JPH09256038A - Heat treatment before stress relieving annealing treatment for thick steel plate - Google Patents

Heat treatment before stress relieving annealing treatment for thick steel plate

Info

Publication number
JPH09256038A
JPH09256038A JP6692296A JP6692296A JPH09256038A JP H09256038 A JPH09256038 A JP H09256038A JP 6692296 A JP6692296 A JP 6692296A JP 6692296 A JP6692296 A JP 6692296A JP H09256038 A JPH09256038 A JP H09256038A
Authority
JP
Japan
Prior art keywords
steel plate
heat treatment
toughness
stress relieving
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6692296A
Other languages
Japanese (ja)
Inventor
Naoki Saito
直樹 斉藤
Yutaka Tsuchida
豊 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6692296A priority Critical patent/JPH09256038A/en
Publication of JPH09256038A publication Critical patent/JPH09256038A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat treating method before stress relieving annealing treatment for a thick steel plate (having >=50mm plate thickness in particular) excellent in mechanical properties and used for structures requiring stress relieving annealing treatment such as pressure vessels. SOLUTION: A steel plate contg., by weight, 0.05 to 0.20% C, 0.02 to 0.5% Si, 0.2 to 2.0% Mn and 0.005 to 0.10% Al, furthermore contg., at need, one or >= two kinds among Cu, Ni, Cr, Mo, V, Nb, Ti, Ca and rare earth elements, and the balance iron with inevitable impurities is heated at the Ac1 to the Ac3 transformation point and is subsequently subjected to gradual cooling treatment before stress relieving annealing treatment for forming the plate into a structural member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧力容器などの応
力除去焼鈍処理(以下、PWHTと略す)が必要な構造
物に使用される機械的性質の優れた厚鋼板(特に板厚5
0mm以上)のPWHT前の熱処理方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thick steel plate having excellent mechanical properties (in particular, a plate thickness of 5) used for a structure requiring stress relief annealing (hereinafter abbreviated as PWHT) such as a pressure vessel.
0 mm or more) prior to PWHT.

【0002】[0002]

【従来の技術】反応容器などの構造物を制作する際、鏡
板などの製造で鋼板を熱間加工により成形した後に、P
WHTを実施する場合が多く、処理後の強度および靱性
の確保が重要になる。PWHT後の材質特性は、その化
学組成およびミクロ組織に大きく依存することから、従
来より、合金元素の最適化および鋼板製造時の加工熱処
理技術の適用などによるPWHT後の強度および靱性の
優れた鋼板の製造方法が提案されてきた。以下に、その
例をいくつか挙げる。
2. Description of the Related Art When manufacturing a structure such as a reaction vessel, a steel plate is formed by hot working in the production of a mirror plate, etc.
Since WHT is often carried out, it is important to secure strength and toughness after treatment. Since the material properties after PWHT largely depend on its chemical composition and microstructure, steel sheets having excellent strength and toughness after PWHT by optimizing alloying elements and applying thermomechanical treatment technology during steel sheet manufacturing have been conventionally used. Have been proposed. The following are some examples.

【0003】特開昭59−232234号公報には、
C:0.03〜0.30%、Mn:0.2〜2.0%を
含有し、さらにC+Mn/9.11≧0.26%を満足
する鋼を熱間圧延後、Ar3 点以上の温度から500℃
未満250℃以上の温度まで、3〜30℃/sの冷却速
度で制御冷却することを特徴とする応力除去焼鈍用50
キロ鋼材の製造法が開示され、また特開昭62−474
30号公報には、C:0.02〜0.20%、Mn:
0.50〜2.5%などを含有する鋼片を、Ac3変態
点〜1250℃の温度に加熱する段階と、前記加熱後、
Ar3 変態点〜(Ar3 変態点+100℃)の温度で圧
下率30%以上の圧延をする段階と、前記圧延後、(α
+γ)2相域において、圧下率が5〜60%で、仕上温
度がAr3 変態点〜(Ar3 変態点−80℃)の仕上圧
延をする段階と、前記仕上圧延後、1℃/s以上の冷却
速度で600℃以下まで冷却する段階とを有してなるこ
とを特徴とする応力除去焼鈍用高張力鋼の製造方法が開
示されている。
Japanese Patent Laid-Open No. 59-232234 discloses that
After hot rolling a steel containing C: 0.03 to 0.30%, Mn: 0.2 to 2.0%, and further satisfying C + Mn / 9.11 ≧ 0.26%, Ar 3 or more points From the temperature of 500 ℃
50 for stress relief annealing characterized by controlled cooling at a cooling rate of 3 to 30 ° C./s to a temperature of less than 250 ° C. or higher.
A method for manufacturing a kilo steel is disclosed, and JP-A-62-474 is also disclosed.
No. 30 publication, C: 0.02 to 0.20%, Mn:
A step of heating a steel slab containing 0.50 to 2.5% to a temperature of Ac 3 transformation point to 1250 ° C., and after the heating,
A step of rolling at a rolling reduction of 30% or more at a temperature of Ar 3 transformation point to (Ar 3 transformation point + 100 ° C.), and after the rolling, (α
+ Γ) In the two-phase region, a finish rolling with a rolling reduction of 5 to 60% and a finishing temperature of Ar 3 transformation point to (Ar 3 transformation point −80 ° C.) and 1 ° C./s after the finishing rolling. Disclosed is a method for producing a high-strength steel for stress relief annealing, which comprises the step of cooling to 600 ° C. or lower at the above cooling rate.

