JPH0931536A - Production of ultrahigh strength steel plate excellent in low temperature toughness - Google Patents

Production of ultrahigh strength steel plate excellent in low temperature toughness

Info

Publication number
JPH0931536A
JPH0931536A JP18026095A JP18026095A JPH0931536A JP H0931536 A JPH0931536 A JP H0931536A JP 18026095 A JP18026095 A JP 18026095A JP 18026095 A JP18026095 A JP 18026095A JP H0931536 A JPH0931536 A JP H0931536A
Authority
JP
Japan
Prior art keywords
less
steel
toughness
low temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18026095A
Other languages
Japanese (ja)
Other versions
JP3612115B2 (en
Inventor
Yoshio Terada
田 好 男 寺
Hiroshi Tamehiro
広 博 為
Hitoshi Asahi
日 均 朝
Takuya Hara
卓 也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18026095A priority Critical patent/JP3612115B2/en
Publication of JPH0931536A publication Critical patent/JPH0931536A/en
Application granted granted Critical
Publication of JP3612115B2 publication Critical patent/JP3612115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an ultrahigh strength steel plate excellent in low temp. toughness and weldability by subjecting a low C high Mn-Nb-Ti-B slab having a specified compsn. to hot rolling and cooling under specified temp. conditions. SOLUTION: A slab having a compsn. contg., by weight, 0.05 to 0.10% C, <0.6% Si, 1.7 to 2.5% Mn, 0.1 to 1.0% Ni, 0.15 to 0.60% Mo, 0.01 to 0.10% Nb, 0.005 to 0.030% Ti, 0.0003 to 0.0020% B or the like and value of P defined by the formula is regulated to 2.5 to 4.0 is reheated to the low temp. region of austenite to hold the initial austenitic grains small and is subjected to hot rolling in such a manner that the cumulative rolling draft at <=800 deg.C is regulated to >=70%, the cumulative rolling draft in the two phase region of ferrite- austenite at the Ar3 point to the Ar1 point is regulated to 50 to 100% and the rolling finishing temp. is regulated to 650 to 800 deg.C to form into a hot rolled plate, which is thereafter air-cooled or cooled to <=500 deg.C at a cooling rate of >=10 deg.C/sec. The steel plate for an ultrahigh strength line pipe excellent in low temp. toughness and spot weldability and having >=950N/mm<2> tensile strength can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、950MPa以上
の引張強さ(TS)を有する低温靭性および溶接性に優
れた超高強度鋼に関するもので、天然ガス・原油輸送用
ラインパイプをはじめ、各種圧力容器、産業機械などの
溶接用鋼材として広く使用できる。
TECHNICAL FIELD The present invention relates to an ultra-high strength steel having a tensile strength (TS) of 950 MPa or more and excellent in low temperature toughness and weldability, and includes various line pipes for transporting natural gas and crude oil. It can be widely used as a welding steel material for pressure vessels and industrial machinery.

【0002】[0002]

【従来の技術】原油・天然ガスを長距離輸送するパイプ
ラインに使用するラインパイプは、高圧化による輸送効
率の向上や、薄肉化による現地での溶接能率向上のため
ますます高張力化する傾向にある。これまでに米国石油
協会(API)規格でX80(降伏強さ551MPa以
上、引張強さ620MPa以上)までのラインパイプの
実用化が進行中であるが、さらに高強度のラインパイプ
に対するニーズが強くなってきた。
[Prior Art] Line pipes used for pipelines for long-distance transportation of crude oil and natural gas tend to have higher tensile strength to improve transportation efficiency by increasing pressure and to improve welding efficiency at the site by reducing wall thickness. It is in. Until now, line pipes up to X80 (yield strength 551 MPa or more, tensile strength 620 MPa or more) according to American Petroleum Institute (API) standards have been put into practical use, but the need for line pipes with even higher strength has become stronger. Came.

【0003】現在、超高強度ラインパイプ製造法の研究
は、従来のX80ラインパイプの製造技術(例えば、N
KK技報 No.138(1992),pp24−31
およびThe 7th Offshore Mechanics and Arctic Engine
ering (1988),Volume V,pp179−
185)を基本に検討されているが、これはせいぜい、
X100(降伏強さ689MPa以上、引張強さ760
MPa以上)ラインパイプの製造が限界と考えられる。
At present, research on a method for manufacturing an ultra-high strength line pipe is carried out by a conventional X80 line pipe manufacturing technology (for example, N
KK Technical Report No. 138 (1992), pp24-31
And The 7th Offshore Mechanics and Arctic Engine
ering (1988), Volume V, pp179-
185), but this is at best
X100 (yield strength 689 MPa or more, tensile strength 760
Manufacturing of line pipes is considered to be the limit.

【0004】パイプラインの超高強度化は強度・低温靭
性バランスをはじめとして、溶接熱影響部(HAZ)靭
性、現地溶接性、継手軟化など多くの問題を抱えてお
り、これらを克服した画期的な超高強度ラインパイプ
(X100超)の早期開発が要望されている。
The ultra-high-strength pipeline has many problems such as the balance between strength and low temperature toughness, weld heat affected zone (HAZ) toughness, on-site weldability, and softening of joints. There is a demand for early development of a typical ultra-high strength line pipe (X100 or more).

【0005】[0005]

【発明が解決しようとする課題】本発明は、溶接部およ
び母材の低温靭性、現地溶接性などの諸特性を同時に達
成できる引張強さ950N/mm2 以上(API規格X1
00超)の超高強度ラインパイプ用鋼板の製造技術を提
供するものである。
SUMMARY OF THE INVENTION The present invention has a tensile strength of 950 N / mm 2 or more (API standard X1
The invention provides a manufacturing technology for a steel plate for ultra high strength line pipes (greater than 00).

