JP3390596B2 - Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same - Google Patents

Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same

Info

Publication number
JP3390596B2
JP3390596B2 JP06658396A JP6658396A JP3390596B2 JP 3390596 B2 JP3390596 B2 JP 3390596B2 JP 06658396 A JP06658396 A JP 06658396A JP 6658396 A JP6658396 A JP 6658396A JP 3390596 B2 JP3390596 B2 JP 3390596B2
Authority
JP
Japan
Prior art keywords
less
toughness
yield ratio
rolled steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06658396A
Other languages
Japanese (ja)
Other versions
JPH08319538A (en
Inventor
岡田  進
文丸 川端
正彦 森田
才二 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP06658396A priority Critical patent/JP3390596B2/en
Publication of JPH08319538A publication Critical patent/JPH08319538A/en
Application granted granted Critical
Publication of JP3390596B2 publication Critical patent/JP3390596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築・土木用の鋼管、
カラムや、油井用の電縫鋼管、その他一般の構造材など
の用途に用いて好適な靱性に優れる低降伏比高強度熱延
鋼板(鋼帯を含む。以下同じ)およびその製造方法に関
するものである。
The present invention relates to a steel pipe for construction and civil engineering,
A low yield ratio and high strength hot rolled steel sheet (including steel strip, including steel strip) having excellent toughness, which is suitable for use in columns, ERW steel pipes for oil wells, and other general structural materials, and a manufacturing method thereof. is there.

【0002】[0002]

【従来の技術】建築・土木用の鋼管、カラムなどの素材
として用いられる熱延鋼板には強度、靱性などの構造材
としての特性が必要であり、油井用の電縫鋼管の素材と
して用いられる熱延鋼板には、前記特性のほかさらに耐
サワー環境性(耐湿潤硫化水素環境性、以下、単に「耐
サワー性」と略記する。)も必要とされる。このような
用途に用いられる熱延鋼板の製造技術について、これま
でにも多くの提案がなされてきた。その中で、とくに強
度と靱性を両立させる技術として、現在一般的に採用さ
れている方法は、フェライト・パーライト組織を主体と
する鋼にTMCPとよばれる加工熱処理を施して得られ
る、組織の細粒化による強化処理(例えば、特開昭62
−112722号公報、特公昭62−23056号公
報、特公昭62−35452号公報など)と、熱延後の
急冷(制御冷却)処理とを組み合わせるものである。
2. Description of the Related Art Hot-rolled steel sheets used as materials for steel pipes and columns for construction and civil engineering need properties such as strength and toughness as structural materials, and are used as materials for electric resistance welded steel pipes for oil wells. In addition to the above properties, the hot rolled steel sheet is required to have sour environment resistance (wet hydrogen sulfide environment resistance, hereinafter simply referred to as “sour resistance”). Many proposals have been made so far regarding the manufacturing technology of hot rolled steel sheets used for such purposes. Among them, the method that is generally adopted at present as a technique to achieve both strength and toughness is the fine structure of the structure obtained by subjecting steel mainly composed of ferrite / pearlite structure to a thermomechanical treatment called TMCP. Strengthening treatment by granulation (for example, JP-A-62-62
No. -112722, Japanese Patent Publication No. 62-23056, Japanese Patent Publication No. 62-35452, etc.) and rapid cooling (controlled cooling) treatment after hot rolling are combined.

【0003】しかしながら、上記既知技術では以下に述
べるような欠点があり、今後のニーズに必ずしも対応で
きないという問題を残していた。 1)TMCPのような極端な細粒化は必然的に降伏比
(降伏強さ/引っ張り強さ)を上昇させるので、座屈防
止、不安定延性破壊防止のために最近要請されるように
なった低降伏比には対応できない。 2)TMCPでは、圧延による変形が板厚方向で均一に
はならないので、板厚方向の材質不均一が生ずる。ま
た、強冷を伴う制御冷却は長手方向(圧延方向)の材質
差を生じやすく、また板厚の変化にも敏感なため材質制
御が困難である。これらの要因により、TMCPでは、
厚み方向および長手方向の材質が不均一になりやすい。 3)TMCPでは、高強度、高靱性を得ようとするほど
オ−ステナイト未再結晶温度域における低温強圧下が必
要となり、熱延設備の負荷の増大、圧延素材サイズの上
限規制を招くことになる。 4)またTMCPにおいては、Mn,V,Moなどの強
化元素への依存度が大きいため、これらの元素による焼
入れ性が増大し、溶接部の硬さの上昇、島状マルテンサ
イト発生による溶接部靱性の劣化などを生じやすい。こ
のため良好な溶接性を維持したままでのTMCP法によ
る高強度化には限界が限界がある。
However, the above-mentioned known technique has the following drawbacks, and there is a problem that it cannot always meet future needs. 1) Extreme grain refinement such as TMCP inevitably raises the yield ratio (yield strength / tensile strength), so it has recently been required to prevent buckling and unstable ductile fracture. It cannot cope with low yield ratio. 2) In TMCP, the deformation due to rolling does not become uniform in the plate thickness direction, so that material nonuniformity occurs in the plate thickness direction. Further, the controlled cooling accompanied by strong cooling is likely to cause a material difference in the longitudinal direction (rolling direction) and is also sensitive to a change in plate thickness, so that material control is difficult. Due to these factors, TMCP
The material in the thickness direction and the material in the longitudinal direction tends to be uneven. 3) In TMCP, it is necessary to perform low-temperature high-pressure reduction in the austenite unrecrystallized temperature range so as to obtain high strength and high toughness, which causes an increase in load of hot rolling equipment and an upper limit of rolling material size. Become. 4) In TMCP, since the dependence on Mn, V, Mo and other strengthening elements is large, the hardenability of these elements increases, the hardness of the weld increases, and the welded part due to island martensite is generated. Degradation of toughness is likely to occur. Therefore, there is a limit to the increase in strength by the TMCP method while maintaining good weldability.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
の技術が抱えていた上記の問題を有利に解決するもの
で、厚み方向、長さ方向における材質の不均一性や溶接
性、耐サワー性の劣化を招くことなしに、靱性に優れし
かも低降伏比を有する高強度熱延鋼板を、その有利な製
造方法とともに提供することにある。本発明の具体的な
目的は、降伏強さ(YS)が276MPa以上、好まし
くは413MPa以上、降伏比(YR)が80%以下、
好ましくは70%以下、靱性が破面遷移温度vTrsで
−100℃(DWTT85%試験で−30℃に相当)以
下、好ましくは−120℃(DWTT85%試験で−4
6℃に相当)以下、0℃におけるシャルピー吸収エネル
ギーvEoで300J以上、好ましくは310J以上、
強度−靱性バランスの指標0.3TS−vTrsが30
0以上好ましくは320以上、溶接部と母材とのビッカ
ース硬さの差(ΔHv)が100以下、好ましくは30
以下、溶接熱影響部(HAZ)の靱性が破面遷移温度v
TrSで0℃以下、好ましくは−20℃以下を満足し、
しかも耐サワー性に優れる高強度熱延鋼板を、その有利
な製造方法とともに提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to advantageously solve the above-mentioned problems of the prior art, namely, non-uniformity of material in the thickness direction and length direction, weldability, and resistance to welding. It is an object of the present invention to provide a high-strength hot-rolled steel sheet excellent in toughness and having a low yield ratio, together with its advantageous manufacturing method, without causing deterioration of sourness. A specific object of the present invention is to have a yield strength (YS) of 276 MPa or more, preferably 413 MPa or more, and a yield ratio (YR) of 80% or less.
Preferably, the toughness is 70% or less, the fracture surface transition temperature vTrs is -100 ° C (corresponding to -30 ° C in the DWTT 85% test) or less, and preferably -120 ° C (-4 in the DWTT 85% test).
6 ° C or less), 300 J or more, preferably 310 J or more in Charpy absorbed energy vEo at 0 ° C.,
Strength-toughness balance index 0.3 TS-vTrs is 30
0 or more, preferably 320 or more, the difference in Vickers hardness (ΔHv) between the weld and the base metal is 100 or less, preferably 30.
Below, the toughness of the weld heat affected zone (HAZ) is the fracture surface transition temperature v
Satisfies 0 ° C or lower, preferably -20 ° C or lower in TrS,
Moreover, it is to provide a high-strength hot-rolled steel sheet having excellent sour resistance together with its advantageous manufacturing method.

