JP2014029019A - Method for producing steel sheet for large heat input welding excellent in brittle crack arrest property - Google Patents

Method for producing steel sheet for large heat input welding excellent in brittle crack arrest property Download PDF

Info

Publication number
JP2014029019A
JP2014029019A JP2013133850A JP2013133850A JP2014029019A JP 2014029019 A JP2014029019 A JP 2014029019A JP 2013133850 A JP2013133850 A JP 2013133850A JP 2013133850 A JP2013133850 A JP 2013133850A JP 2014029019 A JP2014029019 A JP 2014029019A
Authority
JP
Japan
Prior art keywords
steel
temperature range
heat input
less
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013133850A
Other languages
Japanese (ja)
Other versions
JP5949682B2 (en
Inventor
Yoshiaki Murakami
善明 村上
Yoshiko Takeuchi
佳子 竹内
Kazukuni Hase
和邦 長谷
Shinji Mitao
眞司 三田尾
Aoshi Tsuyama
青史 津山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013133850A priority Critical patent/JP5949682B2/en
Publication of JP2014029019A publication Critical patent/JP2014029019A/en
Application granted granted Critical
Publication of JP5949682B2 publication Critical patent/JP5949682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a thick steel plate having a sheet thickness of 40 mm or more, suitable for large heat input welding and excellent in brittle crack arrest properties.SOLUTION: A steel material contains specific amounts of C, Si, Mn, P, S, Al, Nb, Ti, N, B, Ca and the balance of Fe with inevitable impurities and has a Ceq expressed by expression (1) of 0.33 to 0.45, the mass% of Ca, S and O in the steel satisfying a specific expression and mass% of Ti, B and N in the steel satisfying another specific expression. The steel material is heated to 1,000°C or more, rolled at an austenite recrystallization region, subjected to accelerated cooling to a non-recrystallization temperature range, then rolled at cumulative rolling reduction of 40% or more at an austenite non-recrystallization temperature range, and is subjected to accelerated cooling from Artransformation point or more to a temperature range of 500°C or less. Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 (1), each symbol of the elements is the content of the content (mass%) of each element.

Description

本発明は、船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物などの各種大型鋼構造物に使用される板厚40mm以上の厚鋼板の製造方法で、特に大入熱溶接に適し、且つ、脆性亀裂伝播停止特性に優れた厚鋼板の製造方法として好適なものに関する。   The present invention is a method for producing a steel plate having a thickness of 40 mm or more used for various large steel structures such as ships, marine structures, low-temperature storage tanks, and construction / civil engineering structures, and is particularly suitable for large heat input welding. In addition, the present invention relates to a suitable method for producing a thick steel plate having excellent brittle crack propagation stopping characteristics.

船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物などの各種大型鋼構造物の分野で使用される鋼構造物は、その安全性を担保する観点から強度、靱性が所定の要求特性を満足していることが要求される。   Steel structures used in the field of various large steel structures such as ships, offshore structures, low-temperature storage tanks, and construction / civil engineering structures have the required characteristics of strength and toughness from the viewpoint of ensuring their safety. Satisfaction is required.

また、昨今では、鋼板に一般的に付帯される上記要求特性に加えて、鋼構造物の破壊事故の甚大化を防ぐ目的で、脆性破壊伝播停止特性をも具備した鋼板に対する要求が高まっている。この背景として、例えば船舶分野ではより大型の船舶の建造量が増加傾向にあるため、適用される鋼板の板厚が増加し、かつ、高強度化が指向されていること、また、海洋構造物分野においてもより寒冷地での掘削リグ建造が見込まれることが挙げられる。   Moreover, in recent years, in addition to the above-mentioned required characteristics generally attached to steel sheets, there is an increasing demand for steel sheets having brittle fracture propagation stop characteristics for the purpose of preventing an increase in the destruction accidents of steel structures. . As a background to this, for example, in the marine field, the amount of construction of larger vessels tends to increase, so that the thickness of the applied steel sheet is increased and higher strength is aimed at, and the marine structure In the field, the construction of drilling rigs in cold regions is expected.

鋼板の脆性破壊は一般的に低温域で、かつ極短時間で発生、伝播する鋼板の破壊形態の一種であり、構造物全体に甚大な損傷を与えると共に、周囲環境に及ぼす影響も大きいため、不慮の事故などで万が一構造物に亀裂が発生した場合においてもその脆性亀裂を鋼板自体で停止させる特性(以下この特性を脆性亀裂伝播停止特性と記載する)が鋼板に要求される。   Brittle fracture of steel sheets is a type of steel sheet fracture that generally occurs and propagates in a low temperature range and in a very short time, and it causes significant damage to the entire structure and also has a large effect on the surrounding environment. Even if a crack occurs in a structure due to an unexpected accident or the like, the steel sheet is required to have a characteristic that stops the brittle crack with the steel sheet itself (hereinafter, this characteristic is referred to as a brittle crack propagation stop characteristic).

脆性亀裂伝播静止特性に優れた代表的な鋼板として9%Ni鋼があげられる。同鋼は−162℃に沸点のある液化天然ガスの地上式貯槽タンク外板等に適用される鋼板であり、その高いNi含有量により鋼板の靱性を飛躍的に高め、脆性亀裂伝播停止特性を具備させている。   A typical steel sheet excellent in brittle crack propagation static characteristics is 9% Ni steel. This steel is a steel plate that is applied to the outer plate of tanks for liquefied natural gas having a boiling point of −162 ° C., and its high Ni content dramatically increases the toughness of the steel plate, resulting in brittle crack propagation stopping properties. Equipped.

同鋼は極低温という特殊な温度条件での使用を前提としているために、高価なNi量を高く含有することによる、コストの大幅な上昇があっても許容されるが、液化天然ガスほどの極低温環境では使用しない船舶、海洋構造物、建築・土木構造物、貯蔵タンクなどの各種大型鋼構造物での適用は経済性の観点から困難である。   Since the steel is premised on use under a special temperature condition of extremely low temperature, it is acceptable even if there is a significant increase in cost due to containing a high amount of expensive Ni, but as much as liquefied natural gas Application to various large steel structures such as ships, marine structures, construction / civil engineering structures and storage tanks that are not used in a cryogenic environment is difficult from the viewpoint of economy.

そのため、使用温度が極低温域に至らない一般の鋼構造物用鋼板を対象とし、合金コストを上昇させることなく、脆性亀裂伝播停止特性を向上させる手段が提案されている。例えば特許文献1には、脆性亀裂が伝播する際に、鋼材表層部に発生するシアリップ(塑性変形領域)が脆性亀裂伝播停止特性の向上に効果があることに着目し、シアリップ部分の結晶粒を微細化させて、伝播する脆性亀裂が有する伝播エネルギーを吸収させる方法が開示されている。   Therefore, a means for improving the brittle crack propagation stop characteristic has been proposed for a general steel sheet for steel structures whose operating temperature does not reach a very low temperature range without increasing the alloy cost. For example, Patent Document 1 focuses on the fact that shear lip (plastic deformation region) generated in a steel surface layer portion when brittle crack propagates is effective in improving the brittle crack propagation stop property, and crystal grains of the shear lip portion are changed. A method is disclosed in which the propagation energy possessed by the brittle cracks that are propagated by miniaturization is absorbed.

鋼板製造時において、熱間圧延後の制御冷却により表層部分をAr変態点以下に冷却し、その後制御冷却を停止して表層部分を変態点以上に復熱させる工程を1回以上繰り返して行い、この間に鋼材に圧下を加えることにより、繰り返し変態させ、または加工再結晶させて、表層部の組織を超微細化することにより所定の脆性亀裂伝播停止特性を発現させるものである。 During steel plate production, the process of cooling the surface layer part below the Ar 3 transformation point by controlled cooling after hot rolling, and then stopping the controlled cooling and returning the surface layer part above the transformation point is repeated once or more. In the meantime, by rolling down the steel material, it is repeatedly transformed or processed and recrystallized, and the microstructure of the surface layer portion is made ultrafine to develop a predetermined brittle crack propagation stop characteristic.

特許文献2には、フェライト−パーライトを主体のミクロ組織とする鋼材において脆性亀裂伝播停止特性を向上させる手法として、仕上げ圧延時に1パス当りの最大圧下率を12%以下とする軽圧下圧延をして局所的な再結晶現象を抑制し、フェライト粒径を可能な限り均一化させ、鋼材の表裏面の表面部を円相当粒径:5μm以下、アスペクト比:2以上のフェライト粒を有するフェライト組織を50%以上有する層で構成する技術が開示されている。   In Patent Document 2, as a method for improving the brittle crack propagation stop property in a steel material mainly composed of ferrite-pearlite, light rolling is performed with a maximum rolling reduction per pass of 12% or less during finish rolling. In order to suppress local recrystallization phenomenon, the ferrite grain size is made as uniform as possible, and the surface portion of the front and back surfaces of the steel material has a ferrite grain having a ferrite equivalent grain diameter of 5 μm or less and an aspect ratio of 2 or more. Has been disclosed.

しかしながら、上記特許文献1、2記載の製造方法はいずれも、鋼材表層部のみを一旦冷却した後に復熱させ、かつ復熱中に加工を加えることによって、脆性亀裂伝播停止特性に効果のあるミクロ組織を得るもので、厚鋼板の実製造工程では温度制御および管理が著しく困難であり、また、その均質性を担保することも困難と考えられる。   However, all the manufacturing methods described in Patent Documents 1 and 2 above have a microstructure effective for brittle crack propagation stopping characteristics by cooling only the steel surface layer part and then recovering the heat and processing during the reheating. Therefore, it is considered that temperature control and management are extremely difficult in the actual manufacturing process of the thick steel plate, and that it is difficult to ensure its homogeneity.