【0006】[0006]

【課題を解決するための手段】本発明は、下記の事項を
その要旨としている。重量%で、C :0.05〜0.
10%、 Si:0.6%以下、Mn:1.7〜
2.5%、 P :0.015%以下、S :
0.003%以下、 Ni:0.1〜1.0
%、Mo:0.15〜0.60%、 Nb:0.0
1〜0.10%、Ti:0.005〜0.030%、
B :0.0003〜0.0020% Al:0.06%以下、 N :0.001
〜0.006%、O :0.003%以下を含有し、必
要に応じて、V:0.01〜0.10%、Cu:0.1
〜0.7%、Cr:0.1〜0.6%、Ca:0.00
1〜0.005%の一種または二種以上を含有し、残部
がFeおよび不可避的不純物からなり、かつP=2.1
C+0.4Si+Mn+0.8Cr+0.45(Ni+
Cu)+2Moが2.5≦P≦4.0を満足する鋼片を
950〜1050℃の温度に再加熱後、800℃以下の
累積圧下量が70%以上、かつAr3点〜Ar1点のフェラ
イト・オーステナイト2相域の累積圧下量が50%以上
で、圧延終了温度が650〜800℃となるように圧延
を行い、その後空冷または10℃秒以上の冷却速度で5
00℃以下任意の温度まで冷却する低温靭性に優れた超
高強度鋼板の製造方法。
The gist of the present invention is as follows. % By weight, C: 0.05-0.
10%, Si: 0.6% or less, Mn: 1.7 to
2.5%, P: 0.015% or less, S:
0.003% or less, Ni: 0.1 to 1.0
%, Mo: 0.15 to 0.60%, Nb: 0.0
1 to 0.10%, Ti: 0.005 to 0.030%,
B: 0.0003 to 0.0020% Al: 0.06% or less, N: 0.001
To 0.006%, O: 0.003% or less, and if necessary, V: 0.01 to 0.10%, Cu: 0.1
~ 0.7%, Cr: 0.1-0.6%, Ca: 0.00
1 to 0.005% of one kind or two kinds or more, the balance consisting of Fe and unavoidable impurities, and P = 2.1
C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni +
Cu) + 2Mo is 2.5 ≦ P ≦ 4.0 After reheating steel slabs satisfying a temperature of 950 to 1050 ° C. The, 800 ° C. or less of the cumulative reduction ratio is 70% or more, and A r3 point to A r1 point Of ferrite / austenite in the two-phase region is 50% or more, and rolling is performed so that the rolling end temperature is 650 to 800 ° C., and then air cooling or cooling at a cooling rate of 10 ° C. seconds or more is performed.
A method for producing an ultra-high strength steel sheet excellent in low temperature toughness, which comprises cooling to an arbitrary temperature of 00 ° C or less.

【0007】以下に、本発明を詳細に説明する。まず、
本発明の超高強度鋼板の製造方法について述べる。本発
明方法の特徴は、(1)低C−高Mn−Nb−B−Ti
系鋼を、(2)オーステナイトの低温域に加熱後、
(3)オーステナイト−フェライト2相域で厳格に制御
圧延した後、空冷または加速冷却することにより、微細
な加工フェライト+マルテンサイト・ベイナイトの混合
組織とするところにあり、これによって超高強度と優れ
た低温靭性、現地溶接性を同時に達成している。さら
に、加工フェライト+マルテンサイト・ベイナイトの混
合組織は、溶接部の軟化に対しても有効である。
Hereinafter, the present invention will be described in detail. First,
The method for producing the ultra-high strength steel sheet of the present invention will be described. The features of the method of the present invention are (1) low C-high Mn-Nb-B-Ti.
After heating the system steel to the low temperature range of (2) austenite,
(3) Strictly controlled rolling in the austenite-ferrite two-phase region is followed by air cooling or accelerated cooling to form a fine microstructured ferrite + martensite / bainite mixed structure, which results in ultra-high strength and excellent It achieves low temperature toughness and field weldability at the same time. Further, the mixed structure of worked ferrite + martensite / bainite is also effective for softening the weld.

【0008】従来より、低C−高Mn−Nb−微量B−
微量Ti鋼は微細なベイナイト主体の組織を有するライ
ンパイプ用鋼としてよく知られているが、この引張強さ
の上限はせいぜい750MPaが限界であった。さらに
高強度化するためには、(1)C量や合金元素量を増加
させること、(2)900℃以上の高温から焼入れ−焼
戻し処理すること、が必要であるが、母材やHAZの低
温靭性は不十分となる。
Conventionally, low C-high Mn-Nb-trace B-
A small amount of Ti steel is well known as a steel for line pipes having a fine bainite-based structure, but the upper limit of the tensile strength was 750 MPa at the most. In order to further increase the strength, it is necessary to (1) increase the amount of C and the amount of alloying elements, and (2) quench-temper from a high temperature of 900 ° C. or higher. The low temperature toughness is insufficient.

【0009】本発明者らは、Nb−B鋼において、化学
成分、加熱・圧延・冷却条件を厳密に制御することによ
り、超高強度と優れた低温靭性が達成できることを見い
出した。本発明鋼の特徴は、(1)焼戻し処理なしでも
優れた超高強度、低温靭性が得られること、(2)焼入
れ・焼戻し処理鋼に比較して降伏比が低く、鋼管の成形
性、低温靭性に著しく優れること、などが挙げられる。
また、本発明では、鋼板の状態で降伏強さが低くても、
鋼管成形によって降伏強さが上昇し、目標とする降伏強
さを得ることが可能である。
The present inventors have found that in Nb-B steel, ultrahigh strength and excellent low temperature toughness can be achieved by strictly controlling the chemical composition and heating / rolling / cooling conditions. The features of the steel of the present invention are (1) that excellent ultra-high strength and low temperature toughness can be obtained without tempering, (2) yield ratio is lower than that of quenched / tempered steel, formability of steel pipe, low temperature Remarkably excellent toughness and the like.
Further, in the present invention, even if the yield strength is low in the state of the steel sheet,
Yield strength is increased by steel pipe forming, and it is possible to obtain a target yield strength.

【0010】すなわち、引張強さ950MPa以上の超
高強度を達成するために、鋼材のミクロ組織を一定量以
上のマルテンサイト・ベイナイトとフェライトの混合組
織として、また加工フェライトを導入して、転位強化、
サブグレイン強化する必要がある。
That is, in order to achieve an ultrahigh strength of 950 MPa or more in tensile strength, the microstructure of the steel material is set to a certain amount or more as a mixed structure of martensite bainite and ferrite, and work ferrite is introduced to dislocation strengthening. ,
Subgrains need to be strengthened.

【0011】さらに、優れた低温靭性を達成するために
は、組織を微細化して、かつ加工フェライトの導入によ
りシャルピー衝撃試験などの試験片破面にセパレーショ
ンが発生し、破面遷移温度は飛躍的に低下する。ここ
で、セパレーションとは、衝撃試験時に生ずる板面に平
行な層状剥離現象であり、脆性き裂先端での3軸応力度
を低下させることによって脆性き裂の伝播停止特性を向
上させると考えられている。以上により、従来低温靭性
が劣ると考えられていたNb−B鋼のマルテンサイト・
ベイナイトとフェライト硬軟混合組織の強度・低温靭性
バランスの大幅な向上に成功した。
Further, in order to achieve excellent low temperature toughness, the microstructure is refined and the introduction of processed ferrite causes separation on the fracture surface of the test piece such as the Charpy impact test, resulting in a dramatic transition temperature transition. Fall to. Here, the separation is a delamination phenomenon parallel to the plate surface that occurs during an impact test, and is considered to improve the propagation stopping property of the brittle crack by reducing the triaxial stress at the tip of the brittle crack. ing. From the above, the martensite of Nb-B steel, which was conventionally thought to be inferior in low temperature toughness,
We have succeeded in greatly improving the balance between strength and low temperature toughness of bainite and ferrite hard-soft mixed structure.