【0005】[0005]

【課題を解決するための手段】さて、本発明者らは、上
記の目的を達成すべく、数多くの実験と検討を重ねた結
果、低C鋼に炭化物析出元素、Bを添加し、製造条件を
適正に制御する等の手段を駆使すれば、1)粒内固溶C
量の適正化がはかられフェライトマトリックスの靱性の
向上とYRの低減が可能となり、2)析出炭化物は強度
の向上に有効に利用でき、3)固溶Cが低い場合に従来
みられた粒径粗大化に起因する強度低下を抑制し、しか
も4)フェライト(ベイニティックフェライトを含む)
単相の組織により靱性、耐サワー性を改善しうるとの知
見を得た。本発明は、上記の知見に立脚するものであ
り、その要旨構成は次のとおりである。
The inventors of the present invention have conducted numerous experiments and studies in order to achieve the above-mentioned object, and as a result, added carbide precipitating element, B to low C steel, and manufactured it under the manufacturing conditions. If the means such as proper control of C are used, 1) Intragranular solid solution C
It is possible to improve the toughness of the ferrite matrix and reduce the YR by optimizing the amount. 2) Precipitated carbide can be effectively used for improving the strength. 3) Grains that have been conventionally observed when the solid solution C is low. Suppresses strength reduction due to coarsening of diameter, and 4) Ferrite (including bainitic ferrite)
We have found that a single-phase structure can improve toughness and sour resistance. The present invention is based on the above findings, and its gist is as follows.

【0006】すなわち、 (1) C:0.005 〜0.030 wt%未満、Si:1.5 wt%以下、
Mn:1.5 wt%以下、 P:0.020 wt%以下、S:0.
015 wt%以下、 Al:0.005 〜0.10wt%、N:0.0100
wt%以下、 B:0.0002〜0.0100wt%を含み、かつT
i:0.20wt%以下およびNb:0.25wt%以下のうちから選
ばれるいずれか1種または2種を(Ti+Nb/2)/C≧4の関
係を満たして含有し、残部がFeおよび不可避的不純物よ
りなり、さらに金属組織がフェライトおよび/またはベ
イニティックフェライトからなるとともに粒内の固溶C
量が1.0 〜4.0ppmであることを特徴とする靱性に優れる
低降伏比高強度熱延鋼板。
That is, (1) C: 0.005 to less than 0.030 wt%, Si: 1.5 wt% or less,
Mn: 1.5 wt% or less, P: 0.020 wt% or less, S: 0.
015 wt% or less, Al: 0.005-0.10 wt%, N: 0.0100
wt% or less, B: 0.0002 to 0.0100 wt% is included, and T
i: 0.20 wt% or less and Nb: 0.25 wt% or less, and any one or two of them are contained in a relationship of (Ti + Nb / 2) / C ≧ 4, and the balance is Fe and unavoidable. Solid impurities in the grains and the metallic structure of ferrite and / or bainitic ferrite.
A low-yield ratio high-strength hot-rolled steel sheet excellent in toughness, characterized in that the amount is 1.0 to 4.0 ppm.

【0007】(2) 上記(1) に記載の鋼組成のものに、さ
らにMo:1.0 wt%以下、Cu:2.0 wt%以下、Ni:1.5 wt
%以下、Cr:1.0 wt%以下およびV:0.10wt%以下のう
ちから選ばれるいずれか1種または2種以上を含有させ
ることを特徴とする靱性に優れる低降伏比高強度熱延鋼
板。
(2) In addition to the steel composition described in (1) above, Mo: 1.0 wt% or less, Cu: 2.0 wt% or less, Ni: 1.5 wt%
% Or less, Cr: 1.0 wt% or less, and V: 0.10 wt% or less, and a low yield ratio and high strength hot rolled steel sheet excellent in toughness, characterized by containing at least one kind or two or more kinds.

【0008】(3) 上記(1) または(2) に記載の鋼組成の
ものに、さらにCa:0.0005〜0.0050wt%、REM :0.001
〜0.020 wt%のうちから選ばれるいずれか1種または2
種を含有させることを特徴とする靱性に優れる低降伏比
高強度熱延鋼板。
(3) In addition to the steel composition described in (1) or (2) above, Ca: 0.0005 to 0.0050 wt% and REM: 0.001
~ 1 or 2 selected from 0.020 wt%
A high-strength hot-rolled steel sheet having a low yield ratio and excellent in toughness, which is characterized by containing a seed.

【0009】(4) C:0.005 〜0.030 wt%未満、Si:1.
5 wt%以下、Mn:1.5 wt%以下、 P:0.020 wt%
以下、S:0.015 wt%以下、 Al:0.005 〜0.10wt
%、N:0.0100wt%以下、 B:0.0002〜0.0100wt%
を含み、かつTi:0.20wt%以下およびNb:0.25wt%以下
のうちから選ばれるいずれか1種または2種を(Ti+Nb/
2)/C≧4の関係を満たして含有する鋼を熱間圧延後、
5℃/sec 以上20℃/sec 以下の速度で冷却し、引き
続き550超〜700℃の温度範囲で巻き取ることを特
徴とする上記 (1)〜(3) のいずれか1つに記載の熱延鋼
板の製造方法。
(4) C: 0.005 to less than 0.030 wt%, Si: 1.
5 wt% or less, Mn: 1.5 wt% or less, P: 0.020 wt%
Below, S: 0.015 wt% or less, Al: 0.005 to 0.10 wt
%, N: 0.0100 wt% or less, B: 0.0002 to 0.0100 wt%
And at least one of Ti: 0.20 wt% or less and Nb: 0.25 wt% or less (Ti + Nb /
2) After hot-rolling the steel containing and satisfying the relationship of C ≧ 4,
The heat as described in any one of (1) to (3) above, which is characterized by cooling at a rate of 5 ° C / sec or more and 20 ° C / sec or less, and subsequently winding in a temperature range of more than 550 to 700 ° C. Manufacturing method of rolled steel sheet.