【0004】さらに、特開昭62−93312号公報に
は、C:0.02〜0.18%、Si:0.03〜0.
60%、Mn:0.5〜2.5%、可溶性Al:0.0
05〜0.06%、Nb:0.005〜0.05%、C
u:0.05〜0.7%、Ni:0.05〜0.7%を
含有する鋼片を、Ac3 変態点〜1250℃の範囲に加
熱する段階と、前記加熱後のAr3 変態点〜(Ar3
態点+100℃)の温度範囲で圧下率が30%以上の圧
延をする段階と、前記圧延後、直ちに1〜30℃/sの
冷却速度で600℃以下の任意の温度まで冷却する段階
とを有してなることを特徴とする溶接性と低温靱性に優
れた応力除去焼鈍用高張力鋼材の製造方法が開示され、
また特開昭62−240713号公報には、C:0.0
2〜0.18%、Si:0.03〜0.60%、Mn:
0.5〜2.5%、Sol.Al:0.005〜0.0
6%、Nb:0.005〜0.03%、B:0.000
3〜0.002%、Ti:0.005〜0.02%を含
有し、かつC当量Ceq:C+Mn/6≦0.38を満
足する高張力鋼を、Ac3 温度〜1050℃の温度範囲
に加熱後、Ar3 温度〜(Ar3 温度+100℃)のオ
ーステナイト未再結晶温度域内で圧下率30%以上の圧
延を施し、直ちに1〜10℃/sの冷却速度で600℃
以下の温度まで強制冷却することを特徴とする板厚50
mm以上でベイナイトを含有する溶接性ならびに低温靱
性に優れた応力除去焼鈍に適した極厚高張力鋼板の製造
方法が開示されている。
Further, in JP-A-62-93312, C: 0.02 to 0.18%, Si: 0.03 to 0.
60%, Mn: 0.5 to 2.5%, soluble Al: 0.0
05-0.06%, Nb: 0.005-0.05%, C
u: 0.05 to 0.7%, Ni: 0.05 to 0.7%, a step of heating a steel piece containing Ac 3 transformation point to 1250 ° C., and Ar 3 transformation after the heating. Rolling with a rolling reduction of 30% or more in the temperature range of the point to (Ar 3 transformation point + 100 ° C), and immediately after the rolling, up to an arbitrary temperature of 600 ° C or less at a cooling rate of 1 to 30 ° C / s. Disclosed is a method for producing a high-strength steel material for stress relief annealing excellent in weldability and low-temperature toughness, characterized by comprising a step of cooling,
Further, in JP-A-62-240713, C: 0.0
2 to 0.18%, Si: 0.03 to 0.60%, Mn:
0.5-2.5%, Sol. Al: 0.005-0.0
6%, Nb: 0.005-0.03%, B: 0.000
A high-strength steel containing 3 to 0.002%, Ti: 0.005 to 0.02%, and satisfying the C equivalent Ceq: C + Mn / 6 ≦ 0.38 was prepared in a temperature range of Ac 3 temperature to 1050 ° C. After heating, the steel sheet is rolled at a reduction rate of 30% or more in the austenite non-recrystallization temperature range of Ar 3 temperature to (Ar 3 temperature + 100 ° C), and immediately 600 ° C at a cooling rate of 1 to 10 ° C / s.
Plate thickness 50 characterized by forced cooling to the following temperatures
Disclosed is a method for producing an extra-thick high-strength steel sheet containing bainite of mm or more and having excellent weldability and low-temperature toughness and suitable for stress relief annealing.

【0005】[0005]

【発明が解決しようとする課題】これらの従来技術は、
添加される合金元素および熱間圧延後の強制冷却を適用
し、ミクロ組織を最適化することで、PWHT後の機械
的性質の向上を図るものである。従って、先に述べたよ
うな、鋼材が出荷された後、客先で構造物とするために
スピニング加工などの二次的に再度、熱間加工や温間加
工を伴う場合、その効果が焼失してしまうおそれがあっ
た。
SUMMARY OF THE INVENTION These prior arts are:
By applying the alloying element to be added and forced cooling after hot rolling to optimize the microstructure, the mechanical properties after PWHT are improved. Therefore, as mentioned above, after the steel material is shipped, if the hot working or warm working is secondarily performed again such as spinning to make the structure at the customer's side, the effect is burned out. There was a risk of doing it.