一方、鋼板表面組織の微細化とは別の視点からの組織制御により脆性亀裂伝播停止特性を向上させる方法も知られている。具体的には、鋼板製造時の制御圧延工程において、一部変態したフェライトに圧下を加えて集合組織を発達させることにより、鋼板の破壊面上にセパレーションを板厚方向と平行な方向に生じさせ、脆性き裂先端の応力を緩和させることにより、脆性破壊に対する抵抗を高める技術である。   On the other hand, a method for improving the brittle crack propagation stop property by microstructure control from a viewpoint different from the refinement of the steel sheet surface structure is also known. Specifically, in the controlled rolling process at the time of steel plate production, a texture is developed by applying a reduction to the partially transformed ferrite, thereby causing separation on the fracture surface of the steel plate in a direction parallel to the plate thickness direction. This is a technique for increasing the resistance to brittle fracture by relaxing the stress at the brittle crack tip.

例えば、特許文献3には、制御圧延により(110)面X線強度比を2以上とし、かつ円相当径20μm以上の粗大粒の面積率を10%以下とすることにより、耐脆性破壊特性を向上させた鋼板が記載されている。しかしながら同技術はフェライトがある程度生成した後の、比較的低温領域における制御圧延が必要であるために圧延能率が著しく低下する懸念があることに加え、相応の圧下率を必要とすることから特に厚肉材への適用が難しいという課題がある。   For example, in Patent Document 3, by controlling rolling, the (110) plane X-ray intensity ratio is set to 2 or more, and the area ratio of coarse particles having an equivalent circle diameter of 20 μm or more is set to 10% or less, thereby exhibiting brittle fracture resistance. An improved steel sheet is described. However, this technique is particularly thick because it requires a corresponding rolling reduction in addition to the concern that the rolling efficiency may be significantly reduced due to the necessity of controlled rolling in a relatively low temperature region after ferrite is formed to some extent. There is a problem that it is difficult to apply to meat.

ところで、脆性破壊伝播停止特性に加えて近年要求が高まっている鋼板への付帯特性として大入熱溶接特性が挙げられる。一般的に鋼構造物は溶接接合によって所定の構造体を得るが、適用される鋼板の厚肉化が進むにつれ、その施工効率を上げる施策として、一回の溶接で投入される熱量(以下、溶接入熱と記載する)を増加させた大入熱溶接を適用する事例が増加している。   By the way, in addition to the brittle fracture propagation stop characteristic, a large heat input welding characteristic is mentioned as an incidental characteristic to the steel plate which is increasing in demand in recent years. Generally, a steel structure obtains a predetermined structure by welding, but as the applied steel sheet becomes thicker, as a measure to increase its construction efficiency, the amount of heat input in one welding (hereinafter, There are an increasing number of cases where high heat input welding (which is referred to as welding heat input) is applied.

大入熱溶接はサブマージアーク溶接やエレクトロガス溶接、エレクトロスラグ溶接などの高能率方法によりなされるが、特に溶接入熱が大きい場合においては、鋼板の溶接熱影響部(以下、熱影響部をHAZと言う場合がある)において結晶粒が粗大化する、あるいは、低靱性の焼入性の高い組織が形成される場合があり、HAZ靱性が著しく低下する場合がある。   Large heat input welding is performed by high-efficiency methods such as submerged arc welding, electrogas welding, and electroslag welding. Especially when the welding heat input is large, the welding heat affected zone of the steel sheet (hereinafter referred to as the heat affected zone is called HAZ). In some cases, the crystal grains become coarse, or a low toughness and high hardenability structure may be formed, and the HAZ toughness may be remarkably lowered.

鋼板の脆性破壊伝播停止特性の向上のためには、鋼板に各種制御圧延を施し、結晶粒の微細化、あるいは集合組織の発達促進が極めて有効な手段であるが、一方、大入熱溶接により形成されるHAZ(大入熱溶接HAZと言う場合がある)の溶融線部近傍では上述した各種制御圧延・冷却プロセスによる結晶粒微細化効果が消失してしまうために、その靱性確保のためには、製造工程依存のない、化学成分調整を基本とした低温靱性の確保を図る必要がある。   In order to improve the brittle fracture propagation stop characteristics of steel sheets, various controlled rolling is applied to the steel sheets, and the refinement of crystal grains or the promotion of texture development is an extremely effective means. In order to ensure its toughness, the grain refinement effect by the various controlled rolling / cooling processes described above disappears in the vicinity of the melt line portion of the formed HAZ (sometimes referred to as high heat input welding HAZ). Therefore, it is necessary to secure low temperature toughness based on chemical component adjustment, which is not dependent on the manufacturing process.

広く知られている対策として、溶接中の高温域で比較的安定なTiNを鋼中に微細分散させることによりオーステナイト粒の粗大化を抑制する技術や、特許文献4の、高温で安定なTi酸化物を分散させる技術等がある。   As a widely known measure, a technique for suppressing the coarsening of austenite grains by finely dispersing TiN that is relatively stable in a high temperature region during welding, or a Ti oxidation that is stable at high temperatures described in Patent Document 4 There are techniques to disperse things.

しかしながらTiN単独のオーステナイト粒微細化効果は、鋼の融点に近い溶融線部近傍ではTiNが溶解してしまうため、かえって固溶Nの増大をまねき低温靱性を著しく低下させることがあり、一方、Ti酸化物を活用する技術は、所定の酸化物を微細に、且つ鋼板に均一に分散させることが困難であるという課題がある。   However, the austenite grain refining effect of TiN alone is that TiN dissolves in the vicinity of the melting line portion close to the melting point of the steel, so that it may lead to an increase in solid solution N and significantly reduce low temperature toughness. The technique using oxides has a problem that it is difficult to finely disperse a predetermined oxide uniformly in a steel plate.

特許文献5では、高温域での拡散速度が速く、窒化物形成元素であるBにより、溶接時の冷却途上で固溶Nを窒化物として固定しHAZ靱性を向上させることを提案している。しかし、母材の製造段階で既に窒化物を形成し、HAZ靱性の向上に必要な固溶Bが確保できない場合や、B窒化物のフェライト生成能によりフェライト生成が促進されるため、変態組織を活用した強化が十分でなくなり所定の強度の確保が困難なことも指摘されている。   Patent Document 5 proposes to improve the HAZ toughness by fixing solute N as nitride during cooling during welding by using B, which is a nitride-forming element, with a high diffusion rate in a high temperature range. However, when the nitride is already formed at the manufacturing stage of the base material and the solid solution B necessary for improving the HAZ toughness cannot be secured, or because the ferrite formation of the B nitride promotes the formation of ferrite, It has also been pointed out that the strengthening utilized is not sufficient and it is difficult to secure a predetermined strength.

特公平7−100814号公報Japanese Patent Publication No. 7-100814 特開2002−256375号公報JP 2002-256375 A 特開平10−88280号公報Japanese Patent Laid-Open No. 10-88280 特開昭57−051243号公報JP-A-57-051233 特開2005−2476号公報JP 2005-2476 A

従って、厚鋼板において脆性亀裂伝播停止特性と大入熱溶接HAZの溶融線部近傍のHAZ靱性の両方を向上させるためには、前者のための化学成分の適正化と鋼板製造段階での熱間圧延条件の最適化と、後者のための化学成分を基本とした対策の両方が必要となる。実機製造においてはこれらの対策を、量産化を前提とした高い製造性と、高額な合金添加に頼らない、高い経済性の前提条件の下で両立させることが課題である。   Therefore, in order to improve both the brittle crack propagation stopping characteristics and the HAZ toughness in the vicinity of the fusion line part of the high heat input weld HAZ in the thick steel plate, the optimization of the chemical composition for the former and the hot in the steel plate manufacturing stage Both optimization of rolling conditions and measures based on chemical components for the latter are required. In actual machine manufacturing, it is a challenge to reconcile these measures under the premise of high manufacturability on the premise of mass production and high economic efficiency without relying on expensive alloy addition.

そこで、本発明は、上記課題を解決する、大入熱溶接HAZの低温靱性を確保し、且つ、優れた脆性亀裂伝播停止特性を備えた厚肉高強度鋼板の製造方法を提供することを目的とする。   Accordingly, the object of the present invention is to provide a method for producing a thick high-strength steel plate that solves the above-described problems, ensures low temperature toughness of high heat input welding HAZ, and has excellent brittle crack propagation stopping characteristics. And

本発明者らは上記課題を解決するため、鋼板製造時の制御圧延・制御冷却中の熱履歴と、大入熱溶接時に鋼板に付与される熱履歴の差異に着目して鋭意検討を行った結果、高強度厚肉鋼板の大入熱溶接HAZ対策として適正化した成分設計の鋼に、鋼板製造過程において、初めにオーステナイト再結晶温度域(以下、単に再結晶温度域とも称す)圧延を実施した後にオーステナイト未再結晶温度域(以下、単に未再結晶温度域とも称す)まで加速冷却し、引き続き未再結晶域圧延を行い、その後再度加速冷却を実施すると、高強度と優れた低温靱性が得られることを知見した。   In order to solve the above-mentioned problems, the inventors of the present invention have intensively studied by paying attention to the difference between the thermal history during controlled rolling / controlled cooling during steel plate production and the thermal history imparted to the steel plate during high heat input welding. As a result, in the steel plate manufacturing process, the austenite recrystallization temperature range (hereinafter also simply referred to as the recrystallization temperature range) is first rolled on the steel with a component design that is optimized as a measure against high heat input HAZ of high-strength thick steel plates. After that, accelerated cooling to the austenite non-recrystallization temperature range (hereinafter also referred to simply as the non-recrystallization temperature range), followed by non-recrystallization zone rolling, followed by accelerated cooling again results in high strength and excellent low-temperature toughness. It was found that it was obtained.

すなわち、本発明では、大入熱溶接HAZ靱性対策として、Ca系介在物に加えて、B窒化物を大入熱溶接熱履歴中に積極的に析出させ、析出物を起点として核生成するフェライトによりHAZの高焼入性組織分率を低下させることにより靱性を確保する。   That is, in the present invention, as a countermeasure for high heat input welding HAZ toughness, in addition to Ca-based inclusions, B nitride is actively precipitated in the heat input heat history of the high heat input, and ferrite nucleates starting from the precipitate. To ensure toughness by reducing the HAZ high hardenability fraction.

これらの効果が鋼板製造時に発現した場合、制御圧延実施前にフェライト分率が高まるため、鋼板の高強度化の達成が困難となり、さらには、フェライト主体組織で脆性亀裂伝播停止特性を確保するために制御圧延温度を低温化した上での強圧下が必要となり、製造性が著しく低下することが懸念される。   When these effects are manifested during steel sheet production, the ferrite fraction increases before the controlled rolling is performed, making it difficult to achieve high strength of the steel sheet, and also to ensure brittle crack propagation stopping characteristics in the ferrite main structure In addition, it is necessary to reduce the controlled rolling temperature at a low temperature, and there is a concern that the productivity is significantly reduced.

このため、鋼板製造時においては、フェライト核生成起点であるB窒化物の析出温度域である再結晶温度域内での圧延終了温度から未再結晶温度域に至るまでの温度域、すなわち、再結晶温度域における圧延終了後の残余の再結晶温度域を加速冷却(一次加速冷却)させることによりB窒化物の析出を可能な限り防止し、以降の未再結晶域圧延の圧延終了後から実施する二段階目の加速冷却工程(二次加速冷却)によりベイナイト主体組織を形成し、変態集合組織を発達させることにより、高強度、及び優れた脆性亀裂伝播停止特性を具備させることが可能であることを知見した。本発明の要旨は以下の通りである。
1.質量%で、C:0.030〜0.080%、Si:0.01〜0.10%、Mn:1.20〜2.50%、P:0.008%以下、S:0.0005〜0.0040%、Al:0.005〜0.1%、Nb:0.003〜0.04%、Ti:0.003〜0.04%、N:0.003〜0.010%、B:0.0003〜0.0030%、Ca:0.0005〜0.0030%、下記(1)式で表される炭素当量Ceqが0.33〜0.45、鋼中のCa、S、およびOが下記(2)式を満たし、かつ、鋼中のTi、B、Nが下記(3)式を満たし、残部Feおよび不可避的不純物からなる鋼素材を、1000℃以上に加熱し、オーステナイト再結晶温度域における圧延終了後、オーステナイト未再結晶温度域での圧延開始までの温度域を一次加速冷却し、引き続いてオーステナイト未再結晶温度域において累積圧下率40%以上の圧延を実施した後、Ar変態点以上から500℃以下の温度域に二次加速冷却する工程を有する脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(1)
0<(Ca−(0.18+130×Ca)×O)/1.25/S<1・・・(2)
−15<(N−Ti/3.42−1.269×B)×10<15・・・(3)
ただし、上記(1)〜(3)式中の元素記号は各元素の含有量(質量%)を示す。
2.成分組成に、更に、質量%で、Cu:1.0%以下、Ni:1.5%以下、Cr:1.0%以下、Mo:0.5%以下およびV:0.1%以下の1種または2種以上を含有することを特徴とする、1に記載の脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法。
3.成分組成に、更に、質量%で、Mg:0.0005〜0.005%、Zr:0.001〜0.02%およびREM:0.001〜0.02%の1種または2種以上を含有することを特徴とする、1または2に記載の脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法。
4.500℃以下の温度域に加速冷却した後、さらに、Ac変態点以下の温度域に焼き戻す工程を有する、1乃至3のいずれか一つに記載の脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法。
For this reason, at the time of steel plate production, the temperature range from the rolling end temperature to the non-recrystallization temperature range in the recrystallization temperature range, which is the precipitation temperature range of B nitride, which is the starting point of ferrite nucleation, that is, recrystallization Precipitation of B nitride is prevented as much as possible by accelerated cooling (primary accelerated cooling) of the remaining recrystallization temperature range after the end of rolling in the temperature range, and is carried out after the end of the subsequent non-recrystallization range rolling. By forming a bainite main structure in the second stage accelerated cooling process (secondary accelerated cooling) and developing a transformation texture, it is possible to provide high strength and excellent brittle crack propagation stopping characteristics. I found out. The gist of the present invention is as follows.
1. In mass%, C: 0.030 to 0.080%, Si: 0.01 to 0.10%, Mn: 1.20 to 2.50%, P: 0.008% or less, S: 0.0005 -0.0040%, Al: 0.005-0.1%, Nb: 0.003-0.04%, Ti: 0.003-0.04%, N: 0.003-0.010%, B: 0.0003 to 0.0030%, Ca: 0.0005 to 0.0030%, carbon equivalent Ceq represented by the following formula (1) is 0.33 to 0.45, Ca, S in steel, And O satisfies the following formula (2), and Ti, B, and N in the steel satisfy the following formula (3), and the steel material composed of the remaining Fe and unavoidable impurities is heated to 1000 ° C. or more to obtain austenite After the rolling in the recrystallization temperature range, the temperature range from the start of rolling in the austenite non-recrystallization temperature range to the same Accelerated cooling, subsequently after performing rolling cumulative reduction of 40% or more in the austenite non-recrystallization temperature region, brittle crack propagation comprising a step of secondary accelerated cooling to a temperature range below 500 ℃ from Ar 3 transformation point or more A method of manufacturing a steel plate for high heat input welding with excellent stopping characteristics.
Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (1)
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1 (2)
−15 <(N—Ti / 3.42-1.269 × B) × 10 4 <15 (3)
However, the element symbols in the above formulas (1) to (3) indicate the content (% by mass) of each element.
2. In addition to the component composition, by mass%, Cu: 1.0% or less, Ni: 1.5% or less, Cr: 1.0% or less, Mo: 0.5% or less, and V: 0.1% or less The manufacturing method of the steel plate for high heat input welding excellent in the brittle crack propagation stop characteristic of 1 characterized by containing 1 type or 2 types or more.
3. The component composition further includes one or more of Mg: 0.0005 to 0.005%, Zr: 0.001 to 0.02%, and REM: 0.001 to 0.02% by mass%. The manufacturing method of the steel plate for high heat input welding excellent in the brittle crack propagation stop characteristic of 1 or 2 characterized by containing.
It has excellent brittle crack propagation stop characteristics as described in any one of 1 to 3, further comprising a step of tempering to a temperature range below the Ac 1 transformation point after accelerated cooling to a temperature range below 4.500 ° C. Manufacturing method of steel plate for high heat input welding.

本発明によれば、大入熱溶接HAZ靱性確保のための化学成分の適正化に加え、鋼板製造時においてオーステナイト再結晶温度域圧延と第一段目の未再結晶温度域までの加速冷却(一次加速冷却)を行ない、その後に累積圧下率40%以上の未再結晶温度域圧延を行って、次いで500℃以下の温度域まで第二段目の加速冷却(二次加速冷却)を行うことにより、優れた大入熱溶接HAZ低温靱性と、鋼板母材部での優れた脆性亀裂伝播停止特性の両者を具備する厚鋼板が得られ、産業上極めて有用である。   According to the present invention, in addition to optimization of chemical components for securing high heat input welding HAZ toughness, austenite recrystallization temperature range rolling and accelerated cooling to the first stage non-recrystallization temperature range ( (Primary accelerated cooling), followed by non-recrystallization temperature range rolling with a cumulative rolling reduction of 40% or more, and then second stage accelerated cooling (secondary accelerated cooling) to a temperature range of 500 ° C. or lower. Thus, a thick steel plate having both excellent high heat input welding HAZ low temperature toughness and excellent brittle crack propagation stopping characteristics in the steel plate base material portion is obtained, which is extremely useful industrially.

以下、本発明を具体的に説明する。なお、化学成分における%は全て質量%とする。
C:0.030〜0.080%
Cは、鋼材の強度を高める元素であり、構造用鋼として必要な強度を確保するためには、0.030%以上の添加が必要である。一方、0.080%を超えると、大入熱溶接HAZ中に島状マルテンサイトが生成し易くなるため、上限を0.080%とする。好ましくは、0.04〜0.07%の範囲である。
Hereinafter, the present invention will be specifically described. In addition, all% in a chemical component shall be the mass%.
C: 0.030 to 0.080%
C is an element that increases the strength of the steel material, and 0.030% or more of addition is necessary in order to ensure the strength necessary for structural steel. On the other hand, if it exceeds 0.080%, island martensite is likely to be generated in the high heat input welding HAZ, so the upper limit is made 0.080%. Preferably, it is 0.04 to 0.07% of range.

Si:0.01〜0.10%
Siは、鋼を溶製する際の脱酸剤として添加される元素であり、0.01%以上の添加が必要である。しかし、0.10%を超えると、大入熱溶接HAZ中に島状マルテンサイトが生成し、靱性の低下を招きやすくなる。よって、Siは0.01〜0.10%の範囲とする。
Si: 0.01-0.10%
Si is an element added as a deoxidizer when melting steel, and it is necessary to add 0.01% or more. However, if it exceeds 0.10%, island martensite is generated in the high heat input welding HAZ, and the toughness is liable to be lowered. Therefore, Si is taken as 0.01 to 0.10% of range.

Mn:1.20〜2.50%
MnはCと同様に、鋼板母材の強度を高める元素であり、また他の合金成分に比較して安価であることから、1.20%以上の積極的な添加が有効であるが、2.50%を超えると焼入性が過剰となり、母材靱性が低下するとともに溶接性を損なう。従ってMn量は1.20〜2.50%とする。好ましくは1.5%〜2.2%の範囲である。
Mn: 1.20 to 2.50%
Like M, Mn is an element that enhances the strength of the steel sheet base metal and is inexpensive compared to other alloy components. Therefore, positive addition of 1.20% or more is effective. If it exceeds 50%, the hardenability becomes excessive, the base metal toughness is lowered, and the weldability is impaired. Therefore, the Mn content is 1.20 to 2.50%. Preferably it is 1.5 to 2.2% of range.

P:0.008%以下
Pは不純物として鋼中に含有される元素の一つであるが、鋼板母材および、大入熱溶接HAZの靱性を低下させるため、素材溶製時の経済性を考慮した上で可能な範囲で低減することが好ましい。このため、P量は0.008%以下とする。
P: 0.008% or less P is one of the elements contained in steel as an impurity. However, in order to reduce the toughness of the steel plate base metal and the high heat input welding HAZ, the economics at the time of material melting are reduced. It is preferable to reduce as much as possible in consideration. For this reason, the amount of P is made into 0.008% or less.

S:0.0005〜0.0040%
SはPと同様不純物として鋼中に含有される元素の一つであるが、Pと異なり、MnSやCaS、REM−Sなどの硫化物として存在した場合にフェライトの生成核となり、大入熱溶接HAZの靱性を向上させる。この効果は0.0005%以上の含有で得ることができる。一方で過剰の含有は多量の硫化物生成を招き、母材靱性の低下を引き起こす。従って、S量は0.0005〜0.0040%の範囲とする。
S: 0.0005 to 0.0040%
Like P, S is one of the elements contained in steel as an impurity, but unlike P, when it exists as sulfides such as MnS, CaS, and REM-S, it becomes a nucleus of ferrite formation, resulting in a large heat input. Improve toughness of welded HAZ. This effect can be obtained with a content of 0.0005% or more. On the other hand, an excessive content leads to a large amount of sulfide formation and causes a decrease in base material toughness. Therefore, the S amount is in the range of 0.0005 to 0.0040%.

Al:0.005〜0.1%
Alは、鋼の脱酸のために添加される元素であり、0.005%以上含有させる必要がある。一方で、0.1%を超えて添加すると、介在物量が過剰となり、母材の靱性を低下させる。従って、Alは0.005〜0.1%の範囲とする。好ましくは0.01〜0.06%とする。
Al: 0.005 to 0.1%
Al is an element added for deoxidation of steel, and it is necessary to contain 0.005% or more. On the other hand, when it exceeds 0.1%, the amount of inclusions becomes excessive and the toughness of the base material is lowered. Therefore, Al is made 0.005 to 0.1% of range. Preferably, the content is 0.01 to 0.06%.

Nb:0.003〜0.04%
Nbは、添加により未再結晶温度域を拡大させる効果を有し、鋼板母材の強度靱性を確保するのに有効な元素である。しかし、0.003%未満の添加では上記効果が小さく、一方で0.04%を超えて添加すると、大入熱溶接HAZに島状マルテンサイトを生成させ、靱性を低下させる。このため、0.003〜0.04%の範囲とする。好ましくは、0.005〜0.025%の範囲である。
Nb: 0.003 to 0.04%
Nb has an effect of expanding the non-recrystallization temperature region by addition, and is an element effective for ensuring the strength toughness of the steel plate base material. However, if the addition is less than 0.003%, the above effect is small. On the other hand, if the addition exceeds 0.04%, island martensite is generated in the high heat input welding HAZ, and the toughness is lowered. For this reason, it is set as 0.003 to 0.04% of range. Preferably, it is 0.005 to 0.025% of range.

Ti:0.003〜0.04%
Tiは、凝固時にTiNとして析出し、特に溶接熱影響部のオーステナイト粒の粗大化を抑制し、且つ、フェライトの変態核となるなど、大入熱溶接HAZの高靭化に極めて有用な元素である。この効果を得るためには、0.003%以上の添加が必要である。一方、0.04%を超えて添加すると、析出したTiNが粗大化し、上記効果が得られにくくなる。よって、0.003〜0.04%の範囲とする。好ましくは、0.005〜0.025%の範囲である。
Ti: 0.003-0.04%
Ti precipitates as TiN during solidification, and is an extremely useful element for increasing the toughness of high heat input weld HAZ, particularly suppressing the coarsening of austenite grains in the weld heat affected zone and becoming a transformation nucleus of ferrite. is there. In order to obtain this effect, 0.003% or more must be added. On the other hand, if added over 0.04%, the precipitated TiN becomes coarse, and the above effect is hardly obtained. Therefore, it is set as 0.003 to 0.04% of range. Preferably, it is 0.005 to 0.025% of range.

N:0.003〜0.010%
Nは、上述したTiNの生成、また、後述するB窒化物の形成に必要な元素であり、本発明において最も重要な元素の一つである。これらの窒化物を大入熱溶接HAZにおいて生成させ、靱性向上に有効に寄与させるためには、0.003%以上含有させる必要がある。一方で、0.010%を超えて含有すると、溶接入熱条件によってはTiNが溶解する領域における固溶N量が増加し、却って溶接部の靱性を低下させる場合がある。従って、0.003〜0.010%の範囲とする。好ましくは、0.004〜0.007%の範囲である。
N: 0.003-0.010%
N is an element necessary for the formation of TiN described above and the formation of B nitride described later, and is one of the most important elements in the present invention. In order to generate these nitrides in high heat input welding HAZ and effectively contribute to the improvement of toughness, it is necessary to contain 0.003% or more. On the other hand, if the content exceeds 0.010%, depending on the welding heat input conditions, the amount of solute N in the region where TiN dissolves may increase, and on the contrary, the toughness of the welded portion may be reduced. Therefore, the range is 0.003 to 0.010%. Preferably, it is 0.004 to 0.007% of range.

B:0.0003〜0.0030%
Bは固溶状態で存在する場合は粒界に偏在して焼入性を確保し、母材強度の確保に寄与し、B窒化物として存在する場合はフェライト核として作用し、大入熱溶接HAZ靱性を高める、本発明で最も重要な元素の一つである。含有量が0.0003%未満では前者の効果が得られず、0.0030%を超えるとB窒化物を上回る固溶Bが多量に存在することになり、逆に大入熱溶接HAZ靱性の低下を引き起こす。従ってBは0.0003〜0.0030%の範囲とする。
B: 0.0003 to 0.0030%
When B exists in a solid solution state, it is unevenly distributed at the grain boundary to ensure hardenability and contribute to ensuring the strength of the base material. When B exists as a B nitride, it acts as a ferrite nucleus, and high heat input welding. It is one of the most important elements in the present invention that increases HAZ toughness. If the content is less than 0.0003%, the former effect cannot be obtained, and if it exceeds 0.0030%, a large amount of solid solution B exceeding B nitride exists, and conversely, high heat input welding HAZ toughness Causes a drop. Therefore, B is in the range of 0.0003 to 0.0030%.

Ca:0.0005〜0.0030%
Caは、Sの固定による大入熱溶接HAZ靭性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.0005%は含有することが必要であるが、0.0030%を超えて含有しても効果が飽和するため、0.0005%〜0.0030%とする。
Ca: 0.0005 to 0.0030%
Ca is an element having an effect of improving the high heat input welding HAZ toughness by fixing S. In order to exert such an effect, it is necessary to contain at least 0.0005%, but even if it exceeds 0.0030%, the effect is saturated, so 0.0005% to 0.0030% And

Ceq :0.33〜0.45%
本発明に係る鋼材は、上記各成分が、上記組成範囲を満たして含有していることに加えて、Ceq (=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15、ただし
、式中の元素記号は各元素の含有量(質量%)を示す。) が0.33〜0.45%の範囲となるよう含有していることが必要である。
Ceq: 0.33-0.45%
The steel material according to the present invention contains Ceq (= C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15, in addition to the above-mentioned components satisfying the above composition range, but the elements in the formula The symbol indicates the content (mass%) of each element.) Must be contained in a range of 0.33 to 0.45%.

Ceq が0.33%未満では、制御圧延・加速冷却条件を調整した場合においても必要な母材強度が得られない。一方、Ceq が0.45%を超えると、大入熱溶接HAZに生成する島状マルテンサイトの量が極めて多くなり、靭性低下を引き起こす。このため、0.33〜0.45%に規定する。また、好ましくは0.35〜0.42%の範囲である。   If Ceq is less than 0.33%, the required base material strength cannot be obtained even when the controlled rolling / accelerated cooling conditions are adjusted. On the other hand, when Ceq exceeds 0.45%, the amount of island martensite generated in the high heat input welding HAZ becomes extremely large, causing a decrease in toughness. For this reason, it is specified to be 0.33 to 0.45%. Moreover, it is preferably in the range of 0.35 to 0.42%.

0<(Ca−(0.18+130×Ca)×O)/1.25/S<1 ただし、式中の元素記号は各元素の含有量(質量%)を示す。
本式は大入熱溶接HAZ靱性を向上させるために、HAZ中にフェライトを核生成させる付帯条件を与えるもので鋼中のCa、S、O量のバランスを制御するものである。後述するTi、B、N量のバランス制御によるフェライト生成核の確保条件とならび、本発明で最も重要な制御因子の一つである。
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1 However, the element symbol in the formula indicates the content (% by mass) of each element.
In order to improve the high heat input welding HAZ toughness, this formula gives an incidental condition for nucleating ferrite in the HAZ, and controls the balance of Ca, S, and O contents in the steel. This is one of the most important control factors in the present invention, as well as the conditions for securing the ferrite nuclei by balance control of Ti, B, and N amounts described later.

HAZにおいてフェライトを核生成させるためには、核生成能の高いMnSやTiN、BN等の析出物を可能な限り多く生じさせる必要がある。これらの高い核生成能を有する析出物の内、MnSはその周囲にMnの希薄帯を形成してフェライト変態を促進するが、通常MnSは凝集して生成する傾向があるため、微細分散させるためにMnSを優先的に析出させる介在物が必要である。   In order to nucleate ferrite in HAZ, it is necessary to generate as many precipitates as possible with high nucleation ability such as MnS, TiN, and BN. Among these precipitates having a high nucleation ability, MnS forms a Mn dilute band around it to promote ferrite transformation, but usually MnS tends to agglomerate and form, so it is finely dispersed. In addition, inclusions for preferentially precipitating MnS are required.

本発明では析出を助長させる介在物としてCa系介在物に着目した。Ca系介在物はその生成温度が高く、鋼を溶製する際の凝固段階で晶出する。この晶出相界面にMnSが優先析出し、凝集粗大化が抑制される。本式で規定された(Ca−(0.18+130×Ca)×O)/1.25/Sが0以下の場合には、CaSが晶出せず、SはMnS単独の形態で析出し、溶接熱影響部において複合硫化物を微細分散させることができない。   In the present invention, attention has been paid to Ca-based inclusions as inclusions that promote precipitation. Ca-based inclusions have a high generation temperature and are crystallized in the solidification stage when the steel is melted. MnS preferentially precipitates at the crystallized phase interface, and aggregation coarsening is suppressed. When (Ca− (0.18 + 130 × Ca) × O) /1.25/S defined by this formula is 0 or less, CaS does not crystallize, S precipitates in the form of MnS alone, and welding The composite sulfide cannot be finely dispersed in the heat affected zone.

一方、(Ca−(0.18+130×Ca)×O)/1.25/Sの値が1以上の場合には、SがCaによって完全に固定され、フェライト生成核として作用するMnSが、CaS上に析出しないため、溶接熱影響部において複合硫化物を微細分散させることができない。なお、Oは不可避的不純物として鋼中に含有され、清浄度を低下させる。このため本発明ではできるだけ低減することが望ましい。特に、O含有量が0.003%を超えるとCaO系介在物が粗大化して母材靭性を低下させてしまうため、好ましくは0.003%以下とする。   On the other hand, when the value of (Ca− (0.18 + 130 × Ca) × O) /1.25/S is 1 or more, S is completely fixed by Ca, and MnS acting as a ferrite nuclei is CaS. Since it does not precipitate on the surface, the composite sulfide cannot be finely dispersed in the weld heat affected zone. In addition, O is contained in steel as an unavoidable impurity and reduces cleanliness. For this reason, it is desirable to reduce as much as possible in the present invention. In particular, if the O content exceeds 0.003%, CaO-based inclusions become coarse and lower the base material toughness, so the content is preferably made 0.003% or less.

また、本発明では、CaをCaSとして晶出させるために、Caと結合力の強いO量をCa添加前に低減させておくことが必要であり、Ca添加前の残存酸素量は、0.003%以下であることが好ましい。残存酸素量の低減方法としては、脱ガスを強化する、あるいは、脱酸剤を投入する、などの方法をとることができる。   Further, in the present invention, in order to crystallize Ca as CaS, it is necessary to reduce the amount of O having a strong binding force with Ca before addition of Ca. It is preferable that it is 003% or less. As a method for reducing the amount of residual oxygen, a method such as enhancing degassing or introducing a deoxidizer can be employed.

−15<(N−Ti/3.42−1.269×B)×10<15 ただし、式中の各元素記号は各元素の含有量(質量%)を示す。
本式は、大入熱溶接HAZ靱性を確保する因子であり、本発明で最も重要な制御因子の一つである。上述のよう、TiNおよびBNは有効なフェライト核生成能を有するが、いずれも窒化物であること、またTi、B、Nの三元素は固溶状態で存在する場合には却って靱性を低下させることから、個別の含有量規定のみならず、そのバランスを適正に保つ必要がある。
−15 <(N—Ti / 3.42-1.269 × B) × 10 4 <15 However, each element symbol in the formula represents the content (% by mass) of each element.
This equation is a factor for ensuring high heat input welding HAZ toughness, and is one of the most important control factors in the present invention. As described above, TiN and BN have effective ferrite nucleation ability, but all are nitrides, and if the three elements of Ti, B, and N exist in a solid solution state, the toughness is reduced instead. Therefore, it is necessary to maintain not only the individual content regulations but also the balance.

本式は鋼中に含まれる窒素量から、TiN析出に消費される窒素量と、BN析出に消費される窒素量を差し引いた値を整数化したものであり、大入熱溶接の冷却速度が極めて遅いため、概ね化学量論比に従って熱平衡的に析出が起こることを想定している。   This formula is an integer value obtained by subtracting the amount of nitrogen consumed for TiN precipitation and the amount of nitrogen consumed for BN precipitation from the amount of nitrogen contained in steel, and the cooling rate of high heat input welding is Since it is extremely slow, it is assumed that precipitation occurs in a thermal equilibrium according to the stoichiometric ratio.

本発明者らはTi/B/N比を様々に変化させた鋼板の大入熱溶接HAZの靱性に関して検討を行った結果、上式の(N−Ti/3.42−1.269×B)×10の値が−15以下の場合、TiもしくはBが過剰となり、前者ではTiCの析出が、後者では固溶Bによる焼入性増加が発現してHAZ靱性を低下させることを、また、(N−Ti/3.42−1.269×B)×10の値が15以上の場合、逆に析出に消費される窒素が少なく、過剰な窒素が固溶のままHAZ中に存在し、フェライト主体組織であるにも係わらず靱性が低下するという結果を得た。従い、本式の規定範囲を上記のように規定する。 As a result of studying the toughness of high heat input welding HAZ of steel sheets with various changes in the Ti / B / N ratio, the present inventors have found that (N-Ti / 3.42-1.269 × B ) When the value of × 10 4 is −15 or less, Ti or B is excessive, and in the former, precipitation of TiC is manifested, and in the latter, an increase in hardenability due to solute B is manifested, thereby reducing HAZ toughness. When the value of (N-Ti / 3.42-1.269 × B) × 10 4 is 15 or more, conversely, less nitrogen is consumed for precipitation, and excess nitrogen exists in the HAZ as a solid solution. As a result, the toughness was lowered in spite of the ferrite main structure. Therefore, the specified range of this formula is specified as described above.

本発明の基本成分組成は以上であるが、更に所望の特性を向上させる場合は、Cu、Ni、Cr、Mo、V、Mg、Zr、REMの1種または2種以上を選択元素として含有することができる。   Although the basic component composition of the present invention is as described above, in order to further improve desired properties, one or more of Cu, Ni, Cr, Mo, V, Mg, Zr, and REM are contained as selective elements. be able to.

Cu:1.0%以下
Cuは強度を増加させるために含有することができる元素であるが、1.0%を超えて含有すると、熱間脆性により鋼板母材表面の性状を劣化させるため、含有する場合、その量は1.0%以下の範囲とする。
Cu: 1.0% or less Cu is an element that can be contained in order to increase the strength, but if contained in excess of 1.0%, the quality of the surface of the steel sheet base material is deteriorated due to hot brittleness. When it contains, the quantity shall be 1.0% or less of range.

Ni:1.5%以下
Niは母材の強度を増加させつつ靭性も向上させることが可能な元素である。1.5%を超えて含有した場合、効果が飽和するとともに経済的に不利となるため、含有する場合、その量は1.5%以下の範囲とし、好ましくは1.0%以下の範囲とする。
Ni: 1.5% or less Ni is an element that can improve the toughness while increasing the strength of the base material. When the content exceeds 1.5%, the effect is saturated and economically disadvantageous. Therefore, when it is contained, the amount is in the range of 1.5% or less, preferably in the range of 1.0% or less. To do.

Cr:1.0%以下
Crは強度を増加させるために有効な元素であるが、1.0%を超えて含有すると、母材靭性を劣化させるため、含有する場合、その量は1.0%以下の範囲とする。
Cr: 1.0% or less Cr is an effective element for increasing the strength. However, if it exceeds 1.0%, the toughness of the base metal is deteriorated. % Or less.

Mo:0.5%以下
Moは母材強度を増加するのに有効な元素であるが、0.5%を超えて含有すると、著しく靭性を劣化させるとともに経済性を損なうため、含有する場合、その量は0.5%以下の範囲とする。
Mo: 0.5% or less Mo is an element effective for increasing the strength of the base metal. However, when it is contained in excess of 0.5%, the toughness is significantly deteriorated and the economy is impaired. The amount is in the range of 0.5% or less.

V:0.1%以下
Vは母材強度を増加するのに有効な元素であるが、0.1%を超えて含有すると、著しく靭性を劣化させるため、含有する場合、その量は0.1%以下の範囲とする。
V: 0.1% or less V is an element effective for increasing the strength of the base metal. However, if the content exceeds 0.1%, the toughness is remarkably deteriorated. The range is 1% or less.

Mg:0.0005〜0.005%、Zr:0.001〜0.02%およびREM:0.001〜0.02%
Mg、Zr、REMは鋼中のSを固定して鋼板の靭性を向上させる効果があり、比較的強い硫化物形成元素であるMgは0.0005%以上で、また、ZrおよびREMに関しては0.001%以上の含有でそれぞれ効果がある。しかしながら、それぞれの量が0.005%、0.02%、0.02%を超えて含有すると鋼中の介在物量が増加し靭性をかえって劣化させる。従って、これらの元素を含有する場合、Mgは0.0005〜0.005%、Zrは0.001〜0.02%、REMは0.001〜0.02%の範囲とする。なお、上記成分以外の残部は、Feおよび不可避的不純物からなる。
Mg: 0.0005-0.005%, Zr: 0.001-0.02% and REM: 0.001-0.02%
Mg, Zr, and REM have the effect of fixing S in the steel to improve the toughness of the steel sheet. Mg, which is a relatively strong sulfide-forming element, is 0.0005% or more, and 0 for Zr and REM. Each content is effective when the content is 0.001% or more. However, when each content exceeds 0.005%, 0.02%, and 0.02%, the amount of inclusions in the steel increases and the toughness is deteriorated instead. Therefore, when these elements are contained, Mg is in the range of 0.0005 to 0.005%, Zr is in the range of 0.001 to 0.02%, and REM is in the range of 0.001 to 0.02%. The balance other than the above components is composed of Fe and inevitable impurities.

本発明鋼の製造では、転炉あるいは電気炉等の常法の溶製手法を用いて溶製した溶鋼を、連続鋳造法あるいは造塊法等の常法の工程により、鋼板製造のためのスラブ素材とすることが好ましい。以下、鋼板製造条件の限定理由に関して説明する。本発明における鋼材温度は、鋼材の表面と中心部(板厚の1/2部)の平均温度とする。   In the production of the steel according to the present invention, a slab for producing a steel sheet is produced by using a conventional process such as a continuous casting method or an ingot forming method, and a molten steel melted by a conventional melting method such as a converter or an electric furnace. It is preferable to use a material. Hereinafter, the reason for limiting the steel sheet manufacturing conditions will be described. The steel material temperature in the present invention is the average temperature of the steel material surface and the central part (1/2 part of the plate thickness).

加熱温度:1000℃以上
鋳造後のスラブは、室温まで冷却した後、あるいは可能であれば高温の状態のままで、加熱炉に装入して加熱し、その加熱温度を1000℃以上に規定する。スラブの加熱は主にNb炭窒化物を溶解せしめ、固溶Nbを十分に確保する観点から下限の温度を1000℃とした。また、加熱温度の上限側は規定しないが、過度に高温の場合、加熱時のオーステナイト粒の粗大化が起こり母材靱性に悪影響を及ぼすため、通常は1250℃以下、望ましくは1200℃以下である。
Heating temperature: 1000 ° C. or higher After casting, the slab after casting is cooled to room temperature or, if possible, kept in a high temperature state and charged in a heating furnace, and the heating temperature is regulated to 1000 ° C. or higher. . In the heating of the slab, Nb carbonitride was mainly dissolved, and the lower limit temperature was set to 1000 ° C. from the viewpoint of sufficiently securing the solid solution Nb. Further, although the upper limit side of the heating temperature is not specified, when it is excessively high, austenite grains become coarse during heating and adversely affect the toughness of the base metal. Therefore, it is usually 1250 ° C. or lower, preferably 1200 ° C. or lower. .

オーステナイト再結晶温度域における圧延
オーステナイト再結晶温度域における圧延は、加熱時のオーステナイト粒を微細化するために必要であり、1パス以上、好ましくは累積圧下率20%以上行うのが望ましい。
また、当該圧延は可能であればオーステナイト再結晶温度域の低温側で行うことが望ましい。
Rolling in the austenite recrystallization temperature range Rolling in the austenite recrystallization temperature range is necessary for refining the austenite grains at the time of heating, and it is desirable to carry out at least 1 pass, preferably 20% or more.
In addition, it is desirable to perform the rolling at a low temperature side of the austenite recrystallization temperature range if possible.

オーステナイト再結晶温度域における圧延終了後、オーステナイト未再結晶温度域での圧延開始までの温度域を一次加速冷却
本工程は、本発明の中で最も重要な項目の一つである。上述したように、本発明では大入熱溶接HAZの靱性を向上させるため、TiNによる粒径微細化と、B窒化物の形成によるフェライト変態促進効果を利用しているが、鋼板製造の熱履歴過程において、特にB窒化物が大量に生成した場合、鋼板の焼入性を確保するための固溶Bが消失し、一方で析出したB窒化物からフェライト核生成が生じやすくなることから、鋼板の圧延組織に占めるフェライト分率が増加し、所定の強度が得られなくなる可能性がある。
The primary accelerated cooling of the temperature range from the end of rolling in the austenite recrystallization temperature range to the start of rolling in the austenite non-recrystallization temperature range is one of the most important items in the present invention. As described above, in the present invention, in order to improve the toughness of the high heat input welding HAZ, the grain size refinement by TiN and the ferrite transformation promoting effect by the formation of B nitride are utilized. In the process, particularly when a large amount of B nitride is generated, the solid solution B for securing the hardenability of the steel plate disappears, while ferrite nucleation is likely to occur from the precipitated B nitride. There is a possibility that the ferrite fraction occupying the rolled structure increases and a predetermined strength cannot be obtained.

従って、鋼板製造時の冷却過程のうち、B窒化物が生成する温度域である、再結晶温度域から未再結晶温度域に至るまでの温度域での冷却速度を、可能な限り速くすることが必要である。通常この工程は熱間圧延の温度低下待機時間として空冷されるが、本発明においては、オーステナイト再結晶温度域における圧延終了後に一次加速冷却を実施することにより、次工程である未再結晶温度域での圧延工程に短時間で移行させることとする。
この一次の加速冷却は、その冷却中にB窒化物が析出しないよう、冷却速度の下限を制御することが望ましい。発明者らは、前記したTi,B,Nの範囲内においては、B窒化物析出の臨界冷却速度がおよそ2℃/秒であり、同臨界冷却速度以上の冷却速度で冷却すれば未再結晶域圧延までの間にB窒化物の析出が抑えられ、二次の加速冷却時に焼入性を担保するに足る固溶B量が得られることを実験的に見出した。従って、一次の加速冷却においては、2℃/秒以上の冷却速度とすることが好ましい。
Therefore, the cooling rate in the temperature range from the recrystallization temperature range to the non-recrystallization temperature range, which is the temperature range in which B nitride is generated, in the cooling process at the time of steel plate production is increased as much as possible. is necessary. Normally, this process is air-cooled as the temperature reduction waiting time of hot rolling, but in the present invention, the primary accelerated cooling is performed after the rolling in the austenite recrystallization temperature range, whereby the non-recrystallization temperature range which is the next step. Let's move to the rolling process in a short time.
In this primary accelerated cooling, it is desirable to control the lower limit of the cooling rate so that B nitride does not precipitate during the cooling. The inventors found that the critical cooling rate for precipitation of B nitride is approximately 2 ° C./second within the range of Ti, B, and N described above, and if the cooling is performed at a cooling rate equal to or higher than the critical cooling rate, non-recrystallization occurs. It was experimentally found that precipitation of B nitride was suppressed until zone rolling, and a solid solution B amount sufficient to ensure hardenability during secondary accelerated cooling was obtained. Therefore, in the primary accelerated cooling, a cooling rate of 2 ° C./second or more is preferable.

その場合、例えば、水冷による加速冷却設備、あるいは圧延中に鋼板表面に発生する酸化物スケールを除去する、いわゆるデスケ設備等により、空冷より速い冷却速度を達成することができ、2℃/秒以上の冷却速度とすることができる。   In that case, a cooling rate faster than air cooling can be achieved, for example, by an accelerated cooling facility by water cooling, or a so-called deske facility that removes oxide scale generated on the surface of the steel sheet during rolling, and 2 ° C./second or more. The cooling rate can be as follows.

オーステナイト未再結晶温度域において累積圧下率40%以上の圧延
上記一次加速冷却に引き続き、オーステナイト未再結晶温度域にて圧延を行う。この圧延はその圧下率が小さい場合、所定の母材靱性を得ることが出来ない。このため、累積圧下率の下限を40%と規定する。また、圧下率は高い方が好ましいが、工業的には80%程度が上限となる。なお、圧延終了温度は二相域圧延を回避するためにAr変態点以上であることが好ましい。
Rolling at a cumulative reduction ratio of 40% or more in the austenite non-recrystallization temperature region Following the primary accelerated cooling, rolling is performed in the austenite non-recrystallization temperature region. In this rolling, when the rolling reduction is small, a predetermined base material toughness cannot be obtained. For this reason, the lower limit of the cumulative rolling reduction is defined as 40%. Moreover, although the one where a rolling reduction is higher is preferable, about 80% becomes an upper limit industrially. The rolling end temperature is preferably not less than the Ar 3 transformation point in order to avoid two-phase region rolling.

未再結晶温度域圧延後、Ar変態点以上から500℃以下の温度域に二次加速冷却
前述したB窒化物生成抑制のための一次加速冷却とは異なり、本工程の二次加速冷却は、制御圧延により加工されたオーステナイト組織を相変態させるための処理である。相変態を完了させるためには500℃以下の温度域まで冷却する必要があることから、冷却温度の上限を500℃に規定した。二次加速冷却の冷却速度は、所定の必要強度を満足するための下限冷却速度を設定することが望ましい。本発明が主に対象としている、大入熱溶接が適用される比較的厚肉な鋼板においても相応の強度を達成するためには、5℃/sec以上の強冷却が好ましい。冷却方法は特に限定しないが、水冷による冷却が好ましい。
Secondary rolling cooling after non-recrystallization temperature range rolling to a temperature range from Ar 3 transformation point to 500 ° C. or less Unlike the above-mentioned primary accelerated cooling for suppressing B nitride formation, secondary accelerated cooling in this step is This is a process for phase transformation of the austenite structure processed by controlled rolling. In order to complete the phase transformation, it is necessary to cool to a temperature range of 500 ° C. or lower, so the upper limit of the cooling temperature was set to 500 ° C. As for the cooling rate of the secondary accelerated cooling, it is desirable to set a lower limit cooling rate for satisfying a predetermined required strength. In order to achieve a suitable strength even in a relatively thick steel plate to which large heat input welding is applied, which is the main object of the present invention, strong cooling of 5 ° C./sec or more is preferable. The cooling method is not particularly limited, but cooling by water cooling is preferable.

焼戻し
上記の二次加速冷却後、必要に応じて焼戻し処理を行うことができる。焼戻しは、主として、二次加速冷却により焼入れを行った鋼材に対して、強度・靭性バランスの適正化、残留応力の軽減などの目的で行われ、実施する場合はAc 変態点以下の温度で行う。
Tempering After the secondary accelerated cooling, a tempering treatment can be performed as necessary. Tempering is carried out mainly for the purpose of optimizing the balance between strength and toughness and reducing residual stress on steel that has been quenched by secondary accelerated cooling, and when it is carried out at a temperature below the Ac 1 transformation point. Do.

Ar 、Ac 変態点は鋼成分によって異なる。Ar 、Ac 変態点は下式によって求めることができる。但し、各式において、各元素記号は各元素の含有量(質量%)を示す。
Ar =910−273C−74Mn−56Ni−16Cr−9Mo−5Cu
Ac =751−26.6C+17.6Si−11.6Mn−169Al−23Cu−23Ni+24.1Cr+22.5Mo+233Nb−39.7V−5.7Ti−895B
一方、オーステナイト再結晶温度域の下限温度は、鋼組成のほか、結晶粒径や加工履歴や歪量などの影響を受けるが、概ね800〜950℃の範囲にある。事前に予備試験をして調査することにより、前記下限温度を推測することができる。以下、本発明の効果を実施例により詳細に説明する。
The Ar 3 and Ac 1 transformation points vary depending on the steel components. The Ar 3 and Ac 1 transformation points can be obtained by the following equation. However, in each formula, each element symbol indicates the content (% by mass) of each element.
Ar 3 = 910-273C-74Mn-56Ni-16Cr-9Mo-5Cu
Ac 1 = 751-26.6C + 17.6Si-11.6Mn -169Al-23Cu-23Ni + 24.1Cr + 22.5Mo + 233Nb-39.7V-5.7Ti-895B
On the other hand, the lower limit temperature of the austenite recrystallization temperature region is influenced by the crystal grain size, processing history, strain amount, etc. in addition to the steel composition, but is generally in the range of 800 to 950 ° C. By conducting a preliminary test and investigating in advance, the lower limit temperature can be estimated. Hereinafter, the effects of the present invention will be described in detail with reference to examples.

表1に示す組成の鋼を転炉で溶製後、連続鋳造法でスラブ(鋼素材)とし、表2に示す制御圧延、制御冷却条件により40〜80mm厚の鋼板を作製した。なお、オーステナイト再結晶温度域の圧延は、いずれも、1パス以上、かつ、累積圧下率20%以上の条件で実施した。一時加速冷却水冷により実施した。二次加速冷却は、水冷により、5℃/sec以上の冷却速度で実施した。   Steels having the compositions shown in Table 1 were melted in a converter and then made into slabs (steel materials) by a continuous casting method, and steel sheets having a thickness of 40 to 80 mm were produced according to the controlled rolling and controlled cooling conditions shown in Table 2. Note that the rolling in the austenite recrystallization temperature range was performed under the conditions of one pass or more and a cumulative reduction ratio of 20% or more. It was carried out by temporary accelerated cooling water cooling. Secondary accelerated cooling was performed at a cooling rate of 5 ° C./sec or more by water cooling.

なお、表1において、鋼番号1〜10が本発明範囲内の鋼であり、鋼番号11〜20は、成分組成および/または式(1)〜(3)のいずれかが本発明範囲外の鋼である。さらに、表2において、鋼番号に続く枝番がAで始まるもの(A1、A2)は本発明によるところの制御圧延・冷却条件によるものであり、枝番がBで始まるもの(B1、B2)は製造条件のいずれかが本発明の範囲外となる比較例である。 In Table 1, steel numbers 1 to 10 are steels within the scope of the present invention, and steel numbers 11 to 20 have a component composition and / or any of formulas (1) to (3) outside the scope of the present invention. It is steel. Furthermore, in Table 2, the branch numbers following the steel numbers start with A (A1, A2) are due to the controlled rolling / cooling conditions according to the present invention, and the branch numbers start with B (B1, B2). Is a comparative example in which any of the manufacturing conditions falls outside the scope of the present invention.

鋼番号1〜10の内、枝番がBで始まる鋼板は化学組成は本発明範囲内であるが製造方法が本発明範囲外である比較例である。   Among the steel numbers 1 to 10, the steel plate whose branch number starts with B is a comparative example in which the chemical composition is within the scope of the present invention but the production method is outside the scope of the present invention.

製造された厚鋼板について、板厚方向の1/4の位置から板幅方向を長手方向として平行部直径6mmφの引張試験片を採取して、JIS Z 2241(1998)の規定に準拠して引張試験を実施し、引張強さ(以下TSと記載する)および0.2%耐力(以下YSと記載する)を求めた。なお、本発明はその対象として高強度鋼板を想定しており、その強度目標の閾値をTS:520N/mmとした。 About the manufactured thick steel plate, a tensile test piece having a parallel part diameter of 6 mmφ is taken from the position of 1/4 of the plate thickness direction as the longitudinal direction, and is tensioned according to the provisions of JIS Z 2241 (1998). The test was carried out to determine the tensile strength (hereinafter referred to as TS) and 0.2% proof stress (hereinafter referred to as YS). In the present invention, a high strength steel plate is assumed as the object, and the threshold value of the strength target is TS: 520 N / mm 2 .

また、板厚方向の1/4位置、圧延方向と平行な方向からJIS Z 2202(1998)の規定に準拠して、Vノッチ標準寸法のシャルピー衝撃試験片を採取して、JISZ 2242(1998)の規定に準拠して衝撃試験を実施し、破面遷移温度(以下vTrsと記載する)を求めると共に、鋼板の脆性亀裂伝播停止特性を評価するため、温度勾配型ESSO試験を行い、Kca(−10℃)を求め、その亀裂伝播停止特性目標の閾値を7000N/mm3/2として評価した。 In addition, a Charpy impact test piece having a V-notch standard size was collected from a 1/4 position in the plate thickness direction and in a direction parallel to the rolling direction in accordance with JIS Z 2202 (1998), and JIS Z 2242 (1998). In order to evaluate the brittle crack propagation stop property of the steel sheet, a temperature gradient type ESSO test was conducted to obtain a fracture surface transition temperature (hereinafter referred to as vTrs). 10 ° C.), and the threshold of the crack propagation stop characteristic target was evaluated as 7000 N / mm 3/2 .

さらに、大入熱溶接HAZの靭性を評価するため、各厚鋼板から、幅80mm×長さ80mm×厚み15mmの試験片を採取し、1450℃に加熱後、800〜500℃を400secで冷却する熱処理を付与した後、2mmVノッチシャルピー試験片を採取して、上記と同様にしてシャルピー衝撃試験を行った。なお、衝撃試験温度は−40℃とし、その靱性目標の閾値を、−40℃における試験本数3本の吸収エネルギー平均値(以下vE−40℃と記載する)で50Jとした。   Furthermore, in order to evaluate the toughness of the high heat input welding HAZ, a test piece of width 80 mm × length 80 mm × thickness 15 mm is taken from each thick steel plate, heated to 1450 ° C., and then cooled to 800 to 500 ° C. in 400 seconds. After the heat treatment was applied, a 2 mm V notch Charpy test piece was collected and subjected to a Charpy impact test in the same manner as described above. The impact test temperature was −40 ° C., and the threshold value of the toughness target was 50 J as an average value of absorbed energy (hereinafter referred to as vE-40 ° C.) of three test pieces at −40 ° C.

表3に、鋼板母材特性、脆性亀裂伝播停止特性、および大入熱溶接HAZ靱性評価結果を示す。本発明例である鋼番号1〜10かつ枝番がAで始まるものにおいては、母材の脆性亀裂伝播停止特性ならびに大入熱溶接HAZ特性とも良好な値が得られている。   Table 3 shows the steel plate base material characteristics, brittle crack propagation stop characteristics, and high heat input weld HAZ toughness evaluation results. In the steel samples having the steel numbers 1 to 10 and the branch numbers starting with A according to the present invention, good values are obtained for both the brittle crack propagation stop characteristic and the high heat input welding HAZ characteristic of the base material.

鋼番号1〜10かつ枝番がBで始まるものにおいては、化学成分規定は本発明の範囲内であるため大入熱溶接HAZ特性は満足するものの、製造条件が範囲外であるため母材の脆性亀裂伝播停止特性が劣り、鋼番号11〜20(枝番がAまたはBで始まるもの)においては、成分範囲が本発明の範囲外であるために、大入熱溶接HAZの靱性が劣っていることが認められた。   For steel numbers 1 to 10 and branch numbers beginning with B, the chemical composition is within the scope of the present invention, so the high heat input welding HAZ characteristics are satisfied, but the manufacturing conditions are out of the range, so the brittleness of the base metal The crack propagation stop property is inferior, and in steel numbers 11 to 20 (the branch number starts with A or B), the toughness of the high heat input weld HAZ is inferior because the component range is outside the scope of the present invention. It was recognized that

Figure 2014029019
Figure 2014029019

Figure 2014029019
Figure 2014029019

Figure 2014029019
Figure 2014029019

Figure 2014029019
Figure 2014029019

Figure 2014029019
Figure 2014029019

Claims (4)

質量%で、C:0.030〜0.080%、Si:0.01〜0.10%、Mn:1.20〜2.50%、P:0.008%以下、S:0.0005〜0.0040%、Al:0.005〜0.1%、Nb:0.003〜0.04%、Ti:0.003〜0.04%、N:0.003〜0.010%、B:0.0003〜0.0030%、Ca:0.0005〜0.0030%、下記(1)式で表される炭素当量Ceq が0.33〜0.45、鋼中のCa、S、およびOが下記(2)式を満たし、かつ、鋼中のTi、B、Nが下記(3)式を満たし、残部Feおよび不可避的不純物からなる鋼素材を、1000℃以上に加熱し、オーステナイト再結晶温度域における圧延終了後、オーステナイト未再結晶温度域での圧延開始までの温度域を一次加速冷却し、引き続いてオーステナイト未再結晶温度域において累積圧下率40%以上の圧延を実施した後、Ar変態点以上から500℃以下の温度域に二次加速冷却する工程を有する脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(1)
0<(Ca−(0.18+130×Ca)×O)/1.25/S<1・・・(2)
−15<(N−Ti/3.42−1.269×B)×10<15・・・(3)
ただし、上記(1)〜(3)式中の元素記号は各元素の含有量(質量%)を示す。
In mass%, C: 0.030 to 0.080%, Si: 0.01 to 0.10%, Mn: 1.20 to 2.50%, P: 0.008% or less, S: 0.0005 -0.0040%, Al: 0.005-0.1%, Nb: 0.003-0.04%, Ti: 0.003-0.04%, N: 0.003-0.010%, B: 0.0003 to 0.0030%, Ca: 0.0005 to 0.0030%, carbon equivalent Ceq represented by the following formula (1) is 0.33 to 0.45, Ca, S in steel, And O satisfies the following formula (2), and Ti, B, and N in the steel satisfy the following formula (3), and the steel material composed of the remaining Fe and unavoidable impurities is heated to 1000 ° C. or more to obtain austenite After the rolling in the recrystallization temperature range, the temperature range from the start of rolling in the austenite non-recrystallization temperature range to the same Brittle crack having a step of performing secondary accelerated cooling to a temperature range of not less than Ar 3 transformation point to 500 ° C. or less after performing rolling accelerated cooling and subsequently rolling at a cumulative reduction ratio of 40% or more in the austenite non-recrystallization temperature range A method of manufacturing a steel plate for high heat input welding with excellent propagation stop characteristics.
Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (1)
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1 (2)
−15 <(N—Ti / 3.42-1.269 × B) × 10 4 <15 (3)
However, the element symbols in the above formulas (1) to (3) indicate the content (% by mass) of each element.
成分組成に、更に、質量%で、Cu:1.0%以下、Ni:1.5%以下、Cr:1.0%以下、Mo:0.5%以下およびV:0.1%以下の1種または2種以上を含有することを特徴とする、請求項1に記載の脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法。   In addition to the component composition, by mass%, Cu: 1.0% or less, Ni: 1.5% or less, Cr: 1.0% or less, Mo: 0.5% or less, and V: 0.1% or less The manufacturing method of the steel plate for high heat input welding excellent in the brittle crack propagation stop characteristic of Claim 1 characterized by containing 1 type, or 2 or more types. 成分組成に、更に、質量%で、Mg:0.0005〜0.005%、Zr:0.001〜0.02%およびREM:0.001〜0.02%の1種または2種以上を含有することを特徴とする、請求項1または2に記載の脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法。   The component composition further includes one or more of Mg: 0.0005 to 0.005%, Zr: 0.001 to 0.02%, and REM: 0.001 to 0.02% by mass%. The manufacturing method of the steel plate for high heat input welding excellent in the brittle crack propagation stop characteristic of Claim 1 or 2 characterized by including. 500℃以下の温度域に加速冷却した後、さらに、Ac変態点以下の温度域に焼き戻す工程を有する、請求項1乃至3のいずれか一つに記載の脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法。 It has excellent brittle crack propagation stop characteristics according to any one of claims 1 to 3, further comprising a step of tempering to a temperature range below the Ac 1 transformation point after accelerated cooling to a temperature range below 500 ° C. Manufacturing method of steel plate for high heat input welding.
JP2013133850A 2012-07-03 2013-06-26 Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties Active JP5949682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133850A JP5949682B2 (en) 2012-07-03 2013-06-26 Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012149308 2012-07-03
JP2012149308 2012-07-03
JP2013133850A JP5949682B2 (en) 2012-07-03 2013-06-26 Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties

Publications (2)

Publication Number Publication Date
JP2014029019A true JP2014029019A (en) 2014-02-13
JP5949682B2 JP5949682B2 (en) 2016-07-13

Family

ID=50201756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133850A Active JP5949682B2 (en) 2012-07-03 2013-06-26 Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties

Country Status (1)

Country Link
JP (1) JP5949682B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141203A1 (en) * 2014-03-17 2015-09-24 Jfeスチール株式会社 Steel material for welding
WO2015151519A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 High-tensile-strength steel plate and process for producing same
WO2015194619A1 (en) * 2014-06-20 2015-12-23 株式会社神戸製鋼所 High-strength steel plate and process for producing same
KR20170007815A (en) * 2014-07-15 2017-01-20 제이에프이 스틸 가부시키가이샤 Method of manufacturing steel plate for high-heat input welding
CN110318008A (en) * 2019-06-20 2019-10-11 江阴兴澄特种钢铁有限公司 A kind of anti-960MPa grades of high strength steel plates of lamellar tearing yield strength of big thickness and its production method
CN111566247A (en) * 2017-12-24 2020-08-21 株式会社Posco Steel material for structure excellent in brittle crack propagation resistance and method for producing same
WO2022070873A1 (en) * 2020-09-30 2022-04-07 Jfeスチール株式会社 Steel sheet
WO2022097589A1 (en) * 2020-11-05 2022-05-12 Jfeスチール株式会社 Steel sheet and method for manufacturing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120855A (en) * 1973-03-22 1974-11-19
JPH05271756A (en) * 1992-03-23 1993-10-19 Nippon Steel Corp Manufacture of thick steel plate for welded structure excellent in toughness at low temperature
JP2004162076A (en) * 2002-09-25 2004-06-10 Nippon Steel Corp Steel plate excellent in weldability and earthquake resistance, and its production method
JP2005232515A (en) * 2004-02-18 2005-09-02 Kobe Steel Ltd Thick steel plate having excellent high heat input welded join toughness
JP2008248384A (en) * 2007-03-08 2008-10-16 Nippon Steel Corp High-strength hot-rolled steel plate excellent in low-temperature toughness for spiral pipe and manufacturing method therefor
JP2009019244A (en) * 2007-07-12 2009-01-29 Kobe Steel Ltd Thick steel plate for high heat input welding having excellent brittle fracture propagation stop characteristic
JP2010209433A (en) * 2009-03-11 2010-09-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and fatigue characteristics of base metal, and method for manufacturing the same
JP2011074445A (en) * 2009-09-30 2011-04-14 Jfe Steel Corp Method for manufacturing non-heat-treated high-tensile-strength thick steel superior in toughness at heat-affected zone in high-heat-input weld
JP2011214116A (en) * 2010-04-01 2011-10-27 Nippon Steel Corp Thick high strength steel plate having excellent brittle crack propagation arresting property, and method for producing the same
CN102994874A (en) * 2012-10-23 2013-03-27 鞍钢股份有限公司 High-crack-arrest-toughness steel plate with yield strength of 500MPa and production method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120855A (en) * 1973-03-22 1974-11-19
JPH05271756A (en) * 1992-03-23 1993-10-19 Nippon Steel Corp Manufacture of thick steel plate for welded structure excellent in toughness at low temperature
JP2004162076A (en) * 2002-09-25 2004-06-10 Nippon Steel Corp Steel plate excellent in weldability and earthquake resistance, and its production method
JP2005232515A (en) * 2004-02-18 2005-09-02 Kobe Steel Ltd Thick steel plate having excellent high heat input welded join toughness
JP2008248384A (en) * 2007-03-08 2008-10-16 Nippon Steel Corp High-strength hot-rolled steel plate excellent in low-temperature toughness for spiral pipe and manufacturing method therefor
JP2009019244A (en) * 2007-07-12 2009-01-29 Kobe Steel Ltd Thick steel plate for high heat input welding having excellent brittle fracture propagation stop characteristic
JP2010209433A (en) * 2009-03-11 2010-09-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and fatigue characteristics of base metal, and method for manufacturing the same
JP2011074445A (en) * 2009-09-30 2011-04-14 Jfe Steel Corp Method for manufacturing non-heat-treated high-tensile-strength thick steel superior in toughness at heat-affected zone in high-heat-input weld
JP2011214116A (en) * 2010-04-01 2011-10-27 Nippon Steel Corp Thick high strength steel plate having excellent brittle crack propagation arresting property, and method for producing the same
CN102994874A (en) * 2012-10-23 2013-03-27 鞍钢股份有限公司 High-crack-arrest-toughness steel plate with yield strength of 500MPa and production method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899702A (en) * 2014-03-17 2016-08-24 杰富意钢铁株式会社 Steel material for welding
WO2015141203A1 (en) * 2014-03-17 2015-09-24 Jfeスチール株式会社 Steel material for welding
JPWO2015141203A1 (en) * 2014-03-17 2017-04-06 Jfeスチール株式会社 Steel for welding
JPWO2015151519A1 (en) * 2014-03-31 2017-04-13 Jfeスチール株式会社 High-tensile steel plate and manufacturing method thereof
WO2015151519A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 High-tensile-strength steel plate and process for producing same
US10316385B2 (en) 2014-03-31 2019-06-11 Jfe Steel Corporation High-tensile-strength steel plate and process for producing same
WO2015194619A1 (en) * 2014-06-20 2015-12-23 株式会社神戸製鋼所 High-strength steel plate and process for producing same
JP2016008308A (en) * 2014-06-20 2016-01-18 株式会社神戸製鋼所 High-strength steel sheet and production method thereof
CN106460120A (en) * 2014-06-20 2017-02-22 株式会社神户制钢所 High-strength steel plate and process for producing same
KR101971772B1 (en) 2014-07-15 2019-04-23 제이에프이 스틸 가부시키가이샤 Method of manufacturing steel plate for high-heat input welding
KR20170007815A (en) * 2014-07-15 2017-01-20 제이에프이 스틸 가부시키가이샤 Method of manufacturing steel plate for high-heat input welding
CN111566247A (en) * 2017-12-24 2020-08-21 株式会社Posco Steel material for structure excellent in brittle crack propagation resistance and method for producing same
US11572600B2 (en) 2017-12-24 2023-02-07 Posco Co., Ltd Structural steel having excellent brittle crack propagation resistance, and manufacturing method therefor
CN110318008A (en) * 2019-06-20 2019-10-11 江阴兴澄特种钢铁有限公司 A kind of anti-960MPa grades of high strength steel plates of lamellar tearing yield strength of big thickness and its production method
WO2022070873A1 (en) * 2020-09-30 2022-04-07 Jfeスチール株式会社 Steel sheet
JPWO2022070873A1 (en) * 2020-09-30 2022-04-07
JP7272471B2 (en) 2020-09-30 2023-05-12 Jfeスチール株式会社 steel plate
WO2022097589A1 (en) * 2020-11-05 2022-05-12 Jfeスチール株式会社 Steel sheet and method for manufacturing same
JP7099653B1 (en) * 2020-11-05 2022-07-12 Jfeスチール株式会社 Steel plate and its manufacturing method

Also Published As

Publication number Publication date
JP5949682B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5949682B2 (en) Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5824401B2 (en) Steel sheet with excellent resistance to hydrogen-induced cracking and method for producing the same
JP5950045B2 (en) Steel sheet and manufacturing method thereof
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP2009263777A (en) High-tensile strength steel and manufacturing method thereof
JP2011006772A (en) Steel material for high heat input welding
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP2011202214A (en) Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same
JP5958428B2 (en) Manufacturing method of steel plates for high heat input welding
JPWO2014175122A1 (en) H-section steel and its manufacturing method
TWI526545B (en) Steel material for welding
JP4891836B2 (en) Steel plate with excellent toughness of weld heat affected zone in high heat input welding
JPWO2013088715A1 (en) Steel material for large heat input welding
JP6048627B2 (en) Manufacturing method of steel plates for high heat input welding
JP5223706B2 (en) Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof
JP2009287081A (en) High-tension steel and producing method therefor
JP5920542B2 (en) Welded joint
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP6299676B2 (en) High-tensile steel plate and manufacturing method thereof
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
JP6642118B2 (en) Sour-resistant steel plate
JP2005272854A (en) Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part
JP5857693B2 (en) Steel plate for large heat input and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250