JP3850913B2 - Manufacturing method of high strength bend pipe with excellent weld metal toughness - Google Patents

Manufacturing method of high strength bend pipe with excellent weld metal toughness Download PDF

Info

Publication number
JP3850913B2
JP3850913B2 JP11164796A JP11164796A JP3850913B2 JP 3850913 B2 JP3850913 B2 JP 3850913B2 JP 11164796 A JP11164796 A JP 11164796A JP 11164796 A JP11164796 A JP 11164796A JP 3850913 B2 JP3850913 B2 JP 3850913B2
Authority
JP
Japan
Prior art keywords
temperature toughness
low temperature
weld metal
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11164796A
Other languages
Japanese (ja)
Other versions
JPH09295067A (en
Inventor
好男 寺田
佳紀 尾形
照久 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11164796A priority Critical patent/JP3850913B2/en
Publication of JPH09295067A publication Critical patent/JPH09295067A/en
Application granted granted Critical
Publication of JP3850913B2 publication Critical patent/JP3850913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、API規格X65以上の強度と溶接部の靱性に優れたベンド管(曲がり管)の製造法に関するものである。
【0002】
【従来の技術】
原油・天然ガスを輸送するパイプラインに使用するラインパイプ(直管)や異形管(ベンド管、エルボー管、T字管など)には、安全性の観点から優れた強度、低温靱性、溶接性などが求められる。特にパイプライン敷設域の寒冷地化や深海化にともない、例えば−60℃での低温靱性の確保や、厚肉化が要求されるようになっている。
【0003】
従来、ベンド管などは、直管に比較して鋼管の機械的性質(強度、低温靱性など)が劣化するため、特開昭62−10212号公報、特開平4−154913号公報、特開平7−3330号公報、特開平5−279743号公報、特開昭59−232225号公報、特開昭61−117223号公報などに示されるように、ベンド管の機械的性質を改善する方法が種々提案されている。
【0004】
例えば、特開昭62−10212号公報、特開平4−154913号公報、特開平7−3330号公報、特開平5−279743号公報に記載のものは、鋼管を加熱後、曲げ加工しながら焼入れした後、特定の範囲内で焼戻し処理する方法である。しかしながら、これらの方法は、焼戻し処理が必須であるため、生産性や製造コストの観点から問題があった。
【0005】
また、特開昭61−117223号公報には、特定の成分の溶接金属を有する鋼管から焼戻し処理を省略してベンド管を製造する方法が開示されている。しかしながら、厚みが20mm超の厚肉になると鋼管を溶接する際に必然的に溶接入熱を大きくしなければならず、溶接金属部の強度と良好な低温靱性を確保するためには、新たな溶接金属成分の適正値を求める必要がある。すなわち、溶接入熱が大きくなると溶接後の冷却速度が遅くなるため、旧オーステナイト(γ)粒界から粗大な粒界フェライトが生成して強度・低温靱性が劣化する。そこで、生産性に優れ、高強度でかつ低温での優れた溶接部靱性を有するベンド管の開発が強く望まれていた。
【0006】
【発明が解決しようとする課題】
本発明は、生産性に優れ、高強度でかつ低温での優れた溶接部靱性を有するベンド管の製造技術を安価に提供することを目的とするものである。
【0007】
【課題を解決するための手段】
すなわち、本発明の要旨とするところは下記のとおりである。
(1)重量%で、C:0.03〜0.10%、Si:0.3%以下、Mn:1.67〜2.2%、P:0.015%以下、S:0.030%以下、Cr:0.05〜0.5%、Nb:0.01〜0.10%、Ti:0.005〜0.030%、Al:0.05%以下、N:0.001〜0.010%、O:0.04%以下を含有し、残部が鉄および不可避的不純物からなり、かつ下記の式で定義されるP値が−0.010〜0.010の範囲にある溶接金属部を有する鋼管を、900〜1000℃に加熱後、曲げ加工しながら直ちに急冷することを特徴とする優れた溶接金属部靱性を有する高強度ベンド管の製造法。
【0008】
P={1.5(O−0.89Al)+3.4N}−Ti