【0012】次に、本発明の製造条件の限定理由につい
て説明する。本発明方法では、鋼片を950〜1050
℃の温度範囲に再加熱後、800℃以下の累積圧下量が
70%以上、かつAr3点〜Ar1点のフェライト−オース
テナイト2相域の累積圧下量が50〜100%で、圧延
終了温度が650〜800℃となるように圧延を行う。
その後空冷または10℃/秒以上の冷却速度で、500
℃以下任意の温度まで冷却する。
Next, the reasons for limiting the manufacturing conditions of the present invention will be described. In the method of the present invention, the steel pieces are 950 to 1050.
After reheating to a temperature range of ° C., 800 ° C. or less of the cumulative reduction ratio is 70% or more, and a ferrite of A r3 point to A r1 point - in the 50-100% cumulative reduction ratio of austenite 2-phase region, rolling end temperature Is 650 to 800 ° C.
After that, air cooling or cooling at a cooling rate of 10 ° C / sec or more,
Cool to below ℃.

【0013】鋼片(スラブ)の再加熱温度は、950〜
1050℃とする必要がある。これは鋼片の再加熱時の
初期オーステナイト粒を小さく保ち、圧延組織を微細化
するためである。さらに、初期オーステナイト粒が小さ
いほど微細フェライト−マルテンサイトの2相組織化が
起こりやすいからである。1050℃は再加熱時のオー
ステナイト粒が粗大化しない上限の温度である。一方、
加熱温度が低過ぎると合金元素が十分に溶体化されず、
所定の材質が得られない。また、鋼片を均一に加熱する
ために長時間の加熱が必要となること、さらには圧延時
の変形抵抗が大きくなることから、エネルギーコストが
増大して、好ましくない。このため、再加熱温度の下限
を950℃とする。
The reheating temperature of the steel slab is 950 to 950.
It needs to be 1050 ° C. This is because the initial austenite grains during the reheating of the steel slab are kept small and the rolling structure is refined. Furthermore, the smaller the initial austenite grains, the easier the two-phase organization of fine ferrite-martensite occurs. 1050 ° C. is the upper limit temperature at which the austenite grains at the time of reheating do not become coarse. on the other hand,
If the heating temperature is too low, the alloying elements will not be sufficiently solutionized,
The desired material cannot be obtained. Further, since it requires a long period of time to uniformly heat the steel slab, and further, the deformation resistance during rolling increases, the energy cost increases, which is not preferable. Therefore, the lower limit of the reheating temperature is set to 950 ° C.

【0014】再加熱した鋼片は800℃以下の累積圧下
量が70%以上、かつAr3点〜Ar1点のフェライト−オ
ーステナイト2相域の累積圧下量が50〜100%で、
圧延終了温度が650〜800℃となるように圧延しな
ければならない。800℃以下の累積圧下量を70%以
上とする理由は、オーステナイト未再結晶域での圧延を
強化し、変態前のオーステナイト組織の微細化をはか
り、変態後の組織をフェライト−マルテンサイト・ベイ
ナイトの混合組織とするためである。引張強さが950
MPa以上となる超高強度ラインパイプではとくに安全
上、従来にも増して高靭性を必要とするので、その累積
圧下量は70%としなければならない。累積圧下量は大
きいほど望ましく、その上限については限定しない。
[0014] reheated steel slab 800 ° C. or less of a cumulative reduction ratio of 70% or more, and a ferrite of A r3 point to A r1 point - cumulative reduction ratio of austenite 2-phase region is 50 to 100%
It must be rolled so that the rolling end temperature is 650 to 800 ° C. The reason why the cumulative reduction amount at 800 ° C or less is 70% or more is to strengthen rolling in the austenite unrecrystallized region, to refine the austenite structure before transformation, and to make the structure after transformation ferrite-martensite bainite. This is because it is a mixed tissue of. Tensile strength is 950
The ultra-high-strength line pipe having a pressure of MPa or more requires higher toughness than ever before, especially for safety, so the cumulative reduction amount must be 70%. The larger the cumulative reduction amount is, the more preferable it is, and the upper limit is not limited.

【0015】さらに、本発明方法では、フェライト−オ
ーステナイト2相域の累積圧下量を50〜100%と
し、圧延終了温度を650〜800℃とする。これはオ
ーステナイト未再結晶域で細粒化したオーステナイト組
織を一層微細化し、かつフェライトを加工してフェライ
トの強化と衝撃試験時にセパレーションの発生を容易に
するためである。2相域の累積圧下量が50%以下で
は、セパレーションの発生が十分でなく、脆性き裂の伝
播停止特性の向上は得られない。一方、累積圧下量が適
切であっても、その圧延温度が不適切であると優れた低
温靭性は達成できない。圧延終了温度が650℃以下で
は、加工によるフェライトの脆化も顕著となるので、圧
延終了温度の下限を650℃とした。しかし、圧延終了
温度が800℃以上では、オーステナイト組織の微細化
やセパレーション発生が十分でないため、圧延終了温度
の上限を800℃に限定した。
Further, in the method of the present invention, the cumulative reduction amount in the ferrite-austenite two-phase region is set to 50 to 100%, and the rolling end temperature is set to 650 to 800 ° C. This is because the austenite structure finely grained in the unrecrystallized austenite region is further refined, and the ferrite is processed to strengthen the ferrite and facilitate the occurrence of separation during the impact test. When the cumulative reduction amount in the two-phase region is 50% or less, the occurrence of separation is insufficient and the propagation stopping property of brittle cracks cannot be improved. On the other hand, even if the cumulative reduction amount is appropriate, excellent low temperature toughness cannot be achieved if the rolling temperature is inappropriate. When the rolling end temperature is 650 ° C. or less, the embrittlement of ferrite due to working becomes significant, so the lower limit of the rolling end temperature was set to 650 ° C. However, if the rolling end temperature is 800 ° C. or higher, refinement of the austenite structure and occurrence of separation are not sufficient, so the upper limit of the rolling end temperature is limited to 800 ° C.