【0006】[0006]

【課題を解決するための手段】本発明は、PWHT前
に、熱間加工後、単純な熱処理を施すことにより、PW
HT後の鋼板の機械的性質の劣化を阻止することを目的
としてなされたものであって、その要旨とするところは
下記のとおりである。 (1)重量%で、C:0.05〜0.20%、Si:
0.02〜0.5%、Mn:0.2〜2.0%、Al:
0.005〜0.10%を含有し、残部が鉄および不可
避的不純物からなる鋼板を、構造物部材とするための応
力除去焼鈍処理前にAc1 〜Ac3 変態点間に加熱後徐
冷処理を施すことを特徴とする厚鋼板の応力除去焼鈍処
理前の熱処理方法。
According to the present invention, a PWHT is subjected to a simple heat treatment after hot working before PWHT.
The purpose was to prevent the deterioration of the mechanical properties of the steel sheet after HT, and the gist thereof is as follows. (1) C: 0.05 to 0.20% by weight, Si:
0.02-0.5%, Mn: 0.2-2.0%, Al:
A steel sheet containing 0.005 to 0.10% and the balance being iron and unavoidable impurities is heated between the Ac 1 to Ac 3 transformation points before being subjected to stress relieving annealing for forming a structural member, and then gradually cooled. A heat treatment method before stress-relief annealing treatment of a thick steel sheet, which is characterized by performing a treatment.

【0007】(2)重量%で、強度改善元素群であるC
u:0.1〜1.5%、Ni:0.1〜2.0%、C
r:0.1〜1.0%、Mo:0.05〜0.50%、
V:0.005〜0.10%、Nb:0.005〜0.
05%、Ti:0.005〜0.04%のうち1種また
は2種以上を含有する前項(1)記載の鋼板を用いるこ
とを特徴とする厚鋼板の応力除去焼鈍処理前の熱処理方
法。
(2) C, which is a group of strength improving elements, in weight%
u: 0.1 to 1.5%, Ni: 0.1 to 2.0%, C
r: 0.1 to 1.0%, Mo: 0.05 to 0.50%,
V: 0.005 to 0.10%, Nb: 0.005 to 0.
A heat treatment method before stress relieving annealing treatment of a thick steel sheet, characterized by using the steel sheet according to the above (1), which contains one or more of 0.05% and Ti: 0.005 to 0.04%.

【0008】(3)重量%で、介在物制御元素群である
Ca:0.001〜0.010%、希土類元素:0.0
1〜0.10%のうち1種または2種を含有する前項
(1)または(2)記載の鋼板を用いることを特徴とす
る厚鋼板の応力除去焼鈍処理前の熱処理方法。 (4)構造物部材とするための熱間加工または温間加工
をAc1 〜Ac3 変態点間の加熱後冷却処理の前に施す
ことを特徴とする前項(1)〜(3)のいずれか1項に
記載の厚鋼板の応力除去焼鈍処理前の熱処理方法。
(3) Ca: 0.001 to 0.010%, which is a group of inclusion controlling elements, and rare earth element: 0.0, by weight.
A heat treatment method before stress relieving annealing of a thick steel sheet, which comprises using the steel sheet according to the above (1) or (2) containing one or two of 1 to 0.10%. (4) Any of the above items (1) to (3), characterized in that hot working or warm working for forming a structural member is performed before heating and cooling after heating between Ac 1 to Ac 3 transformation points. The heat treatment method before the stress relief annealing treatment of the thick steel sheet according to Item 1.

【0009】[0009]

【発明の実施の形態】一般に、低合金鋼がPWHTされ
ると、機械的性質が劣化する。これは、長時間の熱処理
により、フェライト地が軟化して強度が低下するととも
に、炭化物の凝集粗大化により靱性が低下するためであ
る。従って、PWHT後の機械的性質の低下を阻止する
ためには、PWHTされる前に組織を微細化し、かつフ
ェライト地を強化する必要がある。
DETAILED DESCRIPTION OF THE INVENTION Generally, when a low alloy steel is PWHT, its mechanical properties deteriorate. This is because the heat treatment for a long time softens the ferrite material to lower the strength and also causes the coarsening of the cohesive carbides to lower the toughness. Therefore, in order to prevent deterioration of mechanical properties after PWHT, it is necessary to refine the structure and strengthen the ferritic matrix before PWHT.

【0010】本発明者らは、構造物とするための二次的
な熱間加工(比較的低温の温間加工でもかまわない)後
に実施されるPWHT後の機械的性質の低下を阻止する
ために、組織の適正化の観点から、簡単な熱処理をPW
HT前に加えることにより、PWHT後の機械的性質の
低下を阻止できる熱処理方法を見出した。図1、図2
は、0.13%C−0.44%Si−1.46%Mn−
0.18%Cu−0.42%Ni−0.02%V−0.
02%Nb−0.008%Ti鋼(板厚60mm)に5
%の熱間曲げ加工を実施した後、横軸に示す温度で加熱
して1時間保持し、その後625℃で10時間のPWH
T処理を実施した場合の引張強さおよび−45℃におけ
るシャルピー吸収エネルギーを示す。図1、図2から明
らかなように、Ac1 〜Ac3 変態点間に加熱した後に
PWHTを行った場合は、引張強さおよび靱性が明らか
に向上することが分かる。
The inventors of the present invention prevent the deterioration of mechanical properties after PWHT carried out after secondary hot working (a warm working at a relatively low temperature is acceptable) for forming a structure. In addition, from the viewpoint of optimizing the structure, a simple heat treatment
We have found a heat treatment method that can prevent the deterioration of mechanical properties after PWHT by adding before HT. 1 and 2
Is 0.13% C-0.44% Si-1.46% Mn-
0.18% Cu-0.42% Ni-0.02% V-0.
5% for 02% Nb-0.008% Ti steel (plate thickness 60 mm)
% Hot bending, then heat at the temperature shown on the horizontal axis and hold for 1 hour, then PWH for 10 hours at 625 ° C.
The tensile strength and the Charpy absorbed energy in -45 degreeC when T processing is implemented are shown. As is clear from FIGS. 1 and 2, it is clear that when PWHT is performed after heating between the Ac 1 to Ac 3 transformation points, the tensile strength and toughness are obviously improved.

【0011】図3に熱処理された後の主なミクロ組織を
示す。熱処理温度がAc3 変態点を超える900℃の場
合、典型的なフェライト−パーライト組織を呈するが、
熱処理温度がAc3 変態点以下(800℃)になると、
フェライトが細粒化するとともに、炭化物が微細に分散
するようになる。すなわち、この両者の効果により、図
1に示すようなPWHT後の機械的性質の低下が阻止で
きる。
FIG. 3 shows the main microstructure after heat treatment. When the heat treatment temperature is 900 ° C. above the Ac 3 transformation point, a typical ferrite-pearlite structure is exhibited,
When the heat treatment temperature is below the Ac 3 transformation point (800 ° C),
The ferrite becomes finer and the carbides are finely dispersed. That is, due to the effects of both of them, the deterioration of mechanical properties after PWHT as shown in FIG. 1 can be prevented.

【0012】以下、本発明を詳細に説明する。本発明に
おいて、その出発材は、電気炉、転炉などで溶製され、
連続鋳造あるいは造塊・分塊工程を経て、基本的に、
C:0.05〜0.20%、Si:0.02〜0.5
%、Mn:0.2〜2.0%、Al:0.005〜0.
10%を含有するスラブとされる。この化学組成の限定
理由について以下に述べる。
Hereinafter, the present invention will be described in detail. In the present invention, the starting material is melted in an electric furnace, a converter, etc.,
Basically, through continuous casting or ingot making / separating process,
C: 0.05 to 0.20%, Si: 0.02 to 0.5
%, Mn: 0.2 to 2.0%, Al: 0.005 to 0.
It is a slab containing 10%. The reasons for limiting the chemical composition will be described below.

【0013】C:Cは鋼材を加工して得られる部材自体
(母鋼板)の強度を得るために必要な元素であり、本発
明の意図する板厚50mm以上の鋼板で、引張強度を4
0Mpa以上にするためには、0.05%以上の添加が
必要である。一方、0.20%を超えてCを添加すると
炭化物が粗大化し、本発明による炭化物の微細分散の効
果が得られない。
C: C is an element necessary for obtaining the strength of the member itself (mother steel plate) obtained by processing a steel material, and is a steel plate having a plate thickness of 50 mm or more intended by the present invention and having a tensile strength of 4
In order to achieve 0 Mpa or more, it is necessary to add 0.05% or more. On the other hand, if C is added in an amount of more than 0.20%, the carbide becomes coarse, and the effect of fine dispersion of the carbide according to the present invention cannot be obtained.

【0014】Si:Siは製鋼上脱酸元素として必要な
元素であり、鋼中に0.02%以上添加する必要がある
が、0.5%を超えるとPWHT後の母鋼板および溶接
熱影響部の靱性を低下させる。 Mn:Mnは強度および靱性の確保に必要な元素である
が、2.0%を超えると靱性を著しく阻害し、逆に0.
2%未満ではPWHT後の母鋼板の強度確保が困難とな
るため、その範囲を0.2〜2.0%とする。
Si: Si is an element necessary as a deoxidizing element for steelmaking, and it is necessary to add 0.02% or more to the steel, but if it exceeds 0.5%, the mother steel plate after PWHT and the welding heat effect are affected. Reduces the toughness of the part. Mn: Mn is an element necessary to secure the strength and toughness, but if it exceeds 2.0%, the toughness is significantly impaired, and conversely, it is 0.
If it is less than 2%, it is difficult to secure the strength of the mother steel sheet after PWHT, so the range is made 0.2 to 2.0%.

【0015】Al:Alは脱酸材として添加されると同
時に、結晶粒径の細粒化にも効果がある元素であり、
0.005%以上の添加が必要である。一方、0.10
%を超えてAlを添加すると粗大なアルミナを生成し、
靱性を阻害する。なお、特に規制はしないが、Pは粒界
偏析元素として多量に添加すると母鋼板および溶接熱影
響部の靱性を阻害する。従って、その添加量は低いほど
よいが、一般には0.04%以下であることが好まし
い。
Al: Al is an element which is added as a deoxidizer and at the same time has an effect of reducing the crystal grain size.
It is necessary to add 0.005% or more. On the other hand, 0.10
If Al is added in excess of%, coarse alumina is produced,
Inhibits toughness. It should be noted that although not particularly limited, if P is added in a large amount as a grain boundary segregation element, it impairs the toughness of the base steel plate and the weld heat affected zone. Therefore, the lower the addition amount, the better, but generally it is preferably 0.04% or less.

【0016】なお、本発明においては、強度および靱性
を改善する元素として、Cu、Ni、Cr、Mo、V、
Nb、Tiのうち1種または2種以上の元素を添加する
ことができる。 Cu:Cuは靱性を低下させずに強度を上昇させるのに
有効な元素であるが、0.1%未満ではその効果がな
く、また1.5%を超えると鋼片加熱時や溶接時に熱間
での割れを生じやすくする。従って、Cuの含有量を
0.1〜1.5%とする。
In the present invention, as elements for improving strength and toughness, Cu, Ni, Cr, Mo, V,
One or more elements of Nb and Ti can be added. Cu: Cu is an element effective in increasing the strength without lowering the toughness, but if it is less than 0.1%, it has no effect, and if it exceeds 1.5%, it heats during billet heating or welding. Makes it easier for cracks to occur. Therefore, the Cu content is set to 0.1 to 1.5%.

【0017】Ni:Niは靱性および強度の改善に有効
な元素であり、その効果を得るためには0.1%以上の
添加が必要であるが、2.0%を超える添加では溶接性
が低下するため、その範囲を0.1〜2.0%とする。 Cr:Crは析出強化による鋼の強度向上に有効な元素
であり、その効果を得るためには0.1%以上の添加が
必要である。一方、Crを多量に添加すると、焼入れ性
を上昇させ、ベイナイト組織を生じて靱性を低下させる
ので、その上限を1.0%とする。
Ni: Ni is an element effective in improving toughness and strength, and it is necessary to add 0.1% or more to obtain the effect, but if it exceeds 2.0%, weldability is improved. Therefore, the range is set to 0.1 to 2.0%. Cr: Cr is an element effective for improving the strength of steel by precipitation strengthening, and in order to obtain the effect, 0.1% or more is required to be added. On the other hand, if a large amount of Cr is added, the hardenability is increased and a bainite structure is generated to reduce the toughness, so the upper limit is made 1.0%.

【0018】Mo:Moは焼入れ性を向上させると同時
に、炭窒化物を形成して強度を改善する元素であり、そ
の効果を得るためには0.05%以上の添加が必要にな
るが、多量の添加は必要以上の強化とともに、靱性の著
しい低下をもたらすため、その範囲を0.05〜0.5
0%とする。 V:Vは炭化物、窒化物を形成して強度の向上に効果が
ある元素であるが、0.005%未満の添加ではその効
果がなく、また0.10%を超える添加では逆に靱性の
低下を招くため、その範囲を0.005〜0.10%と
する。
Mo: Mo is an element that improves hardenability and at the same time forms carbonitrides to improve strength. To obtain this effect, addition of 0.05% or more is necessary. Addition of a large amount brings about not only strengthening more than necessary but also a remarkable decrease in toughness, so the range is set to 0.05 to 0.5.
0%. V: V is an element that forms carbides and nitrides and is effective in improving strength. Addition of less than 0.005% has no effect, and addition of more than 0.10% adversely affects toughness. Since it causes a decrease, the range is made 0.005 to 0.10%.

【0019】Nb:Nbも炭窒化物を形成して強度の向
上に効果がある元素であるが、0.005%未満の添加
ではその効果がなく、また0.05%を超える添加では
逆に靱性の低下を招くため、その範囲を0.005〜
0.05%とする。 Ti:Tiは窒化物を形成して結晶粒の細粒化に効果が
期待できる元素であるが、多量の添加は炭化物の形成に
よる靱性の著しい低下をもたらすため、その上限を0.
04%にする必要がある。所定の効果を得るためには
0.005%以上の添加が必要であるので、Tiの範囲
を0.005〜0.04%とする。
Nb: Nb is also an element that forms carbonitrides and is effective in improving strength. However, addition of less than 0.005% has no effect, and addition of more than 0.05% has the opposite effect. Since the toughness is reduced, the range is 0.005
0.05%. Ti: Ti is an element that can be expected to be effective in forming nitrides and making crystal grains finer. However, addition of a large amount causes a significant decrease in toughness due to the formation of carbides, so its upper limit is set to 0.
It needs to be 04%. In order to obtain the desired effect, 0.005% or more must be added, so the range of Ti is 0.005 to 0.04%.

【0020】さらに、本発明においては、介在物制御の
目的で、Caおよび希土類元素を添加することができ
る。 Caおよび希土類元素(REM):CaおよびREM
(例えば、Ce等)は、鋼中のSをCaSなどのサルフ
ァイドとして固定し、靱性を阻害するMnSの生成を抑
制することにより、圧延方向に直角の方向の靱性向上に
有効である。Caは0.001%以上、REMは0.0
1%以上の添加が必要であるが、過剰の添加は鋼中の介
在物を増加させて清浄度の低下を招くため、それぞれの
上限を、Caは0.010%、REMは0.10%とす
る。
Further, in the present invention, Ca and rare earth elements can be added for the purpose of controlling inclusions. Ca and rare earth elements (REM): Ca and REM
(For example, Ce and the like) is effective in improving the toughness in the direction perpendicular to the rolling direction by fixing S in the steel as sulfide such as CaS and suppressing the generation of MnS that inhibits the toughness. Ca is 0.001% or more, REM is 0.0
It is necessary to add 1% or more, but excessive addition causes inclusions in the steel to increase and lowers cleanliness. Therefore, the respective upper limits are 0.010% for Ca and 0.10% for REM. And

【0021】PおよびS:本発明では、特に規定しない
が、両者は鋼の靱性に影響を与える元素であり、それぞ
れPは0.04%、Sは0.03%を超えて添加する
と、靱性を著しく阻害するので、これを上限とするのが
好ましい。鋼板の製造方法は特に限定されるものではな
く、例えば上記の化学組成を有する鋼片を通常の加熱お
よび熱間圧延により板厚50mm以上の鋼板に成形す
る。これらの鋼板は、用途に応じて焼入れ焼戻し処理あ
るいは焼準処理を行ってもよい。これらの鋼板を構造物
部材として加工する場合、再度、熱間スピニング加工な
どの熱間加工を実施されるが、その後、Ac1 〜Ac3
変態点間に加熱して徐冷(空冷、気水冷却等、マルテン
サイトやベイナイト組織が生成しない手段であれば、い
ずれでもよい)する熱処理を加える。
P and S: In the present invention, although not particularly specified, both are elements that affect the toughness of the steel, and when P is added in excess of 0.04% and S in excess of 0.03%, the toughness is increased. Since it remarkably inhibits, it is preferable to set this to the upper limit. The method for producing the steel sheet is not particularly limited, and for example, a steel slab having the above chemical composition is formed into a steel sheet having a thickness of 50 mm or more by ordinary heating and hot rolling. These steel sheets may be subjected to quenching and tempering treatment or normalizing treatment depending on the application. When these steel plates are processed as structural members, hot working such as hot spinning is performed again, but thereafter, Ac 1 to Ac 3
A heat treatment for heating between transformation points and gradually cooling (any means such as air cooling or steam cooling as long as it does not generate martensite or bainite structure) is added.

【0022】この熱処理は、本発明の主たる部分であ
り、先に述べたように、フェライト粒の細粒化および炭
化物の微細分散を図り、後に続くPWHT時の強度、靱
性の低下を最小限に抑えるものである。
This heat treatment is the main part of the present invention, and as described above, it aims to refine the ferrite grains and finely disperse the carbides, and to minimize the deterioration of strength and toughness during the subsequent PWHT. It is to suppress.

【0023】[0023]

【実施例】次に、本発明の実施例について述べる。表
1、表2(表1のつづき)の化学組成を有する鋼板を母
鋼板として、その鋼板に表3、表4(表3のつづき)に
示す熱間加工(熱間圧延)後、PWHT前に所定の熱処
理を行い、その後PWHTを行った後の引張試験の引張
強度を指標に引張強さを、さらにシャルピー試験による
遷移温度を指標に靱性を求めた。その結果をPWHT前
の母鋼板との差として表3、表4に示す。
Next, an embodiment of the present invention will be described. A steel sheet having the chemical composition shown in Table 1 and Table 2 (continued from Table 1) is used as a mother steel sheet, and after the hot working (hot rolling) shown in Table 3 and Table 4 (continued from Table 3) on the steel sheet, before PWHT. Was subjected to a predetermined heat treatment and then subjected to PWHT to determine the tensile strength using the tensile strength in the tensile test as an index, and the toughness using the transition temperature in the Charpy test as an index. The results are shown in Tables 3 and 4 as the difference from the mother steel plate before PWHT.

【0024】符号1、3、4、5、6、8、9、10、
11、12は、本発明の例を示す。表3、表4から明ら
かなように、これらの鋼板はPWHT後にもかかわら
ず、母鋼板からの強度低下は認められず、同時に靱性の
低下も見られない。これに対して、符号2、7、13、
14、15、16、17は、本発明から逸脱した比較例
を示す。
Reference numerals 1, 3, 4, 5, 5, 6, 8, 9, 10,
Reference numerals 11 and 12 represent examples of the present invention. As is clear from Tables 3 and 4, even after PWHT, no reduction in strength was observed from the mother steel sheet, and at the same time, no reduction in toughness was observed. On the other hand, reference numerals 2, 7, 13,
14, 15, 16, and 17 show comparative examples that deviate from the present invention.

【0025】すなわち、符号2は化学組成は本発明の範
囲内ではあるが、熱処理条件が940℃とAc3 変態点
を超えている。従って、PWHT後の引張強さおよび靱
性が母鋼板に比較して低下している。また、符号7は熱
処理がAc1 変態点より低温で実施されたものである。
この場合も、引張強さおよび靱性がPWHT前の母鋼板
より著しく低下している。
That is, reference numeral 2 indicates that the chemical composition is within the range of the present invention, but the heat treatment conditions are 940 ° C., which exceeds the Ac 3 transformation point. Therefore, the tensile strength and toughness after PWHT are lower than those of the mother steel sheet. Reference numeral 7 indicates that the heat treatment was performed at a temperature lower than the Ac 1 transformation point.
In this case as well, the tensile strength and toughness are significantly lower than those of the mother steel sheet before PWHT.

【0026】さらに、符号13〜17は、化学組成が本
発明の範囲を逸脱している例である。符号13(鋼J)
は、Cが0.25%添加されており、本発明範囲の上限
を超えているものである。このために、引張強さの低下
は認められないが、靱性が低下している。
Further, reference numerals 13 to 17 are examples in which the chemical composition deviates from the scope of the present invention. Code 13 (Steel J)
Indicates that C is added by 0.25% and exceeds the upper limit of the range of the present invention. Therefore, the tensile strength is not reduced, but the toughness is reduced.

【0027】符号14(鋼K)は、Mnが本発明範囲の
上限を超えて添加された例であり、PWHT後の引張強
さの低下は見られないが、靱性が大きく低下している。
符号15(鋼L)は、Vが本発明範囲の上限を超えて添
加されたものである。この場合、PWHT後の靱性が著
しく低下している。符号16(鋼M)は、Nbが本発明
範囲の上限を超えて添加された例である。この場合、P
WHT後の引張強さおよび靱性が低下している。
Reference numeral 14 (Steel K) is an example in which Mn was added in excess of the upper limit of the range of the present invention, and although the tensile strength after PWHT was not reduced, the toughness was significantly reduced.
Reference numeral 15 (Steel L) is V added in an amount exceeding the upper limit of the range of the present invention. In this case, the toughness after PWHT is significantly reduced. Reference numeral 16 (Steel M) is an example in which Nb was added exceeding the upper limit of the range of the present invention. In this case, P
The tensile strength and toughness after WHT are reduced.

【0028】符号17(鋼N)は、Alが本発明範囲よ
り過剰に添加された例である。この場合、PWHT後の
靱性が低下している。
Reference numeral 17 (Steel N) is an example in which Al was added in excess of the range of the present invention. In this case, the toughness after PWHT is reduced.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】本発明の化学組成に限定した鋼材のPW
HT前に、本発明の熱処理を加えることにより、板厚5
0mm以上の厚鋼板において見られたPWHT後の強
度、靱性の低下を防止することが可能となり、このよう
にして得られた鋼板部材を用いた構造物の信頼性が大幅
に向上できた。
EFFECTS OF THE INVENTION PW of steel materials limited to the chemical composition of the present invention
By applying the heat treatment of the present invention before HT, the plate thickness 5
It became possible to prevent the decrease in strength and toughness after PWHT, which was observed in a steel plate having a thickness of 0 mm or more, and the reliability of the structure using the steel plate member thus obtained could be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるPWHT前の熱処理がPWHT
後の引張試験強度に及ぼす影響を示す図である。
1 is a heat treatment before PWHT in the present invention is PWHT
It is a figure which shows the influence which acts on the tensile test strength after that.

【図2】本発明におけるPWHT前の熱処理がPWHT
後の靱性に及ぼす影響を示す図である。
FIG. 2 shows that the heat treatment before PWHT in the present invention is PWHT.
It is a figure which shows the influence which acts on the toughness after that.

【図3】本発明におけるPWHT前の熱処理温度が鋼板
のミクロ組織に及ぼす影響を示す図である。
FIG. 3 is a diagram showing the influence of the heat treatment temperature before PWHT on the microstructure of a steel sheet in the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/06 C22C 38/06 38/58 38/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C22C 38/06 C22C 38/06 38/58 38/58

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.05〜0.20%、 Si:0.02〜0.5%、 Mn:0.2〜2.0%、 Al:0.005〜0.10%を含有し、残部が鉄およ
び不可避的不純物からなる鋼板を、構造物部材とするた
めの応力除去焼鈍処理前にAc1 〜Ac3 変態点間に加
熱後徐冷処理を施すことを特徴とする厚鋼板の応力除去
焼鈍処理前の熱処理方法。
1. By weight%, C: 0.05 to 0.20%, Si: 0.02 to 0.5%, Mn: 0.2 to 2.0%, Al: 0.005 to 0. A steel sheet containing 10% and the balance being iron and unavoidable impurities is characterized by being subjected to a slow cooling treatment after heating between the Ac 1 to Ac 3 transformation points before the stress relief annealing treatment for forming a structural member. Heat treatment method before stress relief annealing of thick steel plate.
【請求項2】 重量%で、強度改善元素群であるCu:
0.1〜1.5%、 Ni:0.1〜2.0%、 Cr:0.1〜1.0%、 Mo:0.05〜0.50%、 V:0.005〜0.10%、 Nb:0.005〜0.05%、 Ti:0.005〜0.04%のうち1種または2種以
上を含有する請求項1記載の鋼板を用いることを特徴と
する厚鋼板の応力除去焼鈍処理前の熱処理方法。
2. Cu, which is a group of strength improving elements, in% by weight:
0.1 to 1.5%, Ni: 0.1 to 2.0%, Cr: 0.1 to 1.0%, Mo: 0.05 to 0.50%, V: 0.005 to 0. 10%, Nb: 0.005-0.05%, Ti: 0.005-0.04%, The steel plate of Claim 1 containing 1 type, or 2 or more types, The thick steel plate characterized by the above-mentioned. Treatment method before stress relieving annealing of.
【請求項3】 重量%で、介在物制御元素群であるC
a:0.001〜0.010%、 希土類元素:0.01〜0.10%のうち1種または2
種を含有する請求項1または2記載の鋼板を用いること
を特徴とする厚鋼板の応力除去焼鈍処理前の熱処理方
法。
3. C, which is a group of inclusion controlling elements, in% by weight.
a: 0.001 to 0.010%, rare earth element: 0.01 to 0.10%, one or two
A heat treatment method before stress relieving annealing of a thick steel plate, characterized in that the steel plate according to claim 1 or 2 containing a seed is used.
【請求項4】 構造物部材とするための熱間加工または
温間加工をAc1 〜Ac3 変態点間の加熱後冷却処理の
前に施すことを特徴とする請求項1〜3のいずれか1項
に記載の厚鋼板の応力除去焼鈍処理前の熱処理方法。
4. The hot working or warm working for forming a structural member is performed after heating between the Ac 1 to Ac 3 transformation points and before cooling treatment. The heat treatment method before stress-relief annealing of the thick steel plate according to Item 1.
JP6692296A 1996-03-22 1996-03-22 Heat treatment before stress relieving annealing treatment for thick steel plate Withdrawn JPH09256038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6692296A JPH09256038A (en) 1996-03-22 1996-03-22 Heat treatment before stress relieving annealing treatment for thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6692296A JPH09256038A (en) 1996-03-22 1996-03-22 Heat treatment before stress relieving annealing treatment for thick steel plate

Publications (1)

Publication Number Publication Date
JPH09256038A true JPH09256038A (en) 1997-09-30

Family

ID=13329965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6692296A Withdrawn JPH09256038A (en) 1996-03-22 1996-03-22 Heat treatment before stress relieving annealing treatment for thick steel plate

Country Status (1)

Country Link
JP (1) JPH09256038A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045672A (en) * 2004-07-07 2006-02-16 Jfe Steel Kk High-tensile steel sheet and production method thereof
US7648597B2 (en) 2004-07-07 2010-01-19 Jfe Steel Corporation Method for manufacturing high tensile strength steel plate
WO2013105396A1 (en) * 2012-01-12 2013-07-18 新日鐵住金株式会社 Low alloy steel
WO2016068024A1 (en) * 2014-10-31 2016-05-06 株式会社神戸製鋼所 High strength steel sheet
CN114000035A (en) * 2021-11-04 2022-02-01 南阳汉冶特钢有限公司 Production method of atmospheric corrosion resistant high-strength extra-thick Q390GNH steel plate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045672A (en) * 2004-07-07 2006-02-16 Jfe Steel Kk High-tensile steel sheet and production method thereof
US7648597B2 (en) 2004-07-07 2010-01-19 Jfe Steel Corporation Method for manufacturing high tensile strength steel plate
WO2013105396A1 (en) * 2012-01-12 2013-07-18 新日鐵住金株式会社 Low alloy steel
JP2013142190A (en) * 2012-01-12 2013-07-22 Nippon Steel & Sumitomo Metal Corp Low alloy steel
CN104040005A (en) * 2012-01-12 2014-09-10 新日铁住金株式会社 Low alloy steel
AU2012365129B2 (en) * 2012-01-12 2015-11-05 Nippon Steel Corporation Low alloy steel
WO2016068024A1 (en) * 2014-10-31 2016-05-06 株式会社神戸製鋼所 High strength steel sheet
JP2016089211A (en) * 2014-10-31 2016-05-23 株式会社神戸製鋼所 High strength steel sheet
CN114000035A (en) * 2021-11-04 2022-02-01 南阳汉冶特钢有限公司 Production method of atmospheric corrosion resistant high-strength extra-thick Q390GNH steel plate

Similar Documents

Publication Publication Date Title
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
JP3864536B2 (en) High strength steel with excellent delayed fracture resistance and method for producing the same
JPH0748621A (en) Production of steel for pressure vessel excellent in ssc resistance and hic resistance
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3255790B2 (en) Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
KR102400036B1 (en) Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2655901B2 (en) Manufacturing method of direct quenching type high strength steel sheet with excellent toughness
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JP2692523B2 (en) Method for producing 780 MPa class high strength steel with excellent weldability and low temperature toughness
KR101899736B1 (en) Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same
JP3385903B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent press formability
KR100328051B1 (en) A Method of manufacturing high strength steel sheet
JPH059570A (en) Production of high weldability and high strength steel
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JP3325146B2 (en) Manufacturing method for high yield strength steel sheet with low yield ratio

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603