(2)重量%で、C:0.03〜0.10%、Si:0.3%以下、Mn:1.67〜2.2%、P:0.015%以下、S:0.030%以下、Cr:0.05〜0.5%、Nb:0.01〜0.10%、Ti:0.005〜0.030%、Al:0.05%以下、N:0.001〜0.010%、O:0.04%以下を含有し、さらにNi:0.1〜1.0%、Cu:0.1〜1.0%、Mo:0.1〜1.0%、V:0.01〜0.10%、B:0.0003〜0.003%、Ca:0.001〜0.005%のうち1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、かつ下記の式で定義されるP値が−0.010〜0.010の範囲にある溶接金属部を有する鋼管を、900〜1000℃に加熱後、曲げ加工しながら直ちに急冷することを特徴とする優れた溶接金属部靱性を有する高強度ベンド管の製造法。
【0009】
P={1.5(O−0.89Al)+3.4N}−Ti
以下に、本発明の優れた溶接金属部靱性を有する高強度ベンド管の製造法について詳細に説明する。
従来より、低炭素−Nb系鋼管を加熱後、曲げ加工しながら焼入れ処理することにより高強度と良好な低温靱性を確保できることが知られている(特開平1−44769号公報)。しかしながら、極厚化した場合、溶接入熱が必然的に大きくなり溶接後の冷却速度が小さくなるため、粗大な粒界フェライト等が生成して溶接金属部の低温靱性は劣化する。このため、さらに合金元素量の増加が必要となる。しかしながら、単に溶接金属の合金元素量を増加させた場合は、敷設現地での中継ぎ溶接の時に、鋼管長手方向溶接(シーム溶接)と現地での中継ぎ溶接が交差した部分(T−クロス部)の硬さが高くなり、割れ等の問題が生じる。
【0010】
そこで、本発明者らは、極厚高強度ベンド管溶接部の低温靱性を改善し、T−クロス部の硬さを低減するために鋭意研究した結果、本発明を完成するに至った。すなわち、本発明は、(1)低C−高Mn−Cr−Nb−微量Tiを含み、かつAl、N、酸素、Ti量のバランスを考慮して各添加量を適正化した溶接金属成分を有する鋼管であること、(2)この鋼管を加熱後、曲げ加工しながら、その直後に焼入れ処理すること、を特徴とする。これによって、高強度と優れた低温靱性、さらにはT−クロス部の低硬度化を同時に達成できる。
【0011】
鋼管長手方向の溶接金属部の低温靱性は、(1)結晶粒のサイズ、(2)島状マルテンサイトなどの硬化相の分散状態など種々の冶金学的要因に支配される。特に極厚化するほど溶接入熱が大きくなるため、溶接後の冷却速度が必然的に小さくなり、粗大なフェライトなどが生成して低温靱性が劣化する。この場合、合金元素の添加量を増加させて、粗大な粒界フェライトの生成を抑制することが必須である。しかしながら、合金元素添加量の増加はT−クロス部での硬さの上昇を招くため、添加する合金元素の種類と添加量の適正化が重要となる。特にMnとCrを同時に添加させることが、安価でかつ長手方向溶接金属部の粗大な粒界フェライトの抑制による低温靱性の改善とT−クロス部の低硬度化に極めて有効であることを本発明者らは見出した。また、Al、N、酸素およびTi量のバランスを適正化することにより、低温靱性を飛躍的に改善できることがわかった。すなわち、P={1.5(O−0.89Al)+3.4N}−Tiで表される式において、P値が−0.010〜0.010%になるように各成分を適正化することにより、低温靱性が向上する。
【0012】
以上のような効果を十分に発揮させるためには、Mn量は1.67〜2.2%、Cr量は0.05〜0.5%とする必要がある。MnおよびCr量が少ない場合には、厚手材において溶接入熱が大きくなって溶接後の冷却速度が小さくなり、粗大な粒界フェライトが生成して低温靱性が劣化する。粗大な粒界フェライトを抑制するためには、Mn量は1.67%以上、Cr量は0.05%以上が必要である。一方で、MnおよびCr量が多くなると、焼入れ性が大きくなり、島状マルテンサイトが生成して低温靱性を劣化させるため、その上限の値を、それぞれMnは2.2%、Crは0.5%とした。
【0013】
さらに、低温靱性を改善するためにP値を適正化する必要がある。P値はTi量の過不足を示したもので、P値が低い(マイナス)場合には、Tiが過剰に添加されていることになり、TiCなどの析出硬化により低温靱性が劣化する。一方、P値が高い(プラス)場合には、Ti量が不足(または酸素量が過剰)しているため、低温靱性が劣化する。良好な低温靱性を得るためには、P値を−0.010〜0.010%にする必要がある。
【0014】
Alは、通常、脱酸剤として鋼に含まれる元素であり、組織の微細化にも効果を有する。しかし、Al量が0.05%を超えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.05%とした。
Ti添加は微細なTi酸化物やTiNを形成し、再加熱時のオーステナイト粒の粗大化の抑制や、γ−α変態時の粒内変態フェライトの生成核としてミクロ組織を微細化し、低温靱性を改善する。このような効果を発現させるためには、最低0.005%のTi添加が必要である。しかし、Ti量が多過ぎると、TiCによる析出硬化が生じ、低温靱性が劣化するので、その上限は0.030%に限定しなければならない。
【0015】
NはTiNを形成して再加熱時のオーステナイト粒の粗大化を抑制して低温靱性を向上させる。このために必要な最小量は0.001%である。しかし、N量が多過ぎると固溶Nの増加による靱性劣化の原因となるので、その上限は0.010%に抑える必要がある。
O量の低減は鋼中の酸化物を少なくして、低温靱性の改善に効果がある。従って、O量は低いほど好ましい。O量が多すぎると鋼の清浄度が劣化し、低温靱性が劣化するので、その上限の値を0.04%とする。
【0016】
次に、本発明のその他の成分元素の限定理由について説明する。
Cの下限0.03%は、溶接部の強度、低温靱性の確保ならびにNb、V添加による析出硬化、結晶粒の微細化効果を発揮させるための最小量である。しかし、C量が多過ぎると低温靱性、現地溶接性(T−クロス部の硬さ)の著しい劣化を招くので、上限を0.10%とした。
【0017】
Siは脱酸や強度向上のために添加する元素であるが、多く添加すると低温靱性を劣化させるので、上限を0.3%とした。溶接金属の脱酸はTiあるいはAlのみでも十分である。
Nbは結晶粒の微細化や析出硬化に寄与し、鋼を強靱化する作用を有する。この効果を発揮させるための最小量として、その下限を0.01%とした。しかし、0.10%を超えるNb添加は、現地溶接性や低温靱性に悪影響を及ぼすので、その上限を0.10%とした。
【0018】
さらに、本発明では不純物元素であるP、S量を、それぞれP:0.015%以下、S:0.030%以下とする。その主たる理由は、低温靱性をより一層向上させるためである。P量の低減は溶接金属が凝固する際の偏析を低減し、粒界破壊を防止して低温靱性を向上させる。また、S量の低減は延靱性を向上させる効果がある。従って、P、S量は低いほど好ましい。
【0019】
次に、Ni、Cu、Mo、V、B、Caを添加する理由について説明する。
基本となる成分にさらにこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、製造可能な板厚の拡大や強度・靱性などの特性の向上を図るためである。従って、その添加量は自ら制限されるべき性質のものである。
【0020】
Niを添加する目的は、低炭素の本発明鋼の強度を低温靱性を劣化させることなく向上させるためである。この効果を発揮させるためには、0.1%以上の添加が必要である。しかし、添加量が多すぎると経済性だけでなく、現地溶接性や低温靱性などを劣化させるので、その上限を1.0%とした。
CuはNiとほぼ同様の効果を持つとともに、耐食性、耐水素誘起割れ特性の向上にも効果がある。また、Cu析出硬化によって強度を大幅に増加させる。この効果を発揮させるためには、0.1%以上の添加が必要である。しかし、過剰に添加すると、析出硬化により低温靱性の低下が生じるので、その上限を1.0%とした。
【0021】
Moは溶接部の強度を増加させる効果がある。このような効果を得るためには、Moは最低0.1%が必要である。しかし、過剰なMo添加は低温靱性、現地溶接性を劣化させるので、その上限を1.0%とした。
VはほぼNbと同様の効果を有する。この効果を発揮させるためには、0.01%以上のV添加が必要である。Vの上限は、現地溶接性、低温靱性の観点から0.10%まで許容できる。
【0022】
Bは極微量で鋼の焼入れ性を飛躍的に高める。このような効果を得るためには、Bは最低でも0.0003%が必要である。一方、過剰に添加すると、低温靱性を劣化させるだけでなく、却ってBの焼入れ性向上効果を消失せしめることもあるので、その上限を0.003%とした。
Caは硫化物(MnS)の形態を制御し、低温靱性を向上(シャルピー試験における吸収エネルギーの増加など)させる。しかし、Ca量が0.001%未満では実用上の効果がなく、また0.005%を超えて添加すると、CaO−CaSが大量に生成して、クラスター、大型介在物となり、鋼の清浄度を害するだけでなく、現地溶接性にも悪影響を及ぼす。このため、Ca添加量を0.001〜0.005%に制限した。
【0023】
次に、本発明の製造条件の限定理由について説明する。
本発明では、鋼管を900〜1000℃の温度範囲に再加熱後、曲げ加工し、その後焼入れする必要がある。
鋼管の加熱温度を900℃以上とする理由は、オーステナイト域で合金元素を十分に溶体化させ、強度を向上させるためである。しかし、加熱温度が1000℃を超えると、加熱時のオーステナイト粒が成長し、結晶粒が大きくなって低温靱性の劣化を招いたり、ベンド管の所定の寸法が得られなくなる。このため、加熱温度の上限は1000℃とした。
【0024】
加熱後、鋼管を曲げ加工し、その直後に焼入れ処理する必要がある。これは、曲げ加工後、直ちに焼入れ処理することにより、高強度と優れた低温靱性を得るためである。曲げ加工後、直ちに焼入れしないと鋼管の温度が低下して、フェライトなどの生成により高強度化が達成できない。なお、焼入れ処理時の冷却速度は15℃/秒以上が望ましい。
【0025】
【発明の実施の形態】
本発明の実施の形態について述べる。
表1に示す成分を有する鋼板を溶接して鋼管を製造した。成形方法はUOEおよびBR(ベンディングロール)である。その後、種々の溶接金属成分を有する鋼管からベンド管を製造して諸性質を調査した。機械的性質は圧延と直角方向で調査した。
【0026】
実施例を表2、表3(表2のつづき−1)、表4(表2のつづき−2)、表5(表2のつづき−3)に示す。
【0027】
【表1】

Figure 0003850913
【0028】
【表2】
Figure 0003850913
【0029】
【表3】
Figure 0003850913
【0030】
【表4】
Figure 0003850913
【0031】
【表5】
Figure 0003850913
【0032】
本発明の鋼管は優れた溶接金属部の強度・低温靱性を有するのに対して、比較鋼は化学成分または鋼管製造条件が適切でなく、いずれかの特性が劣る。鋼9はC量が多過ぎるため、低温靱性(シャルピー吸収エネルギー、遷移温度)が悪い。鋼10はMn量が低過ぎるため、低温靱性が悪い。鋼11はNbが添加されていないため、低温靱性が悪い。鋼12はTiが添加されていないため、低温靱性が劣る。鋼13はCr量が多過ぎるため、低温靱性が劣る。鋼14はCr量が少な過ぎるため、T−クロス部の硬さが高く、溶接性が悪い。鋼15はP値が小さ過ぎるため、低温靱性が悪い。鋼16はP値が高過ぎるため、低温靱性が悪い。鋼17は鋼管の再加熱温度が高過ぎるため、低温靱性が悪い。鋼18は鋼管の再加熱温度が低過ぎるため、強度が低い。鋼19は曲げ加工後空冷したため、強度が低い。
【0033】
【発明の効果】
本発明により低温靱性に優れた極厚高強度ベンド管(API規格X65以上)が安定して製造できるようになった。その結果、パイプラインの輸送効率の向上が可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a bend pipe (bent pipe) excellent in strength of API standard X65 or higher and toughness of a welded portion.
[0002]
[Prior art]
Line pipes (straight pipes) and deformed pipes (bend pipes, elbow pipes, T-shaped pipes, etc.) used for pipelines that transport crude oil and natural gas have excellent strength, low temperature toughness, and weldability from the viewpoint of safety. Etc. are required. In particular, as the pipeline laying area becomes colder and deeper, securing low temperature toughness at, for example, −60 ° C., and increasing the thickness are demanded.
[0003]
Conventionally, since the mechanical properties (strength, low temperature toughness, etc.) of a steel pipe are deteriorated in a bend pipe or the like as compared with a straight pipe, JP-A-62-210212, JP-A-4-154913, and JP-A-7 -3330, JP-A-5-279743, JP-A-59-232225, JP-A-61-117223, etc., various methods for improving the mechanical properties of the bend pipe are proposed. Has been.
[0004]
For example, those described in JP-A-62-110212, JP-A-4-154913, JP-A-7-3330, and JP-A-5-279743 are quenched after being heated and bent. And then tempering within a specific range. However, these methods have problems from the viewpoint of productivity and manufacturing cost because tempering treatment is essential.
[0005]
Japanese Patent Laid-Open No. 61-117223 discloses a method of manufacturing a bend pipe from a steel pipe having a weld metal having a specific component by omitting the tempering treatment. However, when the thickness exceeds 20 mm, it is necessary to increase the welding heat input when welding the steel pipe, and in order to ensure the strength and good low temperature toughness of the weld metal part, It is necessary to determine the appropriate value for the weld metal component. That is, when the welding heat input is increased, the cooling rate after welding is slowed down, so that coarse grain boundary ferrite is generated from the prior austenite (γ) grain boundary and the strength and low temperature toughness are deteriorated. Therefore, development of a bend pipe having excellent productivity, high strength and excellent weld toughness at low temperatures has been strongly desired.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a manufacturing technique of a bend pipe having excellent productivity, high strength and excellent weld toughness at low temperature at a low cost.
[0007]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(1) By weight, C: 0.03 to 0.10%, Si: 0.3% or less, Mn: 1.67 to 2.2%, P: 0.015% or less, S: 0.030 %: Cr: 0.05-0.5%, Nb: 0.01-0.10%, Ti: 0.005-0.030%, Al: 0.05% or less, N: 0.001- Welding containing 0.010%, O: 0.04% or less, the balance being iron and inevitable impurities, and the P value defined by the following formula in the range of −0.010 to 0.010 A method for producing a high-strength bend pipe having excellent weld metal part toughness, wherein a steel pipe having a metal part is rapidly cooled while being bent at a temperature of 900 to 1000 ° C.
[0008]
P = {1.5 (O−0.89Al) + 3.4N} −Ti
(2) in wt%, C: 0.03~0.10%, Si : 0.3% or less, Mn: 1.67 ~2.2%, P : 0.015% or less, S: 0.030 %: Cr: 0.05-0.5%, Nb: 0.01-0.10%, Ti: 0.005-0.030%, Al: 0.05% or less, N: 0.001- 0.010%, O: 0.04% or less, further Ni: 0.1-1.0%, Cu: 0.1-1.0%, Mo: 0.1-1.0%, V: 0.01 to 0.10%, B: 0.0003 to 0.003%, Ca: 0.001 to 0.005%, or one or more, containing the balance of iron and inevitable A steel pipe having a weld metal part made of impurities and having a P value defined by the following formula in the range of −0.010 to 0.010 is heated to 900 to 1000 ° C. and then bent. Preparation of high strength bent pipe with excellent weld metal toughness immediately characterized by rapidly cooling while.
[0009]
P = {1.5 (O−0.89Al) + 3.4N} −Ti
Below, the manufacturing method of the high intensity | strength bend pipe | tube which has the outstanding weld metal part toughness of this invention is demonstrated in detail.
Conventionally, it is known that high strength and good low-temperature toughness can be ensured by heating and quenching a low carbon-Nb steel pipe after bending (Japanese Patent Laid-Open No. 1-444769). However, when the thickness is increased, the welding heat input is inevitably increased and the cooling rate after welding is decreased, so that coarse grain boundary ferrite or the like is generated and the low temperature toughness of the weld metal part is deteriorated. For this reason, it is necessary to further increase the amount of alloying elements. However, when the amount of alloying elements of the weld metal is simply increased, at the time of joint welding at the laying site, the portion where the steel pipe longitudinal direction welding (seam welding) and the local joint welding intersect (T-cross part) Hardness increases and problems such as cracking occur.
[0010]
Therefore, the present inventors have intensively studied to improve the low-temperature toughness of the ultra-thick high-strength bend pipe welded portion and reduce the hardness of the T-cross portion. As a result, the present invention has been completed. That is, the present invention provides (1) a weld metal component that includes low C-high Mn-Cr-Nb-trace amount Ti and that optimizes each addition amount in consideration of the balance of Al, N, oxygen, and Ti amount. (2) The steel pipe is heated and then bent, and then immediately hardened. As a result, high strength and excellent low temperature toughness, and further reduction in hardness of the T-cross portion can be achieved at the same time.
[0011]
The low temperature toughness of the weld metal part in the longitudinal direction of the steel pipe is governed by various metallurgical factors such as (1) the size of crystal grains and (2) the dispersion state of the hardened phase such as island martensite. In particular, since the heat input increases as the thickness increases, the cooling rate after welding inevitably decreases, and coarse ferrite or the like is generated, resulting in deterioration of low-temperature toughness. In this case, it is essential to suppress the formation of coarse grain boundary ferrite by increasing the additive amount of the alloy element. However, since an increase in the amount of alloy element added causes an increase in hardness at the T-cross portion, it is important to optimize the type and amount of the alloy element to be added. In particular, according to the present invention, the simultaneous addition of Mn and Cr is extremely effective in improving low-temperature toughness and reducing the hardness of the T-cross part by suppressing the coarse grain boundary ferrite in the longitudinal weld metal part. They found out. It was also found that the low temperature toughness can be drastically improved by optimizing the balance of the amounts of Al, N, oxygen and Ti. That is, in the formula expressed by P = {1.5 (O−0.89Al) + 3.4N} −Ti, each component is optimized so that the P value becomes −0.010 to 0.010%. As a result, the low temperature toughness is improved.
[0012]
In order to exhibit the above effects sufficiently, the Mn amount needs to be 1.67 to 2.2%, and the Cr amount needs to be 0.05 to 0.5%. When the amount of Mn and Cr is small, the welding heat input is increased in the thick material, the cooling rate after welding is decreased, coarse grain boundary ferrite is generated, and the low temperature toughness is deteriorated. In order to suppress coarse grain boundary ferrite, the Mn content is required to be 1.67% or more , and the Cr content is required to be 0.05% or more. On the other hand, when the amount of Mn and Cr increases, the hardenability increases, and island-like martensite is generated to deteriorate the low-temperature toughness. Therefore, the upper limit values are 2.2% for Mn and 0.2% for Cr. 5%.
[0013]
Furthermore, it is necessary to optimize the P value in order to improve the low temperature toughness. The P value indicates an excess or deficiency of the Ti amount. When the P value is low (minus), Ti is excessively added, and low temperature toughness deteriorates due to precipitation hardening of TiC or the like. On the other hand, when the P value is high (plus), the Ti amount is insufficient (or the oxygen amount is excessive), so that the low temperature toughness deteriorates. In order to obtain good low temperature toughness, the P value needs to be -0.010 to 0.010%.
[0014]
Al is an element usually contained in steel as a deoxidizer, and has an effect on refinement of the structure. However, if the Al content exceeds 0.05%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.05%.
Addition of Ti forms fine Ti oxides and TiN, suppresses the coarsening of austenite grains during reheating, refines the microstructure as the nucleus of intragranular transformation ferrite during γ-α transformation, and reduces low temperature toughness. Improve. In order to exhibit such an effect, at least 0.005% of Ti should be added. However, if the amount of Ti is too large, precipitation hardening due to TiC occurs and low temperature toughness deteriorates, so the upper limit must be limited to 0.030%.
[0015]
N forms TiN and suppresses coarsening of austenite grains during reheating and improves low temperature toughness. The minimum amount required for this is 0.001%. However, if the amount of N is too large, it causes toughness deterioration due to an increase in solute N, so the upper limit must be limited to 0.010%.
Reduction of the amount of O is effective in improving low temperature toughness by reducing oxides in steel. Therefore, the lower the amount of O, the better. If the amount of O is too large, the cleanliness of steel deteriorates and the low temperature toughness deteriorates, so the upper limit value is made 0.04%.
[0016]
Next, the reasons for limiting other component elements of the present invention will be described.
The lower limit of 0.03% of C is the minimum amount for ensuring the strength of the welded portion, low temperature toughness, precipitation hardening by adding Nb and V, and the effect of refining crystal grains. However, if the amount of C is too large, the low temperature toughness and on-site weldability (T-cross part hardness) are significantly deteriorated, so the upper limit was made 0.10%.
[0017]
Si is an element added for deoxidation and strength improvement, but if added in a large amount, the low temperature toughness deteriorates, so the upper limit was made 0.3%. Only Ti or Al is sufficient for deoxidizing the weld metal.
Nb contributes to refinement of crystal grains and precipitation hardening, and has an effect of strengthening steel. As a minimum amount for exhibiting this effect, the lower limit was set to 0.01%. However, Nb addition exceeding 0.10% adversely affects on-site weldability and low temperature toughness, so the upper limit was made 0.10%.
[0018]
Furthermore, in the present invention, the amounts of impurity elements P and S are set to P: 0.015% or less and S: 0.030% or less, respectively. The main reason is to further improve the low temperature toughness. Reduction of the P content reduces segregation when the weld metal solidifies, prevents grain boundary fracture and improves low temperature toughness. Moreover, the reduction of the amount of S has the effect of improving ductility. Therefore, the lower the amount of P and S, the better.
[0019]
Next, the reason for adding Ni, Cu, Mo, V, B, and Ca will be described.
The main purpose of adding these elements to the basic components is to increase the plate thickness that can be produced and to improve the properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is a property that should be limited by itself.
[0020]
The purpose of adding Ni is to improve the strength of the low carbon steel of the present invention without degrading the low temperature toughness. In order to exert this effect, addition of 0.1% or more is necessary. However, if the addition amount is too large, not only the economic efficiency but also the local weldability and low temperature toughness are deteriorated, so the upper limit was made 1.0%.
Cu has substantially the same effect as Ni, and is also effective in improving the corrosion resistance and the resistance to hydrogen-induced cracking. In addition, the strength is greatly increased by Cu precipitation hardening. In order to exert this effect, addition of 0.1% or more is necessary. However, if added in excess, low temperature toughness is reduced by precipitation hardening, so the upper limit was made 1.0%.
[0021]
Mo has the effect of increasing the strength of the weld. In order to obtain such an effect, Mo needs to be at least 0.1%. However, excessive addition of Mo deteriorates low temperature toughness and on-site weldability, so the upper limit was made 1.0%.
V has substantially the same effect as Nb. In order to exert this effect, it is necessary to add 0.01% or more of V. The upper limit of V is acceptable up to 0.10% from the viewpoint of on-site weldability and low temperature toughness.
[0022]
B is extremely small and dramatically increases the hardenability of the steel. In order to obtain such an effect, B must be at least 0.0003%. On the other hand, if added excessively, not only the low temperature toughness is deteriorated, but also the effect of improving the hardenability of B may be lost, so the upper limit was made 0.003%.
Ca controls the form of sulfide (MnS) and improves low-temperature toughness (such as an increase in absorbed energy in the Charpy test). However, when the Ca content is less than 0.001%, there is no practical effect. When the Ca content exceeds 0.005%, a large amount of CaO-CaS is formed, resulting in clusters and large inclusions. Not only harms, but also adversely affects on-site weldability. For this reason, the amount of Ca added is limited to 0.001 to 0.005%.
[0023]
Next, the reasons for limiting the manufacturing conditions of the present invention will be described.
In the present invention, the steel pipe needs to be reheated to a temperature range of 900 to 1000 ° C., bent, and then quenched.
The reason why the heating temperature of the steel pipe is set to 900 ° C. or more is to sufficiently dissolve the alloy elements in the austenite region and improve the strength. However, when the heating temperature exceeds 1000 ° C., austenite grains at the time of heating grow and the crystal grains become large, resulting in deterioration of low-temperature toughness, or a predetermined dimension of the bend tube cannot be obtained. For this reason, the upper limit of heating temperature was 1000 degreeC.
[0024]
After heating, the steel pipe needs to be bent and immediately quenched. This is to obtain high strength and excellent low temperature toughness by quenching immediately after bending. If the steel pipe is not quenched immediately after bending, the temperature of the steel pipe will decrease and high strength cannot be achieved due to the formation of ferrite and the like. The cooling rate during the quenching process is preferably 15 ° C./second or more.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described.
Steel plates having the components shown in Table 1 were welded to produce steel pipes. The forming method is UOE and BR (bending roll). Thereafter, bend pipes were manufactured from steel pipes having various weld metal components, and various properties were investigated. The mechanical properties were investigated in the direction perpendicular to rolling.
[0026]
Examples are shown in Table 2, Table 3 (Continuation 1 in Table 2), Table 4 (Continuation 2 in Table 2), and Table 5 (Continuation 3 in Table 2).
[0027]
[Table 1]
Figure 0003850913
[0028]
[Table 2]
Figure 0003850913
[0029]
[Table 3]
Figure 0003850913
[0030]
[Table 4]
Figure 0003850913
[0031]
[Table 5]
Figure 0003850913
[0032]
The steel pipe of the present invention has excellent weld metal strength and low temperature toughness, whereas the comparative steel has inadequate chemical composition or steel pipe manufacturing conditions and is inferior in any of the characteristics. Since steel 9 has too much C content, low temperature toughness (Charpy absorption energy, transition temperature) is poor. Steel 10 has a low Mn content and therefore low temperature toughness. Steel 11 has poor low-temperature toughness because Nb is not added. Since the steel 12 is not added with Ti, the low temperature toughness is inferior. Since the steel 13 has too much Cr, the low temperature toughness is inferior. Since the amount of Cr in the steel 14 is too small, the hardness of the T-cross portion is high and the weldability is poor. Since the P value of steel 15 is too small, the low temperature toughness is poor. Since the steel 16 has an excessively high P value, the low temperature toughness is poor. Steel 17 has poor low-temperature toughness because the reheating temperature of the steel pipe is too high. Steel 18 has low strength because the reheating temperature of the steel pipe is too low. Since the steel 19 is air-cooled after bending, the strength is low.
[0033]
【The invention's effect】
According to the present invention, an ultra-thick high-strength bend pipe (API standard X65 or higher) having excellent low-temperature toughness can be stably produced. As a result, pipeline transportation efficiency can be improved.

Claims (2)

重量%で、
C:0.03〜0.10%、
Si:0.3%以下、
Mn:1.67〜2.2%、
P:0.015%以下、
S:0.030%以下、
Cr:0.05〜0.5%、
Nb:0.01〜0.10%、
Ti:0.005〜0.030%、
Al:0.05%以下、
N:0.001〜0.010%、
O:0.04%以下
を含有し、残部が鉄および不可避的不純物からなり、かつ下記の式で定義されるP値が−0.010〜0.010の範囲にある溶接金属部を有する鋼管を、900〜1000℃に加熱後、曲げ加工しながら直ちに急冷することを特徴とする優れた溶接金属部靱性を有する高強度ベンド管の製造法。
P={1.5(O−0.89Al)+3.4N}−Ti
% By weight
C: 0.03-0.10%,
Si: 0.3% or less,
Mn: 1.67 to 2.2%,
P: 0.015% or less,
S: 0.030% or less,
Cr: 0.05 to 0.5%,
Nb: 0.01-0.10%,
Ti: 0.005 to 0.030%,
Al: 0.05% or less,
N: 0.001 to 0.010%,
O: A steel pipe having a weld metal part containing 0.04% or less, the balance being iron and inevitable impurities, and a P value defined by the following formula in the range of −0.010 to 0.010 A method for producing a high-strength bend pipe having excellent weld metal toughness, characterized in that, after being heated to 900 to 1000 ° C., it is immediately cooled while being bent.
P = {1.5 (O−0.89Al) + 3.4N} −Ti
重量%で、
C:0.03〜0.10%、
Si:0.3%以下、
Mn:1.67〜2.2%、
P:0.015%以下、
S:0.030%以下、
Cr:0.05〜0.5%、
Nb:0.01〜0.10%、
Ti:0.005〜0.030%、
Al:0.05%以下、
N:0.001〜0.010%、
O:0.04%以下
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.10%、
B:0.0003〜0.003%、
Ca:0.001〜0.005%
のうち1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、かつ下記の式で定義されるP値が−0.010〜0.010の範囲にある溶接金属部を有する鋼管を、900〜1000℃に加熱後、曲げ加工しながら直ちに急冷することを特徴とする優れた溶接金属部靱性を有する高強度ベンド管の製造法。
P={1.5(O−0.89Al)+3.4N}−Ti
% By weight
C: 0.03-0.10%,
Si: 0.3% or less,
Mn: 1.67 to 2.2%,
P: 0.015% or less,
S: 0.030% or less,
Cr: 0.05 to 0.5%,
Nb: 0.01-0.10%,
Ti: 0.005 to 0.030%,
Al: 0.05% or less,
N: 0.001 to 0.010%,
O: 0.04% or less, further Ni: 0.1-1.0%,
Cu: 0.1 to 1.0%
Mo: 0.1 to 1.0%,
V: 0.01 to 0.10%,
B: 0.0003 to 0.003%,
Ca: 0.001 to 0.005%
1 or 2 or more of them, the balance being iron and inevitable impurities, and having a weld metal part having a P value defined by the following formula in the range of -0.010 to 0.010 A method for producing a high-strength bend pipe having excellent weld metal toughness, characterized in that the steel pipe is heated to 900 to 1000 ° C. and then immediately cooled while being bent.
P = {1.5 (O−0.89Al) + 3.4N} −Ti
JP11164796A 1996-05-02 1996-05-02 Manufacturing method of high strength bend pipe with excellent weld metal toughness Expired - Lifetime JP3850913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11164796A JP3850913B2 (en) 1996-05-02 1996-05-02 Manufacturing method of high strength bend pipe with excellent weld metal toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11164796A JP3850913B2 (en) 1996-05-02 1996-05-02 Manufacturing method of high strength bend pipe with excellent weld metal toughness

Publications (2)

Publication Number Publication Date
JPH09295067A JPH09295067A (en) 1997-11-18
JP3850913B2 true JP3850913B2 (en) 2006-11-29

Family

ID=14566629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11164796A Expired - Lifetime JP3850913B2 (en) 1996-05-02 1996-05-02 Manufacturing method of high strength bend pipe with excellent weld metal toughness

Country Status (1)

Country Link
JP (1) JP3850913B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631414B2 (en) * 2003-12-02 2011-02-16 Jfeスチール株式会社 High tough, thick welded steel pipe with excellent sour resistance
KR101111023B1 (en) 2006-07-13 2012-02-13 수미도모 메탈 인더스트리즈, 리미티드 Bend pipe and process for producing the same
JP2009235460A (en) * 2008-03-26 2009-10-15 Sumitomo Metal Ind Ltd High-strength uoe steel pipe excellent in earthquake-proof performance and low-temperature toughness of weld heat-affected zone
JP5870561B2 (en) * 2011-09-06 2016-03-01 Jfeスチール株式会社 High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
CN102766820B (en) * 2012-07-17 2013-11-20 东北大学 Hot rolled strip steel with yield strength higher than 600MPa for mine rescue capsule and preparation method of hot rolled strip steel

Also Published As

Publication number Publication date
JPH09295067A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP3290247B2 (en) Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JP4477707B2 (en) Ultra high strength steel pipe excellent in low temperature toughness and method for producing the same
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP3466450B2 (en) High strength and high toughness bend pipe and its manufacturing method
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JPH09296253A (en) Extremely thick high strength steel pipe excellent in low temperature toughness
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JP2002129288A (en) High strength pipe bend and its manufacturing method
JP4133566B2 (en) Manufacturing method of high strength bend pipe with excellent low temperature toughness
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP2001207242A (en) Thick-walled sour-resisting steel tube excellent in toughness at low temperature in circumferential weld zone, and pipeline
JP4369555B2 (en) High strength steel pipes and pipelines with excellent weld toughness
JP3764593B2 (en) High strength steel pipe with excellent toughness of weld heat affected zone
JP3752078B2 (en) High strength steel plate excellent in sour resistance and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20061218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term