JPH1017981A - High tensile strength steel material with low yield ratio for construction use, excellent in brittle crack arrest property, and its production - Google Patents

High tensile strength steel material with low yield ratio for construction use, excellent in brittle crack arrest property, and its production

Info

Publication number
JPH1017981A
JPH1017981A JP17026196A JP17026196A JPH1017981A JP H1017981 A JPH1017981 A JP H1017981A JP 17026196 A JP17026196 A JP 17026196A JP 17026196 A JP17026196 A JP 17026196A JP H1017981 A JPH1017981 A JP H1017981A
Authority
JP
Japan
Prior art keywords
steel
cooling
temperature
transformation point
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17026196A
Other languages
Japanese (ja)
Other versions
JP3499084B2 (en
Inventor
Toshinaga Hasegawa
俊永 長谷川
Hidesato Mabuchi
秀里 間渕
Yukio Tomita
幸男 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17026196A priority Critical patent/JP3499084B2/en
Publication of JPH1017981A publication Critical patent/JPH1017981A/en
Application granted granted Critical
Publication of JP3499084B2 publication Critical patent/JP3499084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a steel material excellent in brittle crack arrest property by dispersing martensitic phases and refining ferritic grain size in the surface layer by subjecting a carbon steel of specific composition to hot rolling and to heat treatment under respectively specified temp. conditions. SOLUTION: A steel bloom, having a composition containing, by weight, 0.01-0.20% C, 0.01-1.0% Si, 0.1-2.0% Mn, 0.001-0.1% Al, 0.001-0.01% N, <0.025% P, and <0.015% S, is heated to a temp. in the range between the Ac transformation point and 1250 deg.C and hot-rolled, and, in the course of the above process, cooling and recuperation are repeated under specific temp. conditions. By this procedure, the distribution of martensitic structure in the resultant rolled steel stock is regulated to 10-60%, and the structure in a specific range of 10-33% from the surface layer in a thickness direction in the surface layer part of the steel stock is formed into superfine-grained structure of <=3μm average ferrite grain size. By this method, the high tensile strength steel material with low yield ratio, having brittle crack arrest property required of a material for earthquake-proof building construction, can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として建築構造
物に用いられる低降伏比高張力鋼材に関し、特に、地震
等で万一脆性破壊が発生しても構造物全体が崩壊する前
に脆性き裂を停止できる安全な鋼材及びその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-yield-ratio high-tensile steel mainly used for a building structure, and more particularly, to a brittle fracture before an entire structure collapses even if a brittle fracture occurs by an earthquake or the like. The present invention relates to a safe steel material capable of stopping a crack and a method for manufacturing the same.

【0002】本発明鋼材は耐震建築用途だけでなく、例
えばこの方法で製造した鋼材は海洋構造物、圧力容器、
造船、橋梁、ラインパイプなどの溶接鋼構造物一般に用
いることができる。また、鋼材の形態としては特に問わ
ないが、構造部材として用いられ、低温靱性が要求され
る鋼板、特に厚板、鋼管素材、あるいは形鋼で特に有用
である。
[0002] The steel material of the present invention is used not only for earthquake-resistant building applications, but also for steel materials manufactured by this method, for example, for offshore structures, pressure vessels,
It can be used in general for welded steel structures such as shipbuilding, bridges and line pipes. Although the form of the steel material is not particularly limited, it is particularly useful for a steel plate used as a structural member and requiring low-temperature toughness, particularly a thick plate, a steel pipe material, or a shaped steel.

【0003】[0003]

【従来の技術】近年、建築物の高層化、橋梁の大スパン
化等に見られるように構造物は大型化の傾向にあり、該
用途に使用される鋼材には、地震、台風等による構造物
の崩壊防止のための性能確保が重要な課題となってい
る。特に、阪神大震災の経験から、設計、施工上の特段
の配慮無しに構造物の安全性を鋼材の性能によって確保
しようとすると、延性破壊、脆性破壊の両面で安全性の
高い鋼材が必要であることが認識されつつある。
2. Description of the Related Art In recent years, structures have been increasing in size as seen in higher-rise buildings and larger spans of bridges. Steel materials used in such applications include structures caused by earthquakes, typhoons, and the like. Securing performance to prevent material collapse is an important issue. In particular, from the experience of the Great Hanshin Earthquake, if it is intended to ensure the safety of a structure by the performance of steel without special consideration in design and construction, steel with high safety in both ductile fracture and brittle fracture is necessary It is being recognized.

【0004】最近、高層建築用鋼材に延性破壊性能に配
慮した低降伏比鋼(低YR鋼)や高一様伸び鋼の使用が
検討されつつある。低降伏比特性については、地震、台
風等によるエネルギーを吸収する能力に優れ、また、構
造物の局所的な崩壊を抑制する上で有用であることが認
識されてきている。
Recently, the use of low yield ratio steel (low YR steel) or high uniform elongation steel in consideration of ductile fracture performance has been studied for high-rise building steel. It has been recognized that low yield ratio characteristics are excellent in the ability to absorb energy due to earthquakes, typhoons, and the like, and are useful in suppressing local collapse of structures.

【0005】エネルギー吸収能向上のための低降伏比化
の手段については数多く提案されている。例えば、C量
の増加等の化学組成の調整による方法、結晶粒を粗大化
させる方法、焼入れと焼戻し熱処理の間にフェライト
(α)+オーステナイト(γ)二相域に加熱する中間熱
処理を施す方法(以降、QLT処理)に代表されるよう
に、軟質相としてのαと硬質相としてのベイナイトある
いはマルテンサイトを混在させる方法等がある。
[0005] A number of means for lowering the yield ratio for improving the energy absorption capacity have been proposed. For example, a method of adjusting the chemical composition such as an increase in the amount of C, a method of coarsening crystal grains, and a method of performing an intermediate heat treatment in which a ferrite (α) + austenite (γ) two-phase region is heated between quenching and tempering heat treatment. (Hereinafter referred to as QLT treatment), there is a method of mixing α as a soft phase and bainite or martensite as a hard phase.

【0006】例えば、軟質相と硬質相の混合組織を得る
ための製造方法として、特開昭53−23817号公報
には鋼板を再加熱焼入れした後、Ac1 変態点とAc3
変態点の間に再加熱して、γとαの二相としてから空冷
する方法が示されており、また、特開平4−31482
4号公報には、同様に二相域に再加熱した後、焼入れる
方法が開示されている。また、再加熱処理を施さずにオ
ンラインで製造する方法として、例えば特開昭63−2
86517号公報には、γ域から二相域にかけて熱間圧
延を施した後、Ar3 変態点より20〜100℃低い温
度まで空冷してα相を生成させ、その後急冷する方法が
開示されている。
For example, as a production method for obtaining a mixed structure of a soft phase and a hard phase, Japanese Patent Application Laid-Open No. 53-23817 discloses a method in which a steel sheet is reheated and quenched, and then the Ac 1 transformation point and Ac 3
A method of reheating between the transformation points to form two phases of γ and α and then air cooling is disclosed.
No. 4 discloses a method of similarly reheating to a two-phase region and then quenching. As a method for online production without performing reheating treatment, for example, Japanese Unexamined Patent Publication No.
No. 86517 discloses a method in which after hot rolling is performed from the γ region to the two-phase region, air cooling is performed to a temperature 20 to 100 ° C. lower than the Ar 3 transformation point to generate an α phase, and then quenching is performed. I have.

【0007】一様伸びの改善方法としては、例えば特開
平5−140644号公報に開示されているように、M
oを含有する鋼をα−γ二相共存域に再加熱して固溶C
濃度を極端に低下させた上で、圧延を加えることにより
圧延方向の一様伸びを向上させる方法がある。
As a method for improving uniform elongation, for example, as disclosed in Japanese Patent Application Laid-Open No.
o-containing steel is reheated to the α-γ dual phase coexisting
There is a method of improving the uniform elongation in the rolling direction by adding the rolling after extremely lowering the concentration.

【0008】この方法によれば、軟質のα相を比較的生
産性を阻害することなく生成できるが、加熱温度が通常
の鋼片加熱温度に比べて極端に低いため、加熱炉によっ
ては操業が難しい場合もあり、また均一加熱に時間を要
したり、溶体化が不十分となる恐れがある。また、材質
の異方性も生じ易いと考えられる。
[0008] According to this method, a soft α-phase can be produced without relatively impairing the productivity. However, since the heating temperature is extremely low as compared with the normal billet heating temperature, the operation may be dependent on the heating furnace. It may be difficult, and it may take time for uniform heating, or the solution may be insufficient. Further, it is considered that the anisotropy of the material easily occurs.

【0009】あるいは、降伏強度が95kgf/mm2 以上の
超高張力鋼において、特開平4−74846号公報に示
されるような、時効析出強化による一様伸びの向上方法
が示されているが、強度が80kgf/mm2 以下の鋼に対し
ては一般的な手段とは言い難い。
[0009] Alternatively, a method of improving uniform elongation by aging precipitation strengthening as disclosed in Japanese Patent Application Laid-Open No. 4-74846 is disclosed in an ultra-high strength steel having a yield strength of 95 kgf / mm 2 or more. It is hardly a general measure for steel having a strength of 80 kgf / mm 2 or less.

【0010】[0010]

【発明が解決しようとする課題】低YR鋼や高一様伸び
鋼に代表される高延性鋼は、構造物の終局の崩壊にいた
るまで延性破壊で破壊するのであれば、構造物の安全性
を高める上で非常に有用である。
The high ductility steel typified by the low YR steel and the high uniform elongation steel, if destroyed by ductile fracture up to the ultimate collapse of the structure, will not increase the safety of the structure. It is very useful in enhancing

【0011】しかし一般には、構造物は溶接により部材
同士が接合されるため、必ず溶接継手部を有し、継手接
合部は溶接欠陥等の初期欠陥と溶接金属、溶接熱影響部
(HAZ)等の材質劣化部を不可避的に含むため、外部
応力が負荷された場合に脆性破壊を生じやすい。脆性破
壊が一旦生じてしまえば、脆性破壊が急速に進展するた
め、高延性鋼を用いる意味がなくなる。
However, in general, since the members of a structure are joined to each other by welding, the joint always has a welded joint, and the jointed joint has an initial defect such as a welding defect and a weld metal, a weld heat affected zone (HAZ), or the like. Inevitably includes a material-deteriorated portion, and thus brittle fracture easily occurs when external stress is applied. Once brittle fracture has occurred, it does not make sense to use high-ductility steel because brittle fracture rapidly develops.

【0012】初期失陥を完全に無くすことは不可能であ
る。また、初期欠陥がある状態で脆性破壊の発生を完全
に抑制するためには、HAZの靱性を極端に高めた高価
な鋼を用いる必要がある上、たとえそのような高価な鋼
材を用いても初期欠陥が大きければ、脆性破壊が発生す
る可能性は依然として残る。従って、大地震時のような
非常に厳しい条件の外力が負荷された場合にも、構造物
の安全性を確保することが鋼材に課せられた重要な課題
になると考えられる。
It is impossible to completely eliminate the initial failure. Further, in order to completely suppress the occurrence of brittle fracture in the presence of initial defects, it is necessary to use an expensive steel with an extremely high toughness of the HAZ, and even if such an expensive steel is used. If the initial defects are large, the possibility of brittle fracture remains. Therefore, even when an external force under extremely severe conditions is applied, such as during a large earthquake, it is considered that ensuring the safety of the structure is an important task imposed on steel materials.

【0013】[0013]

【課題を解決するための手段】本発明においては、低Y
R化により延性を確保しつつ、脆性破壊による構造物の
崩壊を防止するための手段として、鋼材の製造工程にお
ける組織制御により、母材の脆性破壊の伝播停止特性を
高めることで、脆性破壊に対する安全性が確実に確保で
きると考えた。即ち、脆性破壊の発生を、いかなる初期
欠陥、溶接条件に対しても完全に抑制することは非常に
困難であるが、脆性破壊の発生は許容した上で、発生し
た脆性き裂が母材を伝播する段階で早期に脆性き裂を停
止できれば、溶接継手の状態に依存しない確実な対策に
なる。
According to the present invention, a low Y
As a means for preventing the collapse of a structure due to brittle fracture while ensuring ductility by R-izing, by increasing the characteristic of stopping the propagation of brittle fracture of the base material by controlling the microstructure in the manufacturing process of steel, We thought that safety could be ensured. In other words, it is very difficult to completely suppress the occurrence of brittle fracture with respect to any initial defects and welding conditions, but after allowing the occurrence of brittle fracture, the generated brittle cracks If brittle cracks can be stopped early in the propagation stage, it will be a reliable measure that does not depend on the condition of the welded joint.

【0014】以上の観点から、延性破壊に対しては低Y
R化によりエネルギー吸収を図り、脆性破壊に対しては
脆性き裂の伝播停止特性の向上により対処することが、
より安全性の高い建築用高張力鋼材としての必要特性と
考え、両特性を同時に達成することが可能な手段を検討
した結果、本発明を完成するに至った。
[0014] From the above viewpoint, low Y for ductile fracture
It is necessary to improve energy absorption by bridging and improve brittle crack propagation arrest characteristics by bridging.
The present invention was considered to be a necessary property as a high-strength steel material for construction with higher safety, and as a result of examining means capable of simultaneously achieving both properties, the present invention was completed.