【0010】[0010]

【作用】以下、本発明を具体的に説明する。まず、本発
明の基礎となった実験結果について述べる。 C:0.003 〜0.030 wt%, Si:0.4 wt%, Mn:0.6 wt
%,P:0.010 wt%,S:0.0020wt%,Al:0.035 wt
%,N:0.0018〜0.0043wt%,B:0.0008〜0.0015wt
%,Ti:0 〜0.12wt%,Nb:0 〜0.25wt%,(Ti+Nb/2)/C
=2〜10の範囲で変化させた鋼スラブを、スラブ加熱温
度(SRT):1200℃, 熱間圧延終了温度(FDT):
880 ℃, 熱延後の冷却速度3〜30℃/se(コイル巻取温
度(CT)が 700℃を下回る場合には700 ℃までの冷却
速度)、巻取温度(CT): 500〜750 ℃で熱間圧延
し、板厚12〜20mmの熱延鋼板を製造した。
The present invention will be described in detail below. First, the experimental results on which the present invention is based will be described. C: 0.003 to 0.030 wt%, Si: 0.4 wt%, Mn: 0.6 wt
%, P: 0.010 wt%, S: 0.0020 wt%, Al: 0.035 wt%
%, N: 0.0018 to 0.0043 wt%, B: 0.0008 to 0.0015 wt
%, Ti: 0 to 0.12 wt%, Nb: 0 to 0.25 wt%, (Ti + Nb / 2) / C
= 2 to 10, the steel slab changed, the slab heating temperature (SRT): 1200 ℃, hot rolling end temperature (FDT):
880 ℃, Cooling rate after hot rolling 3 to 30 ℃ / se (cooling rate up to 700 ℃ when coil coiling temperature (CT) is less than 700 ℃), coiling temperature (CT): 500 to 750 ℃ Hot-rolled steel sheet with a thickness of 12 to 20 mm was manufactured.

【0011】得られた熱延鋼板について、粒内の固溶C
を調査するとともに、強度(降伏強さ(YS),引張強
さ(TS))、降伏比(YR=YS/TS)、破面遷移
温度(vTrs)およびこれらの値から算出される0.
3TS(MPa)−vTrs(℃)を求めた。ここで、
YSはAPI規格の0.5%歪みの値(通常、非時効性
鋼で用いられる0.2%耐力または時効性鋼で用いられ
る下降伏応力とほぼ等しい。)により求めた。また、粒
内固溶Cの測定法としては、時効指数AI(Ageing Ind
ex) を用いた。すなわち、7.5 %予歪み付与後100℃
30分熱処理後の硬化量を測定しAI値とした。AI値
は粒界の固溶Cの影響をほとんど受けず、一般に粒内固
溶Cに対し、粒内固溶C(ppm)=0.20×AI(MPa) の関
係がある。なお、内部摩擦法による固溶Cの測定は、粒
界固溶Cの影響を受ける他、粒径や粒形態の影響も受け
るため、これら因子の影響が大きい低C熱延鋼板には向
かない。なお、0.3TS(MPa)−vTrs(℃)
の意味は次のとおりである。析出強化、固溶強化などの
一般的な強化により靱性は劣化しvTrsは上昇する。
そこで、強度の異なる鋼板についての靱性比較を行うた
めには、強度に依存する靱性の変化量を補正する必要が
ある。この強化による靱性変化量は経験的に0.3TS
(MPa)に相当する。したがって、vTrs−0.3
TSの値が低いほど、言い換えれば0.3TS−vTr
sの値が大きいほど、強化の影響を除いた靱性が良好で
あるといえる。このようにして求めた靱性値は、結晶の
マトリックス本来の靱性と、細粒化による靱性とを総合
した靱性を表していると考えることができる。
Regarding the obtained hot-rolled steel sheet, solid solution C in the grains
And the strength (yield strength (YS), tensile strength (TS)), yield ratio (YR = YS / TS), fracture surface transition temperature (vTrs), and values calculated from these values.
3TS (MPa) -vTrs (° C) was determined. here,
YS was determined by the value of 0.5% strain of API standard (usually, it is almost equal to 0.2% proof stress used in non-aged steel or the yield stress used in aged steel). In addition, the aging index AI (Ageing Ind
ex) was used. That is, after applying 7.5% pre-strain, 100 ℃
The curing amount after 30 minutes of heat treatment was measured and taken as the AI value. The AI value is hardly affected by the solid solution C in the grain boundary, and generally has a relation of intragranular solid solution C (ppm) = 0.20 × AI (MPa) with respect to the intragranular solid solution C. It should be noted that the measurement of the solid solution C by the internal friction method is not affected by the grain boundary solid solution C, and is also affected by the grain size and the grain morphology. . Note that 0.3TS (MPa) -vTrs (° C)
Has the following meanings. Due to general strengthening such as precipitation strengthening and solid solution strengthening, the toughness deteriorates and vTrs increases.
Therefore, in order to compare the toughness of steel sheets having different strengths, it is necessary to correct the amount of change in the toughness depending on the strength. The toughness change due to this strengthening is 0.3 TS empirically.
(MPa). Therefore, vTrs-0.3
The lower the value of TS, in other words 0.3TS-vTr
It can be said that the larger the value of s, the better the toughness excluding the effect of strengthening. It can be considered that the toughness value thus obtained represents the toughness obtained by combining the toughness inherent in the matrix of the crystal and the toughness due to grain refinement.

【0012】図1に、粒内の固溶Cと上記各特性との関
係を示す。同図から明らかなように、粒内の固溶Cを1.
0 〜4.0ppmの範囲に制御すれば、優れた靱性と低降伏比
が得られることがわかる。このように固溶Cを4.0ppm以
下に低減することにより低降伏比化が可能になる機構
は、上降伏点が発生しなくなること、固溶Cに固着され
た転位が減少し可動転位が相対的に増加していることに
よるものと考えられる。また、靱性が改善される理由
は、低降伏比と同じ機構により、低温における衝撃的な
変形に対しても塑性変形しやすくなるため、吸収エネル
ギーが低下しにくくなるからであると考えられる。一
方、粒内の固溶Cを1.0ppm未満に低下させると、降伏比
は低下するものの、強度低下が著しく、また0.3TS
−vTrsの値も、結晶粒の粗大化によるものと思われ
るが、若干低下する。このように、優れた靱性と低降伏
比を達成するためには、粒内の固溶Cを1.0〜4.0ppmの
範囲に制御することが極めて重要であることがわかっ
た。
FIG. 1 shows the relationship between the solid solution C in the grain and each of the above characteristics. As is clear from the figure, 1.
It can be seen that excellent toughness and a low yield ratio can be obtained by controlling in the range of 0 to 4.0 ppm. In this way, the mechanism that enables the yield ratio to be lowered by reducing the solid solution C to 4.0 ppm or less is that the upper yield point does not occur, the dislocations fixed to the solid solution C decrease, and It is thought that this is due to an increasing number of people. Further, it is considered that the reason why the toughness is improved is that the same mechanism as that of the low yield ratio facilitates plastic deformation even under impact deformation at low temperatures, and thus the absorbed energy is less likely to decrease. On the other hand, when the solid solution C in the grains is reduced to less than 1.0 ppm, the yield ratio is reduced, but the strength is significantly reduced, and 0.3TS
The value of −vTrs also seems to be due to the coarsening of the crystal grains, but is slightly lowered. As described above, it has been found that it is extremely important to control the solute C in the grain within the range of 1.0 to 4.0 ppm in order to achieve excellent toughness and a low yield ratio.