【0016】圧延終了後、鋼板は空冷するかまたは10
℃/秒以上の冷却速度で500℃以下任意の温度まで冷
却する必要がある。本発明鋼では圧延後に空冷してもマ
ルテンサイト・ベイナイトとフェライトの混合組織が得
られるが、さらなる高強度化をはかるために10℃/秒
以上の冷却速度で500℃以下任意の温度まで冷却して
も差し支えない。10℃/秒以上の冷却速度で冷却する
理由は、マルテンサイトの形成などによる変態強化、組
織の微細化を図るためである。冷却速度が10℃/秒以
下であったり、水冷停止温度が500℃以上であると、
変態強化による強度・低温靭性バランスの向上が十分に
期待できない。
After completion of rolling, the steel plate is air-cooled or 10
It is necessary to cool to an arbitrary temperature of 500 ° C. or less at a cooling rate of ° C./sec or more. In the steel of the present invention, a mixed structure of martensite / bainite and ferrite can be obtained even if air-cooled after rolling, but in order to further increase the strength, it is cooled to an arbitrary temperature of 500 ° C or less at a cooling rate of 10 ° C / sec or more. It doesn't matter. The reason for cooling at a cooling rate of 10 ° C./second or more is to enhance transformation by forming martensite and refine the structure. If the cooling rate is 10 ° C / sec or less or the water cooling stop temperature is 500 ° C or more,
It cannot be expected that the balance between strength and low temperature toughness will be improved by transformation strengthening.

【0017】次に、成分元素の限定理由について説明す
る。Cの下限0.05%は母材および溶接部の強度、低
温靭性の確保ならびにNb、V添加による析出硬化、結
晶粒の微細化効果を発揮させるための最小量である。し
かし、C量が多過ぎると低温靭性、現地溶接性や耐サワ
ー性の著しい劣化を招くので、上限を0.10%とし
た。
Next, the reasons for limiting the constituent elements will be described. The lower limit of 0.05% of C is the minimum amount for ensuring the strength and low temperature toughness of the base material and the welded portion, and exerting the precipitation hardening effect by the addition of Nb and V and the refinement of crystal grains. However, if the C content is too large, the low temperature toughness, the field weldability and the sour resistance are significantly deteriorated, so the upper limit was made 0.10%.

【0018】Siは、脱酸や強度向上のため添加する元
素であるが、多く添加すると現地溶接性、溶接熱影響部
(HAZ)靭性を劣化させるので、上限を0.6%とし
た。鋼の脱酸はTiあるいはAlのみでも十分であり、
Siは必ずしも添加する必要はない。
Si is an element added to deoxidize and improve the strength, but if added in a large amount, it deteriorates the field weldability and the weld heat affected zone (HAZ) toughness, so the upper limit was made 0.6%. Only Ti or Al is sufficient for deoxidizing steel,
Si need not always be added.

【0019】Mnは、強度、低温靭性を確保する上で不
可欠な元素であり、その下限は1.7%、好ましくは
1.8%である。しかし、Mnが多過ぎると鋼の焼入性
が増加して現地溶接性、HAZ靭性を劣化させるだけで
なく、連続鋳造鋼片の中心偏析を助長し、低温靭性も劣
化させるので上限を2.5%とした。
Mn is an essential element for ensuring strength and low temperature toughness, and its lower limit is 1.7%, preferably 1.8%. However, if the Mn content is too high, not only the hardenability of the steel increases and the field weldability and HAZ toughness deteriorate, but also the center segregation of the continuously cast steel slab is promoted and the low temperature toughness also deteriorates, so the upper limit is 2. It was set to 5%.

【0020】Niは、低炭素の本発明鋼の強度を低温靭
性や現地溶接性を劣化させることなく向上させるために
添加する。Ni添加はMnやCr、Mo添加に比較して
圧延組織(特にスラブの中心偏析帯)中に低温靭性、耐
サワー性に有害な硬化組織を形成することが少なく、強
度を増加させることが判明した。しかし、添加量が多す
ぎると、経済性だけでなく、現地溶接性やHAZ靭性な
どを劣化させるので、その上限を1.0%、下限は0.
1%とした。Niは連続鋳造時、熱間圧延時におけるC
uクラックの防止にも有効である。この場合、NiはC
u量の1/3以上添加する必要がある。
Ni is added to improve the strength of the low carbon steel of the present invention without deteriorating the low temperature toughness and field weldability. It has been found that the addition of Ni rarely forms a hardened structure detrimental to the low temperature toughness and sour resistance in the rolling structure (especially the central segregation zone of the slab) and increases the strength as compared with the addition of Mn, Cr and Mo. did. However, if the addition amount is too large, not only the economical efficiency but also the on-site weldability and HAZ toughness are deteriorated, so the upper limit is 1.0% and the lower limit is 0.
1%. Ni is C during continuous casting and hot rolling
It is also effective in preventing u cracks. In this case, Ni is C
It is necessary to add 1/3 or more of the amount of u.

【0021】Moは、鋼の焼入れ性を向上させるために
添加する。また、MoはNbと共存して制御圧延時にオ
ーステナイトの再結晶を強力に抑制し、オーステナイト
組織の微細化にも効果がある。このような効果を得るた
めには、Moは最低0.15%必要である。しかし、過
剰なMo添加はHAZ靭性、現地溶接性を劣化させるの
で、その上限を0.6%とした。
Mo is added to improve the hardenability of steel. In addition, Mo coexists with Nb and strongly suppresses austenite recrystallization during controlled rolling, and is also effective in refining the austenite structure. In order to obtain such an effect, Mo must be at least 0.15%. However, excessive addition of Mo deteriorates HAZ toughness and field weldability, so the upper limit was made 0.6%.

【0022】Bは、極微量で鋼の焼入れ性を飛躍的に高
め、本発明において必要不可欠の元素である。後述のP
値において1に相当する、すなわち1%Mnに相当する
効果がある。さらに、BはMoの焼入れ性向上効果を高
めると共に、Nbと共存して相乗的に焼入れ性を増す。
このような効果を得るためには、Bは最低でも0.00
03%必要である。一方、過剰に添加すると、低温靭性
を劣化させるだけでなく、かえってBの焼入れ性向上効
果を消失せしめることもあるので、その上限を0.00
20%とした。
B is an essential element in the present invention because it dramatically enhances the hardenability of steel with a very small amount. P below
There is an effect equivalent to 1 in value, that is, equivalent to 1% Mn. Further, B enhances the hardenability improving effect of Mo and, together with Nb, synergistically increases the hardenability.
In order to obtain such an effect, B should be at least 0.00
03% is required. On the other hand, if it is added excessively, it not only deteriorates the low-temperature toughness, but also sometimes loses the effect of improving the hardenability of B.
20%.

