JP2003221619A - Method for manufacturing thick steel plate superior in arresting characteristics and ductile-fracture property - Google Patents

Method for manufacturing thick steel plate superior in arresting characteristics and ductile-fracture property

Info

Publication number
JP2003221619A
JP2003221619A JP2002024306A JP2002024306A JP2003221619A JP 2003221619 A JP2003221619 A JP 2003221619A JP 2002024306 A JP2002024306 A JP 2002024306A JP 2002024306 A JP2002024306 A JP 2002024306A JP 2003221619 A JP2003221619 A JP 2003221619A
Authority
JP
Japan
Prior art keywords
less
rolling
ferrite
surface layer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002024306A
Other languages
Japanese (ja)
Inventor
Toru Yamashita
徹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002024306A priority Critical patent/JP2003221619A/en
Publication of JP2003221619A publication Critical patent/JP2003221619A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thick steel plate inexpensively even with the satisfactory productivity, which is superior not only in arresting characteristics but also in ductile-fracture properties. <P>SOLUTION: This manufacturing method comprises giving an equivalent plastic strain ε onto the surface region of the steel plate so as to make ε≥0.5 in a non-recrystallizing-temperature region, then cooling the surface region to a temperature range of 450-650°C at a cooling rate of 2-15°C/s, within a period during which the amount of residual accumulated equivalent plastic strain εr in the surface region satisfies εr≥0.5, while keeping a temperature of the inner region of the steel plate to the Ar<SB>3</SB>transformation point or higher, then restarting rolling so as to give the residual accumulated equivalent plastic strain εr in a range of 0.35≤εr<0.55 to the above inner region, finishing the rolling at the Ar<SB>3</SB>transformation point or higher, to recuperate heat in the above surface region to the Ar<SB>3</SB>transformation point or lower due to the working heat and the inner sensible heat, and then cooling it with the average cooling rate kept to 1-10°C/s. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、構造物の安全性を
確保する為に重要な性質の一つであるアレスト特性(脆
性亀裂伝播停止特性)に優れ、しかも常温時の破壊形態
である延性破壊特性にも優れた厚鋼板を、Ni等の高価
な元素を多量に添加することなく、安価に製造すること
のできる方法に関するものである。
TECHNICAL FIELD The present invention is excellent in arrest property (brittle crack propagation stopping property) which is one of important properties for ensuring the safety of a structure, and is ductile as a fracture mode at room temperature. The present invention relates to a method capable of inexpensively manufacturing a thick steel plate having excellent fracture characteristics without adding a large amount of an expensive element such as Ni.

【0002】[0002]

【従来の技術】建築構造物等の安全性を確保するという
観点からして、鋼材に脆性亀裂が一旦発生した後、この
亀裂が伝播するのを抑止(停止)するアレスト特性が優
れていることは、建築構造物等の素材として使用される
鋼板に要求される重要な要件である。
2. Description of the Related Art From the viewpoint of ensuring the safety of building structures, etc., the steel has excellent arresting characteristics to prevent (stop) the propagation of a brittle crack once it has occurred. Is an important requirement for steel sheets used as materials for building structures and the like.

【0003】鋼板のアレスト特性を向上させる為には、
従来から板厚表層部の等軸フェライト粒(α粒)の微細
化が有効であることが知られている。こうした観点か
ら、アレスト特性を向上させる為のこれまでの技術は、
表層部の等軸フェライト粒径を微細化することが主流を
占めている。尚、等軸フェライトとは、アスペクト比
(長径/短径)がほぼ1である様なフェライト粒、つまり
圧延によって圧延方向に伸延していないフェライト粒の
意味である。
In order to improve the arrest characteristics of a steel sheet,
It has been conventionally known that miniaturization of equiaxed ferrite grains (α grains) in the surface layer portion of the plate thickness is effective. From this point of view, the conventional techniques for improving arrest characteristics are:
The mainstream is to reduce the equiaxed ferrite grain size in the surface layer. Equiaxial ferrite is the aspect ratio
It means a ferrite grain whose (major axis / minor axis) is about 1, that is, a ferrite grain which is not elongated in the rolling direction by rolling.

【0004】こうした技術として、例えば特開昭61−
235534号では、圧延途中の冷却およびその後の復
熱過程での圧延によるフェライト粒の再結晶およびAc
3変態点以上への昇温によって、α→γ逆変態を利用し
たフェライト結晶粒の微細化が提案されている。しかし
ながらこうした技術では、Ac3変態点以上の復熱が必
須の工程であるので、生産性が低下するという問題があ
る。
As such a technique, for example, Japanese Patent Laid-Open No. 61-
In No. 235534, recrystallization of ferrite grains and Ac caused by cooling during rolling and subsequent rolling in a recuperative process.
It has been proposed to make ferrite crystal grains finer by utilizing the α → γ reverse transformation by raising the temperature to 3 transformation points or higher. However, such a technique has a problem that the productivity is lowered because the recuperation at the Ac 3 transformation point or higher is an essential step.

【0005】これに対し、生産性の低下を緩和する方法
として、例えば特開平4−141517号の様な技術も
提案されている。この技術では、圧延途中での冷却およ
びその後の昇温中での圧延によって、復熱温度をAc3
変態点未満に制御してフェライト粒の再結晶を利用し、
表層部フェライト粒の微細化を図るものである。しかも
この技術では、鋼板表層部のみならず、表層部と板厚内
部の変形抵抗差を利用し、鋼板の鋼板内部組織の微細化
をも目指したものである。
On the other hand, as a method for alleviating the decrease in productivity, a technique such as Japanese Patent Laid-Open No. 4-141517 has been proposed. In this technique, the reheat temperature is set to Ac 3 by cooling during the rolling and rolling during the subsequent temperature rise.
Utilizing recrystallization of ferrite grains by controlling below the transformation point,
This is intended to reduce the size of ferrite grains in the surface layer portion. Moreover, in this technique, not only the surface layer portion of the steel sheet, but also the difference in deformation resistance between the surface layer portion and the inside of the sheet thickness is utilized, and the aim is to miniaturize the steel sheet internal structure of the steel sheet.

【0006】しかしながら、フェライト結晶粒の再結晶
を利用して微細フェライトを得る方法では、かなり大き
な圧下量を必要とするので、鋼板の厚みおよび幅が大き
くなった場合には、結晶粒レベルが圧延機の能力に左右
される結果になるので、安定して高品質を維持できない
可能性がある。
However, in the method of obtaining fine ferrite by utilizing recrystallization of ferrite crystal grains, a considerably large reduction amount is required. Therefore, when the thickness and width of the steel sheet are increased, the crystal grain level is rolled. As the result depends on the capability of the machine, there is a possibility that stable and high quality cannot be maintained.

【0007】こうした技術に関連して、例えば特開平2
−301540号においては、圧延中の加工発熱を利用
し、Ac3変態点以上の復熱によるα→γ逆変態を利用
したフェライト結晶粒微細化手法が提案されている。し
かしながらこの技術は、線材や高速連続圧延が可能な熱
延鋼板を想定したものであって、これらに対しては実現
可能であるが、厚鋼板については適用できないものであ
った。
In connection with such a technique, for example, Japanese Patent Laid-Open No.
No. 301540 proposes a method of refining ferrite grains using the heat generated during processing during rolling and utilizing the α → γ reverse transformation by recuperation above the Ac 3 transformation point. However, this technology is intended for wire rods and hot rolled steel sheets capable of high-speed continuous rolling, and although it is feasible for these, it was not applicable to thick steel sheets.

【0008】一方、特開平8−295982号では、板
厚全断面をフェライト−オーステナイトの二相領域にま
で冷却した後に圧延を行なう方法が提案されている。し
かしながら、変形抵抗の異なるフェライトとオーステナ
イトが混在した状態で圧延を行なった場合には、鋼板と
して必要な板厚精度や平坦度が乱れる可能性があるの
で、安易に実施できないという欠点がある。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 8-295982 proposes a method in which the entire cross section of the plate thickness is cooled to a two-phase region of ferrite-austenite and then rolled. However, when rolling is performed in a state in which ferrite and austenite having different deformation resistances are mixed, there is a possibility that the plate thickness accuracy and flatness required as a steel plate may be disturbed, so that there is a drawback that it cannot be carried out easily.

【0009】ところで、上記の様な鋼材には、大型タン
カー等の船舶の衝突時などに見られる延性的な破壊に対
しても衝突時のエネルギーを鋼板の延性破壊による吸収
によって被害を最小限に留めることのできる特性(延性
破壊特性)にも優れていることが必要である。
By the way, in the steel materials as described above, even if the ductile fracture is seen in a collision of a vessel such as a large tanker, the energy at the collision is absorbed by the ductile fracture of the steel sheet to minimize the damage. It is also necessary to have excellent properties that can be retained (ductile fracture property).