【0013】次に、本発明において、化学成分組成、組
織および製造条件などを前記の範囲に限定した理由につ
いて述べる。 C:0.005 〜0.030 wt%未満 Cは、Ti,Nb共存下では析出強化により強度を向上
させる元素である。添加量が 0.005wt%未満ではその効
果に乏しいだけでなく、結晶粒の粗大化を招き過剰な固
溶強化元素なしでは高強度を達成できなくなる。その
上、溶接部も粒成長しやすく、軟化による破断を招く原
因となる。一方、 0.030wt%以上含有させると、多量の
NbやTiを添加しても粒内の固溶Cを必要量まで低下させ
ることが困難になるほか、溶接部に島状マルテンサイト
が生成され溶接部の靱性を劣化させる。したがってCの
含有量は 0.005〜0.030 wt%未満、好ましくは0.015 〜
0.028 wt%とする。
Next, in the present invention, the reason why the chemical composition, the structure and the manufacturing conditions are limited to the above range will be described. C: 0.005 to less than 0.030 wt% C is an element that improves the strength by precipitation strengthening in the coexistence of Ti and Nb. If the addition amount is less than 0.005 wt%, not only the effect is poor, but also the crystal grain becomes coarse and high strength cannot be achieved without an excessive solid solution strengthening element. In addition, the welded portion is likely to grow grains, which causes breakage due to softening. On the other hand, if 0.030 wt% or more is contained, a large amount of
Even if Nb or Ti is added, it becomes difficult to reduce the solid solution C in the grains to the required amount, and island martensite is generated in the welded portion, which deteriorates the toughness of the welded portion. Therefore, the content of C is 0.005 to less than 0.030 wt%, preferably 0.015 to
0.028 wt%

【0014】Si:1.5 wt%以下 Siは、強化元素として有用な元素であり、固溶Cが低い
鋼においての靱性への悪影響も少ない元素である。しか
し1.5 wt%を超えての過剰添加は、靱性への悪影響が顕
在化し、溶接部の割れ感受性も低下させる。したがっ
て、Siの含有量は1.5 wt%以下とし、強度改善効果の点
から0.8 wt%以下とするのが好ましいい。
Si: 1.5 wt% or less Si is an element useful as a strengthening element, and is an element with little adverse effect on toughness in steel having a low solid solution C. However, excessive addition of more than 1.5 wt% has a negative effect on toughness and reduces crack susceptibility of welds. Therefore, the Si content is preferably 1.5 wt% or less, and is preferably 0.8 wt% or less from the viewpoint of the strength improving effect.

【0015】Mn:1.5 wt%以下 Mnは、強化元素として有用な元素であるが、1.5 wt%を
超えて添加すると溶接部の硬さを上昇させ、溶接割れ感
受性を高める。また、島状マルテンサイトを発生させ靱
性を低下させる懸念がある。さらに、過剰なMn添加は、
固溶Cの拡散速度を低下させ、炭化物析出による粒内の
固溶Cの低減を遅らせる作用を持っている点からも好ま
しくない。したがって、Mnの含有量は1.5 wt%以下と
し、強度改善効果の点から0.8 wt%以下とするのが好ま
しい。
Mn: 1.5 wt% or less Mn is an element useful as a strengthening element, but if it is added in excess of 1.5 wt%, it increases the hardness of the weld zone and increases the weld crack susceptibility. Further, there is a concern that island-like martensite is generated and toughness is reduced. Furthermore, excessive Mn addition causes
It is also not preferable from the viewpoint that it has the effect of reducing the diffusion rate of solid solution C and delaying the reduction of solid solution C in the grains due to the precipitation of carbides. Therefore, the Mn content is preferably 1.5 wt% or less, and is preferably 0.8 wt% or less from the viewpoint of the strength improving effect.

【0016】P:0.020 wt%以下 Pは、本発明範囲の粒内固溶Cの範囲の鋼では、非時効
性鋼ほどの靱性への悪影響はないが、0.020 wt%を超え
ると靱性劣化に及ぼす影響が大きくなる。したがって、
Pの含有量は0.020 wt%以下、好ましくは0.012wt %以
下とする。
P: 0.020 wt% or less P does not adversely affect the toughness as much as the non-aging steel in the steel having the intragranular solid solution C range of the present invention, but if it exceeds 0.020 wt%, the toughness deteriorates. The impact will be greater. Therefore,
The P content is 0.020 wt% or less, preferably 0.012 wt% or less.

【0017】S:0.015 wt%以下 Sは、硫化物を形成して耐サワー性を低下させるので、
極力低減することが好ましいが、0.015 wt%以下、好ま
しくは0.005 wt%以下の範囲で許容できる。
S: 0.015 wt% or less S forms sulfides and deteriorates sour resistance.
It is preferable to reduce the amount as much as possible, but it is acceptable in the range of 0.015 wt% or less, preferably 0.005 wt% or less.

【0018】Al:0.005 〜0.10wt% Alは、鋼の脱酸およびNの固定のために有用な元素であ
る。その効果を得るには、少なくとも0.005 wt%の添加
が必要であるが、0.10wt%を超える添加はコスト上不利
となるので0.005 〜0.10wt%の範囲で含有させるものと
する。
Al: 0.005-0.10 wt% Al is an element useful for deoxidizing steel and fixing N. In order to obtain the effect, it is necessary to add at least 0.005 wt%, but the addition of more than 0.10 wt% is disadvantageous in terms of cost, so the content is made 0.005 to 0.10 wt%.

【0019】N:0.0100wt%以下 Nは、固溶状態では靱性の低下やYRの上昇を招くた
め、Ti,Al,B等の窒化物として固定される。しか
しN量が多いとこれら元素の添加量増によるコスト上昇
を招くので、低減することが好ましいが、0.0100wt%以
下の範囲で許容できる。なお、好ましくは0.0050wt%以
下とする。
N: 0.0100 wt% or less N causes a decrease in toughness and an increase in YR in a solid solution state, so N is fixed as a nitride such as Ti, Al, or B. However, if the amount of N is large, the cost increases due to the increase in the amount of addition of these elements, so it is preferable to reduce it, but it is permissible within the range of 0.0100 wt% or less. The content is preferably 0.0050 wt% or less.

【0020】B:0.0002〜0.0100wt% Bは、結晶粒の過度の成長を抑制して、靱性と強度の確
保に必要な元素であり、また、冷却時の変態点低下によ
り、高温での炭化物の粗大析出を抑制するためにも必要
な元素である。これらの効果を得るには0.0002wt%以上
の添加が必要である。一方、0.0100wt%を超える添加
は、過剰な焼入れ作用により靱性を劣化させる。したが
って、Bは0.0002〜0.0100wt%の範囲、好ましくは0.00
05〜0.0050wt%の範囲で添加する。
B: 0.0002 to 0.0100 wt% B is an element required to suppress the excessive growth of crystal grains and secure toughness and strength. Further, due to the lowering of the transformation point during cooling, carbide at high temperature is obtained. Is also an element necessary for suppressing the coarse precipitation of. To obtain these effects, addition of 0.0002 wt% or more is necessary. On the other hand, addition of more than 0.0100 wt% deteriorates toughness due to excessive quenching action. Therefore, B is in the range of 0.0002 to 0.0100 wt%, preferably 0.00
Add in the range of 05-0.0050wt%.

【0021】Ti:0.20wt%以下、Nb:0.25wt%以下、か
つ(Ti+Nb/2)/C≧4 Ti、Nbは、ともに本発明において重要な元素であり、固
溶Cを析出固定して粒内固溶Cを制御するとともに、Ti
C,NbC を形成して析出強化による高強度をもたらす。こ
れらの効果をもたらすためには(Ti+Nb/2)/C≧4を満た
すことが必要である。しかし、Ti、Nbの量が過多になる
と介在物が増加し、溶接部の靱性の上から不利になるの
で、それぞれ0.20wt%以下、0.25wt%以下の範囲で添加
する。なお、好ましい(Ti+Nb/2)/C範囲は5〜8とす
る。
Ti: 0.20 wt% or less, Nb: 0.25 wt% or less, and (Ti + Nb / 2) / C ≧ 4 Ti, Nb are both important elements in the present invention, and solid solution C is precipitated and fixed. Control the intra-grain solid solution C and
It forms C and NbC to bring about high strength by precipitation strengthening. In order to bring about these effects, it is necessary to satisfy (Ti + Nb / 2) / C ≧ 4. However, if the amounts of Ti and Nb are excessive, inclusions increase, which is disadvantageous in terms of toughness of the welded portion, so they are added in the range of 0.20 wt% or less and 0.25 wt% or less, respectively. The preferable (Ti + Nb / 2) / C range is 5-8.

【0022】以上、基本成分について説明したが、本発
明では、Mo,Cu,Ni,Cr,V,Ca,REM を適宜添加することが
できる。 Mo:1.0 wt%以下、Cu:2.0 wt%以下、Ni:1.5 wt%以
下、Cr:1.0 wt%以下およびV:0.10wt%以下 これらの元素は、いずれも強化元素として補助的に使用
される元素であるが、過剰に添加すると溶接部の靱性低
下等の悪影響をもたらすので上記範囲に限定する。
Although the basic components have been described above, in the present invention, Mo, Cu, Ni, Cr, V, Ca and REM can be added appropriately. Mo: 1.0 wt% or less, Cu: 2.0 wt% or less, Ni: 1.5 wt% or less, Cr: 1.0 wt% or less and V: 0.10 wt% or less All of these elements are auxiliary used as strengthening elements. Although it is an element, it is limited to the above range because if added excessively, it causes adverse effects such as reduction in toughness of the welded portion.

【0023】Ca:0.0005〜0.0050wt%、REM :0.001 〜
0.020 wt% CaおよびREM はいずれも、硫化物の形態を球状化させ、
靱性、耐サワー性、溶接性等を向上させる作用を有して
いる。しかし、いずれも過剰に添加すると介在物が増加
して靱性を劣化させるので上記範囲に限定する。
Ca: 0.0005 to 0.0050 wt%, REM: 0.001 to
0.020 wt% Ca and REM both spheroidize the sulfide morphology,
It has the effect of improving toughness, sour resistance, weldability, and the like. However, if any of them is added excessively, inclusions increase and the toughness deteriorates, so the content is limited to the above range.

【0024】金属組織および粒内の固溶C量;本発明の
組織はフェライトおよび/またはベイニティックフェラ
イトとする必要がある。すなわち、上記の組織に制御す
ることにより、マクロ的な欠陥を低減することができる
ので、析出強化による高強度化を行っても靱性や耐サワ
ー性の劣化を回避できる。なお、従来鋼は、フェライト
・パーライトの複合組織による強化を利用していたため
に、マクロ欠陥が多い組織であった。また、粒内の固溶
C量の影響については、図1により説明したように、1.
0 〜4.0ppm(重量)の範囲に制御することが、優れた靱
性と低降伏比をともに達成するために不可欠な要件であ
る。このようなフェライトおよび/またはベイニティッ
クフェライトを得るためには、前述した本発明に従う成
分組成の鋼を、下記に述べる適正条件で製造すればよ
い。
Metal Structure and Amount of Solute C in Grains; The structure of the present invention must be ferrite and / or bainitic ferrite. That is, by controlling to the above structure, macroscopic defects can be reduced, so that deterioration of toughness and sour resistance can be avoided even if strength is increased by precipitation strengthening. The conventional steel had a structure with many macro defects because it utilized the strengthening of the composite structure of ferrite and pearlite. Regarding the influence of the amount of solute C in the grains, as described in FIG. 1, 1.
Controlling in the range of 0 to 4.0 ppm (weight) is an essential requirement for achieving both excellent toughness and low yield ratio. In order to obtain such ferrite and / or bainitic ferrite, the steel having the above-described composition according to the present invention may be manufactured under appropriate conditions described below.

【0025】次に、本発明による熱延鋼板を製造するた
めの条件について説明する。 ・熱間圧延後の冷却速度;炭化物を析出させて粒内の固
溶Cを調整するためには、熱間圧延後巻き取りまで、特
に700℃以上までの温度域における冷却速度を制御す
る必要がある。冷却速度が5℃/sec 未満では結晶粒径
が粗大化し、靱性が低下する。一方、20℃/sec を超
える速度で冷却した場合には、炭化物の析出が不十分に
なる傾向があるほか、フェライト粒内に歪みが残留しや
すく靱性が低下する。この他、冷却速度が大きすぎる
と、熱延鋼帯の全長にわたってこの冷却速度を安定して
維持することが困難となり、鋼帯長手方向に材質が不均
一になること、鋼帯の表面と板厚中央部との間で材質が
不均一になること、鋼板形状が悪化することなどの不利
を招く。したがって、熱間圧延後の冷却速度の冷却速度
は5℃/sec 以上20℃/sec以下、好ましくは5℃/s
ec 以上15℃/sec 未満、さらに好ましくは5℃/sec
以上10℃/sec 未満とする必要がある。
Next, the conditions for producing the hot-rolled steel sheet according to the present invention will be described. Cooling rate after hot rolling: In order to precipitate carbides and adjust the solid solution C in the grains, it is necessary to control the cooling rate after hot rolling, especially in the temperature range up to 700 ° C or higher until winding. There is. If the cooling rate is less than 5 ° C / sec, the crystal grain size becomes coarse and the toughness decreases. On the other hand, when cooled at a rate exceeding 20 ° C./sec, precipitation of carbides tends to be insufficient, and strain tends to remain in ferrite grains, resulting in a decrease in toughness. In addition, if the cooling rate is too high, it becomes difficult to maintain this cooling rate stably over the entire length of the hot-rolled steel strip, and the material becomes uneven in the longitudinal direction of the strip, the surface of the strip and the strip. This causes disadvantages such as non-uniformity of material between the thick center portion and deterioration of steel plate shape. Therefore, the cooling rate of the cooling rate after hot rolling is 5 ° C./sec or more and 20 ° C./sec or less, preferably 5 ° C./s.
ec or more and less than 15 ° C / sec, more preferably 5 ° C / sec
It is necessary to set it to 10 ° C./sec or more.