【0023】Nbは、制御圧延において結晶粒の微細化
や析出硬化に寄与し、鋼を強靭化する作用を有する。し
かし、Nbを0.10%以上添加すると、現地溶接性や
HAZ靭性に悪影響をもたらすので、その上限を0.1
0%とした。
Nb contributes to grain refinement and precipitation hardening in controlled rolling, and has the effect of strengthening the steel. However, if Nb is added in an amount of 0.10% or more, on-site weldability and HAZ toughness are adversely affected.
0%.

【0024】Tiは、微細なTiNを形成し、スラブ再
加熱時および溶接HAZのオーステナイト粒の粗大化を
抑制してミクロ組織を微細化し、母材およびHAZの低
温靭性を改善する。このようなTiNの効果を発現させ
るためには、最低0.005%のTi添加が必要であ
る。しかし、Ti量が多過ぎると、TiNの粗大化やT
iCによる析出硬化が生じ、低温靭性が劣化するので、
その上限は0.030%に限定しなければならない。
Ti forms fine TiN, suppresses coarsening of austenite grains in the slab reheating and in the welded HAZ to refine the microstructure, and improves the low temperature toughness of the base metal and HAZ. In order to exert such an effect of TiN, at least 0.005% of Ti must be added. However, if the Ti content is too large, TiN becomes coarse and T
Since precipitation hardening due to iC occurs and low temperature toughness deteriorates,
The upper limit must be limited to 0.030%.

【0025】Alは、通常脱酸剤として鋼に含まれる元
素であり、組織の微細化にも効果を有する。しかし、A
l量が0.06%を超えるとAl系非金属介在物が増加
して鋼の清浄度を害するので、上限を0.06%とし
た。脱酸はTiあるいはSiでも可能であり、Alは必
ずしも添加する必要はない。
Al is an element usually contained in steel as a deoxidizing agent, and has an effect on the refinement of the structure. However, A
When the amount of l exceeds 0.06%, Al-based nonmetallic inclusions increase and impair the cleanliness of steel, so the upper limit was made 0.06%. Deoxidation can be performed with Ti or Si, and Al need not always be added.

【0026】さらに、本発明では、不純物元素である
P、SおよびO量をそれぞれ、0.015%以下、0.
003%以下および0.003%以下とする。この主た
る理由は母材、HAZ靭性の低温靭性をより一層向上さ
せるためである。P量の低減は連続鋳造スラブの中心偏
析を低減し、粒界破壊を防止し低温靭性を向上させる。
また、S量の低減は、延伸化したMnSを低減して、耐
サワー性や延靭性を向上させる効果がある。O量の低減
は、鋼中の酸化物を少なくして、耐サワー性や低温靭性
の改善に効果がある。したがって、P,S,O量は低い
ほど好ましい。
Further, in the present invention, the amounts of P, S and O which are impurity elements are 0.015% or less, respectively.
It is 003% or less and 0.003% or less. The main reason for this is to further improve the low temperature toughness of the base material and HAZ toughness. Reduction of the amount of P reduces center segregation of the continuously cast slab, prevents intergranular fracture, and improves low temperature toughness.
Further, the reduction of the amount of S has the effect of reducing the stretched MnS and improving the sour resistance and ductility. The reduction of the amount of O is effective in improving sour resistance and low-temperature toughness by reducing oxides in steel. Therefore, the lower the amount of P, S, and O, the better.

【0027】Nは、TiNを形成してスラブ再加熱時お
よび溶接HAZのオーステナイト粒の粗大化を抑制して
母材、HAZの低温靭性を向上させる。このために必要
な最小量は0.001%である。しかし、多過ぎるとス
ラブ表面疵や固溶NによるHAZ靭性の劣化の原因とな
るので、その上限は0.006%に抑える必要がある。
N forms TiN to suppress coarsening of austenite grains of the welded HAZ during reheating of the slab and improve low temperature toughness of the base metal and HAZ. The minimum required for this is 0.001%. However, if it is too large, it will cause deterioration of the HAZ toughness due to slab surface defects and solid solution N, so the upper limit must be suppressed to 0.006%.

【0028】次に、V、Cu、Cr、Caを添加する理
由について説明する。基本となる上述した成分にさらに
これらの元素を添加する主たる目的は本発明鋼の優れた
特徴を損なうことなく、製造可能な板厚の拡大や母材の
強度・靭性などの特性の向上をはかるためである。した
がって、その添加量は自ら制限されるべき性質のもので
ある。
Next, the reason for adding V, Cu, Cr and Ca will be explained. The main purpose of adding these elements to the above-mentioned basic components is to increase the manufacturable plate thickness and improve the properties such as strength and toughness of the base metal without impairing the excellent characteristics of the steel of the present invention. This is because. Therefore, the amount added is of a nature that should be limited by itself.

【0029】Vは、ほぼNbと同様の効果を有するが、
その効果はNbに比較して弱い。しかし、超高強度鋼に
おけるV添加の効果は大きく、NbとVの複合添加は本
発明鋼の優れた特徴をさらに顕著なものとする。Vはフ
ェライトの加工(熱間圧延)によって歪誘起析出し、フ
ェライトを著しく強化することがわかった。下限は0.
01%、その上限は現地溶接性、HAZ靭性の点から
0.10%まで許容できる。
V has almost the same effect as Nb,
The effect is weak compared to Nb. However, the effect of V addition in the ultra-high strength steel is great, and the combined addition of Nb and V makes the excellent characteristics of the steel of the present invention more remarkable. It was found that V was strain-induced precipitated by the processing of ferrite (hot rolling) and remarkably strengthened the ferrite. The lower limit is 0.
01%, the upper limit of which is allowable up to 0.10% from the viewpoint of field weldability and HAZ toughness.

【0030】Cuは、Niとほぼ同様な効果を持つとと
もに、耐食性、耐水素誘起割れ特性の向上にも効果があ
る。また、Cu析出硬化によって強度を大幅に増加させ
る。しかし、過剰に添加すると析出硬化により母材、H
AZの靭性低下や熱間圧延時にCuクラックが生じるの
で、その上限を1.0%、好ましくは0.7%とした。
Cu has an effect similar to that of Ni, and also has an effect of improving corrosion resistance and hydrogen-induced cracking resistance. Also, the strength is significantly increased by Cu precipitation hardening. However, if added in excess, the base material, H
Since the toughness of AZ decreases and Cu cracks occur during hot rolling, the upper limit was made 1.0%, preferably 0.7%.