【0010】[0010]

【発明が解決しようとする課題】本発明はこうした状況
の下になされたものであって、その目的は、上記の様な
アレスト特性のみならず延性破壊特性にも優れた厚鋼板
を安価にしかも生産性良く製造することのできる方法を
提供することにある。
The present invention has been made under these circumstances, and an object thereof is to inexpensively produce a thick steel plate excellent not only in the arrest characteristics as described above but also in the ductile fracture characteristics. It is to provide a method that can be manufactured with high productivity.

【0011】[0011]

【課題を解決する為の手段】上記の目的を達成し得た本
発明方法とは、圧延途中の厚みをtとしたとき、板厚方
向に両表面から0.05t以上0.15t以下の表層領
域に対して、Ar3変態点以上900℃以下の未再結晶
温度域においてε≧0.5となる相当塑性歪εを付与
し、その後前記表層領域の残留累積相当塑性歪量εrが
εr≧0.5を満足する時間内に、両表面から板厚t/
4位置より芯部側の内部領域の温度をAr3変態点以上
に維持しつつ、前記表層領域を2〜15℃/sの冷却速
度にて450〜650℃の温度範囲となるまで冷却し、
次いで、圧延を再開し、この圧延では前記内部領域に対
して0.35≦εr<0.55の残留累積相当塑性歪ε
rを付与する圧延を行ない、Ar3変態点以上にて圧延
を完了すると共に、加工発熱および内部顕熱によって前
記表層領域をAr3変態点以下まで複熱させ、その後平
均冷却速度が1〜10℃/sとなる様に冷却を行なう点
に要旨を有するものである。
Means for Solving the Problems The method of the present invention capable of achieving the above-mentioned object is that when the thickness during rolling is t, the surface layer is 0.05t or more and 0.15t or less from both surfaces in the plate thickness direction. An equivalent plastic strain ε of ε ≧ 0.5 is applied to the region in the non-recrystallization temperature range of Ar 3 transformation point or more and 900 ° C. or less, and then the residual cumulative equivalent plastic strain amount εr of the surface layer region is εr ≧ Within a time that satisfies 0.5, the plate thickness t /
While maintaining than 4 positions the temperature of the inner area of the core portion side than the Ar 3 transformation point, the surface layer region is cooled to a temperature range of 450 to 650 ° C. at a cooling rate of 2 to 15 ° C. / s,
Then, the rolling is restarted, and in this rolling, the residual cumulative equivalent plastic strain ε of 0.35 ≦ εr <0.55 with respect to the internal region is satisfied.
Rolling is performed to impart r, and the rolling is completed at the Ar 3 transformation point or higher, and the surface layer region is double-heated to the Ar 3 transformation point or lower by the process heat generation and the internal sensible heat, and then the average cooling rate is 1 to 10 The point is that the cooling is performed so that the temperature becomes ° C / s.

【0012】上記本発明方法で用いる厚鋼板としては、
基本成分として、C:0.03〜0.2%、Si:0.
5%以下(0%を含まない)、Mn:1.8%以下(0
%を含まない)、Al:0.01〜0.1%およびN:
0.001〜0.01%を夫々含有する厚鋼板が挙げら
れるが、この厚鋼板には必要によって(1)Ti:0.
02%以下(0%を含まない)、Nb:0.03%以下
(0%を含まない)およびV:0.05%以下(0%を
含まない)よりなる群から選ばれる1種以上、(2)C
r:0.5%以下(0%を含まない)および/またはM
o:0.5%以下(0%を含まない)、等を更に含有さ
せることも有効であり、含有させる元素の種類に応じて
厚鋼板の特性が更に改善される。
As the thick steel plate used in the method of the present invention,
As basic components, C: 0.03 to 0.2%, Si: 0.
5% or less (not including 0%), Mn: 1.8% or less (0
%), Al: 0.01-0.1% and N:
Thick steel plates each containing 0.001 to 0.01% are included, and the thick steel plates may include (1) Ti: 0.
02% or less (not including 0%), Nb: 0.03% or less (not including 0%) and V: 0.05% or less (not including 0%), 1 or more selected from the group consisting of: (2) C
r: 0.5% or less (not including 0%) and / or M
It is also effective to further contain o: 0.5% or less (not including 0%), etc., and the characteristics of the thick steel sheet are further improved depending on the type of the element to be contained.

【0013】[0013]

【発明の実施の形態】本発明者らは、フェライト−パー
ライト鋼に関して、その実現が困難であるとされる微細
等軸フェライト粒に代わるアレスト特性向上技術につい
て様々な角度から検討した。その結果、一般に加工フェ
ライトと呼ばれる圧延方向に伸展した組織を鋼板表層部
に形成する様にすれば、万一脆性破壊亀裂が発生しても
その伝播を抑制すると共に、通常の衝突時等に見られる
延性的な破壊に対しても衝突時のエネルギーを吸収し、
衝突による被害を最小限に留めることができる効果が発
揮されることを突き止め、その技術的意義が認められた
ので先に出願している(特開2000−309851
号)。
BEST MODE FOR CARRYING OUT THE INVENTION With respect to ferrite-pearlite steel, the present inventors have examined from various angles a technique for improving arrest characteristics in place of fine equiaxed ferrite grains, which are said to be difficult to realize. As a result, if a structure extending in the rolling direction, generally called work ferrite, is formed in the surface layer of the steel sheet, even if a brittle fracture crack should occur, its propagation will be suppressed and it will be observed during normal collisions. Absorbs the energy at the time of collision even for ductile destruction
It was found that the effect of being able to minimize the damage caused by the collision is exhibited, and its technical significance was recognized, so the application was filed first (Japanese Patent Laid-Open No. 2000-309851).
issue).

【0014】上記の厚鋼板では、加工フェライトと呼ば
れる圧延方向に伸展した組織を鋼板表層部に形成するこ
とによって、アレスト特性を向上させたものであるが、
加工フェライトを形成しさえすれば良いという訳ではな
く、その分布が下記(a)〜(c)の要件を満足してい
る必要があり、こうした要件を満足する場合に始めて鋼
板のアレスト特性が向上し得るのである。
In the thick steel plate described above, the arrest property is improved by forming a structure called work ferrite which extends in the rolling direction in the surface layer of the steel plate.
It is not only necessary to form the worked ferrite, and its distribution must satisfy the requirements (a) to (c) below, and the arrest characteristics of the steel sheet are improved only when these requirements are satisfied. You can do it.

【0015】(a)板厚表層から板厚の5%以上の範囲
に亘って存在すること (b)加工フェライト粒の面積が、円相当直径で5μm
以下の結晶粒であること (c)アスペクト比が2以上4以下であること ここで、「円相当直径」とは、該当する組織の個別の粒
に着目し、その面積が等しくなる様に想定したときの円
の直径を求めたものである。
(A) Existence over a range of 5% or more of the plate thickness from the surface layer of the plate thickness (b) The area of the processed ferrite grains is 5 μm in equivalent circle diameter.
Being the following crystal grains (c) Aspect ratio of 2 or more and 4 or less Here, "circle equivalent diameter" is focused on individual grains of the corresponding tissue and is assumed to have the same area. This is the diameter of the circle when

【0016】更に、鋼板内部のミクロ組織を適正に制御
することによって、常温の延性破壊に対して重要な伸び
特性が通常鋼板よりも向上することも判明した。即ち、
鋼板の伸び特性を向上させるためには、下記(d)の要
件をも満足する必要がある。 (d)板厚方向中心部から表層部に向って板厚方向t/
4以上の範囲(即ち、両表面から板厚方向t/4位置よ
り芯部側の内部領域)において、円相当粒径が4μm以
上10μm以下で且つアスペクト比が2以下のフェライ
トを有する。
Further, it has also been found that by appropriately controlling the microstructure inside the steel sheet, the elongation characteristic, which is important for ductile fracture at room temperature, is improved as compared with the ordinary steel sheet. That is,
In order to improve the elongation property of the steel sheet, it is necessary to satisfy the requirement (d) below. (D) From the center part in the plate thickness direction to the surface layer part, the plate thickness direction t /
In the range of 4 or more (that is, the inner region on the core side from the t / 4 position in the plate thickness direction from both surfaces), the ferrite has a circle-equivalent grain size of 4 μm or more and 10 μm or less and an aspect ratio of 2 or less.

【0017】上記の様に、鋼板表層部に加工フェライト
粒を形成させると共に、鋼板内部のミクロ組織を均一な
等軸フェライト粒にすることによって、万一脆性亀裂が
発生した場合においても、その亀裂伝播を停止する性質
に優れ、さらに大型タンカー等の船舶の衝突時に見られ
る延性的な破壊に対しても優れた性質を有する鋼板が実
現できたのである。
As described above, by forming processed ferrite grains in the surface layer of the steel sheet and making the microstructure inside the steel sheet uniform equiaxed ferrite grains, even if brittle cracks should occur, the cracks should occur. It was possible to realize a steel sheet that has excellent properties of stopping the propagation and is also excellent in the ductile fracture that is observed when a ship such as a large tanker collides.

【0018】表層部に微細フェライトを形成する手法と
しては、オーステナイト(γ)未再結晶温度域において
累積圧下率を多くとる様な圧延が一般に行われてきた。
こうした方法では、オーステナイト中に歪を多く蓄積す
ることによってフェライト核生成サイトの増加を目的と
したものであるが、こうした方法では約5〜6μm程度
の微細粒が限界であり、5μm以下の微細な結晶粒を達
成するためには更に大きな圧下量を必要とするので、適
用される鋼板厚サイズが限定されることになる。
As a method for forming fine ferrite in the surface layer portion, rolling has been generally carried out so as to increase the cumulative rolling reduction in the austenite (γ) non-recrystallization temperature range.
Such a method aims to increase ferrite nucleation sites by accumulating a large amount of strain in austenite. However, in such a method, fine grains of about 5 to 6 μm are the limit, and fine grains of 5 μm or less are limited. Since a larger reduction amount is required to achieve the crystal grains, the thickness size of the steel sheet to be applied is limited.

【0019】本発明者らは、上記の様な組織を効率良く
実現するために、従来から行われている制御圧延および
それに引き続き行われる加速冷却[即ち、シャワー等の
設備を利用し、放冷(空冷)時以上の冷却速度によっ
て、被対象鋼板の温度を強制的に低下させる冷却]によ
って、結晶粒の微細化に関して検討したところ、冷却速
度の増加に伴って結晶粒が微細化する事実を確認した。
しかしながら、約5℃/s以上の加速冷却を適用した場
合には、ミクロ組織がフェラト−パーライトから、より
脆弱であるベイナイト組織に遷移してしまうと同時に延
性破壊特性が劣化することになる。
In order to efficiently realize the above-described structure, the inventors of the present invention have used conventional controlled rolling and accelerated cooling that is subsequently performed [ie, using equipment such as a shower and allowing to cool. [Cooling forcibly lowering the temperature of the steel sheet to be cooled by the cooling speed above (air cooling)] was examined to clarify the refinement of the crystal grains. As a result, the fact that the crystal grains are refined as the cooling rate increases confirmed.
However, when accelerated cooling of about 5 ° C./s or more is applied, the microstructure changes from the ferro-pearlite structure to the more brittle bainite structure and, at the same time, the ductile fracture property deteriorates.

【0020】また、ベイナイト組織の生成を抑制する為
にオーステナイト未再結晶温度域での圧下を実施してフ
ェライト変態核生成サイトを増加させることにより焼入
れ性を低下させた場合においても、約10℃/秒以上の
冷却速度で冷却したときには、ベイナイト組織が生成し
てしまう為、フェライト−ベイナイト2相混合組織とな
り、更にそのときに得られるフェライト結晶粒は6μm
程度が限界であった。
Further, even when the hardenability is lowered by reducing the austenite unrecrystallized temperature range to increase the ferrite transformation nucleation site in order to suppress the formation of the bainite structure, it is about 10 ° C. When cooled at a cooling rate of not less than 1 sec / sec, a bainite structure is generated, so a ferrite-bainite two-phase mixed structure is formed, and the ferrite crystal grains obtained at that time are 6 μm.
The degree was the limit.

【0021】そこで本発明者らが、ベイナイト生成条件
について更に詳細な検討を加えた結果、ベイナイト組織
は瞬時に生成されるのではなく、或る程度の潜伏期間を
おいて開始することを把握した。そして、こうした現象
を利用し、冷却後に昇温過程を施すことによって、通常
よりも高い冷却速度(約15℃/s程度)を適用したと
きにおいても、ベイナイト組織の生成を抑制すると共
に、従来よりも微細なベイナイト組織を得ることに成功
したのである。こうした知見に基づき、本発明者らが更
に検討した結果、上記の様な製造条件で操業すれば、上
記の様な組織を有する厚鋼板が生産性良く得られること
を見出し、本発明を完成した。以下、本発明で規定する
製造条件について説明する。
The inventors of the present invention have made further detailed studies on the bainite formation conditions, and as a result, have found that the bainite structure is not generated instantaneously but starts with a certain incubation period. . By utilizing such a phenomenon and performing a temperature raising process after cooling, even when a higher cooling rate (about 15 ° C./s) than usual is applied, the formation of bainite structure is suppressed and Also succeeded in obtaining a fine bainite structure. Based on these findings, the inventors of the present invention further studied, and found that a thick steel sheet having the above-described structure can be obtained with good productivity by operating under the above-mentioned manufacturing conditions, and completed the present invention. . The manufacturing conditions specified in the present invention will be described below.

【0022】本発明方法では、上記の様に2段階の圧延
を行ない、夫々の圧延後の冷却条件を適切に調整するも
のであるが、最初の冷却(以下、「一次冷却」と呼ぶ)
の条件としては、表層領域の冷却停止温度を650〜4
50℃の温度範囲にすることが必要である。この冷却停
止温度が650℃よりも高くなると、オーステナイト粒
界からのフェライト核生成が主になるので、その結果得
られるフェライト粒が粗大化してしまうことになる。ま
た、冷却停止温度が500℃以下の場合では、オーステ
ナイト未再結晶温度域での圧延を施して、焼入れ性を低
下させた場合でもやはりベイナイト組織が生成し始め、
延性破壊特性が低下し始めるが、その分率が5%未満で
且つ微細に分散している場合には、アレスト特性に対し
ては有効に作用することになる。しかしながら、冷却停
止温度が450℃未満になると、ベイナイト組織が主体
となって生成し、延性破壊特性が大きく低下し始める。
こうした観点から、冷却停止温度は450℃以上とする
必要がある。
In the method of the present invention, the two-stage rolling is performed as described above, and the cooling conditions after each rolling are appropriately adjusted, but the first cooling (hereinafter referred to as "primary cooling").
As the condition of, the cooling stop temperature of the surface layer region is set to 650 to 4
It is necessary to set the temperature range to 50 ° C. When the cooling stop temperature is higher than 650 ° C., ferrite nucleation mainly occurs from the austenite grain boundaries, so that the resulting ferrite grains become coarse. When the cooling stop temperature is 500 ° C. or lower, the bainite structure starts to be formed even when the hardenability is reduced by rolling in the austenite non-recrystallization temperature range.
The ductile fracture characteristic begins to deteriorate, but when the fraction is less than 5% and finely dispersed, it effectively acts on the arrest characteristic. However, when the cooling stop temperature is lower than 450 ° C., the bainite structure is mainly formed, and the ductile fracture characteristics start to largely decrease.
From this viewpoint, the cooling stop temperature needs to be 450 ° C. or higher.

【0023】一次冷却の停止温度を650〜450℃の
温度範囲とした場合には、Ar3変態点以上900℃以
下のオーステナイト未再結晶温度域圧延によって、オー
ステナイト粒内に導入された歪からのフェライト核生成
が活発化し、その後の加工発熱あるいは内部顕熱によっ
て復熱させることにより、粒界フェライトと粒内フェラ
イトの生成が活性化され、従来の冷却のみの工程と比較
してより微細なフェライトが得られるのである。また、
冷却する表層領域についても、両表面から0.05t未
満(tは圧延途中の厚み)の場合には、アレスト特性の
大幅な向上が望めないので、両表面から0.05t以上
とする必要がある。しかしながら、過度に大きな領域を
冷却した場合には、鋼板内部顕熱による復熱が困難であ
ること、および鋼板内部のフェライト組織の加工度が大
きくなって目的とする延性破壊特性の向上が図れなくな
ることから、冷却範囲は0.15t以下とする必要があ
る。
When the stop temperature of the primary cooling is set to a temperature range of 650 to 450 ° C., the strain introduced into the austenite grains by the austenite unrecrystallized temperature range rolling from the Ar 3 transformation point to 900 ° C. The ferrite nucleation is activated, and by regenerating the heat by the subsequent processing heat generation or internal sensible heat, the generation of grain boundary ferrite and intragranular ferrite is activated, and finer ferrite is obtained compared with the conventional cooling only process. Is obtained. Also,
As for the surface layer region to be cooled, if the surface area is less than 0.05 t from both surfaces (t is the thickness during rolling), it is not possible to expect a significant improvement in arrest characteristics, so it is necessary to make the surface area 0.05 t or more from both surfaces. . However, when an excessively large area is cooled, it is difficult to recover the heat due to sensible heat inside the steel sheet, and the workability of the ferrite structure inside the steel sheet increases, making it impossible to improve the target ductile fracture characteristics. Therefore, the cooling range needs to be 0.15 t or less.

【0024】上記一次冷却における冷却速度は、粒界フ
ェライトが主となるγ→α変態を抑制するという観点か
ら2℃/s以上とする必要があるが、冷却速度が大きく
なり過ぎるとフェライト−パーライト組織よりも脆弱な
ベイナイト組織が形成され易くなるので、15℃/s以
下とする必要がある。また、この一次冷却の際には、そ
の後の復熱を有効に達成させるという観点から、両表面
から板厚t/4位置より芯部側の内部領域の温度がAr
3変態点以上に維持する必要がある。
The cooling rate in the above primary cooling needs to be 2 ° C./s or more from the viewpoint of suppressing the γ → α transformation in which the grain boundary ferrite is the main. Since a bainite structure that is weaker than the structure is likely to be formed, it is necessary to set the temperature to 15 ° C./s or less. In addition, during the primary cooling, the temperature of the inner region on the core side from the plate thickness t / 4 position from both surfaces is Ar from the viewpoint of effectively achieving the subsequent heat recovery.
It is necessary to maintain at least 3 transformation points.

【0025】一次冷却前の圧延では、Ar3変態点以上
900℃以下の未再結晶温度域において、表層領域にε
≧0.5となる相当塑性歪εを付与する必要があるが、
この相当塑性歪εは一次冷却前の残留累積相当塑性歪量
εrとなるものであるが、その量が少ない場合には、フ
ェライト粒が十分に微細化せず、目的の微細フェライト
組織を得る為には、残留累積相当塑性歪量εrが0.5
以上となる様に制御する必要がある。また、こうした観
点から、圧延終了から一次冷却を開始するまでの時間は
表層領域の残留累積相当塑性歪量εrがεr≧0.5を
満足する時間内とする必要がある。
In the rolling before the primary cooling, in the unrecrystallized temperature range from the Ar 3 transformation point to 900 ° C., ε is formed in the surface layer region.
It is necessary to give an equivalent plastic strain ε of ≧ 0.5,
This equivalent plastic strain ε is the residual cumulative equivalent plastic strain amount εr before primary cooling, but if the amount is small, the ferrite grains will not be sufficiently refined and the desired fine ferrite structure will be obtained. Indicates that the residual cumulative equivalent plastic strain amount εr is 0.5.
It is necessary to control the above. From this point of view, the time from the end of rolling to the start of primary cooling must be within a time period in which the residual cumulative equivalent plastic strain amount εr in the surface layer region satisfies εr ≧ 0.5.

【0026】尚、残留累積相当塑性歪量εrとは、従来
の累積圧下率とは異なり、冷却前に材料内部に実質的に
残留している歪量を示すものである。即ち、圧延によっ
て導入された歪は、時間の経過に伴って減少していくの
で、同一累積圧下率の圧延を施した場合でも、圧下終了
から冷却開始までの時間が異なる場合には、その実質的
残留歪量にばらつきが生じることになる。こうしたこと
から、所定の歪量が確保できないことが生じ、目的とす
る微細フェライトを得られなくことがあるので、上記し
た様な残留累積相当歪量εrを確保することが必要にな
る。
The residual cumulative equivalent plastic strain amount εr, unlike the conventional cumulative rolling reduction, indicates the strain amount substantially remaining inside the material before cooling. That is, since the strain introduced by rolling decreases with the passage of time, even when rolling with the same cumulative rolling reduction is applied, if the time from the completion of rolling to the start of cooling differs, The amount of residual residual strain varies. As a result, a predetermined strain amount may not be secured, and the desired fine ferrite may not be obtained, so it is necessary to secure the residual cumulative equivalent strain amount εr as described above.

【0027】そして、上記の様に一次冷却および復熱に
よって得られた微細フェライト粒をAr3変態点以下の
温度で圧延した場合、フェライト組織は再結晶よりも回
復が主に進行するので、更なる微細化は進行せず、圧延
方向に伸延した微細加工フェライトとなることが判明し
たのである。その結果、微細加工フェライト組織を、安
定して実現できるに至り、更に、一次冷却前の圧延時お
よび一次冷却−復熱後の圧延時に導入された累積相当塑
性歪によって、当該表層領域以外の鋼板内部のフェライ
ト粒を微細化し、延性破壊特性の向上をも同時に実現す
るに至ったのである。このとき、鋼板内部に導入される
累積相当歪量が多くなるほど、フェライト結晶粒は微細
化するものの、それと同時に鋼板表層部のフェライト粒
の加工度(アスペクト比)が大きくなって、延性破壊特
性を劣化させる要因になるので、後の圧延によって鋼板
内部へ導入される残留累積相当塑性歪量εrは0.35
≦εr<0.55とする必要がある。また、後の圧延で
はアスペクト比が小さい(具体的には2以下)フェライ
ト組を織確するという観点から、Ar3変態点以上にて
圧延を完了する必要がある。即ち、圧延完了温度がAr
3変態点未満になると、フェライトが生成され、これが
圧延によって伸展される為、アスペクト比が大きなフェ
ライト組織となってしまう。
When the fine ferrite grains obtained by the primary cooling and the reheating as described above are rolled at a temperature not higher than the Ar 3 transformation point, the ferrite structure mainly recovers rather than recrystallizes. It was found that the refinement did not proceed, and the finely processed ferrite was elongated in the rolling direction. As a result, a micro-machined ferrite structure can be stably realized, and further, due to the cumulative equivalent plastic strain introduced during rolling before primary cooling and during rolling after primary cooling-recuperation, steel sheets other than the surface layer region concerned. The ferrite particles inside were made finer, and at the same time, the improvement of ductile fracture characteristics was also realized. At this time, as the cumulative equivalent strain introduced into the steel sheet increases, the ferrite crystal grains become finer, but at the same time, the workability (aspect ratio) of the ferrite grains in the steel sheet surface layer portion increases, and the ductile fracture characteristics are reduced. Since it causes deterioration, the residual cumulative equivalent plastic strain amount εr introduced into the steel plate by the subsequent rolling is 0.35.
It is necessary to satisfy ≦ εr <0.55. Further, in the subsequent rolling, from the viewpoint of weaving a ferrite set having a small aspect ratio (specifically, 2 or less), it is necessary to complete the rolling at the Ar 3 transformation point or higher. That is, the rolling completion temperature is Ar
When the temperature is less than 3 transformation points, ferrite is generated, and this is expanded by rolling, resulting in a ferrite structure with a large aspect ratio.

【0028】上記の様にして、本発明の趣旨は、ベイナ
イト変態での変態潜伏期を利用し、従来よりも高い冷却
速度、より低い冷却停止温度による大きな過冷度を実現
し、従来法では得られない微細なフェライト組織が容易
に得られ、しかも表層部組織のみならず、その内部組織
をも微細にすることによって、従来の鋼板では到底発揮
されないような優れたアレスト特性が発揮できたのであ
る。
As described above, the gist of the present invention is to utilize the transformation incubation period in bainite transformation to realize a higher cooling rate and a higher degree of supercooling due to a lower cooling stop temperature than in the prior art. It was possible to easily obtain a fine ferrite structure that cannot be obtained, and by making not only the surface layer structure but also its internal structure finer, it was possible to exhibit excellent arrest characteristics that could not be exhibited by conventional steel sheets. .

【0029】尚、上記の様にして得られた厚鋼板は、パ
ーライトとフェライトを主体とする組織となるものであ
るが、その一部(例えば、5%未満程度)にベイナイト
組織が混在していても良い。
The thick steel sheet obtained as described above has a structure mainly composed of pearlite and ferrite, but a bainite structure is mixed in a part thereof (for example, less than 5%). May be.

【0030】本発明方法では、用いる厚鋼板の化学成分
組成は特に限定するものではないが、基本的な成分であ
るC,Si,Mn,Al,N等における適切な範囲およ
びその理由は下記の通りである。
In the method of the present invention, the chemical composition of the thick steel plate to be used is not particularly limited, but the appropriate ranges and the reasons for the basic compositions such as C, Si, Mn, Al and N are as follows. On the street.

【0031】C:0.03〜0.2% Cは、用途上の必要強度の観点から、その含有量の下限
を0.03%と規定した。C含有量は、好ましくは0.
05%以上、より好ましくは0.08%以上とするのが
良いが、過剰に含有すると、溶接性および母材靭性を劣
化させるので0.2%を上限とする。
C: 0.03 to 0.2% From the viewpoint of required strength for use, the lower limit of the content of C is specified to be 0.03%. The C content is preferably 0.
It is preferable to set it to 05% or more, more preferably 0.08% or more, but if it is contained excessively, weldability and base material toughness are deteriorated, so 0.2% is made the upper limit.

【0032】Si:0.5%以下(0%を含まない) Siは、母材の強度を上昇させると共に溶鋼の脱酸材と
して有効な元素であるが、過剰に含有させると、溶接性
および母材靭性を劣化させるので0.5%を上限とす
る。尚、上記の効果を発揮させる為には、Siは0.1
%以上含有させることが好ましい。
Si: 0.5% or less (not including 0%) Si is an element that increases the strength of the base material and is effective as a deoxidizer for molten steel. The upper limit is 0.5% because it deteriorates the toughness of the base material. In order to exert the above effect, Si is 0.1
% Or more is preferably contained.

【0033】Mn:1.8%以下(0%を含まない) Mnは、母材の強度を上昇させるのに有効な元素である
が、過剰に含有させると、溶接性および母材靭性を劣化
させるので1.8%を上限とする。尚、上記の効果を発
揮させる為には、Mnは0.7%以上含有させることが
好ましい。
Mn: 1.8% or less (not including 0%) Mn is an element effective in increasing the strength of the base metal, but if contained in excess, the weldability and the base material toughness deteriorate. Therefore, the upper limit is 1.8%. In addition, in order to exert the above effect, Mn is preferably contained in an amount of 0.7% or more.

【0034】Al:0.05〜1.5% Alは、溶鋼の脱酸材として作用すると共に、窒化物を
形成して母材組織の微細化に有効な元素であり、こうし
た効果を発揮させるためには、0.05%以上含有させ
る必要がある。しかしながら、過剰に含有させると、母
材靭性を劣化させるので1.5%を上限とする。尚、A
lの好ましい下限は0.10%であり、好ましい上限は
1.0%である。
Al: 0.05 to 1.5% Al is an element that acts as a deoxidizing agent for molten steel and forms a nitride, which is effective for refining the base metal structure, and exerts such an effect. Therefore, it is necessary to contain 0.05% or more. However, if it is contained excessively, the toughness of the base material is deteriorated, so 1.5% is made the upper limit. Incidentally, A
The preferable lower limit of l is 0.10%, and the preferable upper limit is 1.0%.

【0035】N:0.001〜0.01% Nは、Al(若しくはTi,Nb,V等)の添加元素と
窒化物を形成し、母材組織を細粒化する効果を発揮する
が、含有量が0.001%未満ではこうした効果が発揮
されない。しかしながら、N含有量が0.01%を超え
て過剰になると固溶Nの増大を招き、特に溶接部の靭性
を劣化させるので、0.01%以下とする必要がある。
N: 0.001 to 0.01% N forms an nitride with an additive element of Al (or Ti, Nb, V, etc.), and exerts an effect of refining the matrix structure. If the content is less than 0.001%, such effects are not exhibited. However, if the N content exceeds 0.01% and becomes excessive, it causes an increase in solute N and particularly deteriorates the toughness of the welded portion, so it is necessary to set it to 0.01% or less.

【0036】本発明で用いる鋼材における基本的な化学
成分組成は上記の通りであり、残部は実質的にFeから
なるものであるが、必要によって(1)Ti:0.02
%以下(0%を含まない)、Nb:0.03%以下(0
%を含まない)およびV:0.05%以下(0%を含ま
ない)よりなる群から選ばれる1種以上、(2)Cr:
0.5%以下(0%を含まない)および/またはMo:
0.5%以下(0%を含まない)の他、(3)Ca:
0.5%以下(0%を含まない)および/またはZr:
0.5%以下(0%を含まない)、(4)B:0.00
2%以下(0%を含まない)、(5)Cu:0.5%以
下(0%を含まない)、(6)Ni:0.5%以下(0
%を含まない)、等を更に含有させることも有効であ
り、含有させる元素の種類に応じて鋼材の特性が更に改
善される。これらの元素を含有させるときの範囲限定理
由は、下記の通りである。
The basic chemical composition of the steel material used in the present invention is as described above, and the balance consists essentially of Fe. If necessary, (1) Ti: 0.02
% Or less (not including 0%), Nb: 0.03% or less (0
%) And V: at least one selected from the group consisting of 0.05% or less (not including 0%), (2) Cr:
0.5% or less (not including 0%) and / or Mo:
In addition to 0.5% or less (not including 0%), (3) Ca:
0.5% or less (not including 0%) and / or Zr:
0.5% or less (not including 0%), (4) B: 0.00
2% or less (not including 0%), (5) Cu: 0.5% or less (not including 0%), (6) Ni: 0.5% or less (0
%) Is also effective, and the properties of the steel material are further improved depending on the type of element to be included. The reason for limiting the range when these elements are contained is as follows.

【0037】Ti:0.02%以下(0%を含まな
い)、Nb:0.03%以下(0%を含まない)および
V:0.05%以下(0%を含まない)よりなる群から
選ばれる1種以上 Tiは、窒化物の形成を通じて、鋼片加熱時のオーステ
ナイト粒の粗大化抑制効果、および圧延終了後のフェラ
イト変態核生成促進効果を発揮するが、0.02%より
も多くなると、母材靭性を劣化させることになる。尚、
上記の効果を発揮させる為には、Tiの含有量は0.0
04%以上であることが好ましい。
Ti: 0.02% or less (not including 0%
B), Nb: 0.03% or less (not including 0%) and
V: from a group consisting of 0.05% or less (not including 0%)
At least one selected from Ti has an effect of suppressing coarsening of austenite grains at the time of heating a billet and an effect of promoting ferrite transformation nucleation after completion of rolling through the formation of nitride, but more than 0.02%. Then, the toughness of the base material is deteriorated. still,
In order to exert the above effects, the content of Ti is 0.0
It is preferably at least 04%.

【0038】Nbは、炭化物の形成を通じて、圧延中の
オーステナイト粒の粗大化および再結晶抑制効果をもつ
ので、圧延終了後のフェライト粒微細化に有効な元素で
あるが、0.03%よりも過剰に含有させると溶接性を
低下させることになる。尚、上記の効果を発揮させる為
には、Nbの含有量は0.002%以上であることが好
ましい。
Nb has an effect of suppressing coarsening and recrystallization of austenite grains during rolling through the formation of carbides, and is an element effective for refining ferrite grains after rolling is completed, but it is more than 0.03%. If contained in excess, the weldability will be reduced. In order to exert the above effects, the Nb content is preferably 0.002% or more.

【0039】Vは、Nbと同様に炭化物の形成を通じ
て、圧延中のオーステナイト粒の粗大化および再結晶抑
制効果をもつので、圧延終了後のフェライト粒微細化に
有効な元素であるが、0.05%よりも過剰に含有させ
ると溶接性を低下させることになる。尚、上記の効果を
発揮させる為には、Vの含有量は0.002%以上であ
ることが好ましい。
V has an effect of suppressing coarsening and recrystallization of austenite grains during rolling through the formation of carbides like Nb, so V is an element effective for refining ferrite grains after the rolling is completed. If it is contained in excess of 05%, the weldability will be reduced. In order to exert the above effects, the V content is preferably 0.002% or more.

【0040】Cr:0.5%以下(0%を含まない)お
よび/またはMo:0.5%以下(0%を含まない) CrとMoは、いずれも炭窒化物を析出させ、強度上昇
に寄与する元素であるが、過剰に含有させると溶接性お
よび母材靭性を劣化させるので、いずれも0.5%を上
限とする。尚、上記の効果を発揮させる為には、いずれ
も0.1%以上含有させることが好ましい。
Cr: 0.5% or less (not including 0%)
And / or Mo: 0.5% or less (not including 0%) Cr and Mo both are elements that precipitate carbonitrides and contribute to the strength increase. Since the material toughness is deteriorated, the upper limit is 0.5% in both cases. In order to exert the above effects, it is preferable that the content of each of them be 0.1% or more.

【0041】Ca:0.005〜0.5%および/また
はZr:0.003〜0.5% CaとZrは、いずれも鋼中の介在物の形態を球状化さ
せることによって、母材の靭性を改善するのに有効な元
素であるが、これらの元素の含有量が過剰になると、却
って母材の靭性を劣化させるので、いずれも0.5%以
下にすべきである。尚、上記の効果を発揮させる為に
は、Caで0.005%以上、Zrで0.003%以上
含有させることが好ましい。
Ca: 0.005-0.5% and / or
Zr: 0.003 to 0.5% Ca and Zr are both effective elements for improving the toughness of the base material by spheroidizing the morphology of inclusions in the steel. If the content of the element becomes excessive, the toughness of the base material is rather deteriorated. Therefore, the content of each element should be 0.5% or less. In order to bring out the above effects, it is preferable to contain 0.005% or more of Ca and 0.003% or more of Zr.

【0042】B:0.002%以下(0%を含まない) Bは、溶接熱影響部(HAZ)の靭性を向上させるため
に有効な元素であるが、過剰に含有させると焼入れ性を
増加させて母材の低温靭性の劣化を招くので、0.02
%以下とするのが良い。尚、上記の効果を発揮させる為
には、Bの含有量は0.0002%以上であることが好
ましい。
B: 0.002% or less (not including 0%) B is an element effective for improving the toughness of the weld heat affected zone (HAZ), but if contained in excess, hardenability increases. As a result, the low temperature toughness of the base material deteriorates.
It is better to be less than or equal to%. In order to exert the above effects, the content of B is preferably 0.0002% or more.

【0043】Cu:0.5%以下(0%を含まない) Cuは、結晶粒の微細化に有効な元素であるが、多量に
含有させると母材の溶接性を劣化させるので0.5%以
下とすることが好ましい。尚、上記の効果を発揮させる
為には、Cuの含有量は0.1%以上であることが好ま
しい。
Cu: 0.5% or less (not including 0%) Cu is an element effective for refining crystal grains, but if contained in a large amount, it deteriorates the weldability of the base metal, so 0.5 % Or less is preferable. The Cu content is preferably 0.1% or more in order to exert the above effects.

【0044】Ni:0.5%以下(0%を含まない) Niは、低温靭性の向上に有効な元素であるが、高価で
あるのでその上限を0.5%とするのが良い。尚、上記
の効果を発揮させる為には、Niの含有量は0.1%以
上であることが好ましい。
Ni: 0.5% or less (not including 0%) Ni is an element effective in improving the low temperature toughness, but since it is expensive, its upper limit is preferably 0.5%. The Ni content is preferably 0.1% or more in order to exert the above effects.

【0045】本発明で用いる厚鋼板では、上記の各種成
分以外にもばね用鋼の特性を阻害しない程度の微量成分
を含み得るものであり、こうした鋼線材も本発明の範囲
に含まれものである。上記微量成分としては不純物、特
にP,S,As,Sb,Sn等の不可避不純物が挙げら
れる。
The thick steel plate used in the present invention may contain, in addition to the above-mentioned various components, trace amounts of components that do not impair the properties of spring steel, and such steel wire rods are also included in the scope of the present invention. is there. The trace components include impurities, especially inevitable impurities such as P, S, As, Sb and Sn.

【0046】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に徴して設計変更することは
いずれも本発明の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. The following Examples are not intended to limit the scope of the present invention, and any modification of the design of the present invention can be made without departing from the spirit of the preceding and the following. Are included in the technical scope of.

【0047】[0047]

【実施例】下記表1に示す化学成分組成の各種鋼材(鋼
種A〜I)を用い、下記表2、3に示した各条件にて処
理し、各種厚鋼板を得た。尚、表2、3において、「領
域A」とは、板厚方向に表層から0.05t以上0.1
5t以下の表層領域を意味し、「領域B」とは、両表面
から板厚t/4位置より芯部側の内部領域を意味する。
Examples Various steel materials having the chemical composition shown in Table 1 below (steel types A to I) were used and treated under the conditions shown in Tables 2 and 3 below to obtain various thick steel plates. In Tables 2 and 3, "region A" means 0.05t or more and 0.1 from the surface layer in the plate thickness direction.
It means a surface layer region of 5t or less, and "region B" means an inner region on both sides from the plate thickness t / 4 position on the core side.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【表3】 [Table 3]

【0051】得られた厚鋼板について、各領域A,Bに
おけるフェライト粒径、アスペクト比を測定すると共
に、−80℃におけるアレスト特性(脆性亀裂伝播停止
特性)をWESに規定される温度勾配型二重引張試験に
より測定すると共に、JIS1B号に記載の引張試験に
より常温引張時の伸びを測定した。
With respect to the obtained thick steel sheet, the ferrite grain size and the aspect ratio in each of the regions A and B were measured, and the arrest characteristic (brittle crack propagation stopping characteristic) at -80 ° C. was determined by WES. In addition to the measurement by the heavy tensile test, the elongation at room temperature tensile was measured by the tensile test described in JIS1B.

【0052】これらの結果を、仕上げ板厚を共に下記表
4、5に示すが、本発明方法によって得られた厚鋼板で
は、アレスト特性および延性破壊特性のいずれも優れて
いることが分かる。これに対して、本発明で規定する要
件を満足しない製造方法によって得られた厚鋼板におい
ては、少なくとも脆性亀裂停止特性において劣化してい
ることが分かる。
The results are shown in Tables 4 and 5 below for the finished plate thickness, and it can be seen that the thick steel plate obtained by the method of the present invention is excellent in both arrest characteristics and ductile fracture characteristics. On the other hand, it can be seen that the thick steel sheet obtained by the manufacturing method that does not satisfy the requirements specified in the present invention is deteriorated at least in the brittle crack arrest property.

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【表5】 [Table 5]

【0055】上記結果に基づき、鋼種A(表1)を用い
た場合の内部領域の累積相当塑性歪量εrと平均フェラ
イト粒径の関係を図1に示すが、累積相当塑性歪量が増
加するにつれてフェライト粒径が小さくなっており、特
にフェライト粒径を4.0〜10.0μmに制御する為
には、累積相当塑性歪量を0.35〜0.55に制御す
れば良いことが分かる。
Based on the above results, the relationship between the cumulative equivalent plastic strain amount εr in the internal region and the average ferrite grain size when steel type A (Table 1) is used is shown in FIG. 1, but the cumulative equivalent plastic strain amount increases. As the ferrite grain size decreases, it is understood that the cumulative equivalent plastic strain amount should be controlled to 0.35 to 0.55 in order to control the ferrite grain size to 4.0 to 10.0 μm. .

【0056】図2は、上記結果に基づき、鋼種Aを用い
た場合の一次冷却停止温度と表層領域の平均フェライト
粒径の関係を示したものである。尚、図2において、▽
印は冷却速度が1.0℃/s、○印および●印は冷却速
度が3.0℃/sのとき、□および■印は冷却速度が1
2.0℃/sのとき、△印および▲印は冷却速度が2
0.0℃/sのときを夫々示し、このうち白抜き(▽、
○、□、△)はベイナイト組織が5%未満、塗り潰し
(●、■、▲)はベイナイト組織が10%以上であるこ
とを示す。この結果から明らかな様に、所定の冷却速度
の下で一次冷却停止温度を適切な温度範囲に制御するこ
とによって、フェライト粒径を適切な範囲に制御できる
ことが分かる。
FIG. 2 shows the relationship between the primary cooling stop temperature and the average ferrite grain size in the surface layer region when steel type A is used based on the above results. In addition, in FIG.
The mark indicates a cooling rate of 1.0 ° C / s, the ○ mark and the ● mark indicate a cooling rate of 3.0 ° C / s, and the □ and ■ marks indicate a cooling rate of 1
At 2.0 ° C / s, △ and ▲ marks have a cooling rate of 2
It shows the case of 0.0 ℃ / s, respectively, of these, white (▽,
◯, □, and Δ indicate that the bainite structure is less than 5%, and the filled (●, ■, and ▲) indicate that the bainite structure is 10% or more. As is clear from this result, it is understood that the ferrite grain size can be controlled in an appropriate range by controlling the primary cooling stop temperature in an appropriate temperature range under a predetermined cooling rate.

【0057】図3は、上記結果に基づき、鋼種Aを用い
た場合の鋼板表層部の組織(加工フェライト層厚)と二
重引張試験による−80℃でのアレスト特性の関係を示
したものである。尚、図3において、■印はアスペクト
比:4.1〜4.7、粒径:3.2〜4.3μmのと
き、○印はアスペクト比:3.1〜3.8、粒径:3.
3〜4.3μmのとき、△印はアスペクト比:2.1〜
2.9、粒径:3.3〜4.4μmのとき、□印はアス
ペクト比:1.3〜1.9、粒径:3.5〜4.7μm
のときを夫々示している。この結果から明らかな様に、
フェライト結晶粒径が同じであっても、アスペクト比が
大きくなるに従って−80℃でのアレスト特性が向上す
ることが分かり、且つその層厚が板厚30mmの場合、
1.5mm以上(0.05t以上)であるときに600
kgf/mm3/2以上を安定的に実現し得ることが分か
る。
FIG. 3 shows the relationship between the structure of the surface layer of the steel sheet (worked ferrite layer thickness) and the arrest characteristic at -80 ° C. in the double tensile test based on the above results. is there. In FIG. 3, when the mark ■ is the aspect ratio: 4.1 to 4.7 and the particle size is 3.2 to 4.3 μm, the mark ○ is the aspect ratio: 3.1 to 3.8, the particle size: 3.
When the thickness is 3 to 4.3 μm, the Δ mark indicates the aspect ratio: 2.1 to
2.9, particle size: 3.3 to 4.4 μm, □ indicates aspect ratio: 1.3 to 1.9, particle size: 3.5 to 4.7 μm
Each time is shown. As is clear from this result,
It was found that even if the ferrite crystal grain size was the same, the arrest property at −80 ° C. improved as the aspect ratio increased, and if the layer thickness was 30 mm,
600 when 1.5 mm or more (0.05 t or more)
It can be seen that kgf / mm 3/2 or more can be stably realized.

【0058】図4は、上記結果に基づき、鋼種Aを用い
た場合の鋼板表層部の平均フェライト粒径と二重引張試
験による−80℃でのアレスト特性の関係を示したもの
である。尚、図4に示した結果は、表層加工粒層厚が2
〜2.5mm、アスペクト比が2.5〜3.2のもので
ある。この結果から明らかな様に、フェライト粒径を5
μm以下とすることによって、優れたアレスト特性(基
準値:600kgf/mm3/2)が発揮されていること
が分かる。
Based on the above results, FIG. 4 shows the relationship between the average ferrite grain size in the surface layer of the steel sheet and the arrest characteristics at -80 ° C. in the double tensile test when Steel Type A was used. The results shown in FIG. 4 show that the surface layer processed grain layer thickness is 2
.About.2.5 mm and aspect ratio of 2.5 to 3.2. As is clear from this result, the ferrite grain size is 5
It can be seen that excellent arrest characteristics (reference value: 600 kgf / mm 3/2 ) are exhibited by setting the thickness to μm or less.

【0059】図5は、上記結果に基づき、鋼種Aを用い
た場合の鋼板表層部の組織(アスペクト比)と常温引張
試験時の延び特性の関係を示したものである。尚、この
結果は、鋼板表層部におけるフェライトの平均粒径が
4.1〜4.8μm、中央部におけるフェライトの平均
粒径が6.0〜7.2μm、アスペクト比が1.3〜
1.8の場合のものである。この結果から明らかな様
に、鋼板表層部におけるフェライト粒のアスペクトが大
きくなるに従い、伸び特性は劣化していくが、アスペク
ト比が4以下の範囲では良好な伸び特性(目標値:27
%以上)を示していることが分かる。
FIG. 5 shows the relationship between the structure (aspect ratio) of the steel sheet surface layer portion when steel type A is used and the elongation characteristics during the normal temperature tensile test based on the above results. In addition, this result shows that the average grain size of ferrite in the surface layer of the steel sheet is 4.1 to 4.8 μm, the average grain size of ferrite in the central part is 6.0 to 7.2 μm, and the aspect ratio is 1.3 to
It is the case of 1.8. As is clear from these results, the elongation characteristics deteriorate as the aspect of the ferrite grains in the surface layer of the steel sheet increases, but good elongation characteristics (target value: 27
% Or more).

【0060】図6は、上記結果に基づき、鋼種Aを用い
た場合の鋼板内部領域の平均フェライト粒径と常温引張
試験時の延び特性の関係を示したものである。尚、図6
において、○印はアスペクト比:2.0以下、△印はア
スペクト比:2.1〜3.0、□印はアスペクト比:
3.1〜4.0のときを夫々示している。また、この結
果は、鋼板表層部におけるフェライトの平均粒径が4.
3〜4.7μm、アスペクト比が2.5〜2.7の場合
のものである。この結果から明らかな様に、鋼板内部領
域におけるフェライト粒のアスペクト比が2.0以下
で、フェライト粒径が4〜10μmのときに良好な伸び
特性(目標値:27%以上)を示していることが分か
る。
FIG. 6 shows the relationship between the average ferrite grain size in the steel sheet internal region and the elongation property in the normal temperature tensile test when Steel Type A was used based on the above results. Incidentally, FIG.
In, the ◯ marks have an aspect ratio of 2.0 or less, the Δ marks have an aspect ratio of 2.1 to 3.0, and the □ marks have an aspect ratio:
Times of 3.1 to 4.0 are shown respectively. In addition, this result shows that the average grain size of ferrite in the surface layer of the steel sheet is 4.
3 to 4.7 μm and an aspect ratio of 2.5 to 2.7. As is clear from this result, when the aspect ratio of ferrite grains in the steel sheet inner region is 2.0 or less and the ferrite grain size is 4 to 10 μm, good elongation characteristics (target value: 27% or more) are exhibited. I understand.

【0061】[0061]

【発明の効果】本発明は以上の様に構成されており、ア
レスト特性のみならず延性破壊特性にも優れた厚鋼板を
安価にしかも生産性良く製造することのできる方法が実
現できた。
The present invention is constructed as described above, and has realized a method capable of manufacturing a thick steel plate excellent not only in arrest characteristics but also in ductile fracture characteristics at low cost and with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼種A(表1)を用いた場合の鋼板内部領域の
累積相当塑性歪量εrと平均フェライト粒径の関係を示
したグラフである。
FIG. 1 is a graph showing a relationship between a cumulative equivalent plastic strain amount εr in an inner region of a steel sheet and an average ferrite grain size when a steel type A (Table 1) is used.

【図2】鋼種Aを用いた場合の一次冷却停止温度と表層
領域の平均フェライト粒径の関係を示したグラフであ
る。
FIG. 2 is a graph showing the relationship between the primary cooling stop temperature and the average ferrite grain size in the surface layer region when steel type A is used.

【図3】鋼種Aを用いた場合の鋼板表層領域の組織と二
重引張試験によるアレスト特性の関係を示したグラフで
ある。
FIG. 3 is a graph showing the relationship between the structure of the steel sheet surface layer region when steel type A is used and the arrest property by a double tensile test.

【図4】鋼種Aを用いた場合の鋼板表層領域の平均フェ
ライト粒径と二重引張試験による−80℃でのアレスト
特性の関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the average ferrite grain size in the surface layer region of the steel sheet when steel type A is used and the arrest property at −80 ° C. by the double tensile test.

【図5】鋼種Aを用いた場合の鋼板表層部の組織(アス
ペクト比)と常温引張試験時の延び特性の関係を示した
グラフである。
FIG. 5 is a graph showing the relationship between the structure (aspect ratio) of the surface layer of the steel sheet when Steel Type A is used and the elongation characteristics during a room temperature tensile test.

【図6】鋼種Aを用いた場合の鋼板内部領域の平均フェ
ライト粒径と常温引張試験時の延び特性の関係を示した
グラフである。
FIG. 6 is a graph showing the relationship between the average ferrite grain size in the steel plate internal region and the elongation characteristics during a normal temperature tensile test when steel type A is used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/38 C22C 38/38 Fターム(参考) 4E002 AA07 AD07 BC05 BC07 BD07 CB01 CB08 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 AA39 BA01 CA01 CA02 CB02 CC03 CC04 CD02─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/38 C22C 38/38 F term (reference) 4E002 AA07 AD07 BC05 BC07 BD07 CB01 CB08 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 AA39 BA01 CA01 CA02 CB02 CC03 CC04 CD02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧延途中の厚みをtとしたとき、板厚方
向に両表面から0.05t以上0.15t以下の表層領
域に対して、Ar3変態点以上900℃以下の未再結晶
温度域においてε≧0.5となる相当塑性歪εを付与
し、その後前記表層領域の残留累積相当塑性歪量εrが
εr≧0.5を満足する時間内に、両表面から板厚t/
4位置より芯部側の内部領域の温度をAr3変態点以上
に維持しつつ、前記表層領域を2〜15℃/sの冷却速
度にて450〜650℃の温度範囲となるまで冷却し、
次いで、圧延を再開し、この圧延では前記内部領域に対
して0.35≦εr<0.55の残留累積相当塑性歪ε
rを付与する圧延を行ない、Ar3変態点以上にて圧延
を完了すると共に、加工発熱および内部顕熱によって前
記表層領域をAr3変態点以下まで複熱させ、その後平
均冷却速度が1〜10℃/sとなる様に冷却を行なうこ
とを特徴とするアレスト特性および延性破壊特性に優れ
た厚鋼板の製造方法。
1. A non-recrystallization temperature of not less than Ar 3 transformation point and not more than 900 ° C. for a surface layer region of not less than 0.05 t and not more than 0.15 t from both surfaces in the plate thickness direction, where t is a thickness during rolling. In the region, an equivalent plastic strain ε of ε ≧ 0.5 is applied, and thereafter, within a time period in which the residual cumulative equivalent plastic strain amount εr of the surface layer region satisfies εr ≧ 0.5, the plate thickness t /
While maintaining than 4 positions the temperature of the inner area of the core portion side than the Ar 3 transformation point, the surface layer region is cooled to a temperature range of 450 to 650 ° C. at a cooling rate of 2 to 15 ° C. / s,
Then, the rolling is restarted, and in this rolling, the residual cumulative equivalent plastic strain ε of 0.35 ≦ εr <0.55 with respect to the internal region is satisfied.
Rolling is performed to impart r, and the rolling is completed at the Ar 3 transformation point or higher, and the surface layer region is double-heated to the Ar 3 transformation point or lower by the process heat generation and the internal sensible heat. A method for producing a thick steel sheet excellent in arrest characteristics and ductile fracture characteristics, characterized by cooling at a temperature of ° C / s.
【請求項2】 C:0.03〜0.2%(質量%の意
味、以下同じ)、Si:0.5%以下(0%を含まな
い)、Mn:1.8%以下(0%を含まない)、Al:
0.01〜0.1%およびN:0.001〜0.01%
を夫々含有する厚鋼板を用いる請求項1に記載の製造方
法。
2. C: 0.03 to 0.2% (meaning mass%; the same applies hereinafter), Si: 0.5% or less (not including 0%), Mn: 1.8% or less (0% Is not included), Al:
0.01-0.1% and N: 0.001-0.01%
The manufacturing method according to claim 1, wherein thick steel plates containing the respective are used.
【請求項3】 更に、Ti:0.02%以下(0%を含
まない)、Nb:0.03%以下(0%を含まない)お
よびV:0.05%以下(0%を含まない)よりなる群
から選ばれる1種以上を含む厚鋼板を用いる請求項2に
記載の製造方法。
3. Further, Ti: 0.02% or less (not including 0%), Nb: 0.03% or less (not including 0%) and V: 0.05% or less (not including 0%). The manufacturing method according to claim 2, wherein a thick steel plate containing at least one selected from the group consisting of:
【請求項4】 更に、Cr:0.5%以下(0%を含ま
ない)および/またはMo:0.5%以下(0%を含ま
ない)を含む厚鋼板を用いる請求項2または3に記載の
製造方法。
4. A thick steel plate containing Cr: 0.5% or less (not including 0%) and / or Mo: 0.5% or less (not including 0%) is used. The manufacturing method described.
JP2002024306A 2002-01-31 2002-01-31 Method for manufacturing thick steel plate superior in arresting characteristics and ductile-fracture property Pending JP2003221619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024306A JP2003221619A (en) 2002-01-31 2002-01-31 Method for manufacturing thick steel plate superior in arresting characteristics and ductile-fracture property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024306A JP2003221619A (en) 2002-01-31 2002-01-31 Method for manufacturing thick steel plate superior in arresting characteristics and ductile-fracture property

Publications (1)

Publication Number Publication Date
JP2003221619A true JP2003221619A (en) 2003-08-08

Family

ID=27746791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024306A Pending JP2003221619A (en) 2002-01-31 2002-01-31 Method for manufacturing thick steel plate superior in arresting characteristics and ductile-fracture property

Country Status (1)

Country Link
JP (1) JP2003221619A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197760A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and brittle fracture occurrence characteristic
WO2007119878A1 (en) 2006-04-13 2007-10-25 Nippon Steel Corporation High-strength steel plate with superior crack arrestability
WO2008108333A1 (en) 2007-03-05 2008-09-12 Nippon Steel Corporation Thick high-strength steel plate and process for producing the same
JP2009191278A (en) * 2008-02-12 2009-08-27 Sumitomo Metal Ind Ltd High strength thick steel plate having excellent arrest property in z direction, and method for producing the same
WO2010074347A1 (en) 2008-12-26 2010-07-01 Jfeスチール株式会社 Steel with excellent anti-ductile crack generation characteristics in weld heat-affected zone and base material and manufacturing method therefor
JP2010174357A (en) * 2009-02-02 2010-08-12 Sumitomo Metal Ind Ltd Thick steel plate and method for producing the same
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet
JP2016160474A (en) * 2015-02-27 2016-09-05 新日鐵住金株式会社 Hot rolled steel sheet and method for producing the same
CN109563599A (en) * 2016-08-08 2019-04-02 株式会社Posco The super thick steel and its manufacturing method for the resistant expansibility excellent of resistance to brittle crack

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579837B2 (en) * 2006-01-25 2010-11-10 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance and brittle fracture characteristics
JP2007197760A (en) * 2006-01-25 2007-08-09 Kobe Steel Ltd Marine steel with excellent corrosion resistance and brittle fracture occurrence characteristic
WO2007119878A1 (en) 2006-04-13 2007-10-25 Nippon Steel Corporation High-strength steel plate with superior crack arrestability
US7914629B2 (en) 2006-04-13 2011-03-29 Nippon Steel Corporation High strength thick steel plate superior in crack arrestability
WO2008108333A1 (en) 2007-03-05 2008-09-12 Nippon Steel Corporation Thick high-strength steel plate and process for producing the same
JP2009191278A (en) * 2008-02-12 2009-08-27 Sumitomo Metal Ind Ltd High strength thick steel plate having excellent arrest property in z direction, and method for producing the same
WO2010074347A1 (en) 2008-12-26 2010-07-01 Jfeスチール株式会社 Steel with excellent anti-ductile crack generation characteristics in weld heat-affected zone and base material and manufacturing method therefor
JP2010174357A (en) * 2009-02-02 2010-08-12 Sumitomo Metal Ind Ltd Thick steel plate and method for producing the same
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet
JP2016160474A (en) * 2015-02-27 2016-09-05 新日鐵住金株式会社 Hot rolled steel sheet and method for producing the same
CN109563599A (en) * 2016-08-08 2019-04-02 株式会社Posco The super thick steel and its manufacturing method for the resistant expansibility excellent of resistance to brittle crack
JP2019527773A (en) * 2016-08-08 2019-10-03 ポスコPosco Ultra-thick steel material excellent in brittle crack propagation resistance and manufacturing method thereof
CN109563599B (en) * 2016-08-08 2021-01-26 株式会社Posco Super-thick steel material having excellent brittle crack growth resistance and method for producing same

Similar Documents

Publication Publication Date Title
EP2240618B1 (en) High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
EP2006407B9 (en) High-strength steel plate with superior crack arrestability
KR100868423B1 (en) High strength api-x80 grade steels for spiral pipes with less strength changes and method for manufacturing the same
KR100799421B1 (en) Cold-formed steel pipe and tube having excellent in weldability with 490MPa-class of low yield ratio, and manufacturing process thereof
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
KR100833076B1 (en) High strength and low yield ratio steel for structure having excellent low temperature toughness and brittle crack arrest property and producing method of the same
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
KR20080093883A (en) High-strength hot rolled steel plate and manufacturing method thereof
KR20090058058A (en) Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
KR100630402B1 (en) High tensile steel excellent in high temperature strength and method for production thereof
JP2007070648A (en) High strength thin steel sheet having excellent hole expandability, and method for producing the same
JP2009024228A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP2002256375A (en) Steel plate having excellent arrest property and its manufacturing method
KR100711371B1 (en) Thick steel sheet for linepipes having excellent excessive low temperature toughness and the method for manufacturing the same
JPH09176782A (en) Building use high tensile strength steel excellent in fracture resistance and its production
JP7569928B2 (en) High strength thick hot rolled steel sheet with excellent elongation ratio and its manufacturing method
JP2002020832A (en) High tensile strength steel excellent in high temperature strength and its production method
JP2003221619A (en) Method for manufacturing thick steel plate superior in arresting characteristics and ductile-fracture property
JP4309561B2 (en) High-tensile steel plate with excellent high-temperature strength and method for producing the same
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2001303168A (en) Method for producing steel sheet excellent in brittle crack generating characteristic
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2007277679A (en) Method for producing high tensile steel for welded structure excellent in high temperature strength and low temperature toughness
JPH093591A (en) Extremely thick high tensile strength steel plate and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060822