【0026】・巻き取り温度(CT);炭化物の析出に
よる粒内の固溶C調整と析出強化の作用は、その大部分
がコイル巻き取り後の徐冷過程で起こるので、熱間圧延
後の巻き取り温度は特に重要な要件である。巻き取り温
度が550℃以下では、固溶C量の低減が不十分とな
り、また均一な材質が得られにくい。一方、巻き取り温
度が700℃を超えると、過時効気味となり析出強化が
起こりにくくなり、高強度化の上で不利となるほか、固
溶Cも少な過ぎる傾向となる。したがって、熱間圧延後
の巻き取り温度は550超〜700℃、好ましくは60
0℃以上の温度範囲とする必要がある。
Winding temperature (CT): The action of adjusting the solid solution C in the grains and precipitation strengthening due to the precipitation of carbides mostly occurs in the slow cooling process after coil winding, so that after hot rolling, The winding temperature is a particularly important requirement. When the winding temperature is 550 ° C. or lower, the amount of solid solution C is not sufficiently reduced, and it is difficult to obtain a uniform material. On the other hand, when the winding temperature exceeds 700 ° C., overaging tends to occur, precipitation strengthening is unlikely to occur, which is disadvantageous in terms of high strength, and solid solution C tends to be too small. Therefore, the winding temperature after hot rolling is more than 550 to 700 ° C., preferably 60.
It is necessary to set the temperature range to 0 ° C or higher.

【0027】なお、耐火鋼の分野ではあるが、特開平5-
222484号公報において、IF(Interstitial Free)鋼を
析出強化させた高靱性低降伏比鋼が提案されている。し
かしながら、この提案では、先ず、IFすなわち固溶C
を実質上0にするのがよいとしており、固溶Cの下限を
必要とする本発明とは思想を異にする。次に、上記提案
における製造方法および実施例においても、耐火性の確
保のために、急冷−低温(550℃以下)巻き取りを行
っている。本発明者らの調査によると、このような条件
では、実際には、固溶Cが4.0ppmを超えて存在す
ると考えられ、本発明ほどの強度−靱性バランスは期待
できない。
Although it is in the field of refractory steel, it is not disclosed in
In JP 222484, a high toughness low yield ratio steel in which IF (Interstitial Free) steel is precipitation strengthened is proposed. However, in this proposal, first, IF, that is, solid solution C
Is set to be substantially 0, which is different from the present invention in which the lower limit of solid solution C is required. Next, also in the manufacturing method and the example in the above proposal, rapid cooling-low temperature (550 ° C. or lower) winding is performed in order to secure fire resistance. According to the investigation by the present inventors, under such conditions, it is considered that the solute C actually exists in excess of 4.0 ppm, and the strength-toughness balance as in the present invention cannot be expected.

【0028】上述した熱延後の冷却速度と巻き取り温度
は、本発明においてとくに重要な要件であり、鋼帯の全
長、全幅にわたり均一な条件で処理可能なものである。
次に、上記要件以外の好適な製造条件について述べる。
スラブの熱間圧延は、連続鋳造後、直ちに(いわゆるC
C−DR)行うか、もしくは加熱温度(SRT):90
0〜1300℃、省エネルギー面から好ましくは120
0℃以下の範囲に再加熱した後に行う。CC−DRを行
う場合には、保熱もしくは端部の多少の加熱を行うこと
は差し支えない。
The above-described cooling rate and coiling temperature after hot rolling are particularly important requirements in the present invention and can be treated under uniform conditions over the entire length and width of the steel strip.
Next, suitable manufacturing conditions other than the above requirements will be described.
Hot rolling of a slab is carried out immediately after continuous casting (so-called C
C-DR) or heating temperature (SRT): 90
0 to 1300 ° C, preferably 120 in terms of energy saving
It is performed after reheating to a range of 0 ° C. or lower. When CC-DR is performed, heat retention or some heating of the end may be performed.

【0029】熱間圧延は、圧延終了温度(FDT)が7
50〜950℃の通常の圧延によればよいが、Ar3 変態
点−100℃より下回ると熱延中に炭化物が析出し、析
出強化作用を弱めるので好ましくない。なお、本発明鋼
では、マトリックス中の固溶C量の制御とB添加による
細粒化とにより高靱性と高強度を得ているので、制御圧
延(オーステナイト粒未再結晶温度域での強圧下)を適
用する必要性は必ずしもない。本発明鋼をあえて制御圧
延法で製造する場合には、再結晶温度が低Cのために9
00℃程度まで低下しているので、900℃以下で熱延
圧下率を50%以上(60%以上ならばさらに有効)確
保するように留意するのがよい。また、熱延仕上げ板厚
は用途によっても異なるが、通常は5〜30mm程度で
ある。
In hot rolling, the rolling end temperature (FDT) is 7
Normal rolling at 50 to 950 ° C may be performed, but if it is lower than the Ar 3 transformation point of -100 ° C, carbides are precipitated during hot rolling and the precipitation strengthening action is weakened, which is not preferable. In the steel of the present invention, high toughness and high strength are obtained by controlling the amount of solid solution C in the matrix and refining by adding B. Therefore, controlled rolling (strong rolling in the austenite grain unrecrystallized temperature range) ) Does not necessarily have to be applied. When the steel of the present invention is intentionally produced by the controlled rolling method, the recrystallization temperature is low C, so
Since the temperature is lowered to about 00 ° C., it is preferable to ensure that the hot rolling reduction rate is 900% or less and 50% or more (60% or more is more effective). The thickness of the hot-rolled finished plate varies depending on the application, but is usually about 5 to 30 mm.

【0030】以上の製造方法は熱延鋼帯製造工程におけ
るものであるが、この方法は厚板製造工程にも応用可能
である。例えば、熱延鋼帯と同様な方法により熱間圧延
後の冷却まで行い、続いて600〜700℃の範囲で1
hr以上保持または徐冷することにより同様な材質が得
られる。
Although the above manufacturing method is in the hot rolled steel strip manufacturing process, this method can be applied to the thick plate manufacturing process. For example, the method similar to that for hot-rolled steel strip is performed until cooling after hot rolling, and then 1 to 600-700 ° C.
A similar material can be obtained by holding for at least hr and slowly cooling.

【0031】[0031]

【実施例】表1〜3に示す種々の成分組成からなる鋼ス
ラブを再加熱した後、表2に示す条件で熱間圧延し、板
厚15mmの鋼板とした。かくして得られた熱延鋼板に
ついて、組織調査を行うとともに、粒内の固溶Cを測定
した。また、鋼板の機械特性として、降伏強さ、引張強
さ、降伏比、破面遷移温度、0℃における吸収エネルギ
ー、0.3TS−vTrs、HIC(耐サワー性)等の
特性を測定した。さらに、造管ラインにて電縫溶接し、
溶接部のビッカース最高硬さ(Hv )、これと母材部と
の硬さの差(ΔHv )、溶接熱影響部の粗大粒部の破面
遷移温度を測定した。ここで、粒内固溶C量は、前述の
ごとくAIから、 粒内固溶C量(ppm)=0.20×AI(MPa) により求めた。引張試験はJIS Z2201にしたが
い、JIS5号試験片を用いて、衝撃試験はJISZ2
202によるシャルピー試験片を用いて行った。また、
HICはNACE TM−02−84に従い行った。た
だし、試験液はNACE TM0177−90に規定の
NACE液を用いた。HICの評価は、超音波探傷によ
りクラックがないものを○、クラック寸法がCSR(Cr
ck Sensitivity Ratio)で1%未満のものを△、1%以
上のものを×として行った。得られた結果のうち、組織
と粒内固溶Cについては表2に、各種機械特性、耐サワ
ー特性の結果を表3にそれぞれ示す。
EXAMPLES Steel slabs having various compositional compositions shown in Tables 1 to 3 were reheated and then hot-rolled under the conditions shown in Table 2 to obtain steel plates having a thickness of 15 mm. The hot-rolled steel sheet thus obtained was subjected to a microstructure investigation and the solid solution C in the grains was measured. Further, as mechanical properties of the steel sheet, properties such as yield strength, tensile strength, yield ratio, fracture transition temperature, absorbed energy at 0 ° C., 0.3TS-vTrs, HIC (sour resistance) were measured. Furthermore, we perform electric resistance welding at the pipe making line,
The Vickers maximum hardness (Hv) of the welded portion, the difference in hardness between this and the base metal portion (ΔHv), and the fracture surface transition temperature of the coarse grain portion of the heat affected zone were measured. Here, the amount of dissolved C in the grain was determined from AI as described above by the amount of dissolved C in the grain (ppm) = 0.20 × AI (MPa). According to JIS Z2201, the tensile test uses JIS No. 5 test piece, and the impact test uses JIS Z2.
It was carried out using a Charpy test piece according to 202. Also,
HIC was performed according to NACE TM-02-84. However, the test solution used was the NACE solution specified in NACE TM0177-90. HIC was evaluated as ○ if there were no cracks due to ultrasonic flaw detection, and the crack size was CSR (Cr
A ck Sensitivity Ratio of less than 1% was evaluated as Δ, and a value of 1% or more was evaluated as x. Of the obtained results, Table 2 shows the structure and intragranular solid solution C, and Table 3 shows the results of various mechanical properties and sour resistance.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】表1〜3から明らかなように、本発明に従
い得られた熱延鋼板は、いずれも目標とした特性が得ら
れ、母板の特性で、降伏強さ(YS)が276MPa以
上、降伏比(YR)が80%以下、破面遷移温度vTr
sが−100℃以下、0℃におけるシャルピー吸収エネ
ルギーvEoが300J以上、0.3TS−vTrsが
300以上かつ優れたサワー特性を示し、また溶接部に
ついても溶接部と母材との硬さの差(ΔHv)が100
以下、溶接熱影響部(HAZ)の破面遷移温度vTrS
が0℃以下を示し、低降伏比、高強度でしかも優れた衝
撃特性、耐サワー性および溶接性を有していることがわ
かる。とりわけ、記号1A,2A,3〜6および8〜1
6は、母板でYSが413MPa以上、YRが70%以
下、vTrsが−120℃以下、vEoが310J以
上、0.3TS−vTrsが320以上、ΔHvが30
以下、HAZのvTrSが−20℃以下であり、極めて
優れた特性が得られた。これに対し、成分組成、製造条
件が本発明範囲を外れた比較例では、靱性、降伏比、溶
接部特性、耐サワー性などの特性のうちの少なくとも1
つの特性が劣っていることがわかる。
As is clear from Tables 1 to 3, the hot-rolled steel sheets obtained according to the present invention all have the desired characteristics, and the yield strength (YS) is 276 MPa or more in the characteristics of the mother board. Yield ratio (YR) is 80% or less, fracture surface transition temperature vTr
s is −100 ° C. or lower, Charpy absorbed energy vEo at 0 ° C. is 300 J or higher, 0.3TS-vTrs is 300 or higher, and shows excellent sour characteristics. Also, regarding the welded portion, the difference in hardness between the welded portion and the base metal is shown. (ΔHv) is 100
Below, the fracture surface transition temperature vTrS of the welding heat affected zone (HAZ)
Shows 0 ° C. or less, and has a low yield ratio, high strength, and excellent impact properties, sour resistance and weldability. In particular, the symbols 1A, 2A, 3-6 and 8-1
6 is a mother board, YS is 413 MPa or more, YR is 70% or less, vTrs is −120 ° C. or less, vEo is 310 J or more, 0.3TS-vTrs is 320 or more, and ΔHv is 30.
Hereafter, vTrS of HAZ was −20 ° C. or lower, and extremely excellent characteristics were obtained. On the other hand, in the comparative example in which the component composition and the manufacturing conditions were out of the range of the present invention, at least one of the characteristics such as toughness, yield ratio, weld property, sour resistance,
It can be seen that two characteristics are inferior.

【0036】[0036]

【発明の効果】かくして本発明によれば、厚み方向、長
さ方向における材質の不均一性の劣化を招くことなく、
靱性、溶接性、耐サワー性に優れしかも低降伏比を有す
る高強度熱延鋼板を得ることができ、これらの諸特性が
要求される建築、土木用の鋼管、カラム、油井用電縫鋼
管などの用途に用いて優れた効果をを奏する。
As described above, according to the present invention, the deterioration of the non-uniformity of the material in the thickness direction and the length direction is prevented,
High-strength hot-rolled steel sheets with excellent toughness, weldability, sour resistance, and low yield ratio can be obtained. Steel pipes for construction, civil engineering, columns, oil-well electric resistance welded steel pipes, etc. that require these characteristics. It has excellent effects when used for.

【図面の簡単な説明】[Brief description of drawings]

【図1】粒内固溶C量と強度、降伏比および靱性との関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of solid solution C in a grain, strength, yield ratio, and toughness.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 才二 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所 内 (56)参考文献 特開 平5−222484(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Satoshi Matsuoka, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba, Kawasaki Steel Works, Ltd. Technical Research Institute (56) Reference JP-A-5-222484 (JP, A) ( 58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.005 〜0.030 wt%未満、 Si:1.5 wt%以下、 Mn:1.5 wt%以下、 P:0.020 wt%以下、 S:0.015 wt%以下、 Al:0.005 〜0.10wt%、 N:0.0100wt%以下、 B:0.0002〜0.0100wt%を含み、かつ Ti:0.20wt%以下および Nb:0.25wt%以下のうちから選ばれるいずれか1種また
は2種を(Ti+Nb/2)/C≧4の関係を満たして含有し、残
部がFeおよび不可避的不純物よりなり、さらに金属組織
がフェライトおよび/またはベイニティックフェライト
からなるとともに粒内の固溶C量が1.0 〜4.0ppmである
ことを特徴とする靱性に優れる低降伏比高強度熱延鋼
板。
1. C: 0.005 to less than 0.030 wt%, Si: 1.5 wt% or less, Mn: 1.5 wt% or less, P: 0.020 wt% or less, S: 0.015 wt% or less, Al: 0.005 to 0.10 wt%, N: 0.0100 wt% or less, B: 0.0002 to 0.0100 wt%, and Ti: 0.20 wt% or less and Nb: 0.25 wt% or less selected from one or two types (Ti + Nb / 2 ) / C ≧ 4, the balance is Fe and inevitable impurities, the metal structure is ferrite and / or bainitic ferrite, and the amount of solid solution C in the grain is 1.0 to 4.0 ppm. A high yield hot rolled steel sheet with a low yield ratio and excellent toughness.
【請求項2】請求項1に記載の鋼組成のものに、さらに Mo:1.0 wt%以下、 Cu:2.0 wt%以下、 Ni:1.5 wt%以下、 Cr:1.0 wt%以下および V:0.10wt%以下のうちから選ばれるいずれか1種また
は2種以上を含有させることを特徴とする靱性に優れる
低降伏比高強度熱延鋼板。
2. The steel composition according to claim 1, further comprising Mo: 1.0 wt% or less, Cu: 2.0 wt% or less, Ni: 1.5 wt% or less, Cr: 1.0 wt% or less and V: 0.10 wt%. %, A low yield ratio, high strength hot-rolled steel sheet excellent in toughness, characterized in that it contains any one or two or more selected from the following.
【請求項3】請求項1または2に記載の鋼組成のもの
に、さらに Ca:0.0005〜0.0050wt%、 REM :0.001 〜0.020 wt%のうちから選ばれるいずれか
1種または2種を含有させることを特徴とする靱性に優
れる低降伏比高強度熱延鋼板。
3. The steel composition according to claim 1 or 2, further containing any one or two selected from Ca: 0.0005 to 0.0050 wt% and REM: 0.001 to 0.020 wt%. A high yield hot rolled steel sheet with a low yield ratio and excellent in toughness.
【請求項4】C:0.005 〜0.030 wt%未満、 Si:1.5 wt%以下、 Mn:1.5 wt%以下、 P:0.020 wt%以下、 S:0.015 wt%以下、 Al:0.005 〜0.10wt%、 N:0.0100wt%以下、 B:0.0002〜0.0100wt%を含み、かつ Ti:0.20wt%以下および Nb:0.25wt%以下のうちから選ばれるいずれか1種また
は2種を(Ti+Nb/2)/C≧4の関係を満たして含有する鋼
を熱間圧延後、5℃/sec 以上20℃/sec 以下の速度
で冷却し、引き続き550超〜700℃の温度範囲で巻
き取ることを特徴とする靱性に優れる低降伏比高強度熱
延鋼板の製造方法。
4. C: 0.005 to less than 0.030 wt%, Si: 1.5 wt% or less, Mn: 1.5 wt% or less, P: 0.020 wt% or less, S: 0.015 wt% or less, Al: 0.005 to 0.10 wt%, N: 0.0100 wt% or less, B: 0.0002 to 0.0100 wt%, and Ti: 0.20 wt% or less and Nb: 0.25 wt% or less selected from one or two types (Ti + Nb / 2 ) / C ≧ 4 contained steel is hot-rolled, then cooled at a rate of 5 ° C./sec or more and 20 ° C./sec or less, and subsequently wound in a temperature range of more than 550 to 700 ° C. A method for producing a high-strength hot-rolled steel sheet having a low yield ratio and excellent toughness.
JP06658396A 1995-03-23 1996-03-22 Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same Expired - Fee Related JP3390596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06658396A JP3390596B2 (en) 1995-03-23 1996-03-22 Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-64094 1995-03-23
JP6409495 1995-03-23
JP06658396A JP3390596B2 (en) 1995-03-23 1996-03-22 Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08319538A JPH08319538A (en) 1996-12-03
JP3390596B2 true JP3390596B2 (en) 2003-03-24

Family

ID=26405231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06658396A Expired - Fee Related JP3390596B2 (en) 1995-03-23 1996-03-22 Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP3390596B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263348B2 (en) * 1997-10-07 2002-03-04 住友鋼管株式会社 Method of manufacturing non-heat treated high workability electric resistance welded steel pipe
KR20030021965A (en) * 2001-09-10 2003-03-15 주식회사 포스코 a hot-rolled steel sheet wiht good ultra low temperature toughness and the method of the same
JP4341396B2 (en) 2003-03-27 2009-10-07 Jfeスチール株式会社 High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability
JP4940882B2 (en) * 2005-10-18 2012-05-30 Jfeスチール株式会社 Thick high-strength hot-rolled steel sheet and manufacturing method thereof
US20110126944A1 (en) 2008-07-31 2011-06-02 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method for producing same
CA2749409C (en) 2009-01-30 2015-08-11 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
US20120018056A1 (en) 2009-01-30 2012-01-26 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
WO2013088692A1 (en) * 2011-12-12 2013-06-20 Jfeスチール株式会社 Steel sheet with excellent aging resistance, and method for producing same

Also Published As

Publication number Publication date
JPH08319538A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
KR100257900B1 (en) Hot rolled sheet and method for forming hot rolled steel sheet having low yield ratio high strength and excellent toughness
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
KR100868423B1 (en) High strength api-x80 grade steels for spiral pipes with less strength changes and method for manufacturing the same
KR20040075971A (en) High Strength Steel Plate and Method for Production Thereof
WO2003106723A1 (en) High strength cold rolled steel plate and method for production thereof
JP2003013138A (en) Method for manufacturing steel sheet for high-strength line pipe
JP3499085B2 (en) Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof
JPH1017981A (en) High tensile strength steel material with low yield ratio for construction use, excellent in brittle crack arrest property, and its production
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP3390596B2 (en) Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same
US11578392B2 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
KR102164110B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JP3255790B2 (en) Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JP2007023346A (en) Method for producing high strength welded steel tube excellent in strain-aging characteristic
KR101786258B1 (en) The steel sheet having high-strength and excellent heat affected zone toughness and method for manufacturing the same
KR102400036B1 (en) Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JPH0941077A (en) High tensile strength steel plate excellent in crack propagating arrest characteristic and its production
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP4105990B2 (en) High strength welded structural steel with excellent low temperature toughness of large heat input weld HAZ and method for producing the same
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JP2005232562A (en) Method for producing high tension steel plate
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees