WO2015194619A1 - High-strength steel plate and process for producing same - Google Patents
High-strength steel plate and process for producing same Download PDFInfo
- Publication number
- WO2015194619A1 WO2015194619A1 PCT/JP2015/067560 JP2015067560W WO2015194619A1 WO 2015194619 A1 WO2015194619 A1 WO 2015194619A1 JP 2015067560 W JP2015067560 W JP 2015067560W WO 2015194619 A1 WO2015194619 A1 WO 2015194619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- temperature
- plate thickness
- rolling
- steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- N 0.001 to 0.01%
- N is an element that precipitates a nitride such as TiN. Due to the pinning effect, the nitride prevents the austenite grains formed in the HAZ from being coarsened during welding, promotes the ferrite transformation, and contributes to the improvement of the HAZ toughness. In order to exhibit this effect effectively, it is necessary to contain 0.001% or more.
- the amount of N is preferably 0.0030% or more, more preferably 0.0035% or more, and still more preferably 0.0040% or more. However, if the N amount exceeds 0.01%, the solid solution N amount increases, the base material toughness deteriorates, and the HAZ toughness also deteriorates. Therefore, the N content is suppressed to 0.01% or less.
- the N amount is preferably 0.0085% or less, more preferably 0.0075% or less.
- step A and step B the temperature deviation within the thickness at the start of the following step C, that is, [(temperature of t / 4 part-surface temperature) / plate thickness at the start of step C] is obtained.
- the numerical value can be suppressed to 1.0 ° C./mm or less.
- intermediate cooling cooling at an average cooling rate of 0.5 ° C./s or more
- first intermediate cooling is referred to as “intermediate cooling 1”
- second intermediate cooling is referred to as “intermediate cooling 2”.
- the air cooling is referred to as “intermediate air cooling”
- first intermediate air cooling may be referred to as “intermediate air cooling 1”
- second intermediate air cooling may be referred to as “intermediate air cooling 2”.
- the intermediate cooling and the intermediate air cooling may be repeated twice or more, and the temperature range and time of each cooling are not particularly limited.
- the equivalent circle diameter of the largest large-angle crystal grain was determined within the above measurement range. Further, the number of large-angle crystal grains having an equivalent circle diameter of 15 ⁇ m or more was determined, and the number per 1 ⁇ m 2 was determined as the number density by dividing by the area of the measurement range, that is, 200 ⁇ m ⁇ 200 ⁇ m or 100 ⁇ m ⁇ 100 ⁇ m.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Provided is a steel plate which has a high strength and stably exhibits excellent low-temperature toughness. The high-strength steel plate is characterized in that the steel plate satisfies a given composition and in that the structure satisfies the following (1) and (2) and the Vickers hardness of a portion thereof present at a depth of 1/4 the plate thickness is 180 or greater. (1) In the portion at a depth of 1/4 the plate thickness, crystal grains that each are surrounded by a large-angle grain boundary, which is a boundary between two adjoining crystals that have a difference in orientation of 15° or greater, have equivalent-circle diameters, the maximum value of which is 30 μm or less. (2) In the portion at a depth of 1/4 the plate thickness, the number density of crystal grains that each are surrounded by a large-angle grain boundary, which is a boundary between two adjoining crystals that have a difference in orientation of 15° or greater, and that have an equivalent-circle diameter of 15 μm or larger is 1.5×10-3 per μm2 or less.
Description
本発明は、高強度鋼板およびその製造方法に関する。特には高強度であると共に、優れた低温靱性を安定して発揮する鋼板、およびその製造方法に関する。
The present invention relates to a high-strength steel plate and a method for producing the same. In particular, the present invention relates to a steel sheet that exhibits high strength and stably exhibits excellent low-temperature toughness, and a manufacturing method thereof.
例えば船舶、海洋構造物等の建設に用いられる鋼板は、高強度でありながら低温での靱性に優れていることが求められている。上記船舶等で万一事故が発生した場合、人的被害や経済的被害は大きい。大規模破壊が起こらないように、上記船舶等に用いられる鋼材には、高い低温靱性が求められる。また船体等の強度確保には、板厚を厚くするか、または高強度材を使用する必要があるが、近年は、船体大型化に伴う軽量化の観点から、厚肉材よりも高強度材の適用が志向されている。
For example, steel sheets used for the construction of ships, offshore structures, etc. are required to have high strength and excellent toughness at low temperatures. In the unlikely event that an accident occurs in the above-mentioned vessels, human damage and economic damage are significant. High-temperature toughness is required for steel materials used in the above-mentioned ships and the like so that large-scale fracture does not occur. In order to secure the strength of the hull, etc., it is necessary to increase the thickness of the plate or use a high strength material. The application is oriented.
高強度材の低温靱性を高めた技術として、本願出願人はこれまでに以下の技術を提案している。例えば特許文献1では、規定の成分組成を満たす鋼板であって、2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径Dが35μm以下であると共に、結晶方位分布差から測定されるランダム粒界分率Rが50面積%以上である点に特徴を有する鋼板を提案している。
The applicant of the present application has proposed the following techniques as techniques for improving the low temperature toughness of high strength materials. For example, in Patent Document 1, a steel sheet satisfying a prescribed component composition, and an average equivalent circle diameter D of a crystal grain surrounded by a large-angle grain boundary in which an orientation difference between two crystals is 15 ° or more is 35 μm or less, A steel sheet characterized by a random grain boundary fraction R measured from the crystal orientation distribution difference of 50 area% or more is proposed.
また特許文献2では、規定の成分組成と規定の式(1)を満たし、且つ厚みtmmの鋼板の圧延方向に平行で、鋼板表面に対して垂直な面の金属組織を観察したときに、(a)フェライト面積率が75%以上、(b)t/2位置におけるフェライト粒の平均円相当径が20.0μm以下、(c)t/4位置におけるフェライト粒の平均アスペクト比が2.0以下を満たす鋼板を提案している。
Further, in Patent Document 2, when a metal structure of a plane that satisfies the prescribed component composition and the prescribed formula (1) and is parallel to the rolling direction of the steel sheet having a thickness of tmm and perpendicular to the steel sheet surface is observed ( a) The ferrite area ratio is 75% or more, (b) The average equivalent circle diameter of the ferrite grains at the t / 2 position is 20.0 μm or less, and (c) The average aspect ratio of the ferrite grains at the t / 4 position is 2.0 or less. It proposes a steel plate that meets the requirements.
しかし近年は、安全性の要求レベルが更に高まっており、高強度であって、優れた低温靱性をより安定して発揮する鋼板が求められている。
However, in recent years, the required level of safety has further increased, and there is a demand for a steel plate that exhibits high strength and exhibits excellent low-temperature toughness more stably.
本発明は上記の様な事情に着目してなされたものであって、その目的は、高強度を示すと共に、優れた低温靱性を安定して発揮する鋼板と、その製造方法を確立することにある。
The present invention has been made paying attention to the circumstances as described above, and its purpose is to establish a steel sheet that exhibits high strength and stably exhibits excellent low-temperature toughness, and a manufacturing method thereof. is there.
上記課題を解決し得た本発明の高強度鋼板は、
成分組成が、質量%で、
C:0.01~0.15%、
Si:0%超0.50%以下、
Mn:0.6~2.0%、
P:0%超0.030%以下、
S:0%超0.025%以下、
Al:0.02~0.07%、
Nb:0.003%以上0.05%未満、
Ti:0.003~0.03%、
B:0%以上0.005%以下、
N:0.001~0.01%、および
Ca:0.0003~0.0060%
を満たし、残部が鉄及び不可避不純物からなり、
組織が下記(1)および(2)を満たし、かつ板厚の1/4部のビッカース硬さが180以上であるところに特徴を有する。
(1)板厚の1/4部において、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当直径の最大値が30μm以下である。
(2)板厚の1/4部において、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒であって、その円相当直径が15μm以上の結晶粒の個数密度が1.5×10-3個/μm2以下である。 The high-strength steel sheet of the present invention that has solved the above problems is
Ingredient composition is mass%,
C: 0.01 to 0.15%,
Si: more than 0% and 0.50% or less,
Mn: 0.6 to 2.0%,
P: more than 0% and 0.030% or less,
S: more than 0% and 0.025% or less,
Al: 0.02 to 0.07%,
Nb: 0.003% or more and less than 0.05%,
Ti: 0.003-0.03%,
B: 0% or more and 0.005% or less,
N: 0.001 to 0.01%, and Ca: 0.0003 to 0.0060%
The balance consists of iron and inevitable impurities,
It is characterized in that the structure satisfies the following (1) and (2) and the Vickers hardness of 1/4 part of the plate thickness is 180 or more.
(1) In a quarter portion of the plate thickness, the maximum value of the circle equivalent diameter of crystal grains surrounded by a large-angle grain boundary in which the orientation difference between two adjacent crystals is 15 ° or more is 30 μm or less.
(2) The number of crystal grains surrounded by a large-angle grain boundary in which the difference in orientation between two adjacent crystals is 15 ° or more at a quarter part of the plate thickness, and whose equivalent circle diameter is 15 μm or more. The density is 1.5 × 10 −3 pieces / μm 2 or less.
成分組成が、質量%で、
C:0.01~0.15%、
Si:0%超0.50%以下、
Mn:0.6~2.0%、
P:0%超0.030%以下、
S:0%超0.025%以下、
Al:0.02~0.07%、
Nb:0.003%以上0.05%未満、
Ti:0.003~0.03%、
B:0%以上0.005%以下、
N:0.001~0.01%、および
Ca:0.0003~0.0060%
を満たし、残部が鉄及び不可避不純物からなり、
組織が下記(1)および(2)を満たし、かつ板厚の1/4部のビッカース硬さが180以上であるところに特徴を有する。
(1)板厚の1/4部において、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当直径の最大値が30μm以下である。
(2)板厚の1/4部において、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒であって、その円相当直径が15μm以上の結晶粒の個数密度が1.5×10-3個/μm2以下である。 The high-strength steel sheet of the present invention that has solved the above problems is
Ingredient composition is mass%,
C: 0.01 to 0.15%,
Si: more than 0% and 0.50% or less,
Mn: 0.6 to 2.0%,
P: more than 0% and 0.030% or less,
S: more than 0% and 0.025% or less,
Al: 0.02 to 0.07%,
Nb: 0.003% or more and less than 0.05%,
Ti: 0.003-0.03%,
B: 0% or more and 0.005% or less,
N: 0.001 to 0.01%, and Ca: 0.0003 to 0.0060%
The balance consists of iron and inevitable impurities,
It is characterized in that the structure satisfies the following (1) and (2) and the Vickers hardness of 1/4 part of the plate thickness is 180 or more.
(1) In a quarter portion of the plate thickness, the maximum value of the circle equivalent diameter of crystal grains surrounded by a large-angle grain boundary in which the orientation difference between two adjacent crystals is 15 ° or more is 30 μm or less.
(2) The number of crystal grains surrounded by a large-angle grain boundary in which the difference in orientation between two adjacent crystals is 15 ° or more at a quarter part of the plate thickness, and whose equivalent circle diameter is 15 μm or more. The density is 1.5 × 10 −3 pieces / μm 2 or less.
前記成分組成は、更に、質量%で、
Cu:0%超1.0%以下、
Ni:0%超1.20%以下、
Cr:0%超0.50%以下、
Mo:0%超0.5%以下、および
V:0%超0.1%以下
よりなる群から選択される1種以上の元素を含んでいてもよい。 The component composition is further mass%,
Cu: more than 0% and 1.0% or less,
Ni: more than 0% and 1.20% or less,
Cr: more than 0% and 0.50% or less,
One or more elements selected from the group consisting of Mo: more than 0% and 0.5% or less and V: more than 0% and 0.1% or less may be included.
Cu:0%超1.0%以下、
Ni:0%超1.20%以下、
Cr:0%超0.50%以下、
Mo:0%超0.5%以下、および
V:0%超0.1%以下
よりなる群から選択される1種以上の元素を含んでいてもよい。 The component composition is further mass%,
Cu: more than 0% and 1.0% or less,
Ni: more than 0% and 1.20% or less,
Cr: more than 0% and 0.50% or less,
One or more elements selected from the group consisting of Mo: more than 0% and 0.5% or less and V: more than 0% and 0.1% or less may be included.
前記成分組成は、更に、質量%で、
REM:0%超0.05%以下、および
Zr:0%超0.020%以下
よりなる群から選択される1種以上の元素を含んでいてもよい。 The component composition is further mass%,
One or more elements selected from the group consisting of REM: more than 0% and 0.05% or less and Zr: more than 0% and 0.020% or less may be included.
REM:0%超0.05%以下、および
Zr:0%超0.020%以下
よりなる群から選択される1種以上の元素を含んでいてもよい。 The component composition is further mass%,
One or more elements selected from the group consisting of REM: more than 0% and 0.05% or less and Zr: more than 0% and 0.020% or less may be included.
本発明には更に、前記高強度鋼板の製造方法であって、前記成分組成を満たす鋼片を用い、下記工程A~Fをこの順に含むところに特徴を有する高強度鋼板の製造方法も含まれる。
工程A:900~1200℃の温度域で、板厚方向の温度偏差が40℃以内になるまで加熱する。
工程B:鋼片表面のスケールを除去する。
工程C:板厚の1/4部の温度がオーステナイト再結晶温度となる温度域にて、累積圧下率30%以上の圧延を行う。
工程D:板厚の1/4部の温度がオーステナイト再結晶温度となる温度域からオーステナイト未再結晶温度となる温度域までの冷却を、前記工程C後の板厚が50mmを超える場合は、平均冷却速度0.5℃/s以上の冷却と、空冷との2回以上の繰り返しを含む方法で行い、前記板厚が50mm以下の場合は水冷以外の方法で行う。
工程E:板厚の1/4部の温度がオーステナイト未再結晶温度となる温度域にて、下記式(1)で示される固溶B指数が2.0未満の場合は累積圧下率5%以上の圧延を行い、下記式(1)で示される固溶B指数が2.0以上の場合は累積圧下率15%以上の圧延を行う。
工程F:Ar3変態点から500℃までを平均冷却速度5℃/s以上で冷却する。但し、上記Ar3変態点は下記式(2)により求める。 The present invention further includes a method for producing the high-strength steel sheet, characterized in that the steel slab satisfying the component composition is used and the following steps A to F are included in this order. .
Step A: Heating is performed in a temperature range of 900 to 1200 ° C. until the temperature deviation in the plate thickness direction is within 40 ° C.
Process B: The scale of a steel piece surface is removed.
Step C: Rolling with a cumulative reduction ratio of 30% or more is performed in a temperature range where the temperature of ¼ part of the plate thickness becomes the austenite recrystallization temperature.
Step D: Cooling from a temperature range where the temperature of 1/4 part of the plate thickness becomes the austenite recrystallization temperature to a temperature range where the austenite non-recrystallization temperature is reached, when the plate thickness after the step C exceeds 50 mm, It is performed by a method including two or more repetitions of cooling at an average cooling rate of 0.5 ° C./s or more and air cooling. When the plate thickness is 50 mm or less, it is performed by a method other than water cooling.
Step E: Cumulative rolling reduction of 5% when the solid solution B index represented by the following formula (1) is less than 2.0 in the temperature range where the temperature of 1/4 part of the plate thickness is the austenite non-recrystallization temperature When the above rolling is performed and the solid solution B index represented by the following formula (1) is 2.0 or more, rolling with a cumulative reduction ratio of 15% or more is performed.
Step F: Cool from Ar 3 transformation point to 500 ° C. at an average cooling rate of 5 ° C./s or more. However, the Ar 3 transformation point is determined by the following formula (2).
工程A:900~1200℃の温度域で、板厚方向の温度偏差が40℃以内になるまで加熱する。
工程B:鋼片表面のスケールを除去する。
工程C:板厚の1/4部の温度がオーステナイト再結晶温度となる温度域にて、累積圧下率30%以上の圧延を行う。
工程D:板厚の1/4部の温度がオーステナイト再結晶温度となる温度域からオーステナイト未再結晶温度となる温度域までの冷却を、前記工程C後の板厚が50mmを超える場合は、平均冷却速度0.5℃/s以上の冷却と、空冷との2回以上の繰り返しを含む方法で行い、前記板厚が50mm以下の場合は水冷以外の方法で行う。
工程E:板厚の1/4部の温度がオーステナイト未再結晶温度となる温度域にて、下記式(1)で示される固溶B指数が2.0未満の場合は累積圧下率5%以上の圧延を行い、下記式(1)で示される固溶B指数が2.0以上の場合は累積圧下率15%以上の圧延を行う。
工程F:Ar3変態点から500℃までを平均冷却速度5℃/s以上で冷却する。但し、上記Ar3変態点は下記式(2)により求める。 The present invention further includes a method for producing the high-strength steel sheet, characterized in that the steel slab satisfying the component composition is used and the following steps A to F are included in this order. .
Step A: Heating is performed in a temperature range of 900 to 1200 ° C. until the temperature deviation in the plate thickness direction is within 40 ° C.
Process B: The scale of a steel piece surface is removed.
Step C: Rolling with a cumulative reduction ratio of 30% or more is performed in a temperature range where the temperature of ¼ part of the plate thickness becomes the austenite recrystallization temperature.
Step D: Cooling from a temperature range where the temperature of 1/4 part of the plate thickness becomes the austenite recrystallization temperature to a temperature range where the austenite non-recrystallization temperature is reached, when the plate thickness after the step C exceeds 50 mm, It is performed by a method including two or more repetitions of cooling at an average cooling rate of 0.5 ° C./s or more and air cooling. When the plate thickness is 50 mm or less, it is performed by a method other than water cooling.
Step E: Cumulative rolling reduction of 5% when the solid solution B index represented by the following formula (1) is less than 2.0 in the temperature range where the temperature of 1/4 part of the plate thickness is the austenite non-recrystallization temperature When the above rolling is performed and the solid solution B index represented by the following formula (1) is 2.0 or more, rolling with a cumulative reduction ratio of 15% or more is performed.
Step F: Cool from Ar 3 transformation point to 500 ° C. at an average cooling rate of 5 ° C./s or more. However, the Ar 3 transformation point is determined by the following formula (2).
Ar3変態点=910-310×C-80×Mn-20×Cu-15×Cr-55×Ni-80×Mo+0.35×(t-8)・・・(2)
式(2)において、C、Mn、Cu、Cr、Ni、Moは、各元素の質量%での鋼中含有量を示し、tは単位mmで表される製品厚さを示す。
Ar 3 transformation point = 910-310 × C-80 × Mn -20 × Cu-15 × Cr-55 × Ni-80 × Mo + 0.35 × (t-8) ··· (2)
In the formula (2), C, Mn, Cu, Cr, Ni, and Mo indicate the steel content in mass% of each element, and t indicates the product thickness expressed in the unit mm.
本発明によれば、高強度を示すと共に、優れた低温靱性を安定して発揮する鋼板とその製造方法を提供することができる。
According to the present invention, it is possible to provide a steel sheet that exhibits high strength and that stably exhibits excellent low-temperature toughness, and a method for manufacturing the steel sheet.
まず、例えば船舶用鋼材で問題となる脆性亀裂の進展は、板厚方向断面における板厚の1/4部の、L方向の靱性、即ち圧延方向の靱性と相関があることが知られている。また上記脆性亀裂の進展を抑制するには、隣接する2つの結晶の方位差が15°以上の粒界が障壁として有効であることも知られている。尚、以下では、上記「隣接する2つの結晶の方位差が15°以上の粒界」を「大角粒界」といい、この大角粒界で囲まれた結晶粒を「大角結晶粒」ということがある。
First, for example, it is known that the development of brittle cracks, which is a problem in marine steel materials, is correlated with the toughness in the L direction, that is, the toughness in the rolling direction, of ¼ part of the plate thickness in the cross section in the plate thickness direction. . It is also known that a grain boundary having an orientation difference of 15 ° or more between two adjacent crystals is effective as a barrier to suppress the development of the brittle crack. In the following, the above-mentioned “grain boundary in which the orientation difference between two adjacent crystals is 15 ° or more” is referred to as “large-angle grain boundary”, and the crystal grain surrounded by this large-angle grain boundary is referred to as “large-angle grain”. There is.
これまで、脆性亀裂の進展等を抑制すべく大角結晶粒のサイズを制御、例えば、特許文献1にも示す通り、上記大角結晶粒の平均結晶粒径を規定することが行われてきた。
Until now, the size of large-angle crystal grains has been controlled so as to suppress the development of brittle cracks, for example, as shown in Patent Document 1, the average crystal grain size of the large-angle crystal grains has been defined.
しかしながら、本発明者らが大角結晶粒のサイズと靱性との関係について検討を行ったところ、大角結晶粒の平均結晶粒径が一定以下でかつ衝撃エネルギーの平均値が一定以下であっても、数少ないが粗大である大角結晶粒が存在したり、比較的大きい大角結晶粒が一定以上存在する場合には、外部から力が加わったときに、これら粗大な結晶粒等に応力が集中し、破壊の発生起点となりやすいことが判明した。
However, the present inventors examined the relationship between the size and toughness of the large-angle crystal grains, even if the average crystal grain size of the large-angle crystal grains is less than a constant and the average value of impact energy is less than a constant, When there are few large-sized crystal grains that are coarse or relatively large-sized large grains, when stress is applied from the outside, stress concentrates on these coarse grains and breaks. It became clear that it is easy to become the starting point of
そこで本発明者らは、これら粗大な結晶粒等に着目して、優れた母材靱性、特には母材の優れた低温靱性を安定して発揮する鋼板を得るべく検討を行ったところ、粗大な結晶粒等に関する下記(1)および(2)の要件を満たすようにすれば、靱性を評価する衝撃吸収エネルギー値のばらつきが抑制され、優れた母材靱性を安定して発揮する鋼板を実現できることに想到し、本発明を完成させた。以下、組織に関する各要件について説明する。
Therefore, the present inventors focused on these coarse crystal grains and the like, and studied to obtain a steel sheet that stably exhibits excellent base material toughness, particularly excellent low temperature toughness of the base material. By satisfying the following requirements (1) and (2) regarding the fine crystal grains, etc., it is possible to suppress the variation in the impact absorption energy value for evaluating the toughness and realize a steel plate that stably exhibits excellent base material toughness The present invention has been completed by conceiving what can be done. Hereinafter, each requirement regarding the organization will be described.
(1)板厚の1/4部において、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当直径の最大値が30μm以下
まずは、大角結晶粒の円相当直径の最大値が、靱性に及ぼす影響、詳細には、後述する実施例で評価したvE-40とそのバラツキ、およびvTrsに及ぼす影響について検討した。その結果、後述する個数密度を満たすと共に、上記最大値が30μm以下であれば、vE-40とそのバラツキ、およびvTrsが評価基準を満たし、優れた低温靱性を安定して発揮することがわかった。上記最大値は、好ましくは28.0μm以下、より好ましくは25.0μm以下、更に好ましくは23.0μm以下である。尚、上記最大値は小さければ小さいほど好ましいが、規定の製造方法の条件等を考慮すると、上記最大値の下限値はおおよそ10μm程度となる。尚、以下では、板厚方向断面における板厚の1/4部を「t/4部」、板厚の1/2部を「t/2部」ということがある。 (1) The maximum value of the circle equivalent diameter of a crystal grain surrounded by a large-angle grain boundary whose orientation difference between two adjacent crystals is 15 ° or more at ¼ part of the plate thickness is 30 μm or less. The effect of the maximum value of the equivalent circle diameter on toughness, specifically, the effect on vE- 40 evaluated in Examples described later, its variation, and vTrs was examined. As a result, it was found that when the number density described later is satisfied and the maximum value is 30 μm or less, vE- 40 , its variation, and vTrs satisfy the evaluation criteria and stably exhibit excellent low temperature toughness. . The maximum value is preferably 28.0 μm or less, more preferably 25.0 μm or less, and still more preferably 23.0 μm or less. Although the maximum value is preferably as small as possible, the lower limit of the maximum value is about 10 μm in consideration of the conditions of the specified manufacturing method. In the following description, ¼ part of the plate thickness in the cross section in the plate thickness direction may be referred to as “t / 4 part” and ½ part of the plate thickness may be referred to as “t / 2 part”.
まずは、大角結晶粒の円相当直径の最大値が、靱性に及ぼす影響、詳細には、後述する実施例で評価したvE-40とそのバラツキ、およびvTrsに及ぼす影響について検討した。その結果、後述する個数密度を満たすと共に、上記最大値が30μm以下であれば、vE-40とそのバラツキ、およびvTrsが評価基準を満たし、優れた低温靱性を安定して発揮することがわかった。上記最大値は、好ましくは28.0μm以下、より好ましくは25.0μm以下、更に好ましくは23.0μm以下である。尚、上記最大値は小さければ小さいほど好ましいが、規定の製造方法の条件等を考慮すると、上記最大値の下限値はおおよそ10μm程度となる。尚、以下では、板厚方向断面における板厚の1/4部を「t/4部」、板厚の1/2部を「t/2部」ということがある。 (1) The maximum value of the circle equivalent diameter of a crystal grain surrounded by a large-angle grain boundary whose orientation difference between two adjacent crystals is 15 ° or more at ¼ part of the plate thickness is 30 μm or less. The effect of the maximum value of the equivalent circle diameter on toughness, specifically, the effect on vE- 40 evaluated in Examples described later, its variation, and vTrs was examined. As a result, it was found that when the number density described later is satisfied and the maximum value is 30 μm or less, vE- 40 , its variation, and vTrs satisfy the evaluation criteria and stably exhibit excellent low temperature toughness. . The maximum value is preferably 28.0 μm or less, more preferably 25.0 μm or less, and still more preferably 23.0 μm or less. Although the maximum value is preferably as small as possible, the lower limit of the maximum value is about 10 μm in consideration of the conditions of the specified manufacturing method. In the following description, ¼ part of the plate thickness in the cross section in the plate thickness direction may be referred to as “t / 4 part” and ½ part of the plate thickness may be referred to as “t / 2 part”.
(2)t/4部において、円相当直径が15μm以上の大角結晶粒の個数密度が1.5×10-3個/μm2以下
優れた低温靱性を安定して発揮する鋼板を得るには、上記最大値に加えて、比較的大きい大角結晶粒、即ち、円相当直径が15μm以上の大角結晶粒の個数密度を一定以下とするのがよいことを見出した。詳細には、上記個数密度が、vE-40とそのバラツキ、およびvTrsに及ぼす影響について検討したところ、上記個数密度を1.5×10-3個/μm2以下とすれば、上記vE-40等が評価基準を満たし、優れた低温靱性が安定して得られることがわかった。上記個数密度は、好ましくは1.0×10-3個/μm2以下、より好ましくは0.9×10-3個/μm2以下である。尚、上記個数密度も小さければ小さいほど好ましいが、規定の製造方法の条件等を考慮すると、上記個数密度の下限値は、1.0×10-5個/μm2程度となる。 (2) To obtain a steel plate that stably exhibits excellent low-temperature toughness at a number of t / 4 parts, the number density of large-angle crystal grains having an equivalent circle diameter of 15 μm or more is 1.5 × 10 −3 particles / μm 2 or less. In addition to the above maximum value, it has been found that the number density of relatively large large-angle crystal grains, that is, large-angle crystal grains having a circle-equivalent diameter of 15 μm or more should be kept constant. Specifically, the influence of the number density on vE- 40 , its variation, and vTrs was examined. If the number density was 1.5 × 10 −3 pieces / μm 2 or less, the vE −40 Etc. satisfy the evaluation criteria, and excellent low-temperature toughness can be stably obtained. The number density is preferably 1.0 × 10 −3 pieces / μm 2 or less, more preferably 0.9 × 10 −3 pieces / μm 2 or less. Although preferably as small as possible also the number density, considering the conditions of the manufacturing method of the specified lower limit value of the number density becomes 1.0 × 10 -5 cells / [mu] m 2 approximately.
優れた低温靱性を安定して発揮する鋼板を得るには、上記最大値に加えて、比較的大きい大角結晶粒、即ち、円相当直径が15μm以上の大角結晶粒の個数密度を一定以下とするのがよいことを見出した。詳細には、上記個数密度が、vE-40とそのバラツキ、およびvTrsに及ぼす影響について検討したところ、上記個数密度を1.5×10-3個/μm2以下とすれば、上記vE-40等が評価基準を満たし、優れた低温靱性が安定して得られることがわかった。上記個数密度は、好ましくは1.0×10-3個/μm2以下、より好ましくは0.9×10-3個/μm2以下である。尚、上記個数密度も小さければ小さいほど好ましいが、規定の製造方法の条件等を考慮すると、上記個数密度の下限値は、1.0×10-5個/μm2程度となる。 (2) To obtain a steel plate that stably exhibits excellent low-temperature toughness at a number of t / 4 parts, the number density of large-angle crystal grains having an equivalent circle diameter of 15 μm or more is 1.5 × 10 −3 particles / μm 2 or less. In addition to the above maximum value, it has been found that the number density of relatively large large-angle crystal grains, that is, large-angle crystal grains having a circle-equivalent diameter of 15 μm or more should be kept constant. Specifically, the influence of the number density on vE- 40 , its variation, and vTrs was examined. If the number density was 1.5 × 10 −3 pieces / μm 2 or less, the vE −40 Etc. satisfy the evaluation criteria, and excellent low-temperature toughness can be stably obtained. The number density is preferably 1.0 × 10 −3 pieces / μm 2 or less, more preferably 0.9 × 10 −3 pieces / μm 2 or less. Although preferably as small as possible also the number density, considering the conditions of the manufacturing method of the specified lower limit value of the number density becomes 1.0 × 10 -5 cells / [mu] m 2 approximately.
上記最大値と上記個数密度は、実施例に記載の方法で求められる。
The maximum value and the number density are obtained by the method described in the examples.
本発明は、鋼組織の種類を特に限定するものではない。例えばベイニティックフェライトが10面積%以上であって、その他の組織として、フェライト、ベイナイト、マルテンサイト、またはこれらの組み合わせを含みうる組織とすることができる。尚、上記ベイニティックフェライトとは、図1の顕微鏡写真において○で囲む組織の通り、フェライトとラス状組織の中間組織をいう。
The present invention does not particularly limit the type of steel structure. For example, the bainitic ferrite may be 10 area% or more, and the other structure may include ferrite, bainite, martensite, or a combination thereof. The bainitic ferrite refers to an intermediate structure between ferrite and lath structure as shown by a circle surrounded by a micrograph in FIG.
本発明の鋼板において、高強度とは、t/4部のビッカース硬さが180以上であることをいう。上記ビッカース硬さと共に、下記実施例に示す通り、降伏強度、引張強度および伸びが下記実施例に示す評価基準を満たすことが好ましい。
In the steel sheet of the present invention, high strength means that the Vickers hardness at t / 4 part is 180 or more. Along with the Vickers hardness, as shown in the following examples, it is preferable that the yield strength, tensile strength, and elongation satisfy the evaluation criteria shown in the following examples.
鋼板の上記高強度や、母材の靱性、特には母材の低温靱性、更には船舶用鋼板等に求められるHAZ(Heat Affected Zone)靱性等を確保するには、以下に示す通り、鋼板の成分組成を満たす必要がある。
In order to ensure the high strength of the steel sheet, the toughness of the base material, particularly the low temperature toughness of the base material, and the HAZ (Heat Affected Zone) toughness required for marine steel sheets, etc., as shown below, It is necessary to satisfy the component composition.
C:0.01~0.15%
Cは、鋼材、即ち母材の強度を確保するために欠くことのできない元素である。こうした効果を発揮させるには、0.01%以上含有させる必要がある。Cは、0.03%以上含有させることが好ましく、より好ましくは0.04%以上である。しかしC量が0.15%を超えると、溶接時にHAZに島状マルテンサイトが多く生成し、HAZ靱性の劣化を招くだけでなく溶接性にも悪影響を及ぼす。従ってC量は、0.15%以下、好ましくは0.10%以下、より好ましくは0.060%以下とする。 C: 0.01 to 0.15%
C is an element indispensable for securing the strength of the steel material, that is, the base material. In order to exert such effects, it is necessary to contain 0.01% or more. C is preferably contained in an amount of 0.03% or more, and more preferably 0.04% or more. However, if the amount of C exceeds 0.15%, a lot of island martensite is generated in the HAZ during welding, which not only deteriorates the HAZ toughness but also adversely affects the weldability. Therefore, the C content is 0.15% or less, preferably 0.10% or less, more preferably 0.060% or less.
Cは、鋼材、即ち母材の強度を確保するために欠くことのできない元素である。こうした効果を発揮させるには、0.01%以上含有させる必要がある。Cは、0.03%以上含有させることが好ましく、より好ましくは0.04%以上である。しかしC量が0.15%を超えると、溶接時にHAZに島状マルテンサイトが多く生成し、HAZ靱性の劣化を招くだけでなく溶接性にも悪影響を及ぼす。従ってC量は、0.15%以下、好ましくは0.10%以下、より好ましくは0.060%以下とする。 C: 0.01 to 0.15%
C is an element indispensable for securing the strength of the steel material, that is, the base material. In order to exert such effects, it is necessary to contain 0.01% or more. C is preferably contained in an amount of 0.03% or more, and more preferably 0.04% or more. However, if the amount of C exceeds 0.15%, a lot of island martensite is generated in the HAZ during welding, which not only deteriorates the HAZ toughness but also adversely affects the weldability. Therefore, the C content is 0.15% or less, preferably 0.10% or less, more preferably 0.060% or less.
Si:0%超0.50%以下
Siは、固溶強化により鋼材の強度を確保するのに寄与する元素である。この観点から、Siを0.02%以上、更には0.05%以上含有させてもよい。しかしSi量が0.50%を超えると、溶接時にHAZに島状マルテンサイトが多く生成し、HAZ靱性の劣化を招くだけでなく溶接性にも悪影響を及ぼす。従ってSi量は0.50%以下とする。Si量は、好ましくは0.30%以下であり、より好ましくは0.20%以下、更に好ましくは0.10%以下である。 Si: more than 0% and 0.50% or less Si is an element that contributes to securing the strength of a steel material by solid solution strengthening. From this viewpoint, Si may be contained in an amount of 0.02% or more, further 0.05% or more. However, if the amount of Si exceeds 0.50%, a lot of island martensite is generated in the HAZ during welding, which not only deteriorates the HAZ toughness but also adversely affects the weldability. Therefore, the Si amount is 0.50% or less. The amount of Si is preferably 0.30% or less, more preferably 0.20% or less, and still more preferably 0.10% or less.
Siは、固溶強化により鋼材の強度を確保するのに寄与する元素である。この観点から、Siを0.02%以上、更には0.05%以上含有させてもよい。しかしSi量が0.50%を超えると、溶接時にHAZに島状マルテンサイトが多く生成し、HAZ靱性の劣化を招くだけでなく溶接性にも悪影響を及ぼす。従ってSi量は0.50%以下とする。Si量は、好ましくは0.30%以下であり、より好ましくは0.20%以下、更に好ましくは0.10%以下である。 Si: more than 0% and 0.50% or less Si is an element that contributes to securing the strength of a steel material by solid solution strengthening. From this viewpoint, Si may be contained in an amount of 0.02% or more, further 0.05% or more. However, if the amount of Si exceeds 0.50%, a lot of island martensite is generated in the HAZ during welding, which not only deteriorates the HAZ toughness but also adversely affects the weldability. Therefore, the Si amount is 0.50% or less. The amount of Si is preferably 0.30% or less, more preferably 0.20% or less, and still more preferably 0.10% or less.
Mn:0.6~2.0%
Mnは、鋼材の強度向上に寄与する元素である。こうした効果を有効に発揮させるには、Mnを0.6%以上含有させる必要がある。Mn量は、好ましくは1.0%以上、より好ましくは1.50%以上である。しかしMn量が2.0%を超えると、母材の溶接性が劣化する。従ってMn量は、2.0%以下に抑える必要がある。Mn量は、好ましくは1.90%以下であり、より好ましくは1.85%以下、更に好ましくは1.80%以下である。 Mn: 0.6 to 2.0%
Mn is an element that contributes to improving the strength of the steel material. In order to exhibit such an effect effectively, it is necessary to contain 0.6% or more of Mn. The amount of Mn is preferably 1.0% or more, more preferably 1.50% or more. However, if the amount of Mn exceeds 2.0%, the weldability of the base material deteriorates. Therefore, the amount of Mn needs to be suppressed to 2.0% or less. The amount of Mn is preferably 1.90% or less, more preferably 1.85% or less, and still more preferably 1.80% or less.
Mnは、鋼材の強度向上に寄与する元素である。こうした効果を有効に発揮させるには、Mnを0.6%以上含有させる必要がある。Mn量は、好ましくは1.0%以上、より好ましくは1.50%以上である。しかしMn量が2.0%を超えると、母材の溶接性が劣化する。従ってMn量は、2.0%以下に抑える必要がある。Mn量は、好ましくは1.90%以下であり、より好ましくは1.85%以下、更に好ましくは1.80%以下である。 Mn: 0.6 to 2.0%
Mn is an element that contributes to improving the strength of the steel material. In order to exhibit such an effect effectively, it is necessary to contain 0.6% or more of Mn. The amount of Mn is preferably 1.0% or more, more preferably 1.50% or more. However, if the amount of Mn exceeds 2.0%, the weldability of the base material deteriorates. Therefore, the amount of Mn needs to be suppressed to 2.0% or less. The amount of Mn is preferably 1.90% or less, more preferably 1.85% or less, and still more preferably 1.80% or less.
P:0%超0.030%以下
Pは、偏析し易い元素であり、特に鋼材中の結晶粒界に偏析して母材の靱性を劣化させる。従ってPは0.030%以下に抑制する必要がある。P量は、好ましくは0.018%以下、より好ましくは0.015%以下である。 P: more than 0% and 0.030% or less P is an element that easily segregates, and particularly segregates at a grain boundary in a steel material to deteriorate the toughness of the base material. Therefore, P must be suppressed to 0.030% or less. The amount of P is preferably 0.018% or less, more preferably 0.015% or less.
Pは、偏析し易い元素であり、特に鋼材中の結晶粒界に偏析して母材の靱性を劣化させる。従ってPは0.030%以下に抑制する必要がある。P量は、好ましくは0.018%以下、より好ましくは0.015%以下である。 P: more than 0% and 0.030% or less P is an element that easily segregates, and particularly segregates at a grain boundary in a steel material to deteriorate the toughness of the base material. Therefore, P must be suppressed to 0.030% or less. The amount of P is preferably 0.018% or less, more preferably 0.015% or less.
S:0%超0.025%以下
Sは、Mnと結合してMnSを生成し、母材の靱性や板厚方向の延性を劣化させる有害な元素である。従ってS量は0.025%以下に抑制する必要がある。S量は、好ましくは0.012%以下であり、より好ましくは0.008%以下、更に好ましくは0.006%以下である。 S: more than 0% and 0.025% or less S is a harmful element that combines with Mn to generate MnS, and deteriorates the toughness of the base material and the ductility in the thickness direction. Therefore, the S amount needs to be suppressed to 0.025% or less. The amount of S is preferably 0.012% or less, more preferably 0.008% or less, and still more preferably 0.006% or less.
Sは、Mnと結合してMnSを生成し、母材の靱性や板厚方向の延性を劣化させる有害な元素である。従ってS量は0.025%以下に抑制する必要がある。S量は、好ましくは0.012%以下であり、より好ましくは0.008%以下、更に好ましくは0.006%以下である。 S: more than 0% and 0.025% or less S is a harmful element that combines with Mn to generate MnS, and deteriorates the toughness of the base material and the ductility in the thickness direction. Therefore, the S amount needs to be suppressed to 0.025% or less. The amount of S is preferably 0.012% or less, more preferably 0.008% or less, and still more preferably 0.006% or less.
Al:0.02~0.07%
Alは、脱酸のために有用な元素であり、またAlNを形成して結晶粒の微細化にも寄与する元素である。これらの効果を発揮させるため、Al量を0.02%以上とする。しかしAl量が過剰になると、母材靱性およびHAZ靱性が劣化するため、Al量は0.07%以下に抑える必要がある。Al量は、好ましくは0.050%以下、より好ましくは0.040%以下である。 Al: 0.02 to 0.07%
Al is an element useful for deoxidation, and also contributes to the refinement of crystal grains by forming AlN. In order to exert these effects, the Al content is set to 0.02% or more. However, when the Al amount is excessive, the base material toughness and the HAZ toughness deteriorate, so the Al amount needs to be suppressed to 0.07% or less. The amount of Al is preferably 0.050% or less, more preferably 0.040% or less.
Alは、脱酸のために有用な元素であり、またAlNを形成して結晶粒の微細化にも寄与する元素である。これらの効果を発揮させるため、Al量を0.02%以上とする。しかしAl量が過剰になると、母材靱性およびHAZ靱性が劣化するため、Al量は0.07%以下に抑える必要がある。Al量は、好ましくは0.050%以下、より好ましくは0.040%以下である。 Al: 0.02 to 0.07%
Al is an element useful for deoxidation, and also contributes to the refinement of crystal grains by forming AlN. In order to exert these effects, the Al content is set to 0.02% or more. However, when the Al amount is excessive, the base material toughness and the HAZ toughness deteriorate, so the Al amount needs to be suppressed to 0.07% or less. The amount of Al is preferably 0.050% or less, more preferably 0.040% or less.
Nb:0.003%以上0.05%未満
Nbは、固溶によるソリュートドラッグ効果および炭窒化物析出によるピン止め効果の2つの効果により、再結晶粒の粗大化を抑制し、母材靱性の向上に寄与する。また変態開始温度を低温側へシフトさせる働きがあり、これが組織の微細化を促す。Nbによるこれらの作用を有効に発揮させるため、Nb量を0.003%以上とする。Nb量は、好ましくは0.005%以上、より好ましくは0.007%以上である。しかしNb量が0.05%以上になると母材靱性およびHAZ靱性が劣化するため、本発明では、Nb量を0.05%未満とする。Nb量は、好ましくは0.030%以下であり、より好ましくは0.025%以下、更に好ましくは0.020%以下である。 Nb: 0.003% or more and less than 0.05% Nb suppresses coarsening of recrystallized grains by two effects of a solid drag effect by solid solution and a pinning effect by carbonitride precipitation. Contributes to improvement. It also has the function of shifting the transformation start temperature to the low temperature side, which promotes the refinement of the structure. In order to effectively exhibit these actions by Nb, the amount of Nb is made 0.003% or more. The Nb amount is preferably 0.005% or more, more preferably 0.007% or more. However, when the Nb amount is 0.05% or more, the base material toughness and the HAZ toughness deteriorate, and therefore, in the present invention, the Nb amount is set to less than 0.05%. The Nb amount is preferably 0.030% or less, more preferably 0.025% or less, and still more preferably 0.020% or less.
Nbは、固溶によるソリュートドラッグ効果および炭窒化物析出によるピン止め効果の2つの効果により、再結晶粒の粗大化を抑制し、母材靱性の向上に寄与する。また変態開始温度を低温側へシフトさせる働きがあり、これが組織の微細化を促す。Nbによるこれらの作用を有効に発揮させるため、Nb量を0.003%以上とする。Nb量は、好ましくは0.005%以上、より好ましくは0.007%以上である。しかしNb量が0.05%以上になると母材靱性およびHAZ靱性が劣化するため、本発明では、Nb量を0.05%未満とする。Nb量は、好ましくは0.030%以下であり、より好ましくは0.025%以下、更に好ましくは0.020%以下である。 Nb: 0.003% or more and less than 0.05% Nb suppresses coarsening of recrystallized grains by two effects of a solid drag effect by solid solution and a pinning effect by carbonitride precipitation. Contributes to improvement. It also has the function of shifting the transformation start temperature to the low temperature side, which promotes the refinement of the structure. In order to effectively exhibit these actions by Nb, the amount of Nb is made 0.003% or more. The Nb amount is preferably 0.005% or more, more preferably 0.007% or more. However, when the Nb amount is 0.05% or more, the base material toughness and the HAZ toughness deteriorate, and therefore, in the present invention, the Nb amount is set to less than 0.05%. The Nb amount is preferably 0.030% or less, more preferably 0.025% or less, and still more preferably 0.020% or less.
Ti:0.003~0.03%
Tiは、鋼材中にTiNなどの窒化物やTi酸化物を生成し、HAZ靱性の向上に寄与する元素である。該効果を発揮させるには、Tiを0.003%以上含有させる必要がある。Ti量は、好ましくは0.005%以上、より好ましくは0.007%以上、更に好ましくは0.010%以上である。しかしTiが過剰に含まれると、母材靱性が劣化するため、Ti量は0.03%以下とする。Ti量は、好ましくは0.020%以下であり、より好ましくは0.018%以下である。 Ti: 0.003-0.03%
Ti is an element that generates nitrides such as TiN and Ti oxide in the steel material and contributes to improvement of HAZ toughness. In order to exhibit this effect, it is necessary to contain 0.003% or more of Ti. The amount of Ti is preferably 0.005% or more, more preferably 0.007% or more, and still more preferably 0.010% or more. However, if Ti is excessively contained, the toughness of the base material deteriorates, so the Ti amount is set to 0.03% or less. The amount of Ti is preferably 0.020% or less, more preferably 0.018% or less.
Tiは、鋼材中にTiNなどの窒化物やTi酸化物を生成し、HAZ靱性の向上に寄与する元素である。該効果を発揮させるには、Tiを0.003%以上含有させる必要がある。Ti量は、好ましくは0.005%以上、より好ましくは0.007%以上、更に好ましくは0.010%以上である。しかしTiが過剰に含まれると、母材靱性が劣化するため、Ti量は0.03%以下とする。Ti量は、好ましくは0.020%以下であり、より好ましくは0.018%以下である。 Ti: 0.003-0.03%
Ti is an element that generates nitrides such as TiN and Ti oxide in the steel material and contributes to improvement of HAZ toughness. In order to exhibit this effect, it is necessary to contain 0.003% or more of Ti. The amount of Ti is preferably 0.005% or more, more preferably 0.007% or more, and still more preferably 0.010% or more. However, if Ti is excessively contained, the toughness of the base material deteriorates, so the Ti amount is set to 0.03% or less. The amount of Ti is preferably 0.020% or less, more preferably 0.018% or less.
B:0%以上0.005%以下
Bは、焼入れ性向上の効果により高強度確保に寄与する元素である。また粒界フェライトの生成を抑制してHAZ靱性を向上させる元素でもある。該効果を発揮させるため、0.0005%以上含有させてもよく、更には0.0010%以上含有させてもよい。しかし、B量が0.005%を超えると、オーステナイト粒界にBNとして析出し、HAZ靱性の低下を招く。従ってB量は0.005%以下とする。B量は、好ましくは0.002%以下である。 B: 0% or more and 0.005% or less B is an element that contributes to securing high strength by the effect of improving hardenability. It is also an element that improves the HAZ toughness by suppressing the formation of grain boundary ferrite. In order to exert this effect, 0.0005% or more may be contained, and further 0.0010% or more may be contained. However, if the amount of B exceeds 0.005%, it precipitates as BN at the austenite grain boundary, leading to a decrease in HAZ toughness. Therefore, the B amount is 0.005% or less. The amount of B is preferably 0.002% or less.
Bは、焼入れ性向上の効果により高強度確保に寄与する元素である。また粒界フェライトの生成を抑制してHAZ靱性を向上させる元素でもある。該効果を発揮させるため、0.0005%以上含有させてもよく、更には0.0010%以上含有させてもよい。しかし、B量が0.005%を超えると、オーステナイト粒界にBNとして析出し、HAZ靱性の低下を招く。従ってB量は0.005%以下とする。B量は、好ましくは0.002%以下である。 B: 0% or more and 0.005% or less B is an element that contributes to securing high strength by the effect of improving hardenability. It is also an element that improves the HAZ toughness by suppressing the formation of grain boundary ferrite. In order to exert this effect, 0.0005% or more may be contained, and further 0.0010% or more may be contained. However, if the amount of B exceeds 0.005%, it precipitates as BN at the austenite grain boundary, leading to a decrease in HAZ toughness. Therefore, the B amount is 0.005% or less. The amount of B is preferably 0.002% or less.
N:0.001~0.01%
Nは、例えば、TiNなどの窒化物を析出する元素である。該窒化物は、ピン止め効果により、溶接時にHAZに生成するオーステナイト粒の粗大化を防止し、フェライト変態を促進させて、HAZ靱性の向上に寄与する。この効果を有効に発揮させるには、0.001%以上含有させる必要がある。N量は、好ましくは0.0030%以上、より好ましくは0.0035%以上、更に好ましくは0.0040%以上である。しかしN量が0.01%を超えると、固溶N量が増大して母材靱性が劣化すると共に、HAZ靱性も劣化する。従ってN量は0.01%以下に抑える。N量は、好ましくは0.0085%以下、より好ましくは0.0075%以下である。 N: 0.001 to 0.01%
N is an element that precipitates a nitride such as TiN. Due to the pinning effect, the nitride prevents the austenite grains formed in the HAZ from being coarsened during welding, promotes the ferrite transformation, and contributes to the improvement of the HAZ toughness. In order to exhibit this effect effectively, it is necessary to contain 0.001% or more. The amount of N is preferably 0.0030% or more, more preferably 0.0035% or more, and still more preferably 0.0040% or more. However, if the N amount exceeds 0.01%, the solid solution N amount increases, the base material toughness deteriorates, and the HAZ toughness also deteriorates. Therefore, the N content is suppressed to 0.01% or less. The N amount is preferably 0.0085% or less, more preferably 0.0075% or less.
Nは、例えば、TiNなどの窒化物を析出する元素である。該窒化物は、ピン止め効果により、溶接時にHAZに生成するオーステナイト粒の粗大化を防止し、フェライト変態を促進させて、HAZ靱性の向上に寄与する。この効果を有効に発揮させるには、0.001%以上含有させる必要がある。N量は、好ましくは0.0030%以上、より好ましくは0.0035%以上、更に好ましくは0.0040%以上である。しかしN量が0.01%を超えると、固溶N量が増大して母材靱性が劣化すると共に、HAZ靱性も劣化する。従ってN量は0.01%以下に抑える。N量は、好ましくは0.0085%以下、より好ましくは0.0075%以下である。 N: 0.001 to 0.01%
N is an element that precipitates a nitride such as TiN. Due to the pinning effect, the nitride prevents the austenite grains formed in the HAZ from being coarsened during welding, promotes the ferrite transformation, and contributes to the improvement of the HAZ toughness. In order to exhibit this effect effectively, it is necessary to contain 0.001% or more. The amount of N is preferably 0.0030% or more, more preferably 0.0035% or more, and still more preferably 0.0040% or more. However, if the N amount exceeds 0.01%, the solid solution N amount increases, the base material toughness deteriorates, and the HAZ toughness also deteriorates. Therefore, the N content is suppressed to 0.01% or less. The N amount is preferably 0.0085% or less, more preferably 0.0075% or less.
Ca:0.0003~0.0060%
Caが含まれると、TiN生成温度が下がるため、微細なTiNが析出してHAZ靱性が向上する。またCaは、Al2O3を核として析出する粗大なTiNの生成も抑制し、HAZ靱性低下の抑制に寄与する。これらの効果を発揮させるため、Ca量は0.0003%以上とする。Ca量は、好ましくは0.0010%以上である。一方、Ca量が0.0060%を超えると、粗大な介在物が析出してHAZ靱性の低下を招く。従ってCaは0.0060%以下とする。Ca量は、好ましくは0.0040%以下であり、より好ましくは0.0030%以下である。 Ca: 0.0003 to 0.0060%
When Ca is contained, since the TiN generation temperature is lowered, fine TiN is precipitated and the HAZ toughness is improved. Ca also suppresses the formation of coarse TiN that precipitates with Al 2 O 3 as a nucleus, and contributes to the suppression of HAZ toughness reduction. In order to exert these effects, the Ca content is set to 0.0003% or more. The amount of Ca is preferably 0.0010% or more. On the other hand, if the Ca content exceeds 0.0060%, coarse inclusions are precipitated, leading to a reduction in HAZ toughness. Therefore, Ca is made 0.0060% or less. The amount of Ca is preferably 0.0040% or less, and more preferably 0.0030% or less.
Caが含まれると、TiN生成温度が下がるため、微細なTiNが析出してHAZ靱性が向上する。またCaは、Al2O3を核として析出する粗大なTiNの生成も抑制し、HAZ靱性低下の抑制に寄与する。これらの効果を発揮させるため、Ca量は0.0003%以上とする。Ca量は、好ましくは0.0010%以上である。一方、Ca量が0.0060%を超えると、粗大な介在物が析出してHAZ靱性の低下を招く。従ってCaは0.0060%以下とする。Ca量は、好ましくは0.0040%以下であり、より好ましくは0.0030%以下である。 Ca: 0.0003 to 0.0060%
When Ca is contained, since the TiN generation temperature is lowered, fine TiN is precipitated and the HAZ toughness is improved. Ca also suppresses the formation of coarse TiN that precipitates with Al 2 O 3 as a nucleus, and contributes to the suppression of HAZ toughness reduction. In order to exert these effects, the Ca content is set to 0.0003% or more. The amount of Ca is preferably 0.0010% or more. On the other hand, if the Ca content exceeds 0.0060%, coarse inclusions are precipitated, leading to a reduction in HAZ toughness. Therefore, Ca is made 0.0060% or less. The amount of Ca is preferably 0.0040% or less, and more preferably 0.0030% or less.
本発明の鋼材は、上記元素を含み、残部は鉄および不可避不純物からなる。該不可避不純物として、例えば、酸素やMg、As、Seなどが挙げられる。中でも酸素は、介在物を形成して特性の劣化を招きやすいため、0.0040%以下に抑えることが好ましい。酸素量は、より好ましくは0.0020%以下である。本発明には、更に他の元素として、下記に示す通り、鋼材の強度や靱性を向上させるCuやNi、Cr、Mo、V、介在物の形態制御に寄与するREMやZrを含む鋼材も含まれる。
The steel material of the present invention contains the above elements, and the balance consists of iron and inevitable impurities. Examples of the inevitable impurities include oxygen, Mg, As, and Se. In particular, oxygen is liable to cause deterioration of characteristics by forming inclusions, and is preferably suppressed to 0.0040% or less. The amount of oxygen is more preferably 0.0020% or less. The present invention further includes, as other elements, steel materials containing Cu, Ni, Cr, Mo, V, and REM and Zr contributing to inclusion shape control, which improve the strength and toughness of the steel material, as shown below. It is.
Cu:0%超1.0%以下、Ni:0%超1.20%以下、Cr:0%超0.50%以下、Mo:0%超0.5%以下、およびV:0%超0.1%以下よりなる群から選択される1種以上の元素
これらの元素は、鋼材の強度や靱性の向上に寄与する元素である。以下、各元素について説明する。 Cu: more than 0% and less than 1.0%, Ni: more than 0% and less than 1.20%, Cr: more than 0% and less than 0.50%, Mo: more than 0% and less than 0.5%, and V: more than 0% One or more elements selected from the group consisting of 0.1% or less These elements are elements that contribute to improving the strength and toughness of the steel material. Hereinafter, each element will be described.
これらの元素は、鋼材の強度や靱性の向上に寄与する元素である。以下、各元素について説明する。 Cu: more than 0% and less than 1.0%, Ni: more than 0% and less than 1.20%, Cr: more than 0% and less than 0.50%, Mo: more than 0% and less than 0.5%, and V: more than 0% One or more elements selected from the group consisting of 0.1% or less These elements are elements that contribute to improving the strength and toughness of the steel material. Hereinafter, each element will be described.
Cuは、固溶強化により鋼材の強度を高める元素である。この作用を有効に発揮させるには、Cuを0.01%以上含有させることが好ましい。Cu量は、より好ましくは0.15%以上、更に好ましくは0.20%以上、より更に好ましくは0.25%以上である。しかしCu量が1.0%を超えると、鋼材の靱性が劣化するため、Cu量は1.0%以下とすることが好ましい。Cu量は、より好ましくは0.8%以下であり、更に好ましくは0.5%以下である。
Cu is an element that increases the strength of steel by solid solution strengthening. In order to effectively exhibit this action, it is preferable to contain 0.01% or more of Cu. The amount of Cu is more preferably 0.15% or more, still more preferably 0.20% or more, and still more preferably 0.25% or more. However, if the Cu content exceeds 1.0%, the toughness of the steel material deteriorates, so the Cu content is preferably 1.0% or less. The amount of Cu is more preferably 0.8% or less, still more preferably 0.5% or less.
Niは、鋼材の強度を高めると共に、鋼材自体の靱性を向上させるのにも寄与する元素である。またNbと同様に、変態開始温度を低温側へシフトさせる働きがあり、これが組織の微細化を促す。これらの作用を有効に発揮させるには、Niを0.01%以上含有させることが好ましく、より好ましくは0.10%以上、更に好ましくは0.20%以上、より更に好ましくは0.30%以上である。しかしNiは高価な元素であるため、経済的理由から、Ni量は1.20%以下とすることが好ましく、より好ましくは1.00%以下、更に好ましくは0.80%以下、より更に好ましくは0.60%以下である。
Ni is an element that contributes to increasing the strength of the steel material and improving the toughness of the steel material itself. Further, like Nb, it has a function of shifting the transformation start temperature to the low temperature side, which promotes the refinement of the structure. In order to exert these actions effectively, it is preferable to contain Ni by 0.01% or more, more preferably 0.10% or more, still more preferably 0.20% or more, and still more preferably 0.30%. That's it. However, since Ni is an expensive element, for economic reasons, the Ni content is preferably 1.20% or less, more preferably 1.00% or less, still more preferably 0.80% or less, and even more preferably. Is 0.60% or less.
Crは、鋼材の強度を高めるのに寄与する元素であり、0.01%以上含有させることが好ましい。Cr量は、より好ましくは0.02%以上、更に好ましくは0.03%以上である。しかしCr量が0.50%を超えると、鋼材の強度が高まり過ぎて母材靱性が劣化し、またHAZ靱性も劣化する。よってCr量は0.50%以下とすることが好ましい。Cr量は、より好ましくは0.30%以下、更に好ましくは0.20%以下、より更に好ましくは0.15%以下である。
Cr is an element that contributes to increasing the strength of the steel material, and is preferably contained in an amount of 0.01% or more. The amount of Cr is more preferably 0.02% or more, and still more preferably 0.03% or more. However, if the Cr content exceeds 0.50%, the strength of the steel material is excessively increased and the base material toughness is deteriorated, and the HAZ toughness is also deteriorated. Therefore, the Cr content is preferably 0.50% or less. The amount of Cr is more preferably 0.30% or less, still more preferably 0.20% or less, and still more preferably 0.15% or less.
Moも、鋼材の強度を高めるのに寄与する元素であり、0.005%以上含有させることが好ましい。より好ましくは0.008%以上、更に好ましくは0.01%以上である。しかし0.5%を超えると、鋼材の強度が高くなり過ぎて母材靱性が劣化し、HAZ靱性も低下する。よってMo量は0.5%以下とすることが好ましく、より好ましくは0.3%以下、更に好ましくは0.2%以下、より更に好ましくは0.10%以下である。
Mo is also an element that contributes to increasing the strength of the steel, and is preferably contained in an amount of 0.005% or more. More preferably it is 0.008% or more, and still more preferably 0.01% or more. However, if it exceeds 0.5%, the strength of the steel material becomes too high, the base material toughness deteriorates, and the HAZ toughness also decreases. Therefore, the Mo amount is preferably 0.5% or less, more preferably 0.3% or less, still more preferably 0.2% or less, and still more preferably 0.10% or less.
Vも、鋼材の強度を高めるのに寄与する元素であり、またHAZ靱性の向上にも寄与する元素である。該効果を発揮させるにはVを0.001%以上含有させることが好ましい。V量は、より好ましくは0.002%以上、更に好ましくは0.005%以上である。しかしV量が過剰になると、析出する炭窒化物が粗大化して母材靱性が劣化する。よってV量は0.1%以下とすることが好ましい。V量は、より好ましくは0.05%以下、更に好ましくは0.02%以下である。
V is also an element that contributes to increasing the strength of the steel material, and is also an element that contributes to the improvement of HAZ toughness. In order to exhibit this effect, it is preferable to contain V 0.001% or more. The amount of V is more preferably 0.002% or more, and further preferably 0.005% or more. However, when the amount of V becomes excessive, the precipitated carbonitrides become coarse and the base material toughness deteriorates. Therefore, the V amount is preferably 0.1% or less. The amount of V is more preferably 0.05% or less, still more preferably 0.02% or less.
REM:0%超0.05%以下、およびZr:0%超0.020%以下よりなる群から選択される1種以上の元素
これらの元素は、介在物を微細化し、母材靱性およびHAZ靱性を向上させるのに有効に作用する。該効果を発揮させるには、REMを用いる場合、REM量は0.005%以上とすることが好ましく、より好ましくは0.010%以上である。またZrを用いる場合、Zr量は0.005%以上とすることが好ましく、より好ましくは0.010%以上である。しかしながら、これらの含有量が過剰になると、酸化物が粗大になり母材およびHAZの靱性がかえって劣化する。よって、REM量は0.05%以下とすることが好ましく、より好ましくは0.018%以下である。またZr量は0.020%以下であることが好ましく、より好ましくは0.010%以下である。尚、本発明ではREMとして、周期律表3族に属するスカンジウム、イットリウム、およびランタノイド系列希土類元素、即ち原子番号57~71の元素のいずれをも用いることができる。 One or more elements selected from the group consisting of REM: more than 0% and less than 0.05%, and Zr: more than 0% and less than 0.020%. These elements refine inclusions, and improve the base material toughness and HAZ. It works effectively to improve toughness. In order to exert this effect, when REM is used, the REM content is preferably 0.005% or more, more preferably 0.010% or more. When Zr is used, the Zr content is preferably 0.005% or more, more preferably 0.010% or more. However, when these contents are excessive, the oxide becomes coarse and the toughness of the base material and the HAZ deteriorates on the contrary. Therefore, the REM content is preferably 0.05% or less, and more preferably 0.018% or less. Moreover, it is preferable that Zr amount is 0.020% or less, More preferably, it is 0.010% or less. In the present invention, any of scandium, yttrium, and lanthanoid series rare earth elements belonging to group 3 of the periodic table, that is, elements having atomic numbers 57 to 71 can be used as REM.
これらの元素は、介在物を微細化し、母材靱性およびHAZ靱性を向上させるのに有効に作用する。該効果を発揮させるには、REMを用いる場合、REM量は0.005%以上とすることが好ましく、より好ましくは0.010%以上である。またZrを用いる場合、Zr量は0.005%以上とすることが好ましく、より好ましくは0.010%以上である。しかしながら、これらの含有量が過剰になると、酸化物が粗大になり母材およびHAZの靱性がかえって劣化する。よって、REM量は0.05%以下とすることが好ましく、より好ましくは0.018%以下である。またZr量は0.020%以下であることが好ましく、より好ましくは0.010%以下である。尚、本発明ではREMとして、周期律表3族に属するスカンジウム、イットリウム、およびランタノイド系列希土類元素、即ち原子番号57~71の元素のいずれをも用いることができる。 One or more elements selected from the group consisting of REM: more than 0% and less than 0.05%, and Zr: more than 0% and less than 0.020%. These elements refine inclusions, and improve the base material toughness and HAZ. It works effectively to improve toughness. In order to exert this effect, when REM is used, the REM content is preferably 0.005% or more, more preferably 0.010% or more. When Zr is used, the Zr content is preferably 0.005% or more, more preferably 0.010% or more. However, when these contents are excessive, the oxide becomes coarse and the toughness of the base material and the HAZ deteriorates on the contrary. Therefore, the REM content is preferably 0.05% or less, and more preferably 0.018% or less. Moreover, it is preferable that Zr amount is 0.020% or less, More preferably, it is 0.010% or less. In the present invention, any of scandium, yttrium, and lanthanoid series rare earth elements belonging to group 3 of the periodic table, that is, elements having atomic numbers 57 to 71 can be used as REM.
本発明に係る鋼板の板厚は特に限定されず、例えば6mm以上であり、更には10mm以上、より更には15mm以上で、100mm以下を想定したものである。
The thickness of the steel sheet according to the present invention is not particularly limited, and is, for example, 6 mm or more, further 10 mm or more, more preferably 15 mm or more, and 100 mm or less.
次に本発明の鋼板の製造方法について説明する。まずは、本発明の鋼板の製造方法で用いる固溶B指数について説明する。
Next, the manufacturing method of the steel plate of the present invention will be described. First, the solid solution B index used in the method for producing a steel sheet of the present invention will be described.
船舶用鋼材には、施工効率向上の観点から、大入熱溶接が志向される。該溶接後のHAZ靱性を高めるため、一般には、Ti、NおよびBを添加し、TiN生成による旧オーステナイト粒成長抑制及びBN生成による粒内核生成を活用することが行われている。上記Bは、BNを構成するBと、Nとは結合せず鋼中に固溶する「固溶B」との2種に分かれる。これらの比率は、製鋼段階でのTi、NおよびBの添加実績により変化する。
High heat input welding is intended for marine steel materials from the viewpoint of improving construction efficiency. In order to increase the HAZ toughness after the welding, generally, Ti, N and B are added to suppress the prior austenite grain growth suppression by TiN generation and intragranular nucleation by BN generation. The above B is divided into two types: B constituting BN and “solid solution B” which does not bond with N and dissolves in steel. These ratios change according to the addition results of Ti, N and B in the steelmaking stage.
本発明者らは、大角結晶粒のサイズと元素との関係について検討したところ、元素の中でも上記B、特には上記「固溶B」が大角結晶粒の粗大化を招いているのではないか、との点に着目した。そしてこの観点から、固溶B量が大角結晶粒のサイズに及ぼす影響について調査した結果、鋼中の固溶Bが増加すると、大角結晶粒として一部に粗大なものが生成したり、比較的粗大な大角結晶粒の数が増加する傾向にあることが判明した。固溶Bが、上記大角結晶粒の粗大化を招く理由は次の様に考えられる。即ち、鋼のγからαへの変態時に、固溶Bが、変態の方位選択を制限する結果、結晶方位差15°未満の結晶粒が集まって形成され易く、言い換えれば結晶方位差15°以上の大角結晶粒が形成されにくく、その結果、結晶方位差15°以上の結晶粒径が粗大、即ち、大角結晶粒のサイズが粗大になるのではないかと考えられる。
The present inventors examined the relationship between the size of the large-angle crystal grains and the element. Among the elements, the above-mentioned B, in particular, the above-mentioned “solid solution B” might cause the coarsening of the large-angle crystal grains. I focused on the point. And from this point of view, as a result of investigating the influence of the amount of solute B on the size of large-angle crystal grains, when solid-solution B in steel increases, some coarse particles are generated as large-angle crystal grains, It was found that the number of coarse large-angle grains tends to increase. The reason why the solid solution B causes the coarsening of the large-angle crystal grains is considered as follows. That is, at the time of transformation from γ to α, the solute B tends to be formed by gathering crystal grains having a crystal orientation difference of less than 15 ° as a result of restricting the selection of transformation orientation, in other words, a crystal orientation difference of 15 ° or more. The large-angle crystal grains are difficult to be formed, and as a result, the crystal grain size having a crystal orientation difference of 15 ° or more is coarse, that is, the size of the large-angle crystal grains is considered to be coarse.
そこで、上記粗大な大角結晶粒の生成抑制を目的に、まずは、鋼中の固溶B量を算出するため下記式(1)を設定した。下記式(1)で表される固溶B指数は、鋼中の固溶B量を表す指数であり、この値が大きいほど鋼中の固溶B量が多いことを意味する。本発明者らは、この固溶B指数が大きいほど、大角結晶粒が粗大になりすく、その結果、低温靱性の低下が生じやすいことを別途確認している。
Therefore, for the purpose of suppressing the formation of the coarse large-angle crystal grains, first, the following formula (1) was set in order to calculate the amount of solute B in the steel. The solute B index represented by the following formula (1) is an index representing the amount of solute B in steel, and the larger the value, the greater the amount of solute B in steel. The present inventors have separately confirmed that the larger the solid solution B index, the larger the large-angle crystal grains become, and as a result, the low-temperature toughness is liable to decrease.
そして本発明者らは、上記固溶B指数に応じて製造条件を制御すべく更に検討を行った。その結果、上記固溶B指数=2.0を境として、特に固溶B指数が2.0以上の場合に、オーステナイト未再結晶温度域での圧延の累積圧下率を一定以上とすれば、粗大な大角結晶粒の生成が抑制されることを見出した。
The inventors further studied to control the production conditions according to the solid solution B index. As a result, with the solid solution B index = 2.0 as a boundary, particularly when the solid solution B index is 2.0 or more, if the cumulative reduction rate of rolling in the austenite non-recrystallization temperature range is a certain value or more, It has been found that the formation of coarse large-angle crystal grains is suppressed.
以下では、上記オーステナイト未再結晶温度域での圧延の累積圧下率を含め、本発明で製造方法を規定した理由について説明する。
Hereinafter, the reason why the manufacturing method is defined in the present invention, including the cumulative rolling reduction ratio of rolling in the austenite non-recrystallization temperature range, will be described.
本発明の製造方法では、上記の成分組成を有する鋼片を、常法により鋳造して例えばスラブ等を得た後、下記工程A~Fをこの順に含むように実施する。尚、以下の製造方法で規定の温度は、特に断りのない限り表面温度をいう。また下記製造方法において、板厚、tは、特に断りのない限り、各工程での板厚、圧延を含む工程では圧延開始時の板厚をいう。
In the production method of the present invention, a steel slab having the above component composition is cast by a conventional method to obtain, for example, a slab, and thereafter, the following steps A to F are performed in this order. In addition, the temperature prescribed | regulated with the following manufacturing methods means surface temperature unless there is particular notice. Moreover, in the following manufacturing method, unless otherwise indicated, plate | board thickness and t mean the plate | board thickness at the time of a rolling start in the board | plate thickness in each process, and the process including rolling.
[工程A:900~1200℃の温度域で、板厚方向の温度偏差が40℃以内になるまで加熱する]
鋼片の組織をまずはオーステナイト単相とするため、900℃以上に加熱する。加熱温度は好ましくは1000℃以上である。該加熱温度の上限はコスト等の観点から1200℃以下であり、好ましくは1150℃以下である。尚、ここでの加熱温度は炉内の雰囲気温度をいう。 [Step A: Heating is performed in a temperature range of 900 to 1200 ° C. until the temperature deviation in the thickness direction is within 40 ° C.]
First, the steel piece is heated to 900 ° C. or higher in order to obtain an austenite single phase. The heating temperature is preferably 1000 ° C. or higher. The upper limit of the heating temperature is 1200 ° C. or less, preferably 1150 ° C. or less from the viewpoint of cost and the like. In addition, the heating temperature here says the atmospheric temperature in a furnace.
鋼片の組織をまずはオーステナイト単相とするため、900℃以上に加熱する。加熱温度は好ましくは1000℃以上である。該加熱温度の上限はコスト等の観点から1200℃以下であり、好ましくは1150℃以下である。尚、ここでの加熱温度は炉内の雰囲気温度をいう。 [Step A: Heating is performed in a temperature range of 900 to 1200 ° C. until the temperature deviation in the thickness direction is within 40 ° C.]
First, the steel piece is heated to 900 ° C. or higher in order to obtain an austenite single phase. The heating temperature is preferably 1000 ° C. or higher. The upper limit of the heating temperature is 1200 ° C. or less, preferably 1150 ° C. or less from the viewpoint of cost and the like. In addition, the heating temperature here says the atmospheric temperature in a furnace.
上記鋼片の加熱は、板厚方向の温度偏差が40℃以内となるまで行う。この工程Aでの板厚方向の温度偏差は、後述する実施例に示す方法で求めた「t/4部の温度」と「t/2部の温度」との差である。この鋼片加熱時の板厚方向の温度偏差が大きいと、t/4部の温度の予測計算値にずれが生じ、後工程で適切な圧延が行えない。上記温度偏差は35℃以内とすることが好ましく、より好ましくは30℃以内であり、最も好ましくは20℃以内である。
The above steel slab is heated until the temperature deviation in the thickness direction is within 40 ° C. The temperature deviation in the plate thickness direction in the step A is a difference between “t / 4 part temperature” and “t / 2 part temperature” obtained by a method shown in an example described later. If the temperature deviation in the sheet thickness direction during heating of the steel slab is large, a deviation occurs in the predicted calculation value of the temperature at t / 4 part, and appropriate rolling cannot be performed in the subsequent process. The temperature deviation is preferably within 35 ° C., more preferably within 30 ° C., and most preferably within 20 ° C.
[工程B:鋼片表面のスケールを除去する]
一般に加熱時間が長時間化すると、鋼板表面にスケールが生成しやすくなる。スケールが鋼片表面に存在すると、表面温度から計算されるt/4部の温度の算出が阻害され、結果的にt/4部の適切な圧延を行うことができない。よって上記工程Aの後に鋼片表面のスケール除去を行う。スケール除去の方法として、例えば高圧水の吹付けを行うことが挙げられる。 [Process B: Remove scale on steel piece surface]
In general, when the heating time is prolonged, a scale is easily generated on the surface of the steel sheet. If the scale exists on the surface of the steel slab, calculation of the temperature of t / 4 part calculated from the surface temperature is hindered, and as a result, appropriate rolling of t / 4 part cannot be performed. Therefore, the scale removal on the surface of the steel slab is performed after the step A. As a method for removing the scale, for example, high pressure water is sprayed.
一般に加熱時間が長時間化すると、鋼板表面にスケールが生成しやすくなる。スケールが鋼片表面に存在すると、表面温度から計算されるt/4部の温度の算出が阻害され、結果的にt/4部の適切な圧延を行うことができない。よって上記工程Aの後に鋼片表面のスケール除去を行う。スケール除去の方法として、例えば高圧水の吹付けを行うことが挙げられる。 [Process B: Remove scale on steel piece surface]
In general, when the heating time is prolonged, a scale is easily generated on the surface of the steel sheet. If the scale exists on the surface of the steel slab, calculation of the temperature of t / 4 part calculated from the surface temperature is hindered, and as a result, appropriate rolling of t / 4 part cannot be performed. Therefore, the scale removal on the surface of the steel slab is performed after the step A. As a method for removing the scale, for example, high pressure water is sprayed.
上記工程Aおよび工程Bを実施することによって、下記工程C開始時の板厚内の温度偏差、即ち[(t/4部の温度-表面温度)/工程C開始時の板厚]から求められる数値を、1.0℃/mm以下に抑えることができる。
By performing step A and step B, the temperature deviation within the thickness at the start of the following step C, that is, [(temperature of t / 4 part-surface temperature) / plate thickness at the start of step C] is obtained. The numerical value can be suppressed to 1.0 ° C./mm or less.
[工程C:t/4部の温度がオーステナイト再結晶温度となる温度域にて、累積圧下率30%以上の圧延を行う]
この工程では、オーステナイト再結晶温度域にて、累積圧下率で30%以上の圧下を加える。この圧下により歪が蓄積され、後述する工程Fの冷却が実施されることにより、大角結晶粒の微細化を図ることができる。上記累積圧下率は、好ましくは32%以上、より好ましくは35%以上であり、その上限は、おおよそ50%程度である。 [Step C: Rolling with a cumulative reduction ratio of 30% or more is performed in a temperature range where the temperature at t / 4 part becomes the austenite recrystallization temperature]
In this step, a reduction of 30% or more in terms of cumulative reduction is applied in the austenite recrystallization temperature range. Strain is accumulated by this reduction, and cooling of the process F, which will be described later, is performed, so that the large-angle crystal grains can be refined. The cumulative rolling reduction is preferably 32% or more, more preferably 35% or more, and the upper limit is about 50%.
この工程では、オーステナイト再結晶温度域にて、累積圧下率で30%以上の圧下を加える。この圧下により歪が蓄積され、後述する工程Fの冷却が実施されることにより、大角結晶粒の微細化を図ることができる。上記累積圧下率は、好ましくは32%以上、より好ましくは35%以上であり、その上限は、おおよそ50%程度である。 [Step C: Rolling with a cumulative reduction ratio of 30% or more is performed in a temperature range where the temperature at t / 4 part becomes the austenite recrystallization temperature]
In this step, a reduction of 30% or more in terms of cumulative reduction is applied in the austenite recrystallization temperature range. Strain is accumulated by this reduction, and cooling of the process F, which will be described later, is performed, so that the large-angle crystal grains can be refined. The cumulative rolling reduction is preferably 32% or more, more preferably 35% or more, and the upper limit is about 50%.
[工程D:t/4部の温度がオーステナイト再結晶温度となる温度域からオーステナイト未再結晶温度となる温度域までの冷却を、前記工程C後の板厚が50mmを超える場合は、平均冷却速度0.5℃/s以上の冷却と、空冷との2回以上の繰り返しを含む方法で行い、前記板厚が50mm以下の場合は水冷以外の方法で行う]
[Step D: Cooling from the temperature range where the temperature of t / 4 part becomes the austenite recrystallization temperature to the temperature range where the austenite non-recrystallization temperature is reached, when the plate thickness after the step C exceeds 50 mm, average cooling It is performed by a method including two or more repetitions of cooling at a rate of 0.5 ° C./s or more and air cooling. When the plate thickness is 50 mm or less, it is performed by a method other than water cooling.
オーステナイト再結晶温度域からオーステナイト未再結晶温度域へ移行する際に鋼板の冷却が必要となるが、該冷却の速度が急であると、鋼板表面にスケールが生成しやすくなる。スケールが生成すると、t/4部の温度の予測計算値にずれが生じ、適切な圧延が行えなくなる。スケール生成の抑制のため、鋼板の冷却を空冷のみとすることが考えられるが、板厚が50mm超の場合は十分に冷却されない。そこで、板厚が50mm超の場合は、上記オーステナイト再結晶温度域からオーステナイト未再結晶温度域までの冷却として、平均冷却速度0.5℃/s以上の冷却と、空冷とによる復熱過程を2回以上繰り返し実施することとした。尚、鋼板表面にスケールが生成しない限り、上記復熱過程に加えて更に別の冷却方法を採用することもできる。
When the steel sheet is cooled from the austenite recrystallization temperature range to the austenite non-recrystallization temperature range, it is necessary to cool the steel plate. When the scale is generated, the predicted calculation value of the temperature at t / 4 part is shifted, and appropriate rolling cannot be performed. In order to suppress scale generation, it is conceivable that the steel sheet is cooled only by air cooling. However, when the plate thickness exceeds 50 mm, the steel sheet is not sufficiently cooled. Therefore, when the plate thickness is more than 50 mm, the cooling from the austenite recrystallization temperature range to the austenite non-recrystallization temperature range is performed by cooling at an average cooling rate of 0.5 ° C./s or more and air-cooling. Repeated twice or more. In addition to the above recuperation process, another cooling method may be employed as long as no scale is generated on the steel plate surface.
以下では、上記平均冷却速度0.5℃/s以上の冷却を、「中間冷却」といい、1回目の中間冷却を「中間冷却1」、2回目の中間冷却を「中間冷却2」ということがある。また上記空冷を「中間空冷」といい、1回目の中間空冷を「中間空冷1」、2回目の中間空冷を「中間空冷2」ということがある。上記中間冷却と中間空冷は繰り返し2回以上行えばよく、各冷却の温度域や時間は特に問わない。
In the following, cooling at an average cooling rate of 0.5 ° C./s or more is referred to as “intermediate cooling”, and the first intermediate cooling is referred to as “intermediate cooling 1”, and the second intermediate cooling is referred to as “intermediate cooling 2”. There is. The air cooling is referred to as “intermediate air cooling”, and the first intermediate air cooling may be referred to as “intermediate air cooling 1”, and the second intermediate air cooling may be referred to as “intermediate air cooling 2”. The intermediate cooling and the intermediate air cooling may be repeated twice or more, and the temperature range and time of each cooling are not particularly limited.
上記中間冷却の平均冷却速度は、好ましくは0.7℃/s以上、より好ましくは0.9℃/s以上である。上記平均冷却速度の上限は、スケール生成を抑制する観点から1.0℃/s程度である。
The average cooling rate of the intermediate cooling is preferably 0.7 ° C./s or more, more preferably 0.9 ° C./s or more. The upper limit of the average cooling rate is about 1.0 ° C./s from the viewpoint of suppressing scale generation.
上記平均冷却速度は、下記実施例に示す方法で求められる。
The average cooling rate is obtained by the method shown in the following examples.
上記平均冷却速度0.5℃/s以上の冷却の方法として、例えば水やミストの吹付けが挙げられ、好ましくは水の吹付けである。
As a cooling method at the above average cooling rate of 0.5 ° C./s or more, for example, water or mist spraying may be mentioned, and water spraying is preferable.
前記板厚が50mm以下の場合、冷却方法は、スケールの形成が抑制される方法であればよいことから、水冷以外の方法であればよい。オーステナイト再結晶温度域からオーステナイト未再結晶温度域への冷却方法として、例えば、空冷のみを行ってもよいし、上述した中間冷却と中間空冷の繰り返しを行ってもよい。
When the plate thickness is 50 mm or less, the cooling method may be any method other than water cooling, as long as it is a method that suppresses the formation of scale. As a cooling method from the austenite recrystallization temperature range to the austenite non-recrystallization temperature range, for example, only air cooling may be performed, or the above-described intermediate cooling and intermediate air cooling may be repeated.
上記工程Dを実施、特には前記板厚が50mm超の場合に復熱過程を経ることによって、下記工程E開始時の板厚内の温度偏差、即ち[(t/4部の温度-表面温度)/工程E開始時の板厚]から求められる数値を、1.0℃/mm以下に抑えることができる。
The above step D is carried out, and in particular, when the plate thickness exceeds 50 mm, a temperature recovery within the plate thickness at the start of the following step E, that is, [(t / 4 part temperature−surface temperature) ) / Plate thickness at the start of step E] can be suppressed to 1.0 ° C./mm or less.
[工程E:t/4部の温度がオーステナイト未再結晶温度となる温度域にて、下記式(1)で示される固溶B指数が2.0未満の場合は累積圧下率5%以上の圧延を行い、下記式(1)で示される固溶B指数が2.0以上の場合は累積圧下率15%以上の圧延を行う]
[Step E: In the temperature range where the temperature of t / 4 part becomes the austenite non-recrystallization temperature, when the solid solution B index represented by the following formula (1) is less than 2.0, the cumulative rolling reduction is 5% or more. Rolling is performed, and when the solid solution B index represented by the following formula (1) is 2.0 or more, rolling is performed with a cumulative reduction ratio of 15% or more.
固溶B指数が2.0未満の場合は、鋼中の固溶B量が比較的少ないため、このt/4部の温度がオーステナイト未再結晶温度となる温度域において、累積圧下率5%以上の圧延を行えばよい。上記累積圧下率は、好ましくは10%以上、より好ましくは15%以上である。尚、生産性等を考慮すると、上記累積圧下率の上限は50%程度となる。
When the solid solution B index is less than 2.0, the amount of the solid solution B in the steel is relatively small. Therefore, in the temperature range where the temperature of this t / 4 part is the austenite non-recrystallization temperature, the cumulative reduction ratio is 5%. What is necessary is just to perform the above rolling. The cumulative rolling reduction is preferably 10% or more, more preferably 15% or more. In consideration of productivity and the like, the upper limit of the cumulative rolling reduction is about 50%.
一方、固溶B指数が2.0以上の場合、上述の通り、固溶Bによって変態の方位選択が制限され、大角結晶粒が粗大となりやすい。そこで本発明では、このt/4部の温度がオーステナイト未再結晶温度となる温度域にて、累積圧下率15%以上の圧延を行う。この温度域での圧下量を増加させることにより、旧γ粒内に変態時の核生成サイトとなる転位が導入され、その結果、固溶Bによる変態時の方位抑制が緩和され、粗大粒の生成が抑制されると考えられる。上記累積圧下率は、好ましくは19%以上、より好ましくは20%以上である。尚、生産性等を考慮すると、上記累積圧下率の上限は50%程度となる。
On the other hand, when the solid solution B index is 2.0 or more, as described above, the transformation orientation selection is limited by the solid solution B, and large-angle crystal grains tend to be coarse. Therefore, in the present invention, rolling at a cumulative reduction ratio of 15% or more is performed in a temperature range where the temperature at the t / 4 part becomes the austenite non-recrystallization temperature. By increasing the amount of reduction in this temperature range, dislocations that become nucleation sites during transformation are introduced into the old γ grains, and as a result, orientation restraint during transformation due to solute B is relaxed, and coarse grains Generation is considered to be suppressed. The cumulative rolling reduction is preferably 19% or more, more preferably 20% or more. In consideration of productivity and the like, the upper limit of the cumulative rolling reduction is about 50%.
t/4部の温度が、オーステナイト再結晶温度となる温度域や、オーステナイト未再結晶温度となる温度域は、厳密には、含まれる元素の種類やその含有量等の影響を受ける。これらの温度域は、例えば加工フォーマスター実験により変形抵抗量の変化する温度から求めることが可能である。
Strictly speaking, the temperature range where the temperature of t / 4 part becomes the austenite recrystallization temperature and the temperature range where the austenite non-recrystallization temperature is affected by the type of element contained, the content thereof, and the like. These temperature ranges can be obtained from the temperature at which the amount of deformation resistance changes by, for example, a processing for master experiment.
[工程F:Ar3変態点から500℃までを平均冷却速度5℃/s以上で冷却する。但し、上記Ar3変態点は下記式(2)により求める。尚、含まれない元素はゼロとして計算すればよい。
Ar3変態点=910-310×C-80×Mn-20×Cu-15×Cr-55×Ni-80×Mo+0.35×(t-8)・・・(2)
式(2)において、C、Mn、Cu、Cr、Ni、Moは、各元素の質量%での鋼中含有量を示し、tは単位mmで表される製品厚さを示す] [Step F: Cool from Ar 3 transformation point to 500 ° C. at an average cooling rate of 5 ° C./s or more. However, the Ar 3 transformation point is determined by the following formula (2). Note that elements that are not included may be calculated as zero.
Ar 3 transformation point = 910-310 × C-80 × Mn-20 × Cu-15 × Cr-55 × Ni-80 × Mo + 0.35 × (t−8) (2)
In the formula (2), C, Mn, Cu, Cr, Ni, and Mo indicate the steel content in mass% of each element, and t indicates the product thickness expressed in mm.]
Ar3変態点=910-310×C-80×Mn-20×Cu-15×Cr-55×Ni-80×Mo+0.35×(t-8)・・・(2)
式(2)において、C、Mn、Cu、Cr、Ni、Moは、各元素の質量%での鋼中含有量を示し、tは単位mmで表される製品厚さを示す] [Step F: Cool from Ar 3 transformation point to 500 ° C. at an average cooling rate of 5 ° C./s or more. However, the Ar 3 transformation point is determined by the following formula (2). Note that elements that are not included may be calculated as zero.
Ar 3 transformation point = 910-310 × C-80 × Mn-20 × Cu-15 × Cr-55 × Ni-80 × Mo + 0.35 × (t−8) (2)
In the formula (2), C, Mn, Cu, Cr, Ni, and Mo indicate the steel content in mass% of each element, and t indicates the product thickness expressed in mm.]
t/4部のビッカース硬さ:180以上を達成するには、Cを固溶させる観点から、せん断的な変態をさせる必要がある。そのため、冷却開始温度:t/4部でAr3変態点から、冷却停止温度:表面温度で500℃までの温度域の冷却を、平均冷却速度5℃/s以上で行う。該平均冷却速度は、好ましくは6.0℃/s以上、より好ましくは7.0℃/s以上である。上記冷却開始温度は、上記の通りt/4部の温度で制御するが、上記平均冷却速度は、冷却開始時と冷却停止時の表面温度を用いて算出する。
In order to achieve a Vickers hardness of t / 4 part: 180 or more, it is necessary to make a shearing transformation from the viewpoint of dissolving C in solid solution. Therefore, cooling is performed at an average cooling rate of 5 ° C./s or more from the Ar 3 transformation point at the cooling start temperature: t / 4 part to the cooling stop temperature: 500 ° C. at the surface temperature. The average cooling rate is preferably 6.0 ° C./s or more, more preferably 7.0 ° C./s or more. The cooling start temperature is controlled at a temperature of t / 4 part as described above, but the average cooling rate is calculated using the surface temperature at the start of cooling and when cooling is stopped.
尚、上記平均冷却速度の上限は板厚による。例えば後述する実施例で用いた板厚65mmの場合だと、上記平均冷却速度の上限はおおよそ10℃/s程度となるが、板厚がこれよりも薄いと、上記平均冷却速度の上限も高くなる。
The upper limit of the average cooling rate depends on the plate thickness. For example, in the case of a plate thickness of 65 mm used in the examples described later, the upper limit of the average cooling rate is about 10 ° C./s, but if the plate thickness is thinner than this, the upper limit of the average cooling rate is also high. Become.
本発明では、少なくともAr3変態点から500℃までの範囲を上記速度で冷却すればよい。即ち、冷却開始温度は、更にAr3変態点+10℃以上、より更にはAr3変態点+20℃以上であって、例えば仕上げ圧延終了温度以下の温度でもよい。また冷却停止温度は、更に480℃以下、より更には450℃以下であって、例えば400℃以上の温度とすることもできる。
In the present invention, at least the range from the Ar 3 transformation point to 500 ° C. may be cooled at the above rate. That is, the cooling start temperature may be Ar 3 transformation point + 10 ° C. or higher, more preferably Ar 3 transformation point + 20 ° C. or higher, for example, a temperature not higher than the finish rolling finish temperature. Further, the cooling stop temperature is further 480 ° C. or lower, more preferably 450 ° C. or lower, and may be a temperature of 400 ° C. or higher, for example.
上記速度で冷却後の、更に室温までの冷却は、特に手段を問わず、例えば空冷等が挙げられる。
The cooling to the room temperature after cooling at the above speed is not particularly limited, and examples thereof include air cooling.
上記平均冷却速度は、下記実施例に示す方法で求められる。
The average cooling rate is obtained by the method shown in the following examples.
本願は、2014年6月20日に出願された日本国特許出願第2014-127643号に基づく優先権の利益を主張するものである。2014年6月20日に出願された日本国特許出願第2014-127643号の明細書の全内容が、本願の参考のため援用される。
This application claims the benefit of priority based on Japanese Patent Application No. 2014-127743 filed on June 20, 2014. The entire contents of the specification of Japanese Patent Application No. 2014-127743 filed on June 20, 2014 are incorporated herein by reference.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
鋼を溶製し、凝固して得られた下記表1に示す成分組成の各種スラブを用い、下記表2および表3に示す製造条件にて各種鋼板を製作した。
Various steel plates were produced under the production conditions shown in Tables 2 and 3 below using various slabs having the composition shown in Table 1 obtained by melting and solidifying steel.
尚、t/4部の温度が、オーステナイト再結晶温度となる温度域や、オーステナイト未再結晶温度となる温度域は、加工フォーマスター実験により求めた。本発明の鋼板の成分組成範囲であれば、オーステナイト再結晶温度となる温度域は940℃以下860℃以上、オーステナイト未再結晶温度となる温度域は860℃以下Ar3変態点以上の範囲であると想定し、本実施例では上記温度域を採用した。表2および表3において、t/4部の温度がオーステナイト再結晶温度となる温度域での圧延開始温度を「SRT1」、t/4部の温度がオーステナイト未再結晶温度となる温度域での圧延開始温度を「SRT2」、仕上圧延終了温度を「FRT」、オーステナイト未再結晶温度域で圧延後の冷却開始温度を「SCT」、該冷却の終了温度を「FCT」と示している。
In addition, the temperature range in which the temperature of the t / 4 part is the austenite recrystallization temperature and the temperature range in which the austenite non-recrystallization temperature is obtained were obtained by a processing for master experiment. If it is the component composition range of the steel sheet of the present invention, the temperature range that becomes the austenite recrystallization temperature is 940 ° C. or less and 860 ° C. or more, and the temperature range that becomes the austenite non-recrystallization temperature is 860 ° C. or less and the Ar 3 transformation point or more. In this example, the above temperature range was adopted. In Tables 2 and 3, the rolling start temperature in the temperature range where the temperature of t / 4 part becomes the austenite recrystallization temperature is “SRT1”, and the temperature in the temperature range where the temperature of t / 4 part becomes the austenite non-recrystallization temperature. The rolling start temperature is “SRT2”, the finish rolling end temperature is “FRT”, the cooling start temperature after rolling in the austenite non-recrystallization temperature region is “SCT”, and the cooling end temperature is “FCT”.
[圧延中の板厚方向各部の温度測定方法]
1.プロセスコンピュータを用い、加熱開始から抽出、即ち加熱終了までの雰囲気温度や在炉時間に基づいて鋼片の表面から裏面までの位置の加熱温度を算出する。
2.算出した加熱温度を用い、圧延中の圧延パススケジュールやパス間の例えば水冷や空冷等の冷却方法のデータに基づいて、板厚方向の任意の位置における圧延温度を差分法など計算に適した方法を用いて計算しつつ圧延を実施する。
3.鋼板の表面温度は圧延ライン上に設置された放射型温度計を用いて実測する。但し、プロセスコンピュータでも理論値を計算しておく。
4.粗圧延開始時、粗圧延終了時、仕上げ圧延開始時にそれぞれ実測した鋼板の表面温度を、プロセスコンピュータから算出される計算温度と照合する。
5.計算温度と実測温度の差が±30℃以上の場合は、実測表面温度を計算表面温度に置き換えプロセスコンピュータ上の計算温度とし、±30℃未満の場合は、プロセスコンピュータから算出された計算温度をそのまま用いる。
6.上記算出された計算温度を用い、制御対象としている領域の圧延温度を管理する。 [Temperature measurement method for each part in the plate thickness direction during rolling]
1. Using the process computer, the heating temperature at the position from the front surface to the back surface of the steel slab is calculated based on the atmospheric temperature from the start of heating to extraction, that is, the time in the furnace.
2. Using the calculated heating temperature, a method suitable for calculation such as the difference method of rolling temperature at any position in the plate thickness direction based on rolling pass schedule during rolling and data of cooling method such as water cooling or air cooling between passes Rolling is performed using the calculation.
3. The surface temperature of the steel sheet is measured using a radiation type thermometer installed on the rolling line. However, the theoretical value is also calculated in the process computer.
4). The surface temperature of the steel sheet measured at the start of rough rolling, at the end of rough rolling, and at the start of finish rolling is collated with a calculated temperature calculated from a process computer.
5. If the difference between the calculated temperature and the measured temperature is ± 30 ° C or more, replace the measured surface temperature with the calculated surface temperature and use it as the calculated temperature on the process computer. If it is less than ± 30 ° C, use the calculated temperature calculated from the process computer. Use as is.
6). Using the calculated temperature calculated above, the rolling temperature in the region to be controlled is managed.
1.プロセスコンピュータを用い、加熱開始から抽出、即ち加熱終了までの雰囲気温度や在炉時間に基づいて鋼片の表面から裏面までの位置の加熱温度を算出する。
2.算出した加熱温度を用い、圧延中の圧延パススケジュールやパス間の例えば水冷や空冷等の冷却方法のデータに基づいて、板厚方向の任意の位置における圧延温度を差分法など計算に適した方法を用いて計算しつつ圧延を実施する。
3.鋼板の表面温度は圧延ライン上に設置された放射型温度計を用いて実測する。但し、プロセスコンピュータでも理論値を計算しておく。
4.粗圧延開始時、粗圧延終了時、仕上げ圧延開始時にそれぞれ実測した鋼板の表面温度を、プロセスコンピュータから算出される計算温度と照合する。
5.計算温度と実測温度の差が±30℃以上の場合は、実測表面温度を計算表面温度に置き換えプロセスコンピュータ上の計算温度とし、±30℃未満の場合は、プロセスコンピュータから算出された計算温度をそのまま用いる。
6.上記算出された計算温度を用い、制御対象としている領域の圧延温度を管理する。 [Temperature measurement method for each part in the plate thickness direction during rolling]
1. Using the process computer, the heating temperature at the position from the front surface to the back surface of the steel slab is calculated based on the atmospheric temperature from the start of heating to extraction, that is, the time in the furnace.
2. Using the calculated heating temperature, a method suitable for calculation such as the difference method of rolling temperature at any position in the plate thickness direction based on rolling pass schedule during rolling and data of cooling method such as water cooling or air cooling between passes Rolling is performed using the calculation.
3. The surface temperature of the steel sheet is measured using a radiation type thermometer installed on the rolling line. However, the theoretical value is also calculated in the process computer.
4). The surface temperature of the steel sheet measured at the start of rough rolling, at the end of rough rolling, and at the start of finish rolling is collated with a calculated temperature calculated from a process computer.
5. If the difference between the calculated temperature and the measured temperature is ± 30 ° C or more, replace the measured surface temperature with the calculated surface temperature and use it as the calculated temperature on the process computer. If it is less than ± 30 ° C, use the calculated temperature calculated from the process computer. Use as is.
6). Using the calculated temperature calculated above, the rolling temperature in the region to be controlled is managed.
[平均冷却速度の計算方法]
平均冷却速度は、下記式(3)式から求めたものである。
平均冷却速度:単位℃/s=(θs-θf)/τ・・・・・(3)
上記式(3)において、θsは冷却開始時の温度:単位℃、θfは冷却停止時の温度:単位℃、τは秒で表される冷却時間を示す。 [Calculation method of average cooling rate]
The average cooling rate is obtained from the following equation (3).
Average cooling rate: Unit ° C / s = (θs-θf) / τ (3)
In the above formula (3), θs is the temperature at the start of cooling: unit ° C, θf is the temperature at the time of cooling stop: unit ° C, and τ is the cooling time expressed in seconds.
平均冷却速度は、下記式(3)式から求めたものである。
平均冷却速度:単位℃/s=(θs-θf)/τ・・・・・(3)
上記式(3)において、θsは冷却開始時の温度:単位℃、θfは冷却停止時の温度:単位℃、τは秒で表される冷却時間を示す。 [Calculation method of average cooling rate]
The average cooling rate is obtained from the following equation (3).
Average cooling rate: Unit ° C / s = (θs-θf) / τ (3)
In the above formula (3), θs is the temperature at the start of cooling: unit ° C, θf is the temperature at the time of cooling stop: unit ° C, and τ is the cooling time expressed in seconds.
表2や表3におけるSRT1やSRT2の温度の温度偏差:単位℃/mmは、(t/4部の温度-表面温度)/各工程開始時の板厚から求めた。
Temperature deviation of SRT1 and SRT2 temperatures in Tables 2 and 3: The unit ° C./mm was obtained from (t / 4 part temperature-surface temperature) / plate thickness at the start of each process.
[累積圧下率の計算方法]
下式により算出した。
オーステナイト再結晶温度域での累積圧下率=(H1-H2)/H1×100
オーステナイト未再結晶温度域での累積圧下率=(H2-t)/H2×100
上記において、H1は表2に示すオーステナイト再結晶温度域での圧延開始時の板厚、H2は表2に示すオーステナイト未再結晶温度域での圧延開始時の板厚、tは製品厚さ、即ち表3に示す板厚であり、いずれも単位はmmである。 [Calculation method of cumulative rolling reduction]
Calculated by the following formula.
Cumulative rolling reduction in austenite recrystallization temperature range = (H1−H2) / H1 × 100
Cumulative rolling reduction in the austenite non-recrystallization temperature range = (H2-t) / H2 × 100
In the above, H1 is the plate thickness at the start of rolling in the austenite recrystallization temperature range shown in Table 2, H2 is the plate thickness at the start of rolling in the austenite non-recrystallization temperature range shown in Table 2, t is the product thickness, That is, the thickness is shown in Table 3, and the unit is mm.
下式により算出した。
オーステナイト再結晶温度域での累積圧下率=(H1-H2)/H1×100
オーステナイト未再結晶温度域での累積圧下率=(H2-t)/H2×100
上記において、H1は表2に示すオーステナイト再結晶温度域での圧延開始時の板厚、H2は表2に示すオーステナイト未再結晶温度域での圧延開始時の板厚、tは製品厚さ、即ち表3に示す板厚であり、いずれも単位はmmである。 [Calculation method of cumulative rolling reduction]
Calculated by the following formula.
Cumulative rolling reduction in austenite recrystallization temperature range = (H1−H2) / H1 × 100
Cumulative rolling reduction in the austenite non-recrystallization temperature range = (H2-t) / H2 × 100
In the above, H1 is the plate thickness at the start of rolling in the austenite recrystallization temperature range shown in Table 2, H2 is the plate thickness at the start of rolling in the austenite non-recrystallization temperature range shown in Table 2, t is the product thickness, That is, the thickness is shown in Table 3, and the unit is mm.
上記得られた鋼板を用いて、以下の要領で、組織の評価を行うと共に、特性として、引張特性、ビッカース硬さ、および母材の低温靱性を評価した。
Using the steel sheet obtained above, the structure was evaluated in the following manner, and the tensile characteristics, Vickers hardness, and low temperature toughness of the base material were evaluated as characteristics.
[大角結晶粒のサイズの測定]
t/4部において、EBSP法により、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当直径、即ち大角結晶粒のサイズを求めた。その測定要領は以下の通りである。
(1)図2に斜線で示す断面、即ち、該図2において両矢印で示す圧延方向に平行でかつ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を、観察できるよう上記鋼板からサンプルを採取した。
(2)#150~#1000の湿式エメリー研磨紙を用いた研磨、またはそれと同等の機能を有する研磨方法としてダイヤモンドスラリー等の研磨剤を用いた研磨等により、観察面の鏡面仕上を行った。
(3)TexSEM Laboratories社製のEBSP装置を使用し、t/4部において(A)測定範囲200μm×200μmを0.5μmピッチで、または(B)測定範囲100μm×100μmを0.25μmピッチで、結晶方位差が15°以上の境界を結晶粒界とし、該結晶粒界で囲まれた結晶粒、即ち大角結晶粒のサイズを測定した。この時、測定方位の信頼性を示すコンフィデンス・インデックスが0.1よりも小さい測定点は解析対象から除外した。また本実施例では、円相当直径が2.5μm以下のものはノイズと考え削除した。
(4)上記測定範囲内で、最も大きい大角結晶粒の円相当直径を求めた。また、円相当直径が15μm以上の大角結晶粒の数を求め、上記測定範囲の面積、即ち200μm×200μmまたは100μm×100μmで除して、1μm2あたりの個数を個数密度として求めた。 [Measurement of large-angle crystal grain size]
At the t / 4 part, the equivalent circle diameter of the crystal grains surrounded by the large-angle grain boundaries in which the orientation difference between two adjacent crystals is 15 ° or more, that is, the size of the large-angle crystal grains, was obtained by the EBSP method. The measurement procedure is as follows.
(1) The above steel plate so that the cross section indicated by diagonal lines in FIG. 2, that is, the plate thickness cross section including the steel plate front and back surfaces parallel to the rolling direction indicated by the double arrow in FIG. A sample was taken from
(2) The observation surface was mirror-finished by polishing using # 150 to # 1000 wet emery polishing paper or polishing using a polishing agent such as diamond slurry as a polishing method having the same function.
(3) Using an EBSP apparatus manufactured by TexSEM Laboratories, at t / 4 part (A) measuring range 200 μm × 200 μm at 0.5 μm pitch, or (B) measuring range 100 μm × 100 μm at 0.25 μm pitch, A boundary having a crystal orientation difference of 15 ° or more was defined as a crystal grain boundary, and the size of a crystal grain surrounded by the crystal grain boundary, that is, a large-angle crystal grain was measured. At this time, measurement points having a confidence index indicating the reliability of the measurement direction smaller than 0.1 were excluded from the analysis target. Further, in this example, the circle equivalent diameter of 2.5 μm or less was considered as noise and deleted.
(4) The equivalent circle diameter of the largest large-angle crystal grain was determined within the above measurement range. Further, the number of large-angle crystal grains having an equivalent circle diameter of 15 μm or more was determined, and the number per 1 μm 2 was determined as the number density by dividing by the area of the measurement range, that is, 200 μm × 200 μm or 100 μm × 100 μm.
t/4部において、EBSP法により、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当直径、即ち大角結晶粒のサイズを求めた。その測定要領は以下の通りである。
(1)図2に斜線で示す断面、即ち、該図2において両矢印で示す圧延方向に平行でかつ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を、観察できるよう上記鋼板からサンプルを採取した。
(2)#150~#1000の湿式エメリー研磨紙を用いた研磨、またはそれと同等の機能を有する研磨方法としてダイヤモンドスラリー等の研磨剤を用いた研磨等により、観察面の鏡面仕上を行った。
(3)TexSEM Laboratories社製のEBSP装置を使用し、t/4部において(A)測定範囲200μm×200μmを0.5μmピッチで、または(B)測定範囲100μm×100μmを0.25μmピッチで、結晶方位差が15°以上の境界を結晶粒界とし、該結晶粒界で囲まれた結晶粒、即ち大角結晶粒のサイズを測定した。この時、測定方位の信頼性を示すコンフィデンス・インデックスが0.1よりも小さい測定点は解析対象から除外した。また本実施例では、円相当直径が2.5μm以下のものはノイズと考え削除した。
(4)上記測定範囲内で、最も大きい大角結晶粒の円相当直径を求めた。また、円相当直径が15μm以上の大角結晶粒の数を求め、上記測定範囲の面積、即ち200μm×200μmまたは100μm×100μmで除して、1μm2あたりの個数を個数密度として求めた。 [Measurement of large-angle crystal grain size]
At the t / 4 part, the equivalent circle diameter of the crystal grains surrounded by the large-angle grain boundaries in which the orientation difference between two adjacent crystals is 15 ° or more, that is, the size of the large-angle crystal grains, was obtained by the EBSP method. The measurement procedure is as follows.
(1) The above steel plate so that the cross section indicated by diagonal lines in FIG. 2, that is, the plate thickness cross section including the steel plate front and back surfaces parallel to the rolling direction indicated by the double arrow in FIG. A sample was taken from
(2) The observation surface was mirror-finished by polishing using # 150 to # 1000 wet emery polishing paper or polishing using a polishing agent such as diamond slurry as a polishing method having the same function.
(3) Using an EBSP apparatus manufactured by TexSEM Laboratories, at t / 4 part (A) measuring range 200 μm × 200 μm at 0.5 μm pitch, or (B) measuring range 100 μm × 100 μm at 0.25 μm pitch, A boundary having a crystal orientation difference of 15 ° or more was defined as a crystal grain boundary, and the size of a crystal grain surrounded by the crystal grain boundary, that is, a large-angle crystal grain was measured. At this time, measurement points having a confidence index indicating the reliability of the measurement direction smaller than 0.1 were excluded from the analysis target. Further, in this example, the circle equivalent diameter of 2.5 μm or less was considered as noise and deleted.
(4) The equivalent circle diameter of the largest large-angle crystal grain was determined within the above measurement range. Further, the number of large-angle crystal grains having an equivalent circle diameter of 15 μm or more was determined, and the number per 1 μm 2 was determined as the number density by dividing by the area of the measurement range, that is, 200 μm × 200 μm or 100 μm × 100 μm.
得られた鋼板を圧延方向に沿って切断し、切断面のt/4部から組織観察試験片を採取し、倍率400倍で光学顕微鏡観察を行ったところ、いずれの例も、ベイニティックフェライトが10面積%以上であり、その他の組織が、フェライト、ベイナイト、マルテンサイト、またはこれらの組み合わせからなる組織となっていた。
The obtained steel sheet was cut along the rolling direction, and a structure observation test piece was taken from t / 4 part of the cut surface and observed with an optical microscope at a magnification of 400 times. Was 10 area% or more, and the other structure was a structure made of ferrite, bainite, martensite, or a combination thereof.
[引張特性の評価]
t/4部から、圧延方向に直角にJIS Z 2201の4号試験片を採取し、JIS Z 2241に従って引張試験を行い、降伏強度、引張強度および伸びを求めた。そして、上記降伏強度が390MPa以上、上記引張強度が530MPa以上、かつ伸びが17%以上を合格とした。上記降伏強度は、好ましくは400MPa以上、より好ましくは415MPa以上である。また上記引張強度は、好ましくは550MPa以上、より好ましくは580MPa以上である。また上記伸びは、好ましくは20%以上である。 [Evaluation of tensile properties]
From t / 4 part, a No. 4 test piece of JIS Z 2201 was sampled at right angles to the rolling direction, and a tensile test was performed according to JIS Z 2241 to determine yield strength, tensile strength, and elongation. The yield strength was 390 MPa or higher, the tensile strength was 530 MPa or higher, and the elongation was 17% or higher. The yield strength is preferably 400 MPa or more, more preferably 415 MPa or more. The tensile strength is preferably 550 MPa or more, more preferably 580 MPa or more. The elongation is preferably 20% or more.
t/4部から、圧延方向に直角にJIS Z 2201の4号試験片を採取し、JIS Z 2241に従って引張試験を行い、降伏強度、引張強度および伸びを求めた。そして、上記降伏強度が390MPa以上、上記引張強度が530MPa以上、かつ伸びが17%以上を合格とした。上記降伏強度は、好ましくは400MPa以上、より好ましくは415MPa以上である。また上記引張強度は、好ましくは550MPa以上、より好ましくは580MPa以上である。また上記伸びは、好ましくは20%以上である。 [Evaluation of tensile properties]
From t / 4 part, a No. 4 test piece of JIS Z 2201 was sampled at right angles to the rolling direction, and a tensile test was performed according to JIS Z 2241 to determine yield strength, tensile strength, and elongation. The yield strength was 390 MPa or higher, the tensile strength was 530 MPa or higher, and the elongation was 17% or higher. The yield strength is preferably 400 MPa or more, more preferably 415 MPa or more. The tensile strength is preferably 550 MPa or more, more preferably 580 MPa or more. The elongation is preferably 20% or more.
[ビッカース硬さの測定]
各鋼板のt/4部において3点ずつ、ビッカース硬さ試験を荷重98Nで行った。そして3点のビッカース硬さの平均値を求め、該平均値が180以上の場合を合格とした。 [Measurement of Vickers hardness]
A Vickers hardness test was performed at a load of 98 N at three points at t / 4 part of each steel plate. And the average value of 3 points | pieces of Vickers hardness was calculated | required, and the case where this average value was 180 or more was set as the pass.
各鋼板のt/4部において3点ずつ、ビッカース硬さ試験を荷重98Nで行った。そして3点のビッカース硬さの平均値を求め、該平均値が180以上の場合を合格とした。 [Measurement of Vickers hardness]
A Vickers hardness test was performed at a load of 98 N at three points at t / 4 part of each steel plate. And the average value of 3 points | pieces of Vickers hardness was calculated | required, and the case where this average value was 180 or more was set as the pass.
[母材の低温靱性の評価]
t/4部において試験片の長手方向がL方向、即ち圧延方向となるように、NK U4号試験片を3本採取した。そして、JIS Z 2242に規定の方法でVノッチシャルピー衝撃試験を実施した。NK船級における造船Eグレードでは母材の衝撃特性を試験温度:-40℃で評価するため、低温靱性の安定性の指標として、試験温度:-40℃で上記試験片3本のエネルギー値を測定した(vE-40)。また上記衝撃試験を行って、試験温度と脆性破面率の関係を示す曲線から、脆性破面遷移温度(vTrs)を求めた。そして、上記エネルギー値がいずれも100J以上であると共に、最大値と最小値の差が100J以下であり、かつ上記脆性破面遷移温度が-60℃以下を満たす場合を、優れた低温靱性を安定して発揮すると評価した。 [Evaluation of low temperature toughness of base metal]
Three NK U4 test pieces were collected so that the longitudinal direction of the test piece was the L direction, that is, the rolling direction at t / 4 part. And the V notch Charpy impact test was implemented by the method prescribed | regulated to JISZ2242. In the shipbuilding E grade in the NK class, the impact value of the base material is evaluated at the test temperature: -40 ° C, so the energy value of the above three test pieces is measured at the test temperature: -40 ° C as an indicator of the stability of low temperature toughness. (VE- 40 ). Moreover, the said impact test was done and the brittle fracture surface transition temperature (vTrs) was calculated | required from the curve which shows the relationship between test temperature and a brittle fracture surface rate. When the above energy values are 100 J or more, the difference between the maximum value and the minimum value is 100 J or less, and the brittle fracture surface transition temperature satisfies −60 ° C. or less, excellent low temperature toughness is stable. It was evaluated that it was demonstrated.
t/4部において試験片の長手方向がL方向、即ち圧延方向となるように、NK U4号試験片を3本採取した。そして、JIS Z 2242に規定の方法でVノッチシャルピー衝撃試験を実施した。NK船級における造船Eグレードでは母材の衝撃特性を試験温度:-40℃で評価するため、低温靱性の安定性の指標として、試験温度:-40℃で上記試験片3本のエネルギー値を測定した(vE-40)。また上記衝撃試験を行って、試験温度と脆性破面率の関係を示す曲線から、脆性破面遷移温度(vTrs)を求めた。そして、上記エネルギー値がいずれも100J以上であると共に、最大値と最小値の差が100J以下であり、かつ上記脆性破面遷移温度が-60℃以下を満たす場合を、優れた低温靱性を安定して発揮すると評価した。 [Evaluation of low temperature toughness of base metal]
Three NK U4 test pieces were collected so that the longitudinal direction of the test piece was the L direction, that is, the rolling direction at t / 4 part. And the V notch Charpy impact test was implemented by the method prescribed | regulated to JISZ2242. In the shipbuilding E grade in the NK class, the impact value of the base material is evaluated at the test temperature: -40 ° C, so the energy value of the above three test pieces is measured at the test temperature: -40 ° C as an indicator of the stability of low temperature toughness. (VE- 40 ). Moreover, the said impact test was done and the brittle fracture surface transition temperature (vTrs) was calculated | required from the curve which shows the relationship between test temperature and a brittle fracture surface rate. When the above energy values are 100 J or more, the difference between the maximum value and the minimum value is 100 J or less, and the brittle fracture surface transition temperature satisfies −60 ° C. or less, excellent low temperature toughness is stable. It was evaluated that it was demonstrated.
これらの結果を、表4に示す。
These results are shown in Table 4.
表1~4から次のことがわかる。No.1、6、8および9は、規定の成分組成を満たす鋼を用いているが、規定の方法で製造せず、その結果、組織が規定を満たさず、母材の低温靱性に劣る結果となった。
Tables 1-4 show the following. No. Nos. 1, 6, 8 and 9 use steel satisfying the prescribed component composition, but are not manufactured by the prescribed method. As a result, the structure does not satisfy the prescribed, resulting in poor low-temperature toughness of the base material. It was.
詳細にはNo.1は、工程B、即ち加熱後であって熱間圧延前のスケール除去を行っておらず、かつ工程Dで規定の冷却も行わず、更には工程Cと工程Eでの累積圧下率が小さいため、大角結晶粒のサイズが大きくなり、母材の低温靱性に劣る結果となった。尚、このNo.1では工程Dで規定の冷却を行っていないため、t/4部の温度の算出が阻害され、t/4部のSRT2が高めとなった。
No. No. 1 is the process B, that is, after heating and before descaling before hot rolling is performed, the specified cooling is not performed in the process D, and the cumulative reduction ratio in the processes C and E is small. For this reason, the size of the large-angle crystal grains was increased, resulting in inferior low-temperature toughness of the base material. In addition, this No. In Step 1, since the prescribed cooling was not performed in Step D, the calculation of the temperature at t / 4 part was hindered, and the SRT2 at t / 4 part was increased.
No.6は固溶B指数が8.2であり、またNo.8は固溶B指数が22.0であり、いずれもオーステナイト未再結晶温度域での累積圧下率:15%以上とする必要があるが、いずれも上記累積圧下率が15%を下回ったため、大角結晶粒の最大サイズが大きく、かつNo.8では15μm以上の大角結晶粒の個数も多くなり、その結果、vE-40のバラツキが大きく、かつvTrsが高くなった。
No. No. 6 has a solid solution B index of 8.2. No. 8 has a solid solution B index of 22.0, and it is necessary to set the cumulative reduction ratio in the austenite non-recrystallization temperature range to 15% or more. In both cases, the cumulative reduction ratio was less than 15%. The maximum size of large angle crystal grains is large, and Also increases the number of high-angle grain 8, or 15 [mu] m, as a result, large variation in vE -40, and vTrs was higher.
No.9は固溶B指数が19.9であり、オーステナイト未再結晶温度域での累積圧下率:15%以上とする必要があるが、該累積圧下率が15%を下回ったため、大角結晶粒の最大サイズが大きく、かつ15μm以上の大角結晶粒の個数も多くなり、その結果、vE-40が小さくかつバラツキも大きく、更にはvTrsも高くなった。
No. No. 9 has a solid solution B index of 19.9, and it is necessary to make the cumulative reduction ratio in the austenite non-recrystallization temperature range: 15% or more. However, since the cumulative reduction ratio was less than 15%, The number of large-angle crystal grains having a large maximum size and a size of 15 μm or more was increased. As a result, vE- 40 was small, variation was large, and vTrs was also high.
尚、本発明例である上記鋼板No.2のEBSP測定結果を図3Aに示し、比較例である上記鋼板No.6のEBSP測定結果を図3Bに示す。これらの結果を対比すると、鋼板No.6は、大角結晶粒のサイズが粗大になっていることがわかる。
In addition, the steel sheet No. The EBSP measurement results of No. 2 are shown in FIG. The EBSP measurement result of 6 is shown in FIG. 3B. When these results are compared, the steel plate No. No. 6 shows that the size of the large-angle crystal grains is coarse.
In addition, the steel sheet No. The EBSP measurement results of No. 2 are shown in FIG. The EBSP measurement result of 6 is shown in FIG. 3B. When these results are compared, the steel plate No. No. 6 shows that the size of the large-angle crystal grains is coarse.
Claims (5)
- 成分組成が、質量%で、
C:0.01~0.15%、
Si:0%超0.50%以下、
Mn:0.6~2.0%、
P:0%超0.030%以下、
S:0%超0.025%以下、
Al:0.02~0.07%、
Nb:0.003%以上0.05%未満、
Ti:0.003~0.03%、
B:0%以上0.005%以下、
N:0.001~0.01%、および
Ca:0.0003~0.0060%
を満たし、残部が鉄及び不可避不純物からなり、
組織が下記(1)および(2)を満たし、かつ板厚の1/4部のビッカース硬さが180以上であることを特徴とする高強度鋼板。
(1)板厚の1/4部において、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当直径の最大値が30μm以下である。
(2)板厚の1/4部において、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒であって、その円相当直径が15μm以上の結晶粒の個数密度が1.5×10-3個/μm2以下である。 Ingredient composition is mass%,
C: 0.01 to 0.15%,
Si: more than 0% and 0.50% or less,
Mn: 0.6 to 2.0%,
P: more than 0% and 0.030% or less,
S: more than 0% and 0.025% or less,
Al: 0.02 to 0.07%,
Nb: 0.003% or more and less than 0.05%,
Ti: 0.003-0.03%,
B: 0% or more and 0.005% or less,
N: 0.001 to 0.01%, and Ca: 0.0003 to 0.0060%
The balance consists of iron and inevitable impurities,
A high-strength steel sheet having a structure satisfying the following (1) and (2) and having a Vickers hardness of 1/4 part of the plate thickness of 180 or more.
(1) In a quarter portion of the plate thickness, the maximum value of the circle equivalent diameter of crystal grains surrounded by a large-angle grain boundary in which the orientation difference between two adjacent crystals is 15 ° or more is 30 μm or less.
(2) The number of crystal grains surrounded by a large-angle grain boundary in which the difference in orientation between two adjacent crystals is 15 ° or more at a quarter part of the plate thickness, and whose equivalent circle diameter is 15 μm or more. The density is 1.5 × 10 −3 pieces / μm 2 or less. - 前記成分組成は、更に、質量%で、
Cu:0%超1.0%以下、
Ni:0%超1.20%以下、
Cr:0%超0.50%以下、
Mo:0%超0.5%以下、および
V:0%超0.1%以下
よりなる群から選択される1種以上の元素を含む請求項1に記載の高強度鋼板。 The component composition is further mass%,
Cu: more than 0% and 1.0% or less,
Ni: more than 0% and 1.20% or less,
Cr: more than 0% and 0.50% or less,
The high-strength steel sheet according to claim 1, comprising one or more elements selected from the group consisting of Mo: more than 0% and 0.5% or less and V: more than 0% and 0.1% or less. - 前記成分組成は、更に、質量%で、
REM:0%超0.05%以下、および
Zr:0%超0.020%以下
よりなる群から選択される1種以上の元素を含む請求項1または2に記載の高強度鋼板。 The component composition is further mass%,
The high-strength steel sheet according to claim 1 or 2, comprising one or more elements selected from the group consisting of REM: more than 0% and 0.05% or less and Zr: more than 0% and 0.020% or less. - 請求項1または2に記載の高強度鋼板の製造方法であって、
前記成分組成を満たす鋼片を用い、下記工程A~Fをこの順に含むことを特徴とする高強度鋼板の製造方法。
工程A:900~1200℃の温度域で、板厚方向の温度偏差が40℃以内になるまで加熱する。
工程B:鋼片表面のスケールを除去する。
工程C:板厚の1/4部の温度がオーステナイト再結晶温度となる温度域にて、累積圧下率30%以上の圧延を行う。
工程D:板厚の1/4部の温度がオーステナイト再結晶温度となる温度域からオーステナイト未再結晶温度となる温度域までの冷却を、前記工程C後の板厚が50mmを超える場合は、平均冷却速度0.5℃/s以上の冷却と、空冷との2回以上の繰り返しを含む方法で行い、前記板厚が50mm以下の場合は水冷以外の方法で行う。
工程E:板厚の1/4部の温度がオーステナイト未再結晶温度となる温度域にて、下記式(1)で示される固溶B指数が2.0未満の場合は累積圧下率5%以上の圧延を行い、下記式(1)で示される固溶B指数が2.0以上の場合は累積圧下率15%以上の圧延を行う。
工程F:Ar3変態点から500℃までを平均冷却速度5℃/s以上で冷却する。但し、上記Ar3変態点は下記式(2)により求める。
Ar3変態点=910-310×C-80×Mn-20×Cu-15×Cr-55×Ni-80×Mo+0.35×(t-8)・・・(2)
式(2)において、C、Mn、Cu、Cr、Ni、Moは、各元素の質量%での鋼中含有量を示し、tは単位mmで表される製品厚さを示す。 It is a manufacturing method of the high strength steel plate according to claim 1 or 2,
A method for producing a high-strength steel sheet, comprising using steel slabs satisfying the above component composition and including the following steps A to F in this order.
Step A: Heating is performed in a temperature range of 900 to 1200 ° C. until the temperature deviation in the plate thickness direction is within 40 ° C.
Process B: The scale of a steel piece surface is removed.
Step C: Rolling with a cumulative reduction ratio of 30% or more is performed in a temperature range where the temperature of ¼ part of the plate thickness becomes the austenite recrystallization temperature.
Step D: Cooling from a temperature range where the temperature of 1/4 part of the plate thickness becomes the austenite recrystallization temperature to a temperature range where the austenite non-recrystallization temperature is reached, when the plate thickness after the step C exceeds 50 mm, It is performed by a method including two or more repetitions of cooling at an average cooling rate of 0.5 ° C./s or more and air cooling. When the plate thickness is 50 mm or less, it is performed by a method other than water cooling.
Step E: Cumulative rolling reduction of 5% when the solid solution B index represented by the following formula (1) is less than 2.0 in the temperature range where the temperature of 1/4 part of the plate thickness is the austenite non-recrystallization temperature When the above rolling is performed and the solid solution B index represented by the following formula (1) is 2.0 or more, rolling with a cumulative reduction ratio of 15% or more is performed.
Step F: Cool from Ar 3 transformation point to 500 ° C. at an average cooling rate of 5 ° C./s or more. However, the Ar 3 transformation point is determined by the following formula (2).
Ar 3 transformation point = 910-310 × C-80 × Mn-20 × Cu-15 × Cr-55 × Ni-80 × Mo + 0.35 × (t−8) (2)
In the formula (2), C, Mn, Cu, Cr, Ni, and Mo indicate the steel content in mass% of each element, and t indicates the product thickness expressed in the unit mm. - 請求項3に記載の高強度鋼板の製造方法であって、
前記成分組成を満たす鋼片を用い、下記工程A~Fをこの順に含むことを特徴とする高強度鋼板の製造方法。
工程A:900~1200℃の温度域で、板厚方向の温度偏差が40℃以内になるまで加熱する。
工程B:鋼片表面のスケールを除去する。
工程C:板厚の1/4部の温度がオーステナイト再結晶温度となる温度域にて、累積圧下率30%以上の圧延を行う。
工程D:板厚の1/4部の温度がオーステナイト再結晶温度となる温度域からオーステナイト未再結晶温度となる温度域までの冷却を、前記工程C後の板厚が50mmを超える場合は、平均冷却速度0.5℃/s以上の冷却と、空冷との2回以上の繰り返しを含む方法で行い、前記板厚が50mm以下の場合は水冷以外の方法で行う。
工程E:板厚の1/4部の温度がオーステナイト未再結晶温度となる温度域にて、下記式(1)で示される固溶B指数が2.0未満の場合は累積圧下率5%以上の圧延を行い、下記式(1)で示される固溶B指数が2.0以上の場合は累積圧下率15%以上の圧延を行う。
工程F:Ar3変態点から500℃までを平均冷却速度5℃/s以上で冷却する。但し、上記Ar3変態点は下記式(2)により求める。
Ar3変態点=910-310×C-80×Mn-20×Cu-15×Cr-55×Ni-80×Mo+0.35×(t-8)・・・(2)
式(2)において、C、Mn、Cu、Cr、Ni、Moは、各元素の質量%での鋼中含有量を示し、tは単位mmで表される製品厚さを示す。
It is a manufacturing method of the high strength steel plate according to claim 3,
A method for producing a high-strength steel sheet, comprising using steel slabs satisfying the above component composition and including the following steps A to F in this order.
Step A: Heating is performed in a temperature range of 900 to 1200 ° C. until the temperature deviation in the plate thickness direction is within 40 ° C.
Process B: The scale of a steel piece surface is removed.
Step C: Rolling with a cumulative reduction ratio of 30% or more is performed in a temperature range where the temperature of ¼ part of the plate thickness becomes the austenite recrystallization temperature.
Step D: Cooling from a temperature range where the temperature of 1/4 part of the plate thickness becomes the austenite recrystallization temperature to a temperature range where the austenite non-recrystallization temperature is reached, when the plate thickness after the step C exceeds 50 mm, It is performed by a method including two or more repetitions of cooling at an average cooling rate of 0.5 ° C./s or more and air cooling. When the plate thickness is 50 mm or less, it is performed by a method other than water cooling.
Step E: Cumulative rolling reduction of 5% when the solid solution B index represented by the following formula (1) is less than 2.0 in the temperature range where the temperature of 1/4 part of the plate thickness is the austenite non-recrystallization temperature When the above rolling is performed and the solid solution B index represented by the following formula (1) is 2.0 or more, rolling with a cumulative reduction ratio of 15% or more is performed.
Step F: Cool from Ar 3 transformation point to 500 ° C. at an average cooling rate of 5 ° C./s or more. However, the Ar 3 transformation point is determined by the following formula (2).
Ar 3 transformation point = 910-310 × C-80 × Mn-20 × Cu-15 × Cr-55 × Ni-80 × Mo + 0.35 × (t−8) (2)
In the formula (2), C, Mn, Cu, Cr, Ni, and Mo indicate the steel content in mass% of each element, and t indicates the product thickness expressed in the unit mm.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167035165A KR20170002650A (en) | 2014-06-20 | 2015-06-18 | High-strength steel plate and process for producing same |
CN201580029790.9A CN106460120A (en) | 2014-06-20 | 2015-06-18 | High-strength steel plate and process for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014127643A JP6280824B2 (en) | 2014-06-20 | 2014-06-20 | High strength steel plate and manufacturing method thereof |
JP2014-127643 | 2014-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015194619A1 true WO2015194619A1 (en) | 2015-12-23 |
Family
ID=54935599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/067560 WO2015194619A1 (en) | 2014-06-20 | 2015-06-18 | High-strength steel plate and process for producing same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6280824B2 (en) |
KR (1) | KR20170002650A (en) |
CN (2) | CN106460120A (en) |
WO (1) | WO2015194619A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017135179A1 (en) * | 2016-02-03 | 2018-05-24 | Jfeスチール株式会社 | Steel material for large heat input welding |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110684930A (en) * | 2019-05-05 | 2020-01-14 | 华北理工大学 | Low-temperature high-toughness cerium-zirconium composite treated FH40 ship plate steel and preparation method thereof |
CN116752044A (en) * | 2019-06-27 | 2023-09-15 | 日本制铁株式会社 | Steel material and method for producing same |
JP7330862B2 (en) * | 2019-11-01 | 2023-08-22 | 株式会社神戸製鋼所 | High-strength steel sheet with excellent low-temperature toughness of base material and joint, and manufacturing method thereof |
CN111471940B (en) * | 2020-04-29 | 2021-09-10 | 钢铁研究总院 | High-strength stainless steel rotor and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009074111A (en) * | 2007-09-18 | 2009-04-09 | Kobe Steel Ltd | Thick high strength steel plate for high heat input welding having reduced variation in base metal low temperature toughness and excellent heat affected zone toughness, and method for producing the same |
JP2011012315A (en) * | 2009-07-02 | 2011-01-20 | Nippon Steel Corp | NON-TEMPERED HIGH TENSILE STRENGTH THICK STEEL PLATE HAVING YIELD STRENGTH OF 885 MPa OR MORE, AND METHOD FOR PRODUCING THE SAME |
WO2011099408A1 (en) * | 2010-02-15 | 2011-08-18 | 新日本製鐵株式会社 | Production method for thick steel plate |
JP2012229470A (en) * | 2011-04-26 | 2012-11-22 | Kobe Steel Ltd | Steel sheet having excellent low temperature toughness and fracture toughness of welded joint and method for producing the same |
JP2014029019A (en) * | 2012-07-03 | 2014-02-13 | Jfe Steel Corp | Method for producing steel sheet for large heat input welding excellent in brittle crack arrest property |
JP2014043642A (en) * | 2012-07-30 | 2014-03-13 | Jfe Steel Corp | Method of manufacturing steel plate for high heat input welding |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB773871A (en) * | 1952-10-10 | 1957-05-01 | William Jessop And Sons Ltd | Improvements in or relating to nickel alloys |
JP3983065B2 (en) * | 2002-02-28 | 2007-09-26 | 独立行政法人物質・材料研究機構 | Manufacturing method of thick steel plate having ultrafine grain structure and thick steel plate |
JP4825025B2 (en) * | 2006-03-09 | 2011-11-30 | 株式会社神戸製鋼所 | High-yield ratio high-tensile steel sheet with excellent fatigue crack growth suppression and weld heat-affected zone toughness |
JP5147276B2 (en) | 2007-03-30 | 2013-02-20 | 株式会社神戸製鋼所 | High-tensile steel plate with excellent brittle cracking suppression / stop properties and low temperature toughness of weld heat affected zone |
JP5234921B2 (en) | 2008-03-19 | 2013-07-10 | 株式会社神戸製鋼所 | High-strength thick steel plate with excellent strain aging characteristics and manufacturing method thereof |
-
2014
- 2014-06-20 JP JP2014127643A patent/JP6280824B2/en not_active Expired - Fee Related
-
2015
- 2015-06-18 WO PCT/JP2015/067560 patent/WO2015194619A1/en active Application Filing
- 2015-06-18 KR KR1020167035165A patent/KR20170002650A/en not_active Application Discontinuation
- 2015-06-18 CN CN201580029790.9A patent/CN106460120A/en active Pending
- 2015-06-18 CN CN201810799634.6A patent/CN108950393A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009074111A (en) * | 2007-09-18 | 2009-04-09 | Kobe Steel Ltd | Thick high strength steel plate for high heat input welding having reduced variation in base metal low temperature toughness and excellent heat affected zone toughness, and method for producing the same |
JP2011012315A (en) * | 2009-07-02 | 2011-01-20 | Nippon Steel Corp | NON-TEMPERED HIGH TENSILE STRENGTH THICK STEEL PLATE HAVING YIELD STRENGTH OF 885 MPa OR MORE, AND METHOD FOR PRODUCING THE SAME |
WO2011099408A1 (en) * | 2010-02-15 | 2011-08-18 | 新日本製鐵株式会社 | Production method for thick steel plate |
JP2012229470A (en) * | 2011-04-26 | 2012-11-22 | Kobe Steel Ltd | Steel sheet having excellent low temperature toughness and fracture toughness of welded joint and method for producing the same |
JP2014029019A (en) * | 2012-07-03 | 2014-02-13 | Jfe Steel Corp | Method for producing steel sheet for large heat input welding excellent in brittle crack arrest property |
JP2014043642A (en) * | 2012-07-30 | 2014-03-13 | Jfe Steel Corp | Method of manufacturing steel plate for high heat input welding |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017135179A1 (en) * | 2016-02-03 | 2018-05-24 | Jfeスチール株式会社 | Steel material for large heat input welding |
US11326238B2 (en) | 2016-02-03 | 2022-05-10 | Jfe Steel Corporation | Steel material for high heat input welding |
Also Published As
Publication number | Publication date |
---|---|
CN108950393A (en) | 2018-12-07 |
JP2016008308A (en) | 2016-01-18 |
JP6280824B2 (en) | 2018-02-14 |
KR20170002650A (en) | 2017-01-06 |
CN106460120A (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5574059B2 (en) | High-strength H-section steel with excellent low-temperature toughness and method for producing the same | |
JP5029749B2 (en) | High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method | |
JP5337412B2 (en) | Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same | |
JP5110989B2 (en) | Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics | |
JP5733425B2 (en) | High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP4855553B2 (en) | High-strength ultra-thick H-section steel and its manufacturing method | |
WO2021149676A1 (en) | Steel sheet and method for producing same | |
JP5565531B2 (en) | High strength extra thick H-section steel | |
JP2020117779A (en) | Steel plate and method for manufacturing steel plate | |
WO2015194619A1 (en) | High-strength steel plate and process for producing same | |
JP5741378B2 (en) | High tensile steel plate with excellent toughness and method for producing the same | |
JP5741379B2 (en) | High tensile steel plate with excellent toughness and method for producing the same | |
JP2008045174A (en) | High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method | |
WO2014175122A1 (en) | H-shaped steel and method for producing same | |
JP6866933B2 (en) | Hot-rolled steel sheet and its manufacturing method | |
JP5181496B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP2008111165A (en) | High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method | |
JP6390813B2 (en) | Low-temperature H-section steel and its manufacturing method | |
JP2008069380A (en) | High-strength thick steel plate excellent in brittle crack propagation preventing property and its manufacturing method | |
WO2016143345A1 (en) | High-strength thick steel sheet and method for manufacturing same | |
JP5423309B2 (en) | Thick steel plate for offshore structures and manufacturing method thereof | |
CN115362276A (en) | Steel sheet and method for producing same | |
JP6036617B2 (en) | High strength hot rolled steel sheet with excellent toughness and method for producing the same | |
JP5375933B2 (en) | Thick steel plate with excellent brittle crack propagation stop properties | |
TWI614350B (en) | Hot rolled steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15810371 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167035165 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15810371 Country of ref document: EP Kind code of ref document: A1 |