【0031】Crは、母材、溶接部の強度を増加させる
が、多過ぎると現地溶接性やHAZ靭性を著しく劣化さ
せる。このため、Cr量の上限は0.6%である。C
u、Cr量の下限0.1%は、それぞれの元素添加によ
る材質上の効果が顕著になる最小量である。
[0031] Cr increases the strength of the base material and the welded portion, but if it is too large, the on-site weldability and HAZ toughness are significantly deteriorated. Therefore, the upper limit of the amount of Cr is 0.6%. C
The lower limit of 0.1% for the amounts of u and Cr is the minimum amount at which the effect of the addition of each element on the material becomes remarkable.

【0032】Caは、硫化物(MnS)の形態を制御
し、低温靭性を向上(シャルピー試験における吸収エネ
ルギーの増加など)させる。特に、衝撃試験でのセパレ
ーションを利用する本発明鋼ではシャルピー試験などの
吸収エネルギーは低下する傾向にあるので、Caの添加
は必須である。しかし、Ca量が0.001%以下では
実用上効果がなく、また0.005%を超えて添加する
とCaO−CaSが大量に生成してクラスター、大型介
在物となり、鋼の清浄度を害するだけでなく、現地溶接
性にも悪影響をおよぼす。このため、Ca添加量を0.
001〜0.005%に制限した。なお、超高強度鋼で
はS,O量をそれぞれ0.001%、0.002%以下
に低減し、ESSP=(Ca)〔1−124(O)〕/
125(S)を0.5≦ESSP≦10.0とすること
が特に有効である。
Ca controls the morphology of sulfide (MnS) and improves the low temperature toughness (such as increase of absorbed energy in Charpy test). In particular, in the steel of the present invention utilizing the separation in the impact test, the absorbed energy in the Charpy test and the like tends to decrease, so that the addition of Ca is essential. However, if the amount of Ca is 0.001% or less, there is no practical effect, and if added over 0.005%, a large amount of CaO-CaS is formed to form clusters and large inclusions, which only impairs the cleanliness of steel. Not only that, it also adversely affects the field weldability. Therefore, the Ca addition amount is set to 0.
It was limited to 001 to 0.005%. In the case of ultra-high strength steel, the amounts of S and O were reduced to 0.001% and 0.002% or less, respectively, and ESSP = (Ca) [1-124 (O)] /
It is particularly effective to set 125 (S) to 0.5 ≦ ESSP ≦ 10.0.

【0033】以上の個々の添加元素の限定に加えて本発
明では、さらにP=2.7C+0.4Si+Mn+0.
8Cr+0.45(Ni+Cu)+2Moを2.5≦P
≦4.0に制限する。これはHAZ靭性、現地溶接性を
損なうことなく、目標とする強度・低温靭性バランスを
達成するためである。P値の下限を2.5としたのは9
50N/mm2 以上の強度と優れた低温靭性を得るためで
ある。また、P値の上限を4.0としたのは優れたHA
Z靭性、現地溶接性を維持するためである。
In addition to the above limitation of the individual additive elements, in the present invention, P = 2.7C + 0.4Si + Mn + 0.
8Cr + 0.45 (Ni + Cu) + 2Mo 2.5 ≦ P
Limit to ≤4.0. This is to achieve the target balance between strength and low temperature toughness without impairing HAZ toughness and field weldability. The lower limit of P value is 2.5, which is 9
This is to obtain strength of 50 N / mm 2 or more and excellent low temperature toughness. Also, the upper limit of P value of 4.0 is excellent HA
This is to maintain Z toughness and field weldability.

【0034】[0034]

【発明の実施の形態】以下に、本発明を実施例により説
明する。転炉−連続鋳造法で種々の鋼成分の鋼片から種
々の製造法により鋼板を製造して、諸性質を調査した。
鋼板の機械的性質は、圧延と直角方向で調査した。HA
Z靭性は、入熱5kJ/mm相当の再現熱サイクルを付与し
て調査した(最高加熱温度:1400℃、800〜50
0℃の冷却時間:25秒)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. Steel sheets were manufactured by a converter-continuous casting method from billets of various steel components by various manufacturing methods, and various properties were investigated.
The mechanical properties of the steel sheet were investigated in the direction perpendicular to the rolling. HA
The Z toughness was investigated by applying a reproduced heat cycle equivalent to a heat input of 5 kJ / mm (maximum heating temperature: 1400 ° C, 800 to 50).
Cooling time at 0 ° C .: 25 seconds).

【0035】また、現地溶接性は、Y−スリット溶接割
れ試験(JIS G3158)においてHAZの低温割
れ防止に必要な最低予熱温度で評価した(溶接方法:ガ
スメタルアーク溶接、溶接棒:引張強さ100MPa、
入熱:0.5kJ/mm、溶着金属の水素量:3cc/100
g)。
The on-site weldability was evaluated in the Y-slit welding crack test (JIS G3158) at the minimum preheating temperature required to prevent low temperature cracking of HAZ (welding method: gas metal arc welding, welding rod: tensile strength). 100 MPa,
Heat input: 0.5 kJ / mm, Hydrogen content of deposited metal: 3 cc / 100
g).

【0036】本発明の実施例を、比較例と共に、表1に
示す。本発明方法にしたがって製造した鋼板(鋼No.
1〜8)は、優れた強度・低温靭性を有する。これに対
し、比較鋼(鋼No.9〜22)は、化学成分または鋼
板製造条件が適切でなく、いずれかの特性が劣る。
Examples of the present invention are shown in Table 1 together with comparative examples. Steel sheet manufactured according to the method of the present invention (steel No.
1 to 8) have excellent strength and low temperature toughness. On the other hand, the comparative steels (Steel Nos. 9 to 22) have inadequate chemical composition or steel plate manufacturing conditions and are inferior in any of the properties.

【0037】鋼9は、C量が多過ぎるため、低温靭性
(シャルピー吸収エネルギー、遷移温度)、HAZ靭性
が劣り、かつ溶接時の予熱温度も高い。鋼10は、Mn
量、P値が高過ぎるため、母材およびHAZ靭性が劣
り、かつ溶接時の予熱温度も著しく高い。鋼11は、N
bが添加されていないため、Nb添加鋼よりもやや強度
が低く、シャルピー遷移温度が高く(強度・低温靭性バ
ランスが悪い)、またHAZ靭性も劣る。
Steel 9 is inferior in low-temperature toughness (Charpy absorbed energy, transition temperature) and HAZ toughness because the C content is too large, and also has a high preheating temperature during welding. Steel 10 is Mn
Since the amount and P value are too high, the base metal and HAZ toughness are inferior, and the preheating temperature during welding is also extremely high. Steel 11 is N
Since b is not added, the strength is slightly lower than the Nb-added steel, the Charpy transition temperature is high (the strength / low temperature toughness balance is poor), and the HAZ toughness is also poor.

【0038】鋼12は、Tiが添加されていないため、
シャルピー遷移温度が高く、HAZ靭性が劣る。鋼13
は、B量が多過ぎるため、低温靭性が劣化する。
Steel 12 does not contain Ti, so that
High Charpy transition temperature and poor HAZ toughness. Steel 13
Since the B content is too large, the low temperature toughness deteriorates.

【0039】鋼14は、B量が少な過ぎるため、目標と
する強度が達成できない。鋼15は、Mo量が多過ぎる
ために溶接時に予熱を必要とする。
Since the amount of B in steel 14 is too small, the target strength cannot be achieved. Steel 15 requires preheating during welding because the amount of Mo is too large.

【0040】鋼16は、化学成分は適当であるが、製造
条件中の鋼片再加熱開始温度が高過ぎるため、シャルピ
ー遷移温度が高い。鋼17は、鋼片の再加熱温度が低過
ぎるため、容体化が不十分で強度が低い。鋼18は、9
00℃以下の累積圧下量が少な過ぎるため、低温靭性が
今一歩である。
Steel 16 has an appropriate chemical composition, but has a high Charpy transition temperature because the billet reheating start temperature in the production conditions is too high. Since the reheating temperature of the steel slab is too low, the steel 17 has insufficient strength and low strength. Steel 18 is 9
The low temperature toughness is a step forward because the cumulative reduction amount of 00 ° C or less is too small.

【0041】鋼19は、オーステナイト−フェライト2
相域での累積圧下量が少な過ぎるため、シャルピー遷移
温度が高い。鋼20は、2相域での圧延がなく圧延終了
温度が高過ぎるため、低温靭性が劣る。鋼21は、圧延
終了温度が低過ぎるため、低温靭性が劣る。鋼22は、
水冷停止温度が高過ぎるため強度が低い。
Steel 19 is austenite-ferrite 2
The Charpy transition temperature is high because the cumulative reduction in the phase region is too small. Steel 20 is inferior in low temperature toughness because there is no rolling in the two-phase region and the rolling end temperature is too high. Steel 21 is inferior in low temperature toughness because the rolling end temperature is too low. Steel 22
The strength is low because the water cooling stop temperature is too high.

【0042】[0042]

【発明の効果】本発明により低温靭性、現地溶接性が優
れた超高強度の鋼板が安定して製造できるようになっ
た。その結果、パイプラインの安全性が著しく向上する
とともに、パイプラインの施工能率、輸送効率の飛躍的
な向上が可能となった。
EFFECTS OF THE INVENTION According to the present invention, it becomes possible to stably manufacture an ultra-high strength steel sheet having excellent low temperature toughness and field weldability. As a result, the safety of the pipeline was significantly improved, and the construction efficiency and transportation efficiency of the pipeline were dramatically improved.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/54 C22C 38/54 (72)発明者 原 卓 也 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C22C 38/54 C22C 38/54 (72) Inventor Takuya Hara 1 Kimitsu, Kimitsu-shi Nippon Steel Kimitsu Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、 C :0.05〜0.10%、 Si:0.6%以
下、 Mn:1.7〜2.5%、 P :0.015
%以下、 S :0.003%以下、 Ni:0.1〜
1.0%、 Mo:0.15〜0.60%、 Nb:0.01〜
0.10%、 Ti:0.005〜0.030%、 B :0.000
3〜0.0020% Al:0.06%以下、 N :0.001
〜0.006%、 O :0.003%以下を含有し、残部がFeおよび不
可避的不純物からなり、 下記の式で定義されるP値が2.5〜4.0の範囲にあ
る鋼片を950〜1050℃の温度に再加熱後、800
℃以下の累積圧下量が70%以上、かつAr3点〜Ar1
のフェライト−オーステナイト2相域の累積圧下量が5
0%以上で、圧延終了温度が650〜800℃となるよ
うに圧延を行い、その後空冷または10℃/秒以上の冷
却速度で500℃以下任意の温度まで冷却することを特
徴とする引張強さが950MPa以上の低温靭性に優れ
た超高強度鋼板の製造方法。 P=2.7C+0.4Si+Mn+0.8Cr+0.4
5(Ni+Cu)+2Mo
1. By weight%, C: 0.05 to 0.10%, Si: 0.6% or less, Mn: 1.7 to 2.5%, P: 0.015.
% Or less, S: 0.003% or less, Ni: 0.1
1.0%, Mo: 0.15 to 0.60%, Nb: 0.01 to
0.10%, Ti: 0.005-0.030%, B: 0.000
3 to 0.0020% Al: 0.06% or less, N: 0.001
~ 0.006%, O: 0.003% or less, the balance consisting of Fe and unavoidable impurities, and a P value defined by the following formula, a P value in the range of 2.5 to 4.0. After reheating to a temperature of 950 to 1050 ° C., 800
℃ following a cumulative reduction ratio of 70% or more, and the A r3 point to A r1 point ferrite - cumulative reduction ratio of austenite 2-phase region is 5
Tensile strength characterized by rolling at 0% or more so that the rolling end temperature becomes 650 to 800 ° C, and then cooling by air or at any cooling rate of 500 ° C or less at a cooling rate of 10 ° C / sec or more. Of 950 MPa or more, which is excellent in low temperature toughness, and a method for producing an ultra high strength steel sheet. P = 2.7C + 0.4Si + Mn + 0.8Cr + 0.4
5 (Ni + Cu) + 2Mo
【請求項2】重量%で、 C :0.05〜0.10%、 Si:0.6%以
下、 Mn:1.7〜2.5%、 P :0.015
%以下、 S :0.003%以下、 Ni:0.1〜
1.0%、 Mo:0.15〜0.60%、 Nb:0.01〜
0.10%、 Ti:0.005〜0.030%、 B :0.000
3〜0.0020% Al:0.06%以下、 N :0.001
〜0.006%、 O :0.003%以下および、V:0.01〜0.1
0%、Cu:0.1〜0.7%、Cr:0.1〜0.6
%、Ca:0.001〜0.005%の一種または二種
以上を含有し、残部がFeおよび不可避的不純物からな
り、 下記の式で定義されるP値が2.1〜3.0の範囲にあ
る鋼片を950〜1050℃の温度に再加熱後、800
℃以下の累積圧下量が70%以上、かつAr3点〜Ar1
のフェライト−オーステナイト2相域の累積圧下量が5
0%以上で、圧延終了温度が650〜800℃となるよ
うに圧延を行い、その後空冷または10℃/秒以上の冷
却速度で500℃以下任意の温度まで冷却することを特
徴とする引張強さが950MPa以上の低温靭性に優れ
た超高強度鋼板の製造方法。 P=2.7C+0.4Si+Mn+0.8Cr+0.4
5(Ni+Cu)+2Mo
2. By weight%, C: 0.05 to 0.10%, Si: 0.6% or less, Mn: 1.7 to 2.5%, P: 0.015
% Or less, S: 0.003% or less, Ni: 0.1
1.0%, Mo: 0.15 to 0.60%, Nb: 0.01 to
0.10%, Ti: 0.005-0.030%, B: 0.000
3 to 0.0020% Al: 0.06% or less, N: 0.001
-0.006%, O: 0.003% or less, and V: 0.01-0.1.
0%, Cu: 0.1 to 0.7%, Cr: 0.1 to 0.6
%, Ca: 0.001 to 0.005% of one kind or two or more kinds, and the balance of Fe and inevitable impurities, and the P value defined by the following formula is 2.1 to 3.0. After reheating the billet in the range to a temperature of 950 to 1050 ° C, 800
℃ following a cumulative reduction ratio of 70% or more, and the A r3 point to A r1 point ferrite - cumulative reduction ratio of austenite 2-phase region is 5
Tensile strength characterized by rolling at 0% or more so that the rolling end temperature becomes 650 to 800 ° C, and then cooling by air or at any cooling rate of 500 ° C or less at a cooling rate of 10 ° C / sec or more. Of 950 MPa or more, which is excellent in low temperature toughness, and a method for producing an ultra high strength steel sheet. P = 2.7C + 0.4Si + Mn + 0.8Cr + 0.4
5 (Ni + Cu) + 2Mo
JP18026095A 1995-07-17 1995-07-17 Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness Expired - Fee Related JP3612115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18026095A JP3612115B2 (en) 1995-07-17 1995-07-17 Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18026095A JP3612115B2 (en) 1995-07-17 1995-07-17 Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH0931536A true JPH0931536A (en) 1997-02-04
JP3612115B2 JP3612115B2 (en) 2005-01-19

Family

ID=16080151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18026095A Expired - Fee Related JP3612115B2 (en) 1995-07-17 1995-07-17 Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP3612115B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224689B1 (en) 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
US6228183B1 (en) 1997-07-28 2001-05-08 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
US6248191B1 (en) 1997-07-28 2001-06-19 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
US6264760B1 (en) 1997-07-28 2001-07-24 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
KR100481370B1 (en) * 2000-12-23 2005-04-08 주식회사 포스코 Method for manufacturing heavy gauge high strength linepipe steel with superior low temperature toughness
KR100568365B1 (en) * 2001-12-27 2006-04-05 주식회사 포스코 Method for manufacturing heavy gauge high strength linepipe steel with superior low temperature toughness
JP2009052136A (en) * 2007-07-27 2009-03-12 Jfe Steel Kk Hot-rolled shaped steel for ships, and method for production of the same
GB2433746B (en) * 2005-12-27 2009-07-01 Kobe Steel Ltd Steel sheet having excellent weldability
JP4664504B2 (en) * 1999-02-26 2011-04-06 明治製菓株式会社 Pharmacological effect promoter for agricultural chemicals

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054355A1 (en) 2007-10-23 2009-04-30 Nippoh Chemicals Co., Ltd. PROCESS AND APPARATUS FOR PRODUCTION OF CYANOHYDRIN COMPOUND, AND PROCESS FOR PRODUCTION OF α-HYDROXYESTER COMPOUND
US8263796B2 (en) 2007-10-23 2012-09-11 Nippoh Chemicals Co., Ltd. Process for production of cyanohydrin compound, and process for production of α-hydroxyester compound

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224689B1 (en) 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
US6228183B1 (en) 1997-07-28 2001-05-08 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
US6248191B1 (en) 1997-07-28 2001-06-19 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
US6264760B1 (en) 1997-07-28 2001-07-24 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JP4664504B2 (en) * 1999-02-26 2011-04-06 明治製菓株式会社 Pharmacological effect promoter for agricultural chemicals
KR100481370B1 (en) * 2000-12-23 2005-04-08 주식회사 포스코 Method for manufacturing heavy gauge high strength linepipe steel with superior low temperature toughness
KR100568365B1 (en) * 2001-12-27 2006-04-05 주식회사 포스코 Method for manufacturing heavy gauge high strength linepipe steel with superior low temperature toughness
GB2433746B (en) * 2005-12-27 2009-07-01 Kobe Steel Ltd Steel sheet having excellent weldability
US9085816B2 (en) 2005-12-27 2015-07-21 Kobe Steel, Ltd. Steel sheet having excellent weldability
JP2009052136A (en) * 2007-07-27 2009-03-12 Jfe Steel Kk Hot-rolled shaped steel for ships, and method for production of the same

Also Published As

Publication number Publication date
JP3612115B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
US5755895A (en) High strength line pipe steel having low yield ratio and excellent in low temperature toughness
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP2003293089A (en) High strength steel sheet having excellent deformability, high strength steel pipe and production method thereof
JPH07331328A (en) Production of high tensile strength steel excellent in toughness at low temperature
JP3612115B2 (en) Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP3258207B2 (en) Ultra high strength steel with excellent low temperature toughness
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP3262972B2 (en) Weldable high strength steel with low yield ratio and excellent low temperature toughness
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP2006265722A (en) Production method of steel sheet for high-tension linepipe
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP3244981B2 (en) Weldable high-strength steel with excellent low-temperature toughness
JPH08311549A (en) Production of ultrahigh strength steel pipe
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP3244986B2 (en) Weldable high strength steel with excellent low temperature toughness
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JPH08311550A (en) Production of steel sheet for ultrahigh strength steel pipe
JPH08311548A (en) Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JP3244987B2 (en) High strength linepipe steel with low yield ratio
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041015

A61 First payment of annual fees (during grant procedure)

Effective date: 20041022

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101029

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20121029

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20131029

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20131029

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees