速冷却停止後
から10s〜100sの間、鋼の温度を加速冷却停止温
度±100℃以内に維持した後、冷却する高靱性・高延
性高張力鋼の製造方法。 Ceq.=C%+Mn%/6+(Cu%+Ni%)/15 +(V%+Mo%+Cr%)/5 ・・・・・・ (A)
(1)% by mass, C: 0.01 to 0.2
%, Si: 0.01 to 1%, Mn: 0.1 to 2%, A
1: 0.001-0.1%, N: 0.001-0.0
1%, P: 0.02% or less as an impurity,
S: 0.01% or less is contained, the carbon equivalent (Ceq.) Represented by the following formula (A) is 0.3 to 0.6%, and the balance Fe
And a steel slab consisting of unavoidable impurities, the AC3 transformation point or higher
After heating to a temperature of 1300 ° C. or lower, at least a start temperature of 950 ° C. or lower, an end temperature of Ar3 transformation point or higher, and a cumulative rolling reduction of 30% or more, after hot rolling including unrecrystallized zone rolling of austenite, Accelerated cooling at a cooling rate of 3 to 100 ° C./s is performed from a temperature of Ar3 transformation point or higher to a temperature at which the austenite fraction becomes 20 to 70%, and after the accelerated cooling is stopped,
The temperature of the steel is accelerated for 10 seconds to 100 seconds after the accelerated cooling is stopped by performing one or two or more combinations of temperature increase, holding, and cooling at a cooling rate of 0.5 ° C./s or less, and the accelerated cooling stop temperature is set. A method for producing a high-toughness / high-ductility high-strength steel, which is maintained within ± 100 ° C and then cooled. Ceq. = C% + Mn% / 6 + (Cu% + Ni%) / 15+ (V% + Mo% + Cr%) / 5 ... (A)

【0009】(2)前記鋼の温度を加速冷却停止温度±
100℃以内に維持した後、さらに、冷却速度が3〜1
00℃/sで、かつ停止温度が500℃以下である2回
目の加速冷却を行う前記(1)に記載の高靱性・高延性
高張力鋼の製造方法。 (3)さらに、加熱温度が500℃以上、AC1変態点
以下の焼戻しを施す前記(1)または(2)のいずれか
に記載の高靱性・高延性高張力鋼の製造方法。
(2) Acceleration cooling stop temperature ±
After maintaining the temperature within 100 ° C, the cooling rate is 3 to 1
The method for producing a high-toughness / high-ductility high-strength steel according to (1), wherein the second accelerated cooling is performed at 00 ° C./s and the stop temperature is 500 ° C. or less. (3) The method for producing a high-toughness / high-ductility high-strength steel according to (1) or (2), further including tempering at a heating temperature of 500 ° C. or higher and an AC1 transformation point or lower.

【0010】(4)さらに、質量%で、Ni:0.01
〜5%、Cu:0.01〜1.5%、Cr:0.01〜
2%、Mo:0.01〜2%、W :0.01〜2%、
Ti:0.003〜0.1%、V :0.005〜0.
5%、Nb:0.003〜0.1%、Zr:0.003
〜0.1%、Ta:0.005〜0.2%、B :0.
0002〜0.005%の1種または2種以上を含有す
る前記(1)乃至(3)のいずれかに記載の高靱性・高
延性高張力鋼の製造方法。 (5)さらに、質量%で、Mg:0.0005〜0.0
1%、Ca:0.0005〜0.01%、Y:0.00
5〜0.1%、La:0.001〜0.1%、Ce:
0.001〜0.1%のうち1種または2種以上を含有
する前記(1)乃至(4)のいずれかに記載の高靱性・
高延性高張力鋼の製造方法。
(4) Further, in mass%, Ni: 0.01
~ 5%, Cu: 0.01-1.5%, Cr: 0.01-
2%, Mo: 0.01 to 2%, W: 0.01 to 2%,
Ti: 0.003 to 0.1%, V: 0.005 to 0.
5%, Nb: 0.003 to 0.1%, Zr: 0.003
.About.0.1%, Ta: 0.005 to 0.2%, B: 0.
The method for producing a high-toughness / high-ductility high-strength steel according to any of (1) to (3) above, which contains one or more of 0002 to 0.005%. (5) Further, in mass%, Mg: 0.0005 to 0.0
1%, Ca: 0.0005 to 0.01%, Y: 0.00
5 to 0.1%, La: 0.001 to 0.1%, Ce:
High toughness according to any one of (1) to (4), which contains one or more of 0.001 to 0.1%.
Manufacturing method of high ductility and high strength steel.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態につい
て詳細に述べる。本発明は、化学組成を適正化した上
で、加工熱処理工程において、加速冷却中の過冷却オー
ステナイトからの変態を制御することで、変態組織の微
細化と、低降伏比化と高一様伸び化の前提となる軟質相
としてのフェライトと硬質相との適正二相組織化、さら
に硬質相の微細化とその結果として、硬質相中の残留オ
ーステナイトの形成とを達成するもので、具体的には、
図1に本発明の加熱・圧延・冷却に至る製造方法の概要
を示すように、適正な化学組成を有する鋼片を、AC3
変態点以上、1300℃以下の温度に加熱し、少なくと
も開始温度が950℃以下、終了温度がAr3変態点以
上で累積圧下率が30%以上のオーステナイトの未再結
晶域圧延を含む熱間圧延を行った後、冷却速度が3〜1
00℃/sの加速冷却をAr3変態点以上の温度からオ
ーステナイト分率が20〜70%となる温度まで行い、
加速冷却停止後、昇温、保持(保温)、冷却速度が0.
5℃/s以下の冷却、の1種または2種以上の組み合わ
せを行って、該加速冷却停止後から10s〜100sの
間、鋼の温度を加速冷却停止温度±100℃以内に維持
した後、冷却するか、必要に応じてさらに、冷却速度が
3〜100℃/sで、かつ停止温度が500℃以下であ
る2回目の加速冷却を行う。なお、以降、区別のため、
圧延に引き続いて行う加速冷却を1回目の加速冷却、該
加速冷却停止後、10s〜100sの間、鋼の温度を加
速冷却停止温度±100℃以内とした後の冷却または加
速冷却を2回目の冷却または加速冷却と称する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The present invention, by optimizing the chemical composition, in the thermomechanical treatment step, by controlling the transformation from supercooled austenite during accelerated cooling, refinement of the transformation structure, low yield ratio and high uniform elongation. Appropriate two-phase organization of ferrite and hard phase as the soft phase which is the premise of the formation, further refinement of the hard phase and, as a result, to achieve the formation of retained austenite in the hard phase, specifically Is
As shown in FIG. 1 showing the outline of the manufacturing method of heating, rolling and cooling of the present invention, a steel slab having an appropriate chemical composition is treated with AC3.
Hot rolling including austenite unrecrystallized zone rolling at a temperature of not lower than the transformation point and not higher than 1300 ° C., a starting temperature of not lower than 950 ° C., an end temperature of not lower than Ar3 and a cumulative reduction of not lower than 30%. After doing, the cooling rate is 3-1
Accelerated cooling of 00 ° C./s is performed from a temperature above the Ar3 transformation point to a temperature at which the austenite fraction is 20 to 70%,
After the accelerated cooling is stopped, the temperature is raised, maintained (heat retention), and the cooling rate is 0.
After cooling at 5 ° C / s or less, one kind or a combination of two or more kinds is performed, and after maintaining the temperature of the steel within the accelerated cooling stop temperature ± 100 ° C for 10s to 100s after the accelerated cooling stop, Cooling is performed or, if necessary, second accelerated cooling with a cooling rate of 3 to 100 ° C./s and a stop temperature of 500 ° C. or less is performed. In addition, for the sake of distinction,
Accelerated cooling performed subsequent to the rolling is the first accelerated cooling, and after the accelerated cooling is stopped, the temperature of the steel is set within the accelerated cooling stop temperature ± 100 ° C. for 10 seconds to 100 seconds, and then the second cooling or accelerated cooling is performed. This is called cooling or accelerated cooling.

【0012】鋼片をAC3変態点以上、1300℃以下
の温度に加熱するのは、加熱温度がAC3変態点未満で
あると、加熱時に未変態のフェライトが残存してしま
い、後の加工熱処理工程を制御しても所望の組織が得ら
れないためであり、一方、加熱温度が1300℃超であ
ると、加熱オーステナイト粒径が過大となり、その後の
熱間加工による再結晶でも十分な均一細粒オーステナイ
ト粒が得られず、靭性が劣化する恐れがあるためであ
る。鋼片をAC3変態点以上、1300℃以下の温度に
加熱後、熱間圧延を行い、所望の板厚とすると同時に、
変態組織微細化に必要なオーステナイトの実質的な微細
化、オーステナイトへの転位の導入を行う。熱間圧延を
変態組織微細化に有効にするためには、少なくとも、9
50℃〜Ar3変態点で終了する範囲で累積圧下率が3
0%以上のオーステナイトの未再結晶域圧延を含むこと
が必須となる。累積圧下率が30%未満では変態組織微
細化効果が十分でないため、本発明では未再結晶域圧延
の累積圧下率を30%以上とする。また、オーステナイ
トの未再結晶域圧延であることを確実にするためには、
該圧延を950℃〜Ar3変態点の範囲とする必要があ
る。圧延温度が0950℃超では、オーステナイトが再
結晶して、未再結晶域圧延とならない恐れがあるためで
あり、また、圧延終了温度がAr3変態点未満である
と、引き続く加速冷却の前に変態が生じてしまい、組織
微細化が不十分となり、高延性化が達成できないため、
また、変態したフェライトが加工されて延性だけでなく
靭性も大幅に劣化する可能性があるためである。
The steel piece is heated to a temperature not lower than the AC3 transformation point and not higher than 1300 ° C., because if the heating temperature is lower than the AC3 transformation point, untransformed ferrite will remain and the subsequent heat treatment step. However, if the heating temperature is higher than 1300 ° C., the heated austenite grain size becomes excessive, and even after recrystallization by hot working, sufficient uniform fine grains can be obtained. This is because austenite grains cannot be obtained and the toughness may deteriorate. After heating the steel slab to a temperature of AC3 transformation point or higher and 1300 ° C. or lower, hot rolling is performed to obtain a desired plate thickness, and at the same time,
Substantially refine austenite and introduce dislocation into austenite, which are necessary for refinement of transformation structure. In order to make hot rolling effective for the refinement of the transformation structure, at least 9
The cumulative rolling reduction ratio is 3 in the range of 50 ° C to the Ar3 transformation point.
It is essential to include 0% or more of austenite unrecrystallized zone rolling. If the cumulative rolling reduction is less than 30%, the effect of refining the transformation structure is not sufficient, so in the present invention, the cumulative rolling reduction of the unrecrystallized region rolling is set to 30% or more. Further, in order to ensure that the unrecrystallized region rolling of austenite,
The rolling needs to be performed in the range of 950 ° C. to Ar3 transformation point. If the rolling temperature is higher than 0950 ° C, the austenite may be recrystallized and the rolling may not be performed in the non-recrystallized region. Further, if the rolling end temperature is lower than the Ar3 transformation point, transformation occurs before the subsequent accelerated cooling. Occurs, the refinement of the structure becomes insufficient, and high ductility cannot be achieved.
In addition, the transformed ferrite may be processed, and not only the ductility but also the toughness may be significantly deteriorated.

【0013】加熱・熱間圧延によりオーステナイトの状
態を制御した後、冷却速度が3〜100℃/sの1回目
の加速冷却をAr3変態点以上の温度からオーステナイ
ト分率が20〜70%となる温度まで行い、その後、1
0〜100sの間、鋼の温度を1回目の加速冷却停止温
度±100℃以内に維持した上で、2回目の冷却を行
う。1回目の加速冷却後の温度履歴が変態組織の微細化
と、低降伏比化と高一様伸び化の前提となる軟質相とし
てのフェライトと硬質相との適正二相組織化、さらに硬
質相の微細化とその結果として、硬質相中の残留オース
テナイトの形成とを達成する上で最も重要な製造工程で
ある。
After controlling the austenite state by heating and hot rolling, the first accelerated cooling with a cooling rate of 3 to 100 ° C./s brings the austenite fraction to 20 to 70% from the temperature above the Ar3 transformation point. Go to temperature, then 1
During the period of 0 to 100 s, the temperature of the steel is maintained within the first accelerated cooling stop temperature ± 100 ° C., and then the second cooling is performed. The temperature history after the first accelerated cooling is the refinement of the transformation structure, and a proper two-phase structure of ferrite and a hard phase as a soft phase, which is a prerequisite for a low yield ratio and a high uniform elongation, and a hard phase. Is the most important manufacturing process in achieving the refinement of the steel and consequently the formation of retained austenite in the hard phase.

【0014】先ず、冷却を2段に分けるのは、オーステ
ナイト域からフェライト域までの連続した加速冷却だけ
では、靭性確保に必要な組織微細化と二相組織化を同時
に達成することが困難であること、かつ高一様伸び化に
重要な硬質相中の残留オーステナイトを十分確保するこ
とも困難であるためである。すなわち、1回目の加速冷
却で変態組織を微細化し、かつ未変態のオーステナイト
を過冷却状態とする。そして、1回目と2回目の冷却の
間に該過冷却オーステナイトからさらに微細なフェライ
ト変態とあるいは/およびベイナイト変態を生じさせて
最終的な二相組織状態を決定し、さらに未変態のオース
テナイトへCを濃化させて安定化させる。その上で最終
の冷却を行うことにより、未変態オーステナイトを、残
留オーステナイトを含む硬質相に変態させる。最終の冷
却は必要に応じて加速冷却を行う。
First, the cooling is divided into two stages, and it is difficult to simultaneously achieve the microstructure refinement and the two-phase microstructure necessary for ensuring the toughness only by continuous accelerated cooling from the austenite region to the ferrite region. It is also difficult to secure sufficient retained austenite in the hard phase, which is important for achieving high uniform elongation. That is, the transformed structure is refined by the first accelerated cooling, and untransformed austenite is brought into a supercooled state. Then, during the first and second cooling, a finer ferrite transformation and / or bainite transformation is generated from the supercooled austenite to determine the final two-phase microstructure state, and further untransformed austenite C Thickens and stabilizes. Then, the final cooling is performed to transform the untransformed austenite into a hard phase containing retained austenite. The final cooling is accelerated cooling if necessary.

【0015】圧延に引き続く1回目の加速冷却はAr3
変態点以上の温度からオーステナイト分率が20〜70
%となる温度まで、3〜100℃/sの冷却速度で行
う。加速冷却の開始温度をAr3変態点以上とするの
は、変態開始がAr3未満であると、加速冷却前に変態
が生じ、粗大なフェライトを生成して靭性に好ましくな
いためである。該加速冷却はオーステナイト分率が20
〜70%となる温度で停止する必要がある。これは、オ
ーステナイト分率が20%よりも過小であると、変態組
織の大要が1回目の加速冷却段階で決定づけられてしま
い、2段冷却で初めて形成できる残留オーステナイトが
不十分となるのと、フェライト相が過大なために、強度
・一様伸びバランスが最適化されないためであり、一
方、オーステナイト分率が70%超と過大であると、該
オーステナイト中へのCの濃化が不十分で、2回目の冷
却の前に変態が進行し、粗大なフェライトないしはベイ
ナイトが生成してしまう可能性が大で、そうなると、一
様伸びに好ましい硬質相が形成されず、高一様伸び特性
が達成できないためである。
The first accelerated cooling following the rolling is Ar3.
From the temperature above the transformation point, the austenite fraction is 20 to 70
The cooling rate is 3 to 100 ° C./s until the temperature reaches%. The reason why the accelerated cooling start temperature is set to the Ar3 transformation point or higher is that if the transformation start is less than Ar3, transformation occurs before accelerated cooling and coarse ferrite is generated, which is not preferable for toughness. The accelerated cooling has an austenite fraction of 20.
It is necessary to stop at a temperature of ~ 70%. This is because if the austenite fraction is less than 20%, the outline of the transformation structure is determined in the first accelerated cooling stage, and the retained austenite that can be formed for the first time in the two-stage cooling becomes insufficient. This is because the strength / uniform elongation balance is not optimized because the ferrite phase is too large. On the other hand, when the austenite fraction exceeds 70%, the concentration of C in the austenite is insufficient. Therefore, it is highly possible that transformation proceeds before the second cooling and coarse ferrite or bainite is generated, and in that case, a hard phase suitable for uniform elongation is not formed and high uniform elongation characteristics are obtained. This is because it cannot be achieved.

【0016】1回目の加速冷却の冷却速度は3〜100
℃/sとする。これは、冷却速度が3℃/s未満である
と、加速冷却中に粗大なフェライト変態が生じたり、変
態が生じないまでも、オーステナイトの過冷却が不十分
となって、組織微細化に有効でなくなるため好ましくな
く、一方、100℃/sを超えて過大な冷却速度とする
と、加速冷却停止温度の制御が工業的には困難となるた
め、好ましくないためである。1回目の加速冷却停止か
ら2回目の冷却または加速冷却に入るまでの間隔は10
〜100sとする。この間は放冷あるいは外部加熱装置
による保持、等手段は問わないが、少なくとも2回目の
加速冷却開始温度が1回目の加速冷却停止温度±100
℃以内となるように制御する必要がある。
The cooling rate of the first accelerated cooling is 3 to 100.
C / s. This is because if the cooling rate is less than 3 ° C./s, coarse ferrite transformation occurs during accelerated cooling, or even if transformation does not occur, supercooling of austenite is insufficient and it is effective for microstructuring. This is not preferable, and on the other hand, if the cooling rate exceeds 100 ° C./s and is excessively high, it is industrially difficult to control the accelerated cooling stop temperature, which is not preferable. The interval from the first stop of accelerated cooling to the start of second cooling or accelerated cooling is 10
~ 100s. During this time, any means such as cooling by cooling or holding by an external heating device may be used, but at least the second accelerated cooling start temperature is the first accelerated cooling stop temperature ± 100.
It is necessary to control the temperature to be within ℃.

【0017】この2回の加速冷却の間は、過冷却オース
テナイトからさらに微細なフェライト変態とあるいは/
およびベイナイト変態を生じさせて最終的な二相組織状
態を決定し、さらに未変態のオーステナイトへCを濃化
させて安定化させる工程であり、本発明において非常に
重要な工程である。1回目の加速冷却停止から2回目の
加速冷却に入るまでの間隔を10〜100sと限定する
のは、この間、鋼の温度を1回目の加速冷却停止温度±
100℃以内としていても、間隔が10s未満である
と、変態が進行せず、未変態オーステナイトへのCの濃
化が不十分となり、一方、100s超であると、2回目
の加速冷却に入る前にオーステナイトが変態を開始する
恐れがあるためである。前者の場合は、硬質相中の残留
オーステナイトの確保が期待できず、結果、一様伸びの
向上が望めず、後者の場合は、粗大なフェライトないし
はベイナイト組織が生成して、靭性と一様伸びとがとも
に劣化する。
During the two times of accelerated cooling, supercooled austenite undergoes a finer ferrite transformation and / or
And a step of causing bainite transformation to determine the final two-phase structure state and further concentrating and stabilizing C in untransformed austenite, which is a very important step in the present invention. The interval from the first stop of accelerated cooling to the start of second accelerated cooling is limited to 10 to 100 s, during this time, the temperature of the steel is the first accelerated cooling stop temperature ±
Even if the temperature is within 100 ° C., if the interval is less than 10 s, the transformation does not proceed and the concentration of C in the untransformed austenite becomes insufficient, while if it exceeds 100 s, the second accelerated cooling starts. This is because the austenite may start to transform before. In the former case, the retention of retained austenite in the hard phase cannot be expected, and as a result, improvement in uniform elongation cannot be expected.In the latter case, coarse ferrite or bainite structure is generated, resulting in toughness and uniform elongation. And both deteriorate.

【0018】1回目の加速冷却停止から2回目の冷却に
入るまでの間隔を10〜100sとした上で、その間、
1回目の加速冷却停止温度±100℃を超えてはならな
い。ただし、1回目の加速冷却停止から2回目の加速冷
却に入るまで、1回目の加速冷却停止温度±100℃以
内であれば、温度が変動しても構わない。すなわち、1
回目の加速冷却停止から2回目の加速冷却に入るまでの
間を単調に保持、温度上昇、温度低下としても構わない
し、周期的に変化させても構わない。ただし、温度低下
の場合は冷却速度が過大であると未変態オーステナイト
へのCの濃化が不十分となる恐れがあるため、未変態オ
ーステナイトへのCの濃化を確実にするために、冷却速
度は0.5℃/s以下に制限する必要がある。2回目の
冷却を開始する前に鋼の温度が1回目の加速冷却停止温
度から100℃超低下すると、2回目の冷却前にベイナ
イト変態が生じてしまう恐れが大となる。加速冷却中で
ない保持あるいは冷却中に生じたベイナイトは粗大にな
り、またその硬さも十分でないため、一様伸び、靭性の
両方に好ましくない。一方、2回目の冷却を開始する前
に鋼の温度が1回目の加速冷却停止温度から100℃超
上昇すると、折角過冷却したオーステナイトから高温に
再加熱された状態になり、その結果高温で粗大なフェラ
イトが生成することになるため、靭性の劣化が大きくな
り、好ましくない。
The interval from the stop of the first accelerated cooling to the start of the second cooling is set to 10 to 100 s, and during that period,
Do not exceed the first accelerated cooling stop temperature ± 100 ° C. However, the temperature may vary as long as it is within the first accelerated cooling stop temperature ± 100 ° C. from the first accelerated cooling stop to the second accelerated cooling. Ie 1
The period from the stop of the second accelerated cooling to the start of the second accelerated cooling may be monotonically maintained, the temperature may be increased or decreased, or the temperature may be changed periodically. However, if the cooling rate is too high when the temperature is low, the concentration of C in the untransformed austenite may be insufficient. Therefore, in order to ensure the enrichment of C in the untransformed austenite, The speed should be limited to 0.5 ° C / s or less. If the temperature of the steel decreases from the first accelerated cooling stop temperature by more than 100 ° C. before starting the second cooling, there is a great risk that bainite transformation will occur before the second cooling. Bainite formed during holding or cooling that is not during accelerated cooling becomes coarse and its hardness is not sufficient, which is not preferable for both uniform elongation and toughness. On the other hand, if the temperature of the steel rises from the first accelerated cooling stop temperature by more than 100 ° C. before starting the second cooling, the austenite that has been supercooled is reheated to a high temperature, and as a result, it becomes coarse at high temperature. Since such a large amount of ferrite will be generated, the toughness will be greatly deteriorated, which is not preferable.

【0019】2回目の冷却は粗大なフェライトやベイナ
イトが生成しない程度の冷却速度であれば特に限定する
ものではなく、板厚50mm以下であれば、空冷程度で
構わない。ただし、化学組成によらず確実に所望の硬質
相を形成するためには、また鋼の必要強度によっては加
速冷却する方がより好ましい。特に50mm超の厚手材
においては、確実に組織微細化を図るためには加速冷却
が好ましい。2回目の冷却を加速冷却とする場合は、冷
却速度は3〜100℃/sで、停止温度は300℃以下
とする必要がある。これは、冷却速度が3℃/s未満で
あると、加速冷却の効果が十分でなく、100℃/s超
では、鋼の形状確保に問題が生じるためである。また、
2回目の冷却を加速冷却とする場合の加速冷却停止温度
を500℃以下とするのは、500℃超であると、折角
加速冷却しても、粗大なフェライトやベイナイトが生成
する恐れが残るためである。
The second cooling is not particularly limited as long as it is a cooling rate at which coarse ferrite or bainite is not formed, and may be about air cooling as long as the plate thickness is 50 mm or less. However, in order to surely form a desired hard phase regardless of the chemical composition, accelerated cooling is more preferable depending on the required strength of steel. In particular, for a thick material having a thickness of more than 50 mm, accelerated cooling is preferable in order to ensure the refinement of the structure. When the second cooling is accelerated cooling, the cooling rate needs to be 3 to 100 ° C./s and the stop temperature needs to be 300 ° C. or lower. This is because if the cooling rate is less than 3 ° C./s, the effect of accelerated cooling is insufficient, and if it exceeds 100 ° C./s, there is a problem in securing the shape of steel. Also,
The reason why the accelerated cooling stop temperature when the second cooling is accelerated cooling is 500 ° C. or less is that if it is more than 500 ° C., coarse ferrite and bainite may remain even if the accelerated cooling is performed. Is.

【0020】さらに、本発明においては、鋼の残留応力
除去、強度調整の目的で、加熱温度が500℃以上、A
C1変態点以下の焼戻しを施すことができる。焼戻しの
加熱温度が500℃未満であると、焼戻し効果が十分で
なく、一方、AC1変態点超であると、硬質相の強度が
低下するため、強度−一様伸びバランスが劣化するため
好ましくない。なお、焼戻しの保持時間や冷却条件につ
いては、材質への影響は加熱温度に比べて非常に小さ
く、現実的な条件範囲では特に規定する必要はないが、
組織の粗大化抑制のために、保持時間は48h以下、ま
た、セメンタイトの粗大化による延性劣化を防ぐため
に、冷却速度は0.01℃/s以上がより好ましい。次
に本発明における化学組成の限定理由を説明する。先
ず、Cは鋼の強度を向上させる有効な成分として、ま
た、硬質相形成のために必須である。0.01%未満で
は構造用鋼に必要な強度の確保が困難であり、硬質相形
成も不十分となる。一方、0.2%を超える過剰の添加
は、硬質相の過度な脆化を招いて、靭性、一様伸びとも
に劣化するため、0.01〜0.2%の範囲とした。
Further, in the present invention, for the purpose of removing residual stress and adjusting strength of steel, the heating temperature is 500 ° C. or higher, A
Tempering below the C1 transformation point can be performed. If the heating temperature for tempering is less than 500 ° C., the tempering effect is not sufficient, while if it is above the AC1 transformation point, the strength of the hard phase decreases and the strength-uniform elongation balance deteriorates, which is not preferable. . Regarding the holding time of tempering and the cooling conditions, the influence on the material is very small compared to the heating temperature, and it is not necessary to prescribe it in a realistic condition range,
The holding time is preferably 48 hours or less in order to suppress the coarsening of the structure, and the cooling rate is more preferably 0.01 ° C./s or higher in order to prevent deterioration of ductility due to coarsening of cementite. Next, the reasons for limiting the chemical composition in the present invention will be explained. First, C is essential as an effective component for improving the strength of steel and for forming a hard phase. If it is less than 0.01%, it is difficult to secure the strength required for structural steel, and hard phase formation is insufficient. On the other hand, excessive addition of more than 0.2% causes excessive embrittlement of the hard phase and deteriorates both toughness and uniform elongation, so the content was made 0.01 to 0.2%.

【0021】次に、Siは脱酸元素として、また、母材
の強度確保に有効な元素である。0.01%未満の添加
では脱酸が不十分となり、また強度確保に不利である。
逆に1%を超える過剰の添加は粗大な酸化物を形成して
延性や靭性劣化を招く。そこで、Siの範囲は0.01
〜1%とした。また、Mnは母材の強度、靭性の確保に
必要な元素であり、最低限0.1%以上添加する必要が
ある。しかし、2%を超える過剰な添加は、過剰なC含
有と同様、硬質相による靭性劣化を生じ、溶接部の靭
性、割れ性なども劣化させるため、上限を2%とした。
Next, Si is an element effective as a deoxidizing element and for ensuring the strength of the base material. Addition of less than 0.01% results in insufficient deoxidation and is disadvantageous in securing strength.
On the other hand, excessive addition of more than 1% forms a coarse oxide, leading to deterioration of ductility and toughness. Therefore, the range of Si is 0.01
-1%. Further, Mn is an element necessary for ensuring the strength and toughness of the base material, and it is necessary to add at least 0.1% or more. However, excessive addition of more than 2% causes deterioration of toughness due to the hard phase and deterioration of toughness and cracking property of the welded portion as well as excessive C content, so the upper limit was made 2%.

【0022】Alは脱酸、オーステナイト粒径の細粒化
を通した組織微細化等に有効な元素であり、効果を発揮
するためには0.001%以上含有する必要があるが、
0.1%を超えて過剰に添加すると、粗大な酸化物を形
成して延性を極端に劣化させるため、0.001%〜
0.1%の範囲に限定する必要がある。NはAlやTi
と結びついてオーステナイト粒微細化に有効に働くが、
その効果が明確になるためには0.001%以上含有さ
せる必要がある一方、過剰に添加すると固溶Nが増加し
て延性の低下や母材、溶接熱影響部の靭性の劣化につな
がる。靭性確保の観点から許容できる範囲として上限を
0.01%とする。P、Sは不純物元素であり、極力低
減することが好ましい。Pは靭性を劣化させる傾向が顕
著で、靭性確保の点から許容できる量として上限を0.
02%とした。
Al is an element effective for deoxidation, refinement of the structure through grain refinement of the austenite grain size, etc., and in order to exert the effect, it is necessary to contain 0.001% or more,
If added in excess of 0.1%, a coarse oxide is formed and ductility is extremely deteriorated.
It is necessary to limit the range to 0.1%. N is Al or Ti
It works effectively for refinement of austenite grains in combination with
In order to make the effect clear, it is necessary to contain 0.001% or more. However, if it is added excessively, solute N increases, leading to a decrease in ductility and deterioration of the toughness of the base metal and the weld heat affected zone. The upper limit is 0.01% as an allowable range from the viewpoint of ensuring toughness. P and S are impurity elements, and it is preferable to reduce them as much as possible. P has a remarkable tendency to deteriorate the toughness, and the upper limit is set to 0 as an allowable amount from the viewpoint of ensuring the toughness.
It was set to 02%.

【0023】SはMnSを形成して特に延性値を劣化せ
るため、本発明が対象としているような、延性を確保す
る必要のある鋼板では特に低減が必要な元素である。た
だし、延性の劣化を実用的に許容できる上限として、そ
の含有量の上限を0.01%とする。以上が本発明鋼の
基本成分であるが、所望の強度レベルに応じて母材強度
の上昇の目的で、必要に応じてNi、Cu、Cr、M
o、W、Ti、V、Nb、Zr、Ta、Bの1種または
2種以上を含有することができる。
Since S forms MnS and deteriorates the ductility value in particular, S is an element which needs to be reduced especially in the steel sheet which is required to secure the ductility as the subject of the present invention. However, the upper limit of the content is set to 0.01% as the upper limit to which ductility deterioration can be practically tolerated. The above are the basic components of the steel of the present invention, but Ni, Cu, Cr, M are added as necessary for the purpose of increasing the strength of the base metal according to the desired strength level.
One or more of o, W, Ti, V, Nb, Zr, Ta and B can be contained.

【0024】先ず、Niは母材の強度と靭性を同時に向
上でき、非常に有効な元素であるが、効果を発揮させる
ためには0.01%以上含有させる必要がある。含有量
が多くなると強度、靭性は向上するが5%を超えて添加
しても効果が飽和するため、経済性も考慮して、上限を
5%とする。次に、CuもほぼNiと同様の効果を有す
るが、1.5%超の添加では熱間加工性に問題を生じる
ため、0.01〜1.5%の範囲に限定する。
First, Ni is a very effective element because it can improve the strength and toughness of the base material at the same time, but it is necessary to contain Ni in an amount of 0.01% or more in order to exert the effect. When the content is high, the strength and toughness are improved, but the effect is saturated even if added in excess of 5%. Therefore, considering the economical efficiency, the upper limit is made 5%. Next, Cu has almost the same effect as Ni, but addition of more than 1.5% causes a problem in hot workability, so the content is limited to 0.01 to 1.5%.

【0025】また、Crは母材の強度向上に有効な元素
であるが、明瞭な効果を生じるためには0.01%以上
必要であり、一方、2%を超えて添加すると、靭性が劣
化する傾向を有するため、0.01〜2%の範囲とす
る。Moも母材の強度向上に有効な元素であるが、明瞭
な効果を生じるためには0.01%以上必要であり、一
方、2%を超えて添加すると、靭性が劣化する傾向を有
するため、0.01〜2%の範囲とする。WもMoと同
様に、母材の強度向上に有効な元素であるが、明瞭な効
果を生じるためには0.01%以上必要であり、一方、
2%を超えて添加すると、靭性が劣化する傾向を有する
ため、0.01〜2%の範囲とする。
Cr is an element effective for improving the strength of the base material, but 0.01% or more is necessary for producing a clear effect. On the other hand, if added in excess of 2%, toughness deteriorates. Therefore, the range is 0.01 to 2%. Mo is also an element effective in improving the strength of the base material, but 0.01% or more is necessary for producing a clear effect, while if added in excess of 2%, the toughness tends to deteriorate. , 0.01 to 2%. W, like Mo, is an element effective for improving the strength of the base material, but 0.01% or more is necessary for producing a clear effect.
If added over 2%, the toughness tends to deteriorate, so the content is made 0.01 to 2%.

【0026】TiはTiの炭窒化物の形成により強度向
上、オーステナイト粒微細化に有効な元素であり、母
材、溶接熱影響部靭性向上に寄与する。炭窒化物を形成
して効果を発揮できるためには0.003%以上の添加
が必要である。一方、0.1%を超えると、粗大な酸化
物あるいは炭窒化物を形成して靭性や延性を劣化させる
ため、上限を0.1%とする。Vは析出強化により強度
を高めることができる。効果を発揮できるためには0.
005%以上の添加が必要である。一方、0.5%を超
えると、粗大な炭窒化物を形成して靭性や延性を劣化さ
せるため、本発明ではVの含有量を0.005〜0.5
%の範囲に限定する。
[0026] Ti is an element effective in improving strength and refining austenite grains by forming a carbonitride of Ti, and contributes to improving the toughness of the base metal and the weld heat affected zone. In order to form a carbonitride and exert its effect, 0.003% or more must be added. On the other hand, if it exceeds 0.1%, coarse oxides or carbonitrides are formed to deteriorate toughness and ductility, so the upper limit is made 0.1%. V can increase the strength by precipitation strengthening. To be effective, 0.
It is necessary to add 005% or more. On the other hand, if it exceeds 0.5%, coarse carbonitrides are formed and the toughness and ductility are deteriorated. Therefore, in the present invention, the V content is 0.005 to 0.5.
Limit to the range of%.

【0027】Nbも本発明においてはTiあるいはVと
同様の効果を有する。効果を発揮できるためには0.0
03%以上の添加が必要である。一方、0.1%を超え
ると、析出脆化が顕著になり、かつ粗大な炭窒化物を形
成してさらに靭性や延性を劣化させるため、本発明では
Nbの含有量を0.003〜0.1%の範囲に限定す
る。Zrも析出強化や細粒化に効果を発揮する元素であ
るが、効果を発揮するためには0.003%以上の添加
が必要である。一方、0.1%超の過剰の添加で析出物
の粗大化による靱性の劣化を生じるため、0.003%
〜0.1%の範囲に限定する。
Nb also has the same effect as Ti or V in the present invention. 0.0 to be effective
It is necessary to add more than 03%. On the other hand, if it exceeds 0.1%, precipitation embrittlement becomes remarkable, and coarse carbonitride is formed to further deteriorate toughness and ductility. Therefore, in the present invention, the Nb content is 0.003 to 0. Limit to 1% range. Zr is also an element that exerts an effect on precipitation strengthening and grain refinement, but in order to exert the effect, 0.003% or more must be added. On the other hand, if over 0.1% is added, the toughness deteriorates due to coarsening of precipitates, so 0.003%
It is limited to the range of 0.1%.

【0028】Taも同様に析出強化や細粒化に有効であ
るが、効果を発揮するためには0.005%以上必要で
あり、0.2%超では逆に靱性劣化を生じるため、その
範囲を0.005%〜0.2%とする。Bは0.000
2%以上のごく微量添加で鋼材の焼入性を高めて強度上
昇に非常に有効であるが、過剰に添加するとBNを形成
して、逆に焼入性を落としたり、靭性を大きく劣化させ
るため、上限を0.005%とする。
Similarly, Ta is also effective for precipitation strengthening and grain refining, but 0.005% or more is necessary for exhibiting the effect, and if it exceeds 0.2%, toughness deteriorates conversely. The range is 0.005% to 0.2%. B is 0.000
Addition of a very small amount of 2% or more enhances the hardenability of the steel material and is extremely effective for increasing the strength, but if added in excess, it forms BN, which adversely reduces the hardenability and greatly deteriorates the toughness. Therefore, the upper limit is made 0.005%.

【0029】さらに、本発明においては、延性や溶接部
の靱性(HAZ靱性)を安定的に向上させることを目的
として、Mg、Ca、Y、La、Ceの1種または2種
以上を含有することができる。いずれも酸化物、硫化物
の微細分散により延性特性を改善するとともに、溶接熱
影響部(HAZ)の組織を微細化してHAZ靱性を向上
せしめるが、その効果を発揮するためには、Mg、Ca
は0.0005%以上、Yは0.005%以上、La、
Ceは0.001%以上含有させる必要がある。一方、
過剰に添加すると、酸化物、硫化物が粗大化して、それ
自身が脆性破壊の起点となってHAZ靱性を逆に劣化さ
せるため、上限をMgおよびCaは0.01%、Y、L
a、Ceは0.1 %に限定する。
Further, in the present invention, one or more of Mg, Ca, Y, La, and Ce are contained for the purpose of stably improving ductility and weld zone toughness (HAZ toughness). be able to. Both improve the ductility characteristics by finely dispersing oxides and sulfides, and refine the structure of the welding heat affected zone (HAZ) to improve the HAZ toughness, but in order to exert its effect, Mg, Ca
Is 0.0005% or more, Y is 0.005% or more, La,
Ce needs to be contained in an amount of 0.001% or more. on the other hand,
If added excessively, the oxides and sulfides become coarse, which itself becomes the starting point of brittle fracture and conversely deteriorates the HAZ toughness, so the upper limits are 0.01% for Mg and Ca, and Y, L
a and Ce are limited to 0.1%.

【0030】以上が、本発明における個々の成分の限定
理由であるが、本発明においてはさらに、(A)式で示
す炭素当量(Ceq.)を0.3〜0.6%に限定する
必要がある。これは、炭素当量が0.3%未満である
と、鋼の焼入性が過少なために、オーステナイトの過冷
却や、硬質相中の十分な残留オーステナイトの安定的確
保が困難となるためであり、一方、0.6%超である
と、逆に焼入性が過大となって、本発明の製造工程の中
で軟質相と硬質相との二相組織化が容易でなくなるため
である。
The reasons for limiting the individual components in the present invention have been described above. In the present invention, however, the carbon equivalent (Ceq.) Represented by the formula (A) must be limited to 0.3 to 0.6%. There is. This is because if the carbon equivalent is less than 0.3%, it becomes difficult to supercool the austenite and stably secure sufficient retained austenite in the hard phase because the hardenability of the steel is too small. On the other hand, on the other hand, if it exceeds 0.6%, on the contrary, the hardenability becomes excessively large, and it becomes difficult to form a two-phase structure of the soft phase and the hard phase in the manufacturing process of the present invention. .

【0031】[0031]

【実施例】以上が、本発明の要件についての説明である
が、さらに、実施例に基づいて本発明の効果を示す。表
1に示す化学組成を有する鋼片を用いて、表2に示す方
法により鋼板を製造した。表1中、鋼片番号1〜12は
本発明の化学組成を満足するものであり、鋼片番号13
〜17は本発明の化学組成を満足しないものである。表
2に示す鋼板の引張特性および2mmVノッチシャルピ
ー衝撃試験による靭性を調べた結果を表3に示す。表
2、表3中の鋼板記号A1〜A15は本発明の要件を全
て満足している例であり、鋼板番号B1〜B11は本発
明の化学組成あるいは/および製造方法の要件を満足し
ていない比較例である。
The above is a description of the requirements of the present invention. Furthermore, the effects of the present invention will be shown based on Examples. Steel plates having the chemical compositions shown in Table 1 were used to manufacture steel sheets by the method shown in Table 2. In Table 1, steel slab numbers 1 to 12 satisfy the chemical composition of the present invention, and steel slab number 13
Nos. 17 to 17 do not satisfy the chemical composition of the present invention. Table 3 shows the results of examining the tensile properties of the steel sheets shown in Table 2 and the toughness by the 2 mm V notch Charpy impact test. Steel plate symbols A1 to A15 in Tables 2 and 3 are examples satisfying all the requirements of the present invention, and steel plate numbers B1 to B11 do not satisfy the requirements of the chemical composition or / and the manufacturing method of the present invention. This is a comparative example.

【0032】鋼板の製造にあたっては、1回目、2回目
とも加速冷却する場合は、水冷により行った。1回目の
加速冷却と2回目の(加速)冷却との間の温度制御は、
保持あるいは昇温工程においては高周波誘導加熱装置を
用いて、冷却の場合はそのまま所定の温度まで放冷する
か、適切な温度に設定した熱処理炉に挿入後、炉冷する
ことによって行った。機械的性質は圧延方向に直角に板
厚中心部より試験片を採取して行った。引張試験片は平
行部が6mmφx24mmの丸棒試験片、シャルピー試
験片は試験片厚さ10mmの標準試験片とした。引張試
験は室温で実施し、シャルピー試験は種々温度で試験を
実施し、破面遷移温度(vTrs)を求めた。
In the production of the steel sheet, water was used for the first and second accelerated cooling. The temperature control between the first accelerated cooling and the second (accelerated) cooling is
In the holding or heating process, a high-frequency induction heating device was used, and in the case of cooling, it was left to cool to a predetermined temperature as it was or inserted into a heat treatment furnace set to an appropriate temperature and then cooled in the furnace. The mechanical properties were measured by taking a test piece from the center of the plate thickness at right angles to the rolling direction. The tensile test piece was a round bar test piece having a parallel portion of 6 mmφ × 24 mm, and the Charpy test piece was a standard test piece having a test piece thickness of 10 mm. The tensile test was carried out at room temperature, and the Charpy test was carried out at various temperatures to determine the fracture surface transition temperature (vTrs).

【0033】表3に示す機械的性質に関して、引張強度
と一様伸びとの関係を本発明例と比較例とで比べた結果
を図2に示す。従来製造方法や本発明の要件を満足しな
い組成、製造方法による比較例の引張強度・一様伸びバ
ランスに比べて、本発明により製造した鋼板の引張強度
・一様伸びバランスが極めて良好であることが明白であ
る。なお、比較例の中で本発明例に近い引張強度・一様
伸びバランスを有する鋼板もあるが、該鋼板においては
靭性が極めて劣っており、本発明によって初めて、強度
・一様伸び・靭性が全て良好な高張力鋼が製造できるこ
とが明らかである。
Regarding the mechanical properties shown in Table 3, the results of comparing the relationship between the tensile strength and the uniform elongation between the inventive example and the comparative example are shown in FIG. The tensile strength / uniform elongation balance of the steel sheet manufactured according to the present invention is extremely good as compared with the tensile strength / uniform elongation balance of the comparative example by the conventional manufacturing method or the composition not satisfying the requirements of the present invention and the manufacturing method. Is clear. Note that among the comparative examples, there is a steel sheet having a tensile strength / uniform elongation balance close to that of the present invention example, but the toughness of the steel sheet is extremely poor. It is clear that all good high strength steels can be produced.

【0034】以下に、個々の比較例について、本発明に
比べて劣っている理由をさらに詳細に説明する。先ず、
鋼板番号B1〜B5は化学組成が本発明を満足していな
い例である。鋼板番号B1は、C量が本発明を満足せ
ず、過大であるため、製造方法は本発明を満足している
が、硬質相の脆化が著しく、靭性、一様伸びがともに本
発明鋼に比べて顕著に劣る。
The reason why each comparative example is inferior to the present invention will be described in more detail below. First,
Steel plate numbers B1 to B5 are examples in which the chemical composition does not satisfy the present invention. Steel plate No. B1 does not satisfy the present invention and has an excessively large amount of C, so the manufacturing method satisfies the present invention, but the hard phase is significantly embrittled, and the toughness and uniform elongation are both the steels of the present invention. Markedly inferior to.

【0035】鋼板番号B2は、Mn量が過大であるた
め、やはり硬質相の靭性劣化が大きく、靭性、一様伸び
がともに本発明鋼に比べて顕著に劣る。鋼板番号B3
は、延性に悪影響を及ぼすS量が過大に含まれているた
め、靭性は若干劣る程度であるが、一様伸びの劣化が著
しい。鋼板番号B4は、炭素当量が過少で鋼の焼入性が
十分でないために、残留オーステナイトを含む、強度の
高い硬質相が形成されずに粗大なベイナイト組織が形成
され、強度が著しく低い上に、強度の割に一様伸びも低
く、また、靭性も劣る。鋼板番号B5は、逆に炭素当量
が過大なために、軟質なフェライトの生成が不十分とな
り、軟質相と硬質相との明確な二相組織化が達成され
ず、そのため、靭性、一様伸びとも大きく劣化してい
る。
Steel plate No. B2 has an excessively large amount of Mn, so that the toughness of the hard phase is greatly deteriorated, and both the toughness and the uniform elongation are markedly inferior to those of the steels of the present invention. Steel plate number B3
Has an excessively large amount of S that adversely affects the ductility, so the toughness is slightly inferior, but the uniform elongation is significantly deteriorated. Steel plate No. B4 has a carbon equivalent that is too small and the hardenability of the steel is not sufficient, so that a hard bainite structure containing retained austenite and having a high strength is not formed, and a coarse bainite structure is formed. , Uniform elongation is low for strength, and toughness is poor. Steel plate number B5, on the other hand, has an excessively large carbon equivalent, so that the formation of soft ferrite is insufficient, and a clear two-phase organization of the soft phase and the hard phase is not achieved. Therefore, toughness and uniform elongation are achieved. Both are greatly deteriorated.

【0036】次に、鋼板番号B6〜B11は製造方法に
関する要件が本発明を満足していない例である。鋼板番
号B6は、オーステナイト域から変態完了までを加速冷
却する、通常の加工熱処理工程であり、そのため、一様
伸び向上のために必要な軟質相と硬質相からなる二相組
織化、硬質相中の残留オーステナイトの形成が達成され
ず、同じ強度レベルの本発明鋼に比べて一様伸びが明確
に劣っている。鋼板番号B7は、1回目の加速冷却開始
温度がAr3変態点未満となっているため、加速冷却前
に粗大なフェライトが生じてしまい、また、2段階の加
速冷却となっていないために組織の微細化や、残留オー
ステナイトの形成が十分なされておらず、靭性は著しく
劣化し、一様伸びも本発明ほどには向上していない。
Next, steel sheet numbers B6 to B11 are examples in which the requirements regarding the manufacturing method do not satisfy the present invention. Steel plate number B6 is a normal thermo-mechanical treatment step for accelerated cooling from the austenite region to the completion of transformation, and therefore, a two-phase microstructure consisting of a soft phase and a hard phase, which is necessary for improving uniform elongation, is present in the hard phase. The formation of residual austenite of 1 is not achieved, and the uniform elongation is clearly inferior to the steels of the present invention having the same strength level. Steel plate No. B7 had a first accelerated cooling start temperature below the Ar3 transformation point, so coarse ferrite was generated before accelerated cooling, and because it was not in two-stage accelerated cooling, The refinement and formation of retained austenite are not sufficient, the toughness is significantly deteriorated, and the uniform elongation is not improved as much as the present invention.

【0037】鋼板番号B8は、1回目の加速冷却停止段
階でのオーステナイト分率が過大であるため、2回目の
加速冷却までの間に粗大なフェライトが生じ、また、オ
ーステナイトへのC濃化が不十分なため、硬質相の硬さ
が不十分で、かつ、硬質相中の残留オーステナイトの形
成が不十分となる。そのため、靭性、一様伸びとがとも
に劣っている。鋼板番号B9は、1回目の加速冷却と2
回目の加速冷却の間の温度履歴が本発明の範囲となって
いる例である。すなわち、2回目の加速冷却に入る前
に、鋼板温度が1回目の加速冷却停止温度から100℃
超高い温度まで達してしまっており、そのため、粗大な
フェライトが生成し、靭性の劣化が大となる。組織が粗
大であるため、一様伸びも不十分となっている。
Steel plate No. B8 had an excessively large austenite fraction in the first accelerated cooling stop stage, so that coarse ferrite was produced before the second accelerated cooling, and the C concentration in austenite was increased. Since the hardness is insufficient, the hardness of the hard phase is insufficient, and the formation of retained austenite in the hard phase is insufficient. Therefore, both toughness and uniform elongation are inferior. Steel plate number B9 is the first accelerated cooling and 2
This is an example in which the temperature history during the accelerated cooling of the third time is within the scope of the present invention. That is, before starting the second accelerated cooling, the steel plate temperature is 100 ° C. from the first accelerated cooling stop temperature.
Since the temperature has reached an extremely high temperature, coarse ferrite is generated and the toughness is greatly deteriorated. Since the structure is coarse, uniform elongation is insufficient.

【0038】鋼板番号B10も1回目の加速冷却と2回
目の加速冷却の間の温度履歴が本発明の範囲となってい
る例である。すなわち、本比較例は、1回目の加速冷却
後、単調に冷却してから2回目の加速冷却に入る工程と
なっているが、2回目の加速冷却に入るまでの温度低下
が本発明の範囲を逸脱して過大であり、かつ1回目の加
速冷却と2回目の加速冷却との間隔も過大となってい
る。そのため、靭性、一様伸びに好ましくない粗大なベ
イナイトが2回目の加速冷却前に一部生成し、靭性、一
様伸びとがともに劣る。鋼板番号B11は、1回目の加
速冷却と2回目の加速冷却の間を一定温度に保持した例
であるが、保持時間が過大なために、保持中に一部変態
を生じて粗大なフェライト、硬質相を形成し、靭性、一
様伸びがともに本発明に比べて不十分となっている。以
上の実施例からも、本発明によれば、良好な低温靭性を
保持したまま、同一引張強度で比較して一様伸びが優れ
た、高靭性・高延性鋼の製造が生産性の良好な加工熱処
理工程において可能であることが明白である。
Steel plate number B10 is also an example in which the temperature history between the first accelerated cooling and the second accelerated cooling is within the scope of the present invention. That is, this comparative example is a process of monotonically cooling after the first accelerated cooling and then entering the second accelerated cooling, but the temperature decrease until the second accelerated cooling enters the range of the present invention. Is too large, and the interval between the first accelerated cooling and the second accelerated cooling is too large. Therefore, coarse bainite, which is not preferable for toughness and uniform elongation, is partially formed before the second accelerated cooling, and both toughness and uniform elongation are poor. Steel plate number B11 is an example in which the temperature between the first accelerated cooling and the second accelerated cooling is held at a constant temperature. However, since the holding time is too long, a partial transformation occurs during the holding and coarse ferrite, A hard phase is formed, and both toughness and uniform elongation are insufficient as compared with the present invention. Also from the above examples, according to the present invention, while maintaining good low temperature toughness, uniform elongation is excellent in comparison with the same tensile strength, production of high toughness / high ductility steel has good productivity. It is clear that this is possible in the thermo-mechanical treatment step.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0039】[0039]

【発明の効果】本発明により、溶接構造用鋼としての十
分な強度を有し、かつ一様伸びに代表される等の延性特
性に優れるとともに低温靱性にも優れた、安全性の高い
高靭性・高延性高張力鋼が高価な合金元素の多量添加に
頼ることなく、かつ、生産性の高い加工熱処理工程にお
いて製造可能となり、産業上の効果は極めて顕著であ
る。
EFFECTS OF THE INVENTION According to the present invention, high toughness with high safety, having sufficient strength as a welded structural steel, excellent ductility characteristics such as uniform elongation, and low temperature toughness. -High-ductility high-strength steel can be manufactured in a highly productive thermomechanical process without depending on the addition of a large amount of expensive alloy elements, and the industrial effect is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造工程の概要を示す模式図である。FIG. 1 is a schematic view showing an outline of a manufacturing process of the present invention.

【図2】実施例に示す機械的性質に関して、引張強度と
一様伸びとの関係において、本発明例と比較例とを比較
した図である。
FIG. 2 is a diagram comparing the example of the present invention with the comparative example in terms of the relationship between the tensile strength and the uniform elongation regarding the mechanical properties shown in the examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白幡 浩幸 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐵所内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA12 AA14 AA15 AA16 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA33 AA35 AA36 AA37 AA39 AA40 BA01 BA02 BA03 CA02 CA03 CB01 CB02 CC03 CC04 CD03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyuki Shirahata             No. 1 Nishinosu, Oita-shi, Nippon Steel Corporation             Company Oita Works F-term (reference) 4K032 AA01 AA02 AA04 AA05 AA08                       AA11 AA12 AA14 AA15 AA16                       AA21 AA22 AA23 AA24 AA27                       AA29 AA31 AA33 AA35 AA36                       AA37 AA39 AA40 BA01 BA02                       BA03 CA02 CA03 CB01 CB02                       CC03 CC04 CD03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.01〜0.2%、 Si:0.01〜1%、 Mn:0.1〜2%、 Al:0.001〜0.1%、 N :0.001〜0.01%を含有し、不純物とし
て、 P :0.02%以下、 S :0.01%以下を含有し、 以下の(A)式で示す炭素当量(Ceq.)が0.3〜
0.6%で、残部Feおよび不可避不純物からなる鋼片
をAC3変態点以上、1300℃以下の温度に加熱し、
少なくとも開始温度が950℃以下、終了温度がAr3
変態点以上で累積圧下率が30%以上のオーステナイト
の未再結晶域圧延を含む熱間圧延を行った後、冷速が3
〜100℃/sの加速冷却をAr3変態点以上の温度か
らオーステナイト分率が20〜70%となる温度まで行
い、加速冷却停止後、昇温、保持、冷速0.5℃/s以
下の冷却、の1種または2種以上の組み合わせを行っ
て、前記加速冷却停止後から10s〜100sの間、鋼
の温度を加速冷却停止温度±100℃以内に維持した
後、冷却することを特徴とする高靱性・高延性高張力鋼
の製造方法。 Ceq.=C%+Mn%/6+(Cu%+Ni%)/15 +(V%+Mo%+Cr%)/5 ・・・・・・ (A)
1. In mass%, C: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.1 to 2%, Al: 0.001 to 0.1%, N : 0.001 to 0.01%, as impurities, P: 0.02% or less, S: 0.01% or less, and the carbon equivalent (Ceq.) Represented by the following formula (A) is 0.3 ~
A steel slab containing 0.6% of balance Fe and unavoidable impurities at 0.6% is heated to a temperature of AC3 transformation point or higher and 1300 ° C. or lower,
At least a start temperature of 950 ° C or lower and an end temperature of Ar3
After performing hot rolling including unrecrystallized region rolling of austenite having a cumulative reduction of 30% or more at the transformation point or higher, the cold speed is 3%.
Accelerated cooling up to 100 ° C / s is performed from a temperature of Ar3 transformation point or higher to a temperature at which the austenite fraction is 20 to 70%, and after accelerated cooling is stopped, temperature is raised, held, and the cooling rate is 0.5 ° C / s or less One or a combination of two or more types of cooling is performed, and after the accelerated cooling stop, the temperature of the steel is maintained within the accelerated cooling stop temperature ± 100 ° C. for 10 s to 100 s, followed by cooling. Of high toughness, high ductility and high tensile strength steel. Ceq. = C% + Mn% / 6 + (Cu% + Ni%) / 15+ (V% + Mo% + Cr%) / 5 ... (A)
【請求項2】 前記鋼の温度を加速冷却停止温度±10
0℃以内に維持した後、さらに、冷速が3〜100℃/
sで、かつ停止温度が500℃以下である2回目の加速
冷却を行うことを特徴とする請求項1に記載の高靱性・
高延性高張力鋼の製造方法。
2. The temperature of the steel is accelerated cooling stop temperature ± 10.
After maintaining the temperature within 0 ° C, the cooling rate was further increased to 3 to 100 ° C /
The high toughness according to claim 1, wherein the second accelerated cooling is performed at s and the stop temperature is 500 ° C or less.
Manufacturing method of high ductility and high strength steel.
【請求項3】 さらに、加熱温度が500℃以上、AC
1変態点以下の焼戻しを施すことを特徴とする請求項1
または2のいずれかに記載の高靱性・高延性高張力鋼の
製造方法。
3. A heating temperature of 500 ° C. or higher, AC
A tempering process at a temperature not higher than one transformation point is applied.
Alternatively, the method for producing a high-toughness / high-ductility high-strength steel according to any one of 2) to 3).
【請求項4】 さらに、質量%で、 Ni:0.01〜5%、 Cu:0.01〜1.5%、 Cr:0.01〜2%、 Mo:0.01〜2%、 W :0.01〜2%、 Ti:0.003〜0.1%、 V :0.005〜0.5%、 Nb:0.003〜0.1%、 Zr:0.003〜0.1%、 Ta:0.005〜0.2%、 B :0.0002〜0.005%の1種または2種以
上を含有することを特徴とする請求項1乃至請求項3の
いずれかに記載の高靱性・高延性高張力鋼の製造方法。
4. Further, in mass%, Ni: 0.01 to 5%, Cu: 0.01 to 1.5%, Cr: 0.01 to 2%, Mo: 0.01 to 2%, W : 0.01-2%, Ti: 0.003-0.1%, V: 0.005-0.5%, Nb: 0.003-0.1%, Zr: 0.003-0.1% %, Ta: 0.005-0.2%, B: 0.0002-0.005%, 1 type, or 2 or more types are contained, In any one of Claim 1 thru | or 3 characterized by the above-mentioned. Of high toughness, high ductility and high strength steel.
【請求項5】 さらに、質量%で、 Mg:0.0005〜0.01%、 Ca:0.0005〜0.01%、 Y :0.005〜0.1%、 La:0.001〜0.1%、 Ce:0.001〜0.1%のうち1種または2種以上
を含有することを特徴とする請求項1乃至請求項4のい
ずれかに記載の高靱性・高延性高張力鋼の製造方法。
5. Further, in mass%, Mg: 0.0005-0.01%, Ca: 0.0005-0.01%, Y: 0.005-0.1%, La: 0.001- 0.1%, Ce: 0.001-0.1%, 1 type (s) or 2 or more types are contained, The high toughness and high ductility of Claim 1 characterized by the above-mentioned. Method of manufacturing tensile steel.
JP2002058985A 2002-03-05 2002-03-05 Method for manufacturing high-tensile-strength steel with high toughness and high ductility Withdrawn JP2003253331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002058985A JP2003253331A (en) 2002-03-05 2002-03-05 Method for manufacturing high-tensile-strength steel with high toughness and high ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002058985A JP2003253331A (en) 2002-03-05 2002-03-05 Method for manufacturing high-tensile-strength steel with high toughness and high ductility

Publications (1)

Publication Number Publication Date
JP2003253331A true JP2003253331A (en) 2003-09-10

Family

ID=28668811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002058985A Withdrawn JP2003253331A (en) 2002-03-05 2002-03-05 Method for manufacturing high-tensile-strength steel with high toughness and high ductility

Country Status (1)

Country Link
JP (1) JP2003253331A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281842A (en) * 2004-03-31 2005-10-13 Jfe Steel Kk Production method of low temperature service low yield ratio steel material having excellent weld zone toughness
JP2006249513A (en) * 2005-03-10 2006-09-21 Nippon Steel Corp Controlled rolling method for sheet pile having excellent toughness
JP2006249468A (en) * 2005-03-09 2006-09-21 Jfe Steel Kk Method for producing low yield ratio high tensile strength steel
JP2007056294A (en) * 2005-08-23 2007-03-08 Kobe Steel Ltd Method for manufacturing steel plate with low yield ratio, high strength and high toughness
CN100366777C (en) * 2005-12-12 2008-02-06 上海梅山钢铁股份有限公司 High temperature creep-resisting furnace shell material and its preparation method
JP2008248338A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Steel member having excellent fatigue crack propagation resistance and weld heat affected zone low temperature toughness
JP2008266735A (en) * 2007-04-20 2008-11-06 Kobe Steel Ltd Low yield ratio high tensile strength steel plate excellent in low temperature toughness of weld heat-affected zone and base material, and its manufacturing method
JP2009228040A (en) * 2008-03-21 2009-10-08 Jfe Steel Corp Low yield ratio high strength steel plate and method for producing the same
JP2011032543A (en) * 2009-08-03 2011-02-17 Nippon Steel Corp High strength steel sheet excellent in workability, and manufacturing method therefor
KR101185289B1 (en) 2010-08-30 2012-09-21 현대제철 주식회사 High strength steel exellent in low-temperature toughness welding part and method of manufacturing the high strength steel
KR101344640B1 (en) 2012-01-31 2013-12-26 현대제철 주식회사 High strength steel plate and method for manufacturing the same
US8641836B2 (en) 2009-10-28 2014-02-04 Nippon Steel & Sumitomo Metal Corporation Steel plate for line pipe excellent in strength and ductility and method of production of same
CN103882290A (en) * 2014-04-09 2014-06-25 邓毅 Alloy steel with low silicon and carbon contents for structure body
CN105401084A (en) * 2015-12-19 2016-03-16 丹阳市宸兴环保设备有限公司 Copper-nickel alloy steel
WO2016156849A1 (en) * 2015-04-02 2016-10-06 Cambridge Enterprise Limited Martensitic steel alloy with resistance to hydrogen embrittlement
JP2016180163A (en) * 2015-03-25 2016-10-13 Jfeスチール株式会社 Low yield ratio high tensile steel plate excellent in heat affected zone toughness
JPWO2014208082A1 (en) * 2013-06-25 2017-02-23 Jfeスチール株式会社 High strength steel material with excellent fatigue characteristics and method for producing the same
JP2017197787A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor
KR20190034279A (en) 2016-08-29 2019-04-01 가부시키가이샤 고베 세이코쇼 After-treatment steel sheet and its manufacturing method
CN111593251A (en) * 2020-06-08 2020-08-28 苏州大学 Deformed steel bar and preparation method thereof
WO2021066274A1 (en) * 2019-09-30 2021-04-08 현대제철 주식회사 Steel sheet having high strength and high formability and method for manufacturing same
CN114875302A (en) * 2022-03-25 2022-08-09 广东省科学院新材料研究所 Low-alloy steel and preparation method and application thereof
JP2022541704A (en) * 2020-06-19 2022-09-27 ヒュンダイ スチール カンパニー Shaped steel and its manufacturing method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507669B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP2005281842A (en) * 2004-03-31 2005-10-13 Jfe Steel Kk Production method of low temperature service low yield ratio steel material having excellent weld zone toughness
JP2006249468A (en) * 2005-03-09 2006-09-21 Jfe Steel Kk Method for producing low yield ratio high tensile strength steel
JP4687153B2 (en) * 2005-03-09 2011-05-25 Jfeスチール株式会社 Production method of low yield ratio high strength steel
JP2006249513A (en) * 2005-03-10 2006-09-21 Nippon Steel Corp Controlled rolling method for sheet pile having excellent toughness
JP4571877B2 (en) * 2005-03-10 2010-10-27 新日本製鐵株式会社 Controlled rolling method for steel sheet pile with excellent toughness
JP2007056294A (en) * 2005-08-23 2007-03-08 Kobe Steel Ltd Method for manufacturing steel plate with low yield ratio, high strength and high toughness
JP4630158B2 (en) * 2005-08-23 2011-02-09 株式会社神戸製鋼所 Low yield ratio high strength high toughness steel sheet manufacturing method
CN100366777C (en) * 2005-12-12 2008-02-06 上海梅山钢铁股份有限公司 High temperature creep-resisting furnace shell material and its preparation method
JP2008248338A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Steel member having excellent fatigue crack propagation resistance and weld heat affected zone low temperature toughness
JP2008266735A (en) * 2007-04-20 2008-11-06 Kobe Steel Ltd Low yield ratio high tensile strength steel plate excellent in low temperature toughness of weld heat-affected zone and base material, and its manufacturing method
JP2009228040A (en) * 2008-03-21 2009-10-08 Jfe Steel Corp Low yield ratio high strength steel plate and method for producing the same
JP2011032543A (en) * 2009-08-03 2011-02-17 Nippon Steel Corp High strength steel sheet excellent in workability, and manufacturing method therefor
US8641836B2 (en) 2009-10-28 2014-02-04 Nippon Steel & Sumitomo Metal Corporation Steel plate for line pipe excellent in strength and ductility and method of production of same
KR101185289B1 (en) 2010-08-30 2012-09-21 현대제철 주식회사 High strength steel exellent in low-temperature toughness welding part and method of manufacturing the high strength steel
KR101344640B1 (en) 2012-01-31 2013-12-26 현대제철 주식회사 High strength steel plate and method for manufacturing the same
JPWO2014208082A1 (en) * 2013-06-25 2017-02-23 Jfeスチール株式会社 High strength steel material with excellent fatigue characteristics and method for producing the same
CN103882290A (en) * 2014-04-09 2014-06-25 邓毅 Alloy steel with low silicon and carbon contents for structure body
CN103882290B (en) * 2014-04-09 2016-03-30 邓毅 For the steel alloy of the low-carbon (LC) silicone content of main structure body
JP2016180163A (en) * 2015-03-25 2016-10-13 Jfeスチール株式会社 Low yield ratio high tensile steel plate excellent in heat affected zone toughness
WO2016156849A1 (en) * 2015-04-02 2016-10-06 Cambridge Enterprise Limited Martensitic steel alloy with resistance to hydrogen embrittlement
CN105401084A (en) * 2015-12-19 2016-03-16 丹阳市宸兴环保设备有限公司 Copper-nickel alloy steel
JP2017197787A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor
KR20190034279A (en) 2016-08-29 2019-04-01 가부시키가이샤 고베 세이코쇼 After-treatment steel sheet and its manufacturing method
WO2021066274A1 (en) * 2019-09-30 2021-04-08 현대제철 주식회사 Steel sheet having high strength and high formability and method for manufacturing same
CN111593251A (en) * 2020-06-08 2020-08-28 苏州大学 Deformed steel bar and preparation method thereof
JP2022541704A (en) * 2020-06-19 2022-09-27 ヒュンダイ スチール カンパニー Shaped steel and its manufacturing method
JP7297096B2 (en) 2020-06-19 2023-06-23 ヒュンダイ スチール カンパニー Shaped steel and its manufacturing method
CN114875302A (en) * 2022-03-25 2022-08-09 广东省科学院新材料研究所 Low-alloy steel and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2003253331A (en) Method for manufacturing high-tensile-strength steel with high toughness and high ductility
EP0796352B1 (en) Ultra-high strength steels and method thereof
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
JP4362318B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP2003160811A (en) Method for manufacturing tempered high-tensile- strength steel sheet superior in toughness
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP2001288512A (en) Method of producing high tensile strength steel excellent in toughness and ductility
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2002363644A (en) Method for manufacturing high-tensile steel with excellent toughness and fatigue strength
JPH0941088A (en) Production of high toughness steel plate for low temperature use
JP2001123222A (en) Manufacturing method of high-toughness and high-tensile steel
JPH01184226A (en) Production of steel sheet having high-ductility high-strength multiple structure
JPH01272720A (en) Production of high ductility and high strength steel sheet with composite structure
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JPH05105957A (en) Production of heat resistant high strength bolt
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2002275576A (en) Low yield ratio steel for low temperature use and production method therefor
JP2002012939A (en) High tensile steel excellent in hot strength and its production method
WO2023140239A1 (en) Cold-rolled steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510