【0015】その要点は、低YR化に対しては鋼組織中
に硬質のマルテンサイト相を適正に分散させることであ
り、脆性き裂伝播停止特性に対しては鋼組成の調整によ
らずに製造工程において表層部に超細粒組織を形成せし
めることであり、かつ、表層部の超細粒組織を損なうこ
となくマルテンサイト相の分散を図ることにある。
The point is to properly disperse the hard martensite phase in the steel structure to reduce the YR, and to control the brittle crack propagation arresting property without adjusting the steel composition. In the production process, an ultrafine grain structure is formed on the surface layer portion, and a martensite phase is dispersed without impairing the ultrafine grain structure on the surface layer portion.

【0016】さらに具体的には、本発明の要点は以下に
示す通りである。 (1)重量%で、C:0.01〜0.20%、Si:
0.01〜1.0%、Mn:0.1〜2.0%、Al:
0.001〜0.1%、N:0.001〜0.010%
を含有し、不純物としてのP,Sの含有量が、P:0.
025%以下、S:0.015%以下で、残部鉄及び不
可避不純物からなる鋼材であって、鋼材体積に占めるマ
ルテンサイト割合が10〜60%であり、さらに、該鋼
材を構成する外表面のうち少なくとも2つの外表面に関
して、表層から全厚みの10〜33%の範囲内の平均フ
ェライト粒径が3μm以下の超細粒組織であることを特
徴とする脆性き裂伝播停止特性に優れた建築用低降伏比
高張力鋼材。
More specifically, the gist of the present invention is as follows. (1) By weight%, C: 0.01 to 0.20%, Si:
0.01-1.0%, Mn: 0.1-2.0%, Al:
0.001 to 0.1%, N: 0.001 to 0.010%
And the content of P and S as impurities is P: 0.
025% or less, S: 0.015% or less, a steel material comprising the balance iron and unavoidable impurities, the martensite ratio in the steel material volume is 10 to 60%, and the outer surface of the steel material A building excellent in brittle crack propagation arrestability characterized in that at least two outer surfaces have an ultrafine grain structure having an average ferrite grain size of 3 μm or less within a range of 10 to 33% of the total thickness from the surface layer. For high yield steel with low yield ratio.

【0017】(2)重量%で、Ti:0.003〜0.
020%、Zr:0.003〜0.10%、Nb:0.
002〜0.050%、Ta:0.005〜0.20
%、V:0.005〜0.20%、B:0.0002〜
0.003%、の1種または2種以上を含有することを
特徴とする前記(1)記載の脆性き裂伝播停止特性に優
れた建築用低降伏比高張力鋼材。
(2) Ti: 0.003-0.
020%, Zr: 0.003 to 0.10%, Nb: 0.
002 to 0.050%, Ta: 0.005 to 0.20
%, V: 0.005 to 0.20%, B: 0.0002 to
The low yield ratio high tensile strength steel for architectural use having excellent brittle crack propagation arrestability according to the above (1), characterized in that it contains 0.003% or more of one or more kinds.

【0018】(3)重量%で、Cr:0.01〜2.0
%、Mo:0.01〜2.0%、Ni:0.01〜4.
0%、Cu:0.01〜2.0%、W:0.01〜2.
0%、の1種または2種以上を含有することを特徴とす
る前記(1)または(2)記載の脆性き裂伝播停止特性
に優れた建築用低降伏比高張力鋼材。
(3) Cr: 0.01 to 2.0% by weight
%, Mo: 0.01-2.0%, Ni: 0.01-4.
0%, Cu: 0.01 to 2.0%, W: 0.01 to 2.
0%, one or more of the following: (1) or (2), a low yield ratio high tensile strength steel material for construction having excellent brittle crack propagation arrestability.

【0019】(4)重量%で、Mg:0.0005〜
0.01%、Ca:0.0005〜0.01%、RE
M:0.005〜0.10%、のうち1種または2種以
上を含有することを特徴とする前記(1)〜(3)のい
ずれか1項に記載の脆性き裂伝播停止特性に優れた建築
用低降伏比高張力鋼材。
(4) Mg: 0.0005 to 5% by weight
0.01%, Ca: 0.0005 to 0.01%, RE
M: 0.005 to 0.10%, one or more of which are contained, the brittle crack propagation arresting characteristics according to any one of the above (1) to (3), Excellent high yield strength steel with low yield ratio for construction.

【0020】(5)前記(1)〜(4)のいずれかに記
載の成分の鋼片をAc3 変態点以上、1250℃以下の
温度に加熱し、熱間圧延の開始前あるいは熱間圧延の途
中段階で、その段階での鋼片厚みの10〜33%に対応
する少なくとも2つの外表面の表層部領域をAr3 変態
点以上の温度から2〜40℃/sの冷却速度で冷却を開始
し、Ar3 変態点以下で冷却を停止して復熱させること
を1回以上経由させる過程で、最後の冷却後の復熱が終
了するまでの間に累積圧下率が20〜90%の仕上げ圧
延を完了させた後、該圧延完了後の鋼材の前記表層域を
(Ac1 変態点一50℃)〜(Ac3 変態点+50℃)
の範囲に復熱させ、さらに復熱終了後の鋼材を0.2〜
2℃/sの冷却速度で(該冷却速度における変態開始温度
(Ar3)−50℃)〜500℃の範囲に冷却した後、
5〜40℃/sの冷却速度で20〜300℃まで冷却し
て、前記(1)〜(4)のいずれか1項に記載の鋼材を
製造することを特徴とする脆性き裂伝播停止特性に優れ
た建築用低降伏比高張力鋼材の製造方法。
(5) The steel slab having the composition described in any of (1) to (4) above is heated to a temperature of from the Ac 3 transformation point to 1250 ° C. before starting hot rolling or hot rolling. In the middle stage, at least two outer surface regions corresponding to 10 to 33% of the thickness of the slab at that stage are cooled at a cooling rate of 2 to 40 ° C./s from a temperature not lower than the Ar 3 transformation point. In the process of starting and stopping the cooling at the Ar 3 transformation point or lower and reheating once or more, the cumulative rolling reduction is 20 to 90% until the reheating after the last cooling is completed. After the finish rolling is completed, the surface area of the steel material after the completion of the rolling is changed from (Ac 1 transformation point—50 ° C.) to (Ac 3 transformation point + 50 ° C.)
The steel material after the completion of the reheating is 0.2 ~
After cooling at a cooling rate of 2 ° C./s (transformation start temperature (Ar 3 ) at the cooling rate−50 ° C.) to 500 ° C.,
Brittle crack propagation arresting characteristic characterized in that the steel material according to any one of (1) to (4) above is cooled at a cooling rate of 5 to 40 ° C./s to 20 to 300 ° C. Method of producing high yield strength low tensile strength steel for construction.

【0021】(6)前記(1)〜(4)のいずれかに記
載の成分の鋼片をAr3 変態点以上、1250℃以下の
温度に加熱し、熱間圧延の開始前あるいは熱間圧延の途
中段階で、その段階での鋼片厚みの10〜33%に対応
する少なくとも2つの外表面の表層部領域をAr3 変態
点以上の温度から2〜40℃/sの冷却速度で冷却を開始
し、Ar3 変態点以下で冷却を停止して復熱させること
を1回以上経由させる過程で、最後の冷却後の復熱が終
了するまでの間に累積圧下率が20〜90%の仕上げ圧
延を完了させ、該圧延完了後の鋼材の前記表層域を(A
1 変態点−50℃)〜(Ac3 変態点+50℃)の範
囲に復熱させて、復熱終了後の鋼材を放冷するかあるい
は復熱終了後の鋼材を5〜40℃/sの冷却速度で20〜
650℃まで冷却した後、さらに0.1〜50℃/sの昇
温速度で(Ac1 変態点十10℃)〜(Ac3 変態点−
30℃)の範囲に加熱した後、該温度範囲で1〜60s
保持した後、0.5〜50℃/sで冷却する二相域熱処理
を施して、前記(1)〜(4)のいずれか1項に記載の
鋼材を製造することを特徴とする脆性き裂伝播停止特性
に優れた建築用低降伏比高張力鋼材の製造方法。
(6) The steel slab having the composition described in any of (1) to (4) above is heated to a temperature of not less than the Ar 3 transformation point and not more than 1250 ° C., before starting hot rolling or hot rolling. In the middle stage, at least two outer surface regions corresponding to 10 to 33% of the thickness of the slab at that stage are cooled at a cooling rate of 2 to 40 ° C./s from a temperature not lower than the Ar 3 transformation point. In the process of starting and stopping the cooling at the Ar 3 transformation point or lower and reheating once or more, the cumulative rolling reduction is 20 to 90% until the reheating after the last cooling is completed. Finish rolling is completed, and the surface layer of the steel material after the completion of the rolling is (A
c 1 transformation point -50 ° C.) ~ (by recuperation in the range of Ac 3 transformation point + 50 ° C.), the steel post or recuperator ends to cool the steel material after recuperation ends 5 to 40 ° C. / s 20 ~
After cooling to 650 ° C., the temperature was further increased at a rate of 0.1 to 50 ° C./s from (Ac 1 transformation point to 10 ° C.) to (Ac 3 transformation point−).
30 ° C.), and then 1-60 s in the temperature range.
After holding, the steel material according to any one of the above (1) to (4) is subjected to a two-phase region heat treatment of cooling at 0.5 to 50 ° C./s to produce a brittle metal. A method for producing a low yield ratio, high tensile strength steel material for buildings with excellent crack propagation arrestability.

【0022】(7)450〜650℃で焼戻しを行うこ
とを特徴とする前記(5)または(6)記載の脆性き裂
伝播停止特性に優れた建築用低降伏比高張力鋼材の製造
方法。なお、ここで言う高張力鋼材とは高張力鋼板(厚
板)のみならず、形鋼、管材をも含む鋼材を指すもので
ある。
(7) The method according to (5) or (6), wherein the tempering is carried out at 450 to 650 ° C., wherein the high yield strength steel for building has a low yield ratio excellent in brittle crack propagation arrestability. In addition, the high-tensile steel material here refers to a steel material including not only a high-tensile steel plate (thick plate) but also a shaped steel and a tube material.

【0023】[0023]

【発明の実施の形態】本発明の第一の要件は、脆性き裂
伝播停止特性に対しては鋼組成の調整によらずに製造工
程において表層部に超細粒組織を形成せしめることであ
り、低降伏比化に対しては鋼組織中に硬質のマルテンサ
イト相を適正に分散させることであり、かつ、表層部の
超細粒組織を損なうことなくマルテンサイト相の分散を
図ることにある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The first requirement of the present invention is to form an ultrafine grain structure in the surface layer in the manufacturing process without depending on the steel composition for brittle crack propagation arresting characteristics. In order to reduce the yield ratio, it is to appropriately disperse the hard martensite phase in the steel structure, and to disperse the martensite phase without damaging the ultrafine grain structure of the surface layer. .

【0024】脆性き裂の伝播停止特性向上のためには、
後述する成分限定を前提とした上で、鋼材の少なくとも
2つの面の表層部において、平均フェライト粒径が3μ
m以下の超細粒組織を表層から板厚の10〜33%の厚
さにわたって存在させることが必要となる。
In order to improve the characteristics of stopping the propagation of brittle cracks,
On the premise of limiting the components described later, the average ferrite grain size is 3 μm in the surface layer of at least two surfaces of the steel material.
It is necessary to have an ultrafine grain structure of m or less from the surface layer to a thickness of 10 to 33% of the plate thickness.

【0025】表層部に超細粒組織を形成させることによ
って、脆性き裂の進展中に、表層部に延性破壊であるシ
アリップが形成され、脆性き裂伝播停止特性が向上す
る。本方法によれば、Ni添加等、合金成分の添加、調
整によらずに脆性き裂伝播停止特性が向上できる点で有
利である。
By forming an ultrafine grain structure in the surface layer, a shear lip, which is ductile fracture, is formed in the surface layer during the development of the brittle crack, and the brittle crack propagation stopping characteristics are improved. This method is advantageous in that the brittle crack propagation stopping characteristics can be improved without adding or adjusting alloy components such as Ni addition.

【0026】高速で進展している脆性き裂に抵抗してシ
アリップを確実に生成させるためには、表層部の脆性破
壊の発生及び伝播停止特性を鋼板の要求靱性よりも顕著
に向上させる必要があり、そのためには該表層部のフェ
ライト粒径を顕著に微細化させることが必須条件とな
る。
In order to reliably generate a shear lip by resisting a brittle crack that is growing at a high speed, it is necessary to significantly improve the brittle fracture occurrence and propagation stopping characteristics of the surface layer over the required toughness of the steel sheet. For that purpose, it is essential to remarkably reduce the ferrite grain size in the surface layer.

【0027】該表層部のフェライト粒径は当然微細であ
るほど好ましいが、シアリップの形成が確実で、製造工
程に過大な負荷をかけない範囲として、本発明において
は、該表層部の平均フェライト粒径を3μm以下に限定
する。なお、該表層部のフェライト粒組織は結晶粒径に
ばらつきの少ない整粒であることが好ましいが、平均粒
径の2倍超の粗大粒が存在してもその存在割合が該表層
部全体に対して10%以内であれば、表層部の脆性破壊
特性に対して実質的に悪影響を及ぼさないため、許容さ
れる。
The finer the ferrite grain size of the surface layer is, of course, the better, but in the present invention, the average ferrite grain size of the surface layer is within a range in which the formation of the shear lip is reliable and an excessive load is not applied to the manufacturing process. The diameter is limited to 3 μm or less. It is preferable that the ferrite grain structure of the surface layer has a uniform grain size with a small variation in crystal grain size. On the other hand, if it is within 10%, it does not substantially affect the brittle fracture characteristics of the surface layer portion, so that it is acceptable.

【0028】万一、欠陥部や溶接部等から脆性破壊が発
生し、伝播に至っても、表層部が確実に延性破壊してシ
アリップとなるためには、上記フェライト粒径の限定が
必須条件となるが、脆性き裂の伝播停止特性の向上に対
してはさらに該表層超細粒層の厚みも重要な要件とな
る。
Even if brittle fracture occurs from a defective portion or a welded portion and propagates, in order for the surface layer portion to be surely ductilely fractured to form a shear lip, it is essential to limit the ferrite grain size. However, the thickness of the surface ultrafine grain layer is also an important requirement for improving the property of stopping the propagation of brittle cracks.

【0029】即ち、鋼板内部の通常組織の脆性き裂を停
止させるためには、シアリップ部でその伝播エネルギー
を吸収する必要があるが、シアリップの厚みが不十分で
あると、たとえシアリップが形成されても脆性き裂の停
止に至らない場合が生じる。脆性き裂の伝播を確実に停
止するには、シアリップはある程度の厚みが必要とな
る。
That is, in order to stop the brittle crack of the normal structure inside the steel sheet, it is necessary to absorb the propagation energy at the shear lip portion. However, if the shear lip is insufficient in thickness, the shear lip may be formed. Even in some cases, brittle cracks do not stop. In order to reliably stop the propagation of a brittle crack, the shear lip needs to have a certain thickness.

【0030】当然シアリップの厚みは厚ければ厚いほど
き裂の停止効果が大となるが、必要以上の超細粒層の厚
みを確保しようとすると、製造工程に過大な負荷をかけ
たり、製造条件によっては母材の延性や鋼板の形状、表
面性状等の劣化につながる。
Naturally, the greater the thickness of the shear lip, the greater the effect of stopping the cracks. However, if the thickness of the ultrafine grain layer is increased more than necessary, an excessive load is applied to the manufacturing process, Depending on the conditions, it may lead to deterioration of the ductility of the base material, the shape of the steel sheet, the surface properties, and the like.

【0031】これらの問題を生じない範囲として、本発
明においては平均フェライト粒径が3μm以下の表層超
細粒組織の厚みを表裏面各々について、下限を表層から
板厚の10%、上限を表層から極厚の33%と限定す
る。該表層超細粒層は鋼材の全ての表面に付与すること
が好ましいが、上記条件を満足すれば、最低限2つの表
面に該超細粒層を付与することにより脆性き裂の停止に
有効である。
In order to avoid these problems, in the present invention, the thickness of the surface ultrafine grain structure having an average ferrite grain size of 3 μm or less is determined for each of the front and back surfaces, the lower limit is 10% of the plate thickness from the surface layer, and the upper limit is the surface layer. Is limited to 33% of the maximum thickness. It is preferable that the superfine grain layer is applied to all surfaces of the steel material. However, if the above conditions are satisfied, it is effective to stop brittle cracks by applying the superfine grain layer to at least two surfaces. It is.

【0032】なお、表層部に形成された超細粒層は、溶
接熱影響部内で溶接ビード直近の1300℃以上に再加
熱される様な領域では完全に消滅するが、より低温に加
熱されている熱影響部では、超細粒組織は消滅するもの
の変態前の超細粒組織の影響が残存して該溶接熱影響部
の組織を微細化する効果があるため、溶接熱影響部の靱
性向上に対しても効果がある。
The ultrafine-grained layer formed on the surface layer disappears completely in a region where the temperature is reheated to 1300 ° C. or more immediately near the weld bead in the heat affected zone, but is heated to a lower temperature. In the heat-affected zone, the ultra-fine grain structure disappears, but the effect of the ultra-fine grain structure before transformation remains and has the effect of refining the structure of the weld heat-affected zone. It is also effective for

【0033】以上のように、脆性き裂の伝播停止特性向
上のために化学組成の限定、鋼材表層部の超細粒化が重
要ではあるが、耐震等、建築用途としての安全性確保の
ためには、前提として鋼材の低降伏比化が図られていな
ければならない。
As described above, it is important to limit the chemical composition and improve the fineness of the surface layer of steel to improve the arrestability of brittle crack propagation. In order to achieve this, it is necessary to reduce the yield ratio of steel as a premise.

【0034】表層部に超細粒組織を形成させて脆性き裂
の伝播停止特性を向上させた鋼においては、低降伏比特
性を得るための手段としては、組織中に適正量のマルテ
ンサイト相を組織中に分散させる手段が最も好ましい。
即ち、低降伏比特性を得るための手段は種々考えられる
が、表層に超細粒組織が存在する場合には、マルテンサ
イトのような脆い硬質相が分散しても靱性劣化が抑制さ
れるため、鋼成分の制限が比較的少ないマルテンサイト
の分散による低降伏比化を用いる場合に最も適してい
る。
In a steel in which a superfine grain structure is formed in the surface layer to improve the property of stopping the propagation of brittle cracks, a means for obtaining a low yield ratio characteristic is to use an appropriate amount of martensite phase in the structure. Most preferably, a means for dispersing the compound in the tissue is used.
That is, various means for obtaining low yield ratio characteristics can be considered, but when a superfine grain structure is present in the surface layer, the deterioration of toughness is suppressed even when a brittle hard phase such as martensite is dispersed. It is most suitable when using a low yield ratio by dispersing martensite, which has relatively few restrictions on steel components.

【0035】他の低降伏比化の手段、例えばC,Cr,
Mo等の添加による第二相の増加では、合金コストの上
昇を招き、かつ溶接性等への悪影響の懸念があり、ま
た、表層部を除く内部の結晶粒径を粗大化して鋼材全体
としての低降伏比化を図る方法では、内部の靱性劣化が
避けられない。
Other means for lowering the yield ratio, for example, C, Cr,
An increase in the second phase due to the addition of Mo or the like causes an increase in alloy cost, and there is a concern that it may have an adverse effect on weldability and the like. In the method for reducing the yield ratio, deterioration of the internal toughness is inevitable.

【0036】延性特性を劣化させずに低降伏比化するた
めの組織要件は、硬質相であるマルテンサイト相の鋼材
体積に対する割合を10〜60%とすることである。即
ち、低降伏比化のためには母相中に母相に比べて十分強
度の高い第二相を分散させることによって、引張強度を
高めて降伏比(降伏応力/引張強度)を低下させる手段
が最も有効である。
The microstructure requirement for reducing the yield ratio without deteriorating the ductility characteristics is that the ratio of the martensite phase, which is a hard phase, to the steel material volume is 10 to 60%. That is, in order to lower the yield ratio, a means for dispersing a second phase having a sufficiently higher strength in the matrix than in the matrix to increase the tensile strength and reduce the yield ratio (yield stress / tensile strength). Is the most effective.

【0037】本発明においては実験結果に基づいて、硬
質相としてはマルテンサイト相が最も好ましく、その割
合としては鋼板体積中の平均として10〜60%の範囲
が、低降伏比化と他の材質特性との両立の点で最も好ま
しいことを見いだした。マルテンサイト相の割合が10
%未満であると、硬質相による引張強度の向上効果が得
られないため、低降伏比化が図られない。
In the present invention, the martensite phase is most preferable as the hard phase based on the experimental results, and the ratio thereof is preferably in the range of 10 to 60% on average in the volume of the steel sheet. It has been found that it is most preferable in terms of compatibility with characteristics. 10% martensite phase
%, The effect of improving the tensile strength by the hard phase cannot be obtained, so that a low yield ratio cannot be achieved.

【0038】一方、マルテンサイト相の割合が60%超
であると、マルテンサイトへのCの濃化が十分でないた
めにマルテンサイトの硬さが低下して母相の硬さとの差
が小さくなるためと、硬資相であるマルテンサイト相の
降伏応力への形響が生じ始めるため、降伏応力の上昇と
引張強度の低下のために降伏比が高くなる。
On the other hand, if the proportion of the martensite phase is more than 60%, the concentration of C in the martensite is not sufficient, so that the hardness of the martensite decreases and the difference from the hardness of the matrix decreases. As a result, the martensite phase, which is a hard phase, has an effect on the yield stress, and the yield ratio increases due to an increase in yield stress and a decrease in tensile strength.

【0039】また、マルテンサイト相の割合が60%超
ではマルテンサイトの粗大化が生じて、延性や靱性が劣
化するため好ましくない。なお、ここでのマルテンサイ
ト相には一部残留オーステナイト相が含まれたM−A相
(Martensite-Austenite Constituent)も含んでいる。
On the other hand, if the ratio of the martensite phase is more than 60%, the martensite becomes coarse and the ductility and toughness are deteriorated. The martensitic phase here includes the MA phase partially containing the retained austenite phase.
(Martensite-Austenite Constituent).

【0040】マルテンサイト相を一部含んだ組織形態を
得る手段としては、特開昭53−23817号公報等に
開示されているように、熱処理により一旦二相域温度に
再加熱してオーステナイト(γ)相を再析出させた後、
放冷あるいは急冷により冷却中にγ相をマルテンサイト
相に変態させる方法が代表的である。
As a means for obtaining a structure morphology partially containing a martensite phase, as disclosed in Japanese Patent Application Laid-Open No. 53-23817, etc., austenite (temporarily reheated to a two-phase region temperature by heat treatment) is used. γ) After reprecipitation of the phase,
A typical method is to allow the γ phase to be transformed into a martensite phase during cooling by cooling or rapid cooling.

【0041】しかしながら、本発明では、低降伏比化と
同時に表層部に超細粒組織を有し、これによって脆性き
裂の伝播停止特性の向上を図る必要があるが、超細粒組
織は熱的に不安定であるため、該超細粒組織のフェライ
ト粒径の粗大化あるいは超細粒組織の消滅が生じないよ
うに、製造方法に対する工夫が必須となる。
However, in the present invention, it is necessary to have an ultrafine grain structure in the surface layer at the same time as lowering the yield ratio, thereby improving the property of stopping the propagation of brittle cracks. Therefore, it is necessary to devise a manufacturing method so that the ferrite grain size of the ultrafine grain structure does not become coarse or the ultrafine grain structure does not disappear.

【0042】本発明においては、詳細な研究調査の結果
により、他の材質特性との関係や製造の簡便さ、製造へ
の負荷の観点から、表層部の超細粒組織と低降伏比化に
必要な割合のマルテンサイト相の導入とを両立させる製
造方法として、以下の二つの方法が最も適当であるとの
結論に至った。
In the present invention, based on the results of detailed research and investigation, from the viewpoint of the relationship with other material properties, the simplicity of production, and the load on the production, the ultrafine grain structure of the surface layer and the reduction of the yield ratio were reduced. It has been concluded that the following two methods are the most suitable as the production methods for achieving both the introduction of the required ratio of martensite phase.

【0043】第1の方法は、表層部に超細粒層を形成さ
せるために、鋼片をAc3 変態点以上、1250℃以下
の温度に加熱し、熱間圧延の開始前あるいは熱間圧延の
途中段階で、その段階での鋼片厚みの10〜33%に対
応する少なくとも2つの外表面の表層部領域をAr3
態点以上の温度から2〜40℃/sの冷却速度で冷却を開
始し、Ar3 変態点以下で冷却を停止して復熱させるこ
とを1回以上経由させる過程で、最後の冷却後の復熱が
終了するまでの間に累積圧下率が20〜90%の仕上げ
圧延を完了させ、該圧延完了後の鋼材の前記表層域を
(Ac1 変態点−50℃)〜(Ac3 変態点+50℃)
の範囲に復熱させる。
The first method is to heat a steel slab to a temperature not lower than the Ac 3 transformation point and not higher than 1250 ° C. in order to form an ultrafine grain layer on the surface layer portion, before starting hot rolling or hot rolling. In the middle stage, at least two outer surface regions corresponding to 10 to 33% of the thickness of the slab at that stage are cooled at a cooling rate of 2 to 40 ° C./s from a temperature not lower than the Ar 3 transformation point. In the process of starting and stopping the cooling at the Ar 3 transformation point or lower and reheating once or more, the cumulative rolling reduction is 20 to 90% until the reheating after the last cooling is completed. Finish rolling is completed, and the surface area of the steel material after the completion of the rolling is changed from (Ac 1 transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.)
Recover in the range.

【0044】該復熱終了後の鋼材を0.2〜2℃/sの冷
却速度で冷却し、(該冷却速度における変態開始温度
(Ar3 )−50℃)〜500℃の範囲に冷却した後、
5〜40℃/sの冷却速度で20〜300℃まで冷却する
ことによって、所定量のマルテンサイト相を形成させ
る。
After completion of the reheating, the steel material was cooled at a cooling rate of 0.2 to 2 ° C./s, and was cooled to a temperature within a range of (transformation starting temperature (Ar 3 ) -50 ° C. at the cooling rate) to 500 ° C. rear,
By cooling to 20 to 300 ° C. at a cooling rate of 5 to 40 ° C./s, a predetermined amount of martensite phase is formed.

【0045】即ち、低降伏比化のために、フェライト
相、ベイナイト相、及びこれらの組織の混合相からなる
母相にマルテンサイト相を導入するが、そのためにはフ
ェライト/オーステナイト二相域の適切な温度域まで冷
却した後、オーステナイト相をマルテンサイトに変態さ
せるために急冷する。このような製造方法によって、表
層部の超細粒組織の形態を損なうことなく所定量のマル
テンサイト組織を導入することが可能となる。
That is, in order to lower the yield ratio, a martensite phase is introduced into a parent phase composed of a ferrite phase, a bainite phase, and a mixed phase of these structures. After cooling to a suitable temperature range, rapid cooling is performed to transform the austenite phase into martensite. According to such a manufacturing method, it becomes possible to introduce a predetermined amount of martensite structure without impairing the form of the ultrafine grain structure in the surface layer.

【0046】第2の方法は、鋼片をAc3 変態点以上、
1250℃以下の温度に加熱し、熱間圧延の開始前ある
いは熱間圧延の途中段階で、その段階での鋼片厚みの1
0〜33%に対応する少なくとも2つの外表面の表層部
領域をAr3 変態点以上の温度から2〜40℃/sの冷却
速度で冷却を開始し、Ar3 変態点以下で冷却を停止し
て復熱させることを1回以上経由させる過程で、最後の
冷却後の復熱が終了するまでの間に累積圧下率が20〜
90%の仕上げ圧延を完了させ、該圧延完了後の鋼材の
前記表層域を(Ac1 変態点−50℃)〜(Ac3 変態
点+50℃)の範囲に復熱させて、復熱終了後の鋼材を
放冷するか、あるいは復熱終了後の鋼材を5〜40℃/s
の冷却速度で20〜650℃まで冷却することによっ
て、表層部に超細粒層を形成した鋼材に以下の特殊な二
相域熱処理を施す方法である。
In the second method, the steel slab is made to have an Ac 3 transformation point or more,
It is heated to a temperature of 1250 ° C. or less, and before the start of hot rolling or in the middle of hot rolling, the thickness of the slab at that stage is 1%.
At least two outer surface areas corresponding to 0 to 33% start cooling at a temperature of not less than the Ar 3 transformation point at a cooling rate of 2 to 40 ° C./s, and stop cooling at a temperature of not more than the Ar 3 transformation point. In the process of passing the heat recuperation one or more times, the cumulative draft is 20 to
90% finish rolling is completed, and the surface layer of the steel material after the completion of the rolling is reheated to a range of (Ac 1 transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.). Or let the steel material after recuperation finish at 5-40 ° C / s
This is a method of performing the following special two-phase region heat treatment on a steel material having an ultrafine grain layer formed on the surface layer by cooling to 20 to 650 ° C at a cooling rate of:

【0047】即ち、通常の熱処理によってマルテンサイ
トの形成のための二相域熱処理を施すと、表層部の超細
粒組織は完全に、あるいは一部その形態が損なわれるた
め、採用できないが、二相域温度まで加熱するまでの昇
温速度を高め、かつ加熱温度での保持時間を短時間に限
定することによって、表層超細粒組織の機能を損なうこ
となく、組織中に低降伏比化に有効なマルテンサイト相
を導入することが可能となる。
That is, if a two-phase region heat treatment for forming martensite is performed by a normal heat treatment, the ultrafine grain structure in the surface layer portion is completely or partially impaired, and thus cannot be adopted. By increasing the rate of temperature rise until heating to the phase temperature and limiting the holding time at the heating temperature to a short time, it is possible to reduce the yield ratio in the structure without impairing the function of the surface ultrafine grain structure. It becomes possible to introduce an effective martensite phase.

【0048】その場合、0.1〜50℃/sの昇温速度で
(Ac1 変態点+10℃)〜(Ac3 変態点−30℃)
の範囲に加熱した後、該温度範囲での滞在時間を1〜6
0sとする必要がある。加熱保持後の冷却は急冷の方が
マルテンサイト形成には好ましいが、0.5〜50℃/s
の範囲であれば良い。以上のマルテンサイト相導入のた
めの製造条件の、具体的な限定理由については後述す
る。
In this case, at a heating rate of 0.1 to 50 ° C./s, (Ac 1 transformation point + 10 ° C.) to (Ac 3 transformation point−30 ° C.)
After heating to the range, the residence time in the temperature range is 1 to 6
It must be 0 s. As for cooling after heating and holding, rapid cooling is preferable for forming martensite, but 0.5 to 50 ° C./s
It is sufficient if it is within the range. Specific reasons for limiting the production conditions for introducing the martensite phase will be described later.

【0049】以上が本発明の脆性き裂伝播停止特性に優
れた建築用低降伏比高張力鋼材の要件であるが、個々の
化学成分についても下記に述べる理由により、各々限定
する必要がある。
The above is the requirement of the low yield ratio high tensile strength steel for building use having excellent brittle crack arrestability of the present invention. However, each chemical component also needs to be limited for the following reasons.

【0050】Cは鋼の強度を向上させる有効な成分とし
て含有するもので、0.01%未満では構造用鋼に必要
な強度の確保が困難であるが、0.20%を超える過剰
の含有は延性破壊特性の劣化により、本発明が目的とし
ている耐破壊性能の低下を招く。また、靱性や耐溶接割
れ性なども低下させるので、0.01〜0.20%の範
囲とした。
C is contained as an effective component for improving the strength of the steel. If the content is less than 0.01%, it is difficult to secure the strength required for structural steel, but the excess content exceeding 0.20% is difficult. The deterioration of the ductile fracture characteristic causes a decrease in the fracture resistance intended by the present invention. Further, since the toughness and the resistance to welding cracking are also reduced, the content is set in the range of 0.01 to 0.20%.

【0051】Siは脱酸元素として、また母材の強度確
保に有効な元素であるが、0.01%未満の含有では脱
酸が不十分となり、また強度確保に不利である。逆に
1.0%を超える過剰の含有は粗大な酸化物を形成して
延性や靱性の劣化を招く。そこで、Siの範囲は0.0
1〜1.0%とした。
Si is an element effective as a deoxidizing element and also for securing the strength of the base material. However, if the content is less than 0.01%, deoxidation becomes insufficient and disadvantageous for securing the strength. Conversely, an excessive content exceeding 1.0% forms a coarse oxide and causes deterioration in ductility and toughness. Therefore, the range of Si is 0.0
1 to 1.0%.

【0052】Mnは母材の強度、靱性の確保に必要な元
素であり、最低限0.l%以上含有する必要があるが、
溶接部の靱性、割れ性など材質上許容できる範囲で上限
を2.0%とした。
Mn is an element necessary for securing the strength and toughness of the base material. l% or more,
The upper limit is set to 2.0% within an allowable range for the material such as toughness and cracking property of the welded portion.

【0053】Alは延性、靱性に有害な固溶Nの固定に
有効な元素であり、かつ脱酸、γ粒径の細粒化等に有効
な元素であるが、効果を発揮するためには0.001%
以上含有する必要がある。一方、0.1%を超えて過剰
に含有すると、粗大な酸化物を形成して延性を極端に劣
化させるため、0.001〜0.1%の範囲に限定する
必要がある。
Al is an element effective for fixing solid solution N which is detrimental to ductility and toughness, and is also an element effective for deoxidation, refining of γ particle size, and the like. 0.001%
It is necessary to contain the above. On the other hand, if it is contained in excess of 0.1%, a coarse oxide is formed and the ductility is extremely deteriorated. Therefore, it is necessary to limit the content to the range of 0.001 to 0.1%.

【0054】Nは、固溶Nが存在すると、延性や靱性の
劣化が生じるため、その含有量を適正化する必要があ
る。即ち、NはAlやTiと結びついてγ粒微細化に有
効に働くため、微量であれば機械的特性に有効に働く。
また、工業的に鋼中のNを完全に除去することは不可能
であり、必要以上に低減することは製造工程に過大な負
荷をかけるため好ましくない。そのため、工業的に御御
が可能で、製造工程への負荷が許容できる範囲として下
限を0.001%とする。過剰に含有すると、固溶Nが
増加し、延性や靱性に悪影響を及ぼす可能性があるた
め、許容できる範囲として上限を0.010%とする。
The presence of solute N causes the deterioration of ductility and toughness, so it is necessary to optimize its content. That is, N is effectively combined with Al and Ti to reduce the size of the γ-grain.
Further, it is impossible to industrially completely remove N in steel, and it is not preferable to reduce N more than necessary because an excessive load is applied to a manufacturing process. Therefore, the lower limit is set to 0.001% as a range in which industrial control is possible and load on the manufacturing process is acceptable. If it is contained excessively, solid solution N increases, which may adversely affect ductility and toughness. Therefore, the upper limit is set to 0.010% as an allowable range.

【0055】P,Sは不純物元素で、延性、靱性を劣化
させる元素であり、極力低減することが好ましいが、材
質劣化が大きくなく、許容できる量として、Pの上限を
0.025%、Sの上限を0.015%に限定する。
P and S are impurity elements that deteriorate ductility and toughness, and are preferably reduced as much as possible. However, the deterioration of the material is not so large, and the upper limit of P is 0.025% as an allowable amount. Is limited to 0.015%.

【0056】以上が本発明の鋼材の基本成分の限定理由
であるが、本発明においては、強度・靱性の調整のため
に、必要に応じて、Ti,Zr,Nb,Ta,V,B,
Cr,Mo,Ni,Cu,Wの1種または2種以上を含
有することができる。
The reasons for limiting the basic components of the steel material of the present invention have been described above. In the present invention, Ti, Zr, Nb, Ta, V, B,
One, two or more of Cr, Mo, Ni, Cu, and W can be contained.

【0057】Tiは析出強化により母材強度向上に寄与
するとともに、TiNの形成により加熱γ粒径微細化に
も有効な元素であり、靱性向上にも有効な元素である
が、効果を発揮するためには0.003%以上の含有が
必要である。一方、0.02%を超えると、粗大な析出
物、介在物を形成して靱性や延性を劣化させるため、上
限を0.02%とする。
Ti contributes to the improvement of the base metal strength by precipitation strengthening, and is also an element effective for the refinement of the heated γ grain size by the formation of TiN, and is also effective for the improvement of the toughness. For this purpose, a content of 0.003% or more is required. On the other hand, if it exceeds 0.02%, coarse precipitates and inclusions are formed to deteriorate toughness and ductility, so the upper limit is made 0.02%.

【0058】Zrも窒化物を形成する元素であり、Ti
と同様の効果を有するが、その効果を発揮するためには
0.003%以上の含有が必要である。一方、0.10
%を超えると、Tiと同様、粗大な析出物、介在物を形
成して靱性や延性を劣化させるため、0.003〜0.
10%の範囲に限定する。
Zr is also an element forming nitride, and Ti
Has the same effect as described above, but in order to exhibit the effect, the content of 0.003% or more is required. On the other hand, 0.10
%, Coarse precipitates and inclusions are formed similarly to Ti to deteriorate toughness and ductility.
Limit to 10% range.

【0059】Nbも強度・靱性の向上に有効な元素であ
るが、過剰の含有では析出脆化により靱性が劣化する。
従って、靱性の劣化を招かずに効果を発揮できる範囲と
して、0.002〜0.05%の範囲に限定する。
Nb is also an element effective for improving the strength and toughness, but if it is contained excessively, the toughness deteriorates due to precipitation embrittlement.
Therefore, the range in which the effect can be exhibited without inducing toughness is limited to the range of 0.002 to 0.05%.

【0060】Taも強度・靱性の向上に有効な元素であ
るが、効果を発揮するためには0.005%以上の含有
が必要である。一方、0.20%を超えると、析出脆化
や粗大な析出物、介在物による靱性劣化を生じるため、
上限を0.20%とする。
Ta is also an element effective for improving the strength and toughness, but it is necessary to contain 0.005% or more in order to exhibit the effect. On the other hand, if it exceeds 0.20%, precipitation embrittlement, coarse precipitates, and toughness degradation due to inclusions occur,
The upper limit is set to 0.20%.

【0061】VもVNを形成して強度向上に有効な元素
であるが、Nbと同様に過剰の含有では析出脆化により
靱性が劣化する。従って、靱性の大きな劣化を招かず
に、効果を発揮できる範囲として、0.005〜0.2
0%の範囲に限定する。
V is also an element which forms VN and is effective for improving the strength. However, as in the case of Nb, if it is contained excessively, the toughness deteriorates due to precipitation embrittlement. Therefore, the range in which the effect can be exhibited without causing significant deterioration in toughness is 0.005 to 0.2.
Limited to the range of 0%.

【0062】Bは微量で確実にNと結びつくため、固溶
N固定により靱性向上や、焼入性向上による強度・靱性
向上に有効な元素であるが、効果を発揮するためには
0.0002%以上必要である。一方、0.003%を
超えて過剰に含有するとBNが粗大となり、延性や靱性
に悪影響を及ぼす。また溶接性も劣化させるため、上限
を0.003%とする。
B is an element effective for improving toughness by fixing solid solution N and improving strength and toughness by improving hardenability, since it is surely linked to N in a trace amount. % Is required. On the other hand, if the BN content exceeds 0.003%, the BN becomes coarse, which adversely affects ductility and toughness. Further, the weldability is also deteriorated, so the upper limit is made 0.003%.

【0063】Cr及びMoはいずれも母材の強度向上に
有効な元素であるが、明瞭な効果を生じるためには0.
01%以上必要であり、一方、2.0%を超えて添加す
ると、靱性及び溶接性が劣化する傾向を有するため、各
々0.01〜2.0%の範囲とする。
Although both Cr and Mo are effective elements for improving the strength of the base material, in order to produce a clear effect, the content of Cr is not limited to 0.1.
The content is required to be not less than 01%. On the other hand, if added in excess of 2.0%, the toughness and weldability tend to be deteriorated.

【0064】Niは母材の強度と靱性を同時に向上で
き、非常に有効な元素であるが、効果を発揮させるため
には0.01%以上含有させる必要がある。含有量が多
くなると強度、靱性は向上するが4.0%を超えて添加
しても効果が飽和する一方で、溶接性が劣化するため、
上限を4.0%とする。
Ni is a very effective element that can simultaneously improve the strength and toughness of the base material, but must be contained at 0.01% or more in order to exert its effect. When the content is increased, the strength and toughness are improved, but if the content exceeds 4.0%, the effect is saturated, but the weldability is deteriorated.
The upper limit is set to 4.0%.

【0065】CuもほぼNiと同様の効果を有するが、
2.0%超では熱間加工性に問題を生じるため、0.0
1〜2.0%の範囲に限定する。Wは固溶強化及び析出
強化により母材強度の上昇に有効であるが、効果を発揮
するためには0.01%以上必要である。一方、2.0
%を超えて過剰に含有すると、靱性劣化が顕著となるた
め、上限を2.0%とする。
Although Cu has almost the same effect as Ni,
If it exceeds 2.0%, a problem occurs in hot workability.
It is limited to the range of 1 to 2.0%. W is effective for increasing the strength of the base material by solid solution strengthening and precipitation strengthening, but is required to be 0.01% or more in order to exhibit the effect. On the other hand, 2.0
%, An excessive content exceeding 2.0% results in marked deterioration in toughness, so the upper limit is made 2.0%.

【0066】さらに、延性の向上、継手靱性の向上のた
めに、必要に応じて、Mg,Ca,REMの1種または
2種以上を含有することができる。Mg,Ca,REM
はいずれも硫化物の熱間圧延中の展伸を抑制して延性特
性向上に有効である。酸化物を微細化させて継手靱性の
向上にも有効に働く。その効果を発揮するための下限の
含有量は、Mg及びCaは0.0005%、REMは
0.005%である。一方、過剰に含有すると、硫化物
や酸化物の粗大化を生じ、延性、靱性の劣化を招くた
め、上限を各々、Mg,Caは0.01%、REMは
0.10%とする。
Further, in order to improve ductility and joint toughness, one or more of Mg, Ca and REM can be contained as necessary. Mg, Ca, REM
Are effective in improving ductility by suppressing the elongation of sulfide during hot rolling. It also works effectively to improve the joint toughness by making the oxide finer. The lower limit contents for exhibiting the effect are 0.0005% for Mg and Ca and 0.005% for REM. On the other hand, if contained excessively, sulfides and oxides are coarsened, and ductility and toughness are deteriorated. Therefore, the upper limits are respectively 0.01% for Mg and Ca and 0.10% for REM.

【0067】次に、本発明の脆性き裂伝播停止特性に優
れた建築用低降伏比高温力鋼材の製造に際しての限定理
由を述べる。上記理由により限定した化学成分を有する
鋼において、脆性き裂伝播停止特性の向上のために、鋼
材の少なくとも2つの面の表層部において、平均フェラ
イト粒径が3μm以下の超細粒組織を表層から板厚の1
0〜33%の厚さにわたって存在させる必要がある。本
発明で限定する特徴を有する表層超細粒層は以下に示す
ように製造条件を限定することによって形成させること
ができる。
Next, a description will be given of the reasons for limiting the production of the high yield strength steel with a low yield ratio for buildings having excellent brittle crack propagation stopping characteristics according to the present invention. In the steel having the chemical composition limited for the above-mentioned reason, in order to improve the brittle crack propagation arresting property, in the surface layer portion of at least two surfaces of the steel material, an ultra-fine grain structure having an average ferrite grain size of 3 μm or less from the surface layer Sheet thickness 1
Must be present over a thickness of 0-33%. The surface ultrafine grain layer having the characteristics limited in the present invention can be formed by limiting the manufacturing conditions as described below.

【0068】鋼片を熱間圧延するに際し、熱間圧延中あ
るいは熱間圧延途中で表層部の適当な厚みの領域を水冷
等の手段により、Ar3 変態点よりも低い温度まで一旦
冷却して内部と温度差を付けた後、温度差のついたまま
の状態からさらに熱間圧延を行うと、Ar3 変態点より
も低い温度まで一旦冷却された領域は、復熱及びその過
程の加工によりフェライト主体組織となる。
During hot rolling of the steel slab, an area having an appropriate thickness in the surface layer portion is once cooled to a temperature lower than the Ar 3 transformation point by means of water cooling during hot rolling or hot rolling. After applying a temperature difference from the inside, if hot rolling is further performed from the state where the temperature difference is kept, the area once cooled to a temperature lower than the Ar 3 transformation point is subjected to reheating and processing in the process. It becomes a ferrite-based structure.

【0069】このため、該フェライト主体組織を有する
表層部は、内部の顕熱により復熱されながら加工を受け
ることになり、この復熱中の加工条件を適正化すること
により表層部のフェライト結晶粒が顕著に細粒化する。
従って、最終的な鋼材における表層超細粒層の割合は、
表層を一旦冷却した際にAr3 変態点まで低下した領域
の割合とほぼ一致することになる。
For this reason, the surface layer having the ferrite-based structure undergoes processing while being reheated by the internal sensible heat, and the ferrite crystal grains in the surface layer are improved by optimizing the processing conditions during the reheating. Are remarkably refined.
Therefore, the proportion of the surface ultrafine grain layer in the final steel material is
When the surface layer is once cooled, the ratio almost coincides with the ratio of the region which has decreased to the Ar 3 transformation point.

【0070】上記熱間圧延工程において、以下に示すよ
うな条件を満足することによって超細粒化が達成され
る。先ず、鋼片をオーステナイト域に再加熱するが、こ
の場合の温度としてはAc3 変態点以上、1250℃以
下が好ましい。即ち、Ac3 変態点未満ではオーステナ
イト単相にならず、フェライト相が残存し、該フェライ
ト相が残存すると後の工程の如何によらず、表層に均一
な超細粒組織を形成することができない。また、内部も
二相域加工されるため、鋼材の異方性が増大する問題も
生じる。
In the above hot rolling step, ultrafine graining is achieved by satisfying the following conditions. First, the steel slab is reheated to the austenite region. The temperature in this case is preferably from the Ac 3 transformation point to 1250 ° C. That is, when the Ac 3 transformation point is less than the austenite single phase, the ferrite phase remains, and when the ferrite phase remains, a uniform ultrafine grain structure cannot be formed on the surface layer regardless of the subsequent steps. . Further, since the inside is also processed in the two-phase region, there is a problem that the anisotropy of the steel material increases.

【0071】一方、1250℃超では加熱オーステナイ
ト粒径が極端に粗大となるため、後の圧延によっても粒
径の微細化ができず、板厚中心部の靱性確保ができな
い。従って、本発明では鋼片の加熱温度をAc3 変態点
〜1250℃に限定する。
On the other hand, when the temperature exceeds 1250 ° C., the grain size of the heated austenite becomes extremely coarse, so that the grain size cannot be reduced even by the subsequent rolling, and the toughness at the center of the sheet thickness cannot be secured. Therefore, in the present invention, the heating temperature of the steel slab is limited to the Ac 3 transformation point to 1250 ° C.

【0072】最終板厚と鋼片厚みに応じて、工程負荷軽
減、表層超細粒層を得るための復熱後の必要圧下率の確
保の観点から判断して、鋼片を加熱後、鋼片ままか、粗
圧延により鋼片厚みを適当な厚みに減厚した後、該鋼材
の超細粒層とすべき表層部を水冷等の手段により冷却
し、該鋼材の水冷前の熱間圧延時点での板厚の10〜3
3%に対応する各表層部の領域をAr3 変態点以下まで
冷却するとともに、表層部と内部に温度差をつけるが、
その際、該鋼材の水冷前の熱間圧延時点での板厚の10
〜33%に対応する各表層部の領域の冷却速度は、2℃
/s以上にする必要がある。
Heating the steel slab after heating the steel slab according to the final plate thickness and the thickness of the slab, from the viewpoint of reducing the process load and securing the required rolling reduction after reheating to obtain a superfine grain layer of the surface layer. After the thickness of the steel slab is reduced to an appropriate thickness by flakes or rough rolling, the surface layer portion of the steel material to be an ultrafine grain layer is cooled by means of water cooling or the like, and hot rolling of the steel material before water cooling is performed. 10-3 of the plate thickness at the time
The area of each surface layer corresponding to 3% is cooled to the Ar 3 transformation point or lower, and a temperature difference is formed between the surface layer and the inside.
At this time, the steel sheet had a thickness of 10 at the time of hot rolling before water cooling.
The cooling rate of each surface layer area corresponding to ~ 33% is 2 ° C.
/ s or more.

【0073】これは、冷却速度が2℃/s未満では、冷却
前の熱間圧延によりオーステナイトを微細化しておいて
も冷却後の変態組織が粗大となり、その後の復熱中の圧
延で均一な超微細フェライト組織を得ることが困難とな
るためである。冷却速度は大きい方が組織微細化の観点
からは好ましいが、40℃/sを超えて急冷しても効果が
飽和する上に、過剰に急冷することは鋼板の形状維持の
ためには好ましくないため、上限を40℃/sとする。
If the cooling rate is less than 2 ° C./s, the transformed structure after cooling becomes coarse even if the austenite is refined by hot rolling before cooling, and the uniform superstructure is obtained by rolling during subsequent reheating. This is because it becomes difficult to obtain a fine ferrite structure. A higher cooling rate is preferable from the viewpoint of refining the structure, but the effect is saturated even when quenching exceeds 40 ° C./s, and excessive quenching is not preferable for maintaining the shape of the steel sheet. Therefore, the upper limit is set to 40 ° C./s.

【0074】また、上記の冷却はAr3 変態点以上から
開始する。これは、単相オーステナイトから冷却するこ
とで表層超細粒層を均一に形成させるためである。即
ち、該表層部が強制冷却前にAr3 変態点未満となる
と、フェライトが一部粗大に生成し、その部分での超細
粒化が阻害されるためである。
The above cooling is started from the Ar 3 transformation point or higher. This is because the surface ultrafine grain layer is formed uniformly by cooling from single-phase austenite. That is, if the surface layer portion becomes lower than the Ar 3 transformation point before forced cooling, ferrite is partially coarsely formed, and ultrafine graining in that portion is hindered.

【0075】なお、表層超細粒層付与のために冷却前に
必要に応じて行う鋼片厚み調整のための粗圧延の条件
は、特に規定するものではないが、内部組織の微細化の
ためにはγの未再結晶域での圧延を行う方が有利であ
る。
The conditions of the rough rolling for adjusting the thickness of the steel slab, which is performed as necessary before cooling to provide the superfine grain layer on the surface layer, are not particularly specified, but are set forth in order to refine the internal structure. It is more advantageous to perform rolling in the unrecrystallized region of γ.

【0076】ただし、γの未再結晶域での圧延は必然的
に低温圧延となり、生産性の低下、表層部の復熱のため
の内部の顕熱の減少等の悪影響も生ずる。生産性の極端
な低下を招かず、表層超細粒層の形成に不利にならない
条件として、γの未再結晶域での圧延を行う場合の累積
圧下率は50%以下が好ましい。
However, rolling in the non-recrystallized region of γ necessarily involves low-temperature rolling, and adverse effects such as a decrease in productivity and a decrease in internal sensible heat due to recuperation of the surface layer also occur. As a condition that does not cause an extreme decrease in productivity and is not disadvantageous for the formation of the surface ultrafine grain layer, the rolling reduction in the case of performing rolling in the unrecrystallized region of γ is preferably 50% or less.

【0077】以上の理由により、該鋼材の冷却前の熱間
圧延時点での板厚の10〜33%に対応する各表層部の
領域を、2℃/s〜40℃/sの冷却速度でAr3 変態点以
下まで冷却し、その後仕上げ圧延を行う際、内部の顕熱
によるか、及び/または外部からの加熱を利用して板厚
の10〜33%に対応する各表層部の領域を昇温中に圧
延を施すことにより、該領域の組織が超微細化し、脆性
き裂伝播停止特性向上に寄与できるようになる。
For the above reasons, the area of each surface layer portion corresponding to 10 to 33% of the sheet thickness at the time of hot rolling before cooling the steel material is cooled at a cooling rate of 2 ° C./s to 40 ° C./s. When cooling to the Ar 3 transformation point or lower, and then performing finish rolling, the area of each surface layer portion corresponding to 10 to 33% of the sheet thickness by internal sensible heat and / or using external heating is used. By performing rolling during the temperature increase, the structure in the region becomes ultra-fine, which can contribute to improvement in brittle crack propagation stopping characteristics.

【0078】後述するように、上記復熱過程の加工は1
回もしくは2回以上繰り返してもよいが、最後の冷却後
の復熱過程での圧延後の復熱温度は、(Ac1 変態点−
50℃)〜(Ac3 変態点+50℃)の範囲にする必要
がある。即ち、該最終復熱温度が(Ac1 変態点−50
℃)よりも低いと、加工後の加工フェライトの回復・再
結晶が十分でないため、超細粒化が不十分で、脆性き裂
伝播停止特性が向上しない。
As described later, the processing in the recuperation process is
May be repeated two or more times, but the recuperation temperature after rolling in the recuperation process after the last cooling is (Ac 1 transformation point−
50 ° C.) to (Ac 3 transformation point + 50 ° C.). That is, the final reheat temperature is (Ac 1 transformation point −50).
If the temperature is lower than (° C.), recovery and recrystallization of the processed ferrite after processing is not sufficient, so that ultrafine graining is insufficient and brittle crack propagation stopping characteristics are not improved.

【0079】一方、該最終復熱温度が(Ac1 変態点+
50℃)よりも高いと、加工により超細粒化したフェラ
イトの一部が再度オーステナイトに逆変態することによ
って消失してしまい、その割合が無視できないほど多く
なって靱性及び脆性き裂伝播停止特性を損なう。従っ
て、本発明においては、最後の冷却後の復熱過程での圧
延後の復熱温度は、(Ac1 変態点−50℃)〜(Ac
3 変態点+50℃)の範囲に限定する。
On the other hand, when the final reheat temperature is (Ac 1 transformation point +
If the temperature is higher than 50 ° C.), part of the ferrite ultrafine-grained by the working is transformed back into austenite and disappears, and the proportion thereof becomes so large that it cannot be ignored. Impair. Therefore, in the present invention, the reheating temperature after rolling in the reheating process after the last cooling is from (Ac 1 transformation point −50 ° C.) to (Ac
(3 transformation point + 50 ° C).

【0080】以上のAr3 変態点以下への冷却と復熱中
の加工工程は1回でも良いが、複数回繰り返すことによ
り効果が重畳するため、2回以上繰り返しても所望の微
細組織を得ることが可能である。その場合、各復熱段階
の最高温度あるいは最低温度は任意であっても、本発明
の温度条件に従えば超細粒化する。ただし、好ましくは
途中の復熱温度の上限は(Ac3 変態点+100℃)以
下とする方が、細粒化の効果が確実に重畳する点で好ま
しい。
The processing step during cooling and recuperation below the Ar 3 transformation point may be performed once, but the effect is superimposed by repeating a plurality of times, so that a desired microstructure can be obtained even if repeated twice or more. Is possible. In this case, even if the maximum temperature or the minimum temperature in each recuperation stage is arbitrary, ultrafine granulation is performed according to the temperature conditions of the present invention. However, it is preferable that the upper limit of the recuperation temperature in the middle is set to (Ac 3 transformation point + 100 ° C.) or less, since the effect of the grain refining is surely superposed.

【0081】最初の冷却後から最後の復熱に至るまでの
圧延としての仕上げ圧延の累積圧下率は、大きい方が均
一かつ安定に超細粒組織を得られる。そのためには、仕
上げ圧延の累積圧下率は最低限20%必要である。圧下
率は大きいほど超細粒化には有利であるが、圧下率が9
0%を超えるような圧延は効果が飽和し、生産性を極端
に阻害するため好ましくない。従って、本発明では仕上
げ圧延の累積圧下率は20〜90%に限定する。
As the cumulative rolling reduction of the finish rolling as the rolling from the first cooling to the last reheating is increased, a finer grain structure can be uniformly and stably obtained. For that purpose, the cumulative rolling reduction of the finish rolling needs to be at least 20%. The higher the rolling reduction, the more advantageous for ultra-fine graining.
Rolling exceeding 0% is not preferable because the effect is saturated and productivity is extremely impaired. Therefore, in the present invention, the cumulative rolling reduction of the finish rolling is limited to 20 to 90%.

【0082】上記の限定条件に従った製造方法により表
層部に超細粒層を付与することが可能であるが、さらに
低降伏比化のために、圧延終丁象の冷却条件あるいは鋼
材製造後の熱処理条件を下記に示すように限定する必要
がある。
Although it is possible to provide an ultrafine grain layer on the surface layer by a manufacturing method in accordance with the above-described limited conditions, in order to further reduce the yield ratio, the cooling conditions at the end of rolling or after the steel material is manufactured. Need to be limited as shown below.

【0083】最後の復熱が終了した後の冷却段階でマル
テンサイト相を導入する方法においては、復熱終了後の
鋼材を0.2〜2℃/sの冷却速度で(該冷却速度におけ
る変態開始温度(Ar3 )−50℃)〜500℃の範囲
に冷却した後、5〜40℃/sの冷却速度で20〜300
℃まで冷却する。
In the method of introducing the martensite phase in the cooling stage after the final reheating, the steel material after the reheating is cooled at a cooling rate of 0.2 to 2 ° C./s (transformation at the cooling rate). After cooling to the range of the starting temperature (Ar 3 ) -50 ° C.) to 500 ° C., the cooling rate is 5 to 40 ° C./s for 20 to 300 ° C.
Cool to ° C.

【0084】先ず、復熱終了後の鋼材を二相域温度まで
冷却するが、その際の冷却速度が0.2℃/s未満では冷
却速度が遅すぎるため、変態により生成するフェライト
あるいはベイナイト、あるいはこれらの混合相である母
相組織が粗大化するため、靱性の劣化を生じるためと、
前段階で形成された超細粒層の結晶粒径が粗大化して脆
性き裂伝播停止特性を劣化させる可能性があるため、好
ましくない。
First, the steel material after the completion of recuperation is cooled to a temperature in the two-phase region. If the cooling rate at that time is less than 0.2 ° C./s, the cooling rate is too slow. Or, because the matrix structure, which is a mixed phase thereof, is coarsened, and the toughness is deteriorated,
It is not preferable because the crystal grain size of the ultrafine-grained layer formed in the previous stage becomes coarse and the brittle crack propagation stopping characteristics may be deteriorated.

【0085】また、冷却速度が2℃/s超であると変態開
始温度が低くなりすぎるため、変態相とオーステナイト
相との二相組織とすることが困難となったり、母相とマ
ルテンサイトとの硬さの差が小さくなって低降伏比化で
きない等の問題が生じるため好ましくない。
If the cooling rate is more than 2 ° C./s, the transformation starting temperature becomes too low, so that it is difficult to form a two-phase structure of the transformation phase and the austenite phase, Is not preferred because the difference in hardness of the steels becomes so small that the yield ratio cannot be reduced.

【0086】以上の理由により、本発明においては最後
の復熱から(該冷却速度における変態開始温度(A
3 )−50℃)〜500℃までの冷却速度の範囲を
0.2〜2℃/sに限定する。
For the above-mentioned reasons, in the present invention, the temperature at the transformation start temperature (A
r 3) -50 ℃) to limit the scope of the cooling rate to to 500 ° C. in 0.2 to 2 ° C. / s.

【0087】復熱終了後、0.2〜2℃/sで二相域温度
まで冷却して変態により生じた母相と未変態のオーステ
ナイト相の割合を適正化した後、未変態のオーステナイ
トをマルテンサイト相に変態させるために急冷する。そ
の際、0.2〜2℃/sでの冷却を停止する温度として
は、(該冷却速度における変態開始温度(Ar3 )−5
0℃)〜500℃の範囲とする必要がある。
After completion of the recuperation, the temperature is cooled to the two-phase region temperature at 0.2 to 2 ° C./s to optimize the ratio of the parent phase formed by the transformation and the untransformed austenite phase. Rapid cooling to transform to martensite phase. At this time, the temperature at which the cooling at 0.2 to 2 ° C./s is stopped is (the transformation start temperature (Ar 3 ) −5 at the cooling rate).
0 ° C.) to 500 ° C.

【0088】低降伏比化に必要な10〜60%のマルテ
ンサイト相を安定して組織中に形成させるためには、オ
ーステナイト中にCが一定以上濃縮する必要があるが、
そのためには二相域に入るまでの冷却速度での変態開始
温度(Ar3 変態点)よりも50℃以上低くする必要が
ある。
In order to stably form a martensitic phase of 10 to 60% required for lowering the yield ratio in the structure, it is necessary that C be concentrated in austenite to a certain degree or more.
For that purpose, it is necessary to lower the transformation start temperature (Ar 3 transformation point) by 50 ° C. or more at the cooling rate until the two-phase region is entered.

【0089】ただし、この温度が低くなりすぎると、そ
の後の急冷段階の前に変態が生じてしまい、Cの濃化し
た硬いマルテンサイトではなく、母相との硬さの差の小
さいベイナイト相が生成する可能性が高くなる。実験結
果によれば、10〜60%のマルテンサイトの割合を確
保するための下限温度は500℃となる。そのため、本
発明における急冷前の冷却停止温度は、(該冷却速度に
おける変態開始温度(Ar3 )−50℃)〜500℃の
範囲に限定する。
However, if the temperature is too low, transformation occurs before the subsequent quenching step, and the bainite phase having a small difference in hardness from the parent phase is formed instead of hard martensite having a high concentration of C. More likely to be generated. According to the experimental results, the lower limit temperature for securing the martensite ratio of 10 to 60% is 500 ° C. Therefore, the cooling stop temperature before quenching in the present invention is limited to the range of (transformation start temperature (Ar 3 ) at the cooling rate-50 ° C) to 500 ° C.

【0090】Ar3 −50〜500℃から急冷して、未
変態のオーステナイトをマルテンサイト相に変態させる
が、マルテンサイト変態のためには冷却速度は速ければ
速いほど有利であるが、Cの濃縮したオーステナイトか
らの変態であることを考慮すれば、冷却速度の下限は5
℃/sとする必要がある。
Ar 3 quenched from -50 to 500 ° C. to transform untransformed austenite into a martensite phase. For martensitic transformation, the higher the cooling rate, the more advantageous. Considering that the transformation is from austenite, the lower limit of the cooling rate is 5
° C / s.

【0091】また、冷却速度を速くするとマルテンサイ
ト変態のためには有利であるが、製造コストの上昇を招
き、鋼材に残留応力が残って鋼材の変形を生じる問題も
あるため、マルテンサイト生成に十分で、前記の問題点
の生じない範囲として、冷却速度の上限は40℃/sとす
る。5〜40℃/sで冷却してマルテンサイト変態を生じ
た後は、残留応力の軽減や材質の向上を目的として途中
で冷却を停止することが可能である。
Further, increasing the cooling rate is advantageous for martensitic transformation, but increases the production cost, and there is a problem that residual stress remains in the steel material and the steel material is deformed. The upper limit of the cooling rate is set to 40 ° C./s as a range that is sufficient and does not cause the above problems. After the cooling at 5 to 40 ° C./s to cause the martensitic transformation, the cooling can be stopped halfway for the purpose of reducing the residual stress and improving the material.

【0092】マルテンサイト変態後の急冷停止温度とし
ては、20℃を超えて低温まで冷却することはマルテン
サイトの特性になんら影響を及ぼさないため無意味であ
り、また300℃超の高温で急冷を停止すると、まだマ
ルテンサイト変態が完了しておらず、未変態のオーステ
ナイトがベイナイト相へ変態して必要量のマルテンサイ
トが確保できない恐れがあるため、該急冷停止温度は2
0〜800℃の範囲に限定する。
As the quenching stop temperature after the martensite transformation, cooling to a low temperature exceeding 20 ° C. has no effect on the properties of martensite and is meaningless. When stopped, the martensitic transformation has not yet been completed, and untransformed austenite may be transformed into a bainite phase, and a required amount of martensite may not be secured.
Limit to the range of 0 to 800 ° C.

【0093】圧延・冷却後の鋼材を再加熱熱処理により
マルテンサイト相を生成させる場合は、復熱終了後の鋼
材を放冷するか、あるいは復熱終了後の綱材を5〜40
℃/sの冷却述度で20〜650℃まで冷却した後、さら
に0.1〜50℃/sの昇温速度で(Ac1 変態点+10
℃)〜(Ac3 変態点−30℃)の範囲に加熱した後、
該温度範囲で1〜60s保持した後、0.5〜50℃/s
で冷却する。
In order to form a martensite phase by reheating and heat treatment of the rolled and cooled steel material, the steel material after the completion of the reheating is allowed to cool, or the steel material after the completion of the reheating is reduced to 5 to 40%.
After cooling to 20 to 650 ° C. at a cooling rate of 10 ° C./s, the temperature was further increased at a rate of 0.1 to 50 ° C./s (Ac 1 transformation point +10).
° C.) was heated to a temperature in the range of ~ (Ac 3 transformation point -30 ° C.),
After holding at this temperature range for 1 to 60 s, 0.5 to 50 ° C./s
Cool with.

【0094】本発明の条件に従った復熱工程での圧延を
含む熱間圧延を施して表層部に超細粒組織を形成させた
後は、その後の粒成長を抑制できる程度の冷却速度で変
態が実質的に終了する温度まで冷却すればよい。鋼材の
最も厚い断面の板厚が100mm以下の場合は放冷でも十
分である。
After performing the hot rolling including the rolling in the recuperation step in accordance with the conditions of the present invention to form an ultrafine grain structure in the surface layer portion, the cooling rate is such that the subsequent grain growth can be suppressed. What is necessary is just to cool to the temperature at which the transformation is substantially completed. When the thickness of the thickest cross section of the steel material is 100 mm or less, cooling is sufficient.

【0095】また、強度調整や製造時間の短縮を目的と
して急冷することも当然可能であり、その場合の冷却条
件を、本発明では5〜40℃/sの冷却速度で20〜65
0℃まで冷却することとする。冷却速度を5〜40℃/s
に限定するのは、5℃/s未満では強度調整に効果がない
ためであり、40℃/s超では強度上昇効果や組織制御効
果が飽和する一方で、鋼材の変形や残留応力が大となる
傾向があり、実用上これ以上冷却速度を高めても意味が
ないためである。
It is naturally possible to perform rapid cooling for the purpose of adjusting the strength and shortening the production time. In this case, the cooling condition is set to 20 to 65 ° C. at a cooling rate of 5 to 40 ° C./s in the present invention.
It shall be cooled to 0 ° C. Cooling rate of 5-40 ° C / s
This is because the effect of strength adjustment is not effective at less than 5 ° C / s. At more than 40 ° C / s, the strength increasing effect and the structure control effect are saturated, but the deformation and residual stress of the steel material are large. This is because there is no point in practically increasing the cooling rate further.

【0096】5〜40℃/sでの急速冷却を停止する温度
は20〜650℃の範囲とするが、これは、急速冷却を
20℃未満まで行っても材質や組織制御に対して全く効
果がない一方で、製造コストの上昇や鋼材形状の劣化を
生じる懸念があるためと、急速冷却停止温度が650℃
超では、板厚中心近傍の変態がまだ進行中のため、組織
の粗大化や高温変態生成物の増加により所望の材質が得
られなくなり、材質制御を目的とした急速冷却の意図が
全く失われてしまうためである。
The temperature at which the rapid cooling at 5 to 40 ° C./s is stopped is in the range of 20 to 650 ° C., even if the rapid cooling is performed to less than 20 ° C., there is no effect on the material and structure control. However, the rapid cooling stop temperature is set to 650 ° C.
In the case of super, the transformation near the center of the thickness is still in progress, so the desired material cannot be obtained due to the coarsening of the structure and the increase of high-temperature transformation products, and the intention of rapid cooling for the purpose of material control is completely lost. This is because

【0097】以上の方法により製造した鋼材を二相域に
再加熱して、マルテンサイト相を必要量生成させる。そ
の熱処理の要件は0.1〜50℃/sの昇温速度で(Ac
1 変態点+10℃)〜(Ac3 変態点−30℃)の範囲
に加熱した後、該温度範囲で1〜60s保持した後、
0.5〜50℃/sで冷却することにある。二相域熱処理
を行う場合に問題となるのは、圧延工程で形成された表
層部の超細粒組織をいかに保存するかにある。
The steel material produced by the above method is reheated to a two-phase region to generate a required amount of martensite phase. The requirement for the heat treatment is (Ac) at a heating rate of 0.1 to 50 ° C./s.
After heating to the range of ( 1 transformation point + 10 ° C.) to (Ac 3 transformation point −30 ° C.), and after maintaining the temperature in the temperature range for 1 to 60 s,
Cooling at 0.5-50 ° C / s. A problem in performing the two-phase region heat treatment is how to preserve the ultrafine grain structure of the surface layer formed in the rolling step.

【0098】該表層部の超細粒組織は、特別に工夫され
た熱履歴によって形成された組織であるため、変態温度
を超える温度はもちろん、高温に焼き戻し処理を受けた
だけでも、再結晶、粒成長等により、その特異な超細粒
組織が損なわれる可能性が高くなる。該超細粒組織を保
有しつつ、マルテンサイトを導入するための熱処理とし
ては、急速加熱かつ短時間保持の二相域熱処理が必須と
なる。
Since the ultrafine grain structure of the surface layer is a structure formed by a specially designed heat history, it can be recrystallized not only at a temperature exceeding the transformation temperature but also at a high temperature. There is a high possibility that the peculiar ultrafine grain structure is damaged by grain growth or the like. As a heat treatment for introducing martensite while retaining the ultrafine grain structure, a two-phase region heat treatment of rapid heating and holding for a short time is essential.

【0099】即ち、急速に加熱することにより、超細粒
組織がその熱を駆動力として変化する前に二相域温度ま
で到達することが可能であり、同様に、短時間保持によ
り保持段階での超細粒組織の粒成長を抑制することが可
能となる。その場合、昇温速度は0.1〜50℃/sの範
囲とする必要がある。
That is, by rapidly heating, it is possible to reach the two-phase region temperature before the ultrafine-grained structure changes with the heat as the driving force. It is possible to suppress the grain growth of the ultrafine grain structure. In that case, the heating rate needs to be in the range of 0.1 to 50 ° C / s.

【0100】昇温速度が0.1℃/s未満では急速加熱の
効果がなく、超細粒部の粒成長を抑制することが難し
い。一方、50℃/s超では、超細粒部の粒成長の抑制に
は有効ではあるものの、保持温度がオーバーシュートし
やすく、工業的に安定した制御が難しくなるため、本発
明では上限を50℃/sに限定した。
If the rate of temperature rise is less than 0.1 ° C./s, there is no effect of rapid heating, and it is difficult to suppress the growth of ultrafine grains. On the other hand, if it exceeds 50 ° C./s, although it is effective for suppressing the grain growth of the ultrafine grain portion, the holding temperature tends to overshoot and it becomes difficult to perform industrially stable control. Limited to ° C / s.

【0101】なお、加熱のはじめから保持温度までこの
昇温速度範囲内に制御されることが好ましいが、500
℃から保持温度までの平均の昇温速度が本発明の範囲内
にあれば、表層部の超細粒組織を損なうことなく二相成
熱処理が可能となる。
It is preferable that the heating rate is controlled within this heating rate range from the beginning of heating to the holding temperature.
If the average rate of temperature rise from the temperature of ° C. to the holding temperature is within the range of the present invention, the two-phase heat treatment can be performed without damaging the ultrafine grain structure of the surface layer.

【0102】上記の加熱速度及び後述の保持時間の限定
範囲内において加熱温度を適正化して、熱処理後に鋼材
中のマルテンサイト相の割合が、低降伏比化に適した1
0〜60%の範囲となるように制御する。そのために
は、(Ac1 変態点+10℃)〜(Ac3 変態点−30
℃)の範囲の二相域温度に加熱する必要がある。
The heating temperature was optimized within the above-mentioned limited range of the heating rate and the holding time described later, and the ratio of the martensite phase in the steel material after heat treatment was adjusted to a value suitable for lowering the yield ratio.
Control is performed so as to be in the range of 0 to 60%. For that purpose, (Ac 1 transformation point + 10 ° C.) to (Ac 3 transformation point−30)
(° C.).

【0103】加熱温度が(Ac1 変態点+10℃)未満
であると、加熱時に形成されるオーステナイト相の割合
が少ないため、冷却中の変態により形成されるマルテン
サイト相の割合が10%以上確保できない。
If the heating temperature is lower than (Ac 1 transformation point + 10 ° C.), the ratio of the austenite phase formed during heating is small, so that the ratio of the martensite phase formed by the transformation during cooling is 10% or more. Can not.

【0104】逆に加熱温度が(Ac3 変態点−30℃)
超であると、加熱時に形成されたオーステナイト相中へ
のCの濃化が十分でなく、化学組成によらないオーステ
ナイトの焼入性が確保されないため、加熱保持後の冷却
中のオーステナイトからマルテンサイトヘの変態が確実
でなくなり、安定して必要量のマルテンサイト量を得る
ことが困難になるためと、加熱温度が高くなると表層部
の超細粒組織の形態が崩れる危険性が増加する。
On the contrary, when the heating temperature is (Ac 3 transformation point−30 ° C.)
If it is excessively high, the concentration of C in the austenite phase formed during heating is not sufficient, and the hardenability of austenite irrespective of the chemical composition is not ensured. Is not reliable, and it becomes difficult to stably obtain the required amount of martensite. Also, when the heating temperature is increased, the danger of the morphology of the ultrafine grain structure in the surface layer being increased is increased.

【0105】従って、本発明においては、昇温速度が
0.5〜50℃/sで該加熱温度での保持時間が1〜60
sであることを前提とした場合に、安定して必要量のマ
ルテンサイト量を確保でき、かつ表層部の超細粒組織の
形態を損なわないために、二相域熱処理の加熱温度は
(Ac1 変態点+10℃)〜(Ac3 変態点−30℃)
の範囲に限定する。
Therefore, in the present invention, the heating rate is 0.5 to 50 ° C./s, and the holding time at the heating temperature is 1 to 60.
s, the heating temperature of the two-phase region heat treatment is (Ac) in order to stably secure the required amount of martensite and not to impair the form of the ultrafine grain structure in the surface layer. 1 transformation point + 10 ° C) to (Ac 3 transformation point -30 ° C)
To the range.

【0106】加熱温度での保持時間を1〜60sに限定
するのは、昇温速度を高めるのと同様、表層部の超細粒
組織の形態を損なわないためである。保持時間が1s未
満では工業的に制御が困難であり、60s超では表層部
の超細粒組織の再結晶、粒成長が開始する。
The reason why the holding time at the heating temperature is limited to 1 to 60 s is not to impair the morphology of the ultrafine grain structure in the surface layer, as in the case of increasing the heating rate. If the holding time is shorter than 1 s, it is difficult to control industrially. If the holding time is longer than 60 s, recrystallization and grain growth of the ultrafine grain structure in the surface layer start.

【0107】なお、昇温速度を高めること、及び加熱温
度での保持時間を短時間に限定することは、表層部の組
織保存に効果があると同時に、二相域熱処理時のマルテ
ンサイト相の微細化にも補足的に効果があり、靱性向上
に対しても有効である。
It is to be noted that increasing the heating rate and limiting the holding time at the heating temperature to a short time are effective in preserving the structure of the surface layer, and at the same time, reducing the martensite phase during the two-phase region heat treatment. It has an additional effect on miniaturization and is also effective on improving toughness.

【0108】(Ac1 変態点+10℃)〜(Ac3 変態
点−30℃)に1〜60s保持した後の冷却条件は、冷
却変態時に必要量のマルテンサイト相が形成される範囲
内であればよい。本発明においては、冷却速度が0.5
℃/s未満であるとマルテンサイト相の形成が確実でな
く、冷却速度は速ければ速いほど有利ではあるが、50
℃/s超では二相域熱処理時のマルテンサイト相の形成に
対して効果が飽和する一方、鋼材の形状やコスト面での
デメリットも生じるため、冷却速度は0.5〜50℃/s
の範囲に限定する。
The cooling condition after maintaining the temperature at (Ac 1 transformation point + 10 ° C.) to (Ac 3 transformation point−30 ° C.) for 1 to 60 s is within a range in which a required amount of martensite phase is formed during cooling transformation. I just need. In the present invention, the cooling rate is 0.5
If the cooling rate is lower than 50 ° C./s, the formation of martensite phase is not reliable, and the higher the cooling rate, the more advantageous.
If the cooling rate exceeds 0.5 ° C / s, the effect is saturated with respect to the formation of the martensite phase during the heat treatment in the two-phase region, but there are disadvantages in the shape and cost of the steel material.
To the range.

【0109】以上の、請求項5に示した超細粒層を形成
させた後、ただちに二相域温度から急速冷却する製造方
法、あるいは、請求項6に示した急速加熱、短時間保持
を特徴とする二相域熱処理による製造方法で製造された
鋼材に対して、強度調整、靱性向上、形状改善の目的
で、さらに焼戻し処理を施すことも可能である。その場
合には、表層部に形成された超細粒組織を損なわないこ
とが必須条件となる。
The above-described manufacturing method in which the ultrafine grain layer is formed and then rapidly cooled from the temperature in the two-phase region or the rapid heating and short-time holding described in claim 6 are characterized. The steel material manufactured by the manufacturing method using the two-phase region heat treatment described above may be further subjected to a tempering treatment for the purpose of adjusting strength, improving toughness, and improving shape. In that case, it is an essential condition that the ultrafine grain structure formed in the surface layer portion is not damaged.

【0110】本発明では焼戻し温度を450〜650℃
の範囲に限定するが、これは、450℃未満では焼戻し
の効果が明確ではなく、650℃超では表層部の超細粒
組織の形態を損なう恐れがあるためである。なお、該焼
戻し温度範囲であれば、焼き戻しの加熱保持時間は任意
であるが、表層部の超細粒組織保存の観点からは、保持
時間は5h以内であることが好ましい。
In the present invention, the tempering temperature is 450 to 650 ° C.
However, the effect of tempering is not clear below 450 ° C., and if it exceeds 650 ° C., the morphology of the ultrafine grain structure in the surface layer may be impaired. Note that the heating and holding time for the tempering is arbitrary within the tempering temperature range, but from the viewpoint of preserving the ultrafine grain structure of the surface layer, the holding time is preferably within 5 hours.

【0111】[0111]

【実施例】表1に示す化学成分の供試鋼を用いて、表2
に示す製造条件で製造した板厚50mmあるいは70mmの
厚鋼板について、母材の引張特性及びシャルピー試験に
よる靱性(破面遷移温度vTrs)、ESSO試験による
脆性き裂伝播停止特性(Kca値が400 kgf・mm-3/2
なる温度)を表3に示す。
EXAMPLES Using test steels having the chemical compositions shown in Table 1, Table 2
For a 50 mm or 70 mm thick steel plate manufactured under the manufacturing conditions shown in Table 1, the tensile properties of the base metal and the toughness (fracture transition temperature vTrs) by Charpy test, and the brittle crack propagation arrest property (Kca value of 400 kgf by ESSO test) - a mm -3/2 and comprising temperature) shown in Table 3.

【0112】[0112]

【表1】 [Table 1]

【0113】[0113]

【表2】 [Table 2]

【0114】[0114]

【表3】 [Table 3]

【0115】[0115]

【表4】 [Table 4]

【0116】[0116]

【表5】 [Table 5]

【0117】[0117]

【表6】 [Table 6]

【0118】母材の引張特性は、板厚のt/4部から試
験方向が圧延方向と直角となるようにして採取した平行
部直径が6mmで評点間距離が25mmの丸棒試験片により
実施した。母材のシャルピー衝撃特性も引張試験片と同
一の位置、方向で採取し、破面遷移温度(vTrs)を求
めた。
The tensile properties of the base material were measured using a round bar test piece having a parallel part diameter of 6 mm and a distance between marks of 25 mm taken from the t / 4 part of the plate thickness so that the test direction was perpendicular to the rolling direction. did. The Charpy impact characteristics of the base material were also sampled at the same position and in the same direction as the tensile test piece, and the fracture surface transition temperature (vTrs) was determined.

【0119】表1に示すように、鋼番A1〜A16の鋼
板は本発明の範囲内の化学成分及び表層超細粒組織さら
にマルテンサイト体積分率を有するため、降伏比が8
0%未満の良好な低YR特性を示す、シャルピー衝撃
特性の破面遷移温度が、表層部で−100℃以下、中心
部でも−50℃以下の良好な靱性が得られる、脆性き
裂の伝播停止特性の指標であるESSO試験により求め
られたKca値が400kgf・mm-3/2となる温度が全て−
70℃以下と良好であり、良好な低Y性特性と靱性、脆
性き裂伝播停止特性が同時に達成きれていることが明白
である。
As shown in Table 1, since the steel sheets of steel numbers A1 to A16 have a chemical composition, a superfine grain structure of the surface layer and a martensite volume fraction within the range of the present invention, the yield ratio is 8%.
Propagation of brittle cracks showing good low YR characteristics of less than 0%, good fracture toughness of Charpy impact characteristics having a surface transition of -100 ° C or less at the surface layer and -50 ° C or less at the center. all temperatures Kca value determined by ESSO test is an indication of the stopping characteristic is 400 kgf · mm -3/2 is -
70 ° C. or less, which is good, and it is clear that good low Y property, toughness, and brittle crack propagation arresting property can be simultaneously achieved.

【0120】一方、鋼番B1〜B10は比較例であり、
本発明の要件を満足していないために、表3に示した特
性のいずれかが本発明の鋼に比べて劣っている。即ち、
鋼番B1はN量が過剰であるため、表層超細粒層が形成
されていても、シャルピー特性、脆性き裂伝播停止特性
が不十分である。鋼番B2はP量が過剰であるため、同
様にシャルピー特性、脆性き裂伝播停止特性が本発明鋼
に比べて劣る。
On the other hand, steel numbers B1 to B10 are comparative examples,
Any of the properties shown in Table 3 are inferior to the steels of the present invention because they do not meet the requirements of the present invention. That is,
Steel No. B1 has an excessive amount of N, and thus has insufficient Charpy properties and brittle crack propagation arresting properties even when a superfine grain layer is formed. Since steel number B2 has an excessive P content, the Charpy property and the brittle crack propagation arrest property are similarly inferior to the steel of the present invention.

【0121】鋼番B3はS量が過剰であるため、シャル
ピー特性、脆性き裂伝播停止特性が本発明鋼に比べて劣
る。鋼番B4はCが過剰であるため、シャルピー特性、
脆性き裂伝播停止特性がともに顕著に劣化している。鋼
番B5は化学成分としては本発明鋼の範囲内であるが、
通常のTMCPプロセスにより製造されているため、表
層部の超細粒組織を有しておらず、脆性き裂伝播停止特
性が顕著に劣化している。
Since the steel number B3 has an excessive S content, the Charpy property and the brittle crack propagation stopping property are inferior to the steel of the present invention. Steel No. B4 has too much C, so it has Charpy properties,
Both of the brittle crack propagation arresting characteristics are significantly deteriorated. Steel number B5 is within the scope of the steel of the present invention as a chemical component,
Since it is manufactured by a normal TMCP process, it does not have an ultrafine grain structure in the surface layer portion, and the brittle crack propagation arresting property is significantly deteriorated.

【0122】鋼番B6は、表層に細粒部は形成されてい
るが、最終復熱過程の復熱温度が高くなりすぎたため
に、表層部の平均粒径が3μm超となり、本発明鋼に比
べた場合、十分な表層シャルピー特性、脆性き裂伝播停
止特性が得られていると言い難い。
In steel No. B6, although the fine grain portion was formed on the surface layer, the average particle size of the surface layer portion was more than 3 μm because the recuperation temperature in the final recuperation process was too high. In comparison, it is difficult to say that sufficient surface Charpy properties and brittle crack propagation arrest properties have been obtained.

【0123】鋼番B7は、表層部を冷却する際のAr3
変態点以下に冷却された部分の厚みが不十分であるた
め、最終的な表層超細粒層の厚みも必要量に達しておら
ず、良好な表層シャルピー特性、脆性き裂伝播停止特性
が得られていない。
Steel No. B7 is used for cooling Ar 3 when cooling the surface layer.
Since the thickness of the part cooled below the transformation point is insufficient, the thickness of the final superfine grain layer on the surface has not reached the required amount, and good surface Charpy characteristics and brittle crack propagation stopping characteristics have been obtained. Not been.

【0124】鋼番B8は、圧延後の二相域温度からの加
速冷却がなく、二相域への急速加熱焼戻し処理も施され
ていないため、組織中のマルテンサイト割合が過小とな
り、降伏比が建築用低降伏比鋼としては不十分である。
鋼番B9は逆に二相域焼戻しの加熱温度が高すぎてマル
テンサイト割合が遇剰なため、シャルピー特性、脆性き
裂伝播停止特性ともに顕著に劣化している。
Steel No. B8 has no accelerated cooling from the temperature in the two-phase region after rolling and has not been subjected to the rapid heating and tempering treatment in the two-phase region, so that the martensite ratio in the structure is too small, and the yield ratio is low. However, it is insufficient as a low yield ratio steel for construction.
Conversely, in steel number B9, since the heating temperature of the two-phase region tempering is too high and the martensite ratio is excessive, both Charpy properties and brittle crack propagation arresting properties are significantly deteriorated.

【0125】鋼番B10は二相域焼戻しの昇温速度が遅
く、保持時間も過剰なため、一旦形成された表層部の超
細粒層の形態がくずれ、平均粒径が粗大化したため、脆
性き裂伝播停止特性の向上が認められない。以上の実施
例から、本発明によれば、低YR特性と靱性、脆性き裂
伝播停止特性がともに良好な鋼材を製造可能であること
が明白である。
Steel No. B10 has a low temperature rise rate in the two-phase tempering and an excessive holding time, so that the form of the ultrafine grain layer once formed on the surface layer has been distorted, and the average grain size has been coarsened. No improvement in crack propagation arrestability is observed. From the above examples, it is clear that according to the present invention, it is possible to produce a steel material having both low YR characteristics, toughness and brittle crack propagation stopping characteristics.

【0126】[0126]

【発明の効果】本発明は、主として建築構造物に用いら
れる低降伏比高張力鋼材に関し、低降伏比特性を具備し
つつ、万一破壊が発生した場合でもその脆性き裂を停止
できる高い脆性き裂伝播停止特性を合わせ持つ、安全性
の非常に大きな構造物用鋼材を特殊な合金成分を用いる
ことなく、通常の鋼材の製造プロセスにおいて可能にし
たものであり、その産業上の効果は極めて大きい。
The present invention relates to a high-yield-ratio high-strength steel material mainly used for a building structure, which has a low yield ratio characteristic and a high brittleness capable of stopping a brittle crack even if a fracture should occur. Extremely safe structural steel with crack propagation arrestability combined with the use of special alloying components without the need for special alloying components. large.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.01〜0.20% Si:0.01〜1.0% Mn:0.1〜2.0% Al:0.001〜0.1% N :0.001〜0.010%を含有し、 不純物としてのP,Sの含有量が P :0.025%以下 S :0.015%以下で、残部鉄及び不可避不純物か
らなる鋼材であって、鋼材体積に占めるマルテンサイト
割合が10〜60%であり、さらに、該鋼材を構成する
外表面のうち少なくとも2つの外表面に関して、表層か
ら全厚みの10〜33%の範囲内の平均フェライト粒径
が3μm以下の超細粒組織であることを特徴とする脆性
き裂伝播停止特性に優れた建築用低降伏比高張力鋼材。
C: 0.01 to 0.20% Si: 0.01 to 1.0% Mn: 0.1 to 2.0% Al: 0.001 to 0.1% N by weight% : A steel material containing 0.001 to 0.010%, the content of P and S as impurities is P: 0.025% or less, S: 0.015% or less, and the balance is iron and unavoidable impurities. The ratio of martensite to the volume of the steel material is 10 to 60%, and the average ferrite grains in the range of 10 to 33% of the total thickness from the surface layer with respect to at least two of the outer surfaces constituting the steel material. A low-yield-ratio high-strength steel for architectural use excellent in brittle crack propagation arresting characteristics, characterized by having an ultrafine grain structure having a diameter of 3 µm or less.
【請求項2】 重量%で、 Ti:0.003〜0.020% Zr:0.003〜0.10% Nb:0.002〜0.050% Ta:0.005〜0.20% V :0.005〜0.20% B :0.0002〜0.003% の1種または2種以上を含有することを特徴とする請求
項1記載の脆性き裂伝播停止特性に優れた建築用低降伏
比高張力鋼材。
2. In% by weight, Ti: 0.003 to 0.020% Zr: 0.003 to 0.10% Nb: 0.002 to 0.050% Ta: 0.005 to 0.20% V : 0.005% to 0.20% B: 0.0002% to 0.003% of one or more of the following: for architectural materials excellent in brittle crack propagation arresting characteristics according to claim 1. High yield strength steel with low yield ratio.
【請求項3】 重量%で、 Cr:0.01〜2.0% Mo:0.01〜2.0% Ni:0.01〜4.0% Cu:0.01〜2.0% W :0.01〜2.0% の1種または2種以上を含有することを特徴とする請求
項1または2項記載の脆性き裂伝播停止特性に優れた建
築用低降伏比高張力鋼材。
3. In% by weight, Cr: 0.01 to 2.0% Mo: 0.01 to 2.0% Ni: 0.01 to 4.0% Cu: 0.01 to 2.0% W The low-yield-ratio high-strength steel for architectural use excellent in brittle crack propagation arresting characteristics according to claim 1 or 2, which contains one or more of 0.01 to 2.0%.
【請求項4】 重量%で、 Mg:0.0005〜0.01% Ca:0.0005〜0.01% REM:0.005〜0.10% のうち1種または2種以上を含有することを特徴とする
請求項1〜3のいずれか1項に記載の脆性き裂伝播停止
特性に優れた建築用低降伏比高張力鋼材。
4. The composition contains one or more of Mg: 0.0005 to 0.01% Ca: 0.0005 to 0.01% REM: 0.005 to 0.10% by weight% The low-yield-ratio high-strength steel material for building according to any one of claims 1 to 3, which is excellent in brittle crack propagation arrestability.
【請求項5】 請求項1〜4のいずれかに記載の成分の
鋼片をAc3 変態点以上、1250℃以下の温度に加熱
し、熱間圧延の開始前あるいは熱間圧延の途中段階で、
その段階での鋼片厚みの10〜33%に対応する少なく
とも2つの外表面の表層部領域をAr3 変態点以上の温
度から2〜40℃/sの冷却速度で冷却を開始し、Ar3
変態点以下で冷却を停止して復熱させることを1回以上
経由させる過程で、最後の冷却後の復熱が終了するまで
の間に累積圧下率が20〜90%の仕上げ圧延を完了さ
せた後、該圧延完了後の鋼材の前記表層域を(Ac1
態点一50℃)〜(Ac3 変態点+50℃)の範囲に復
熱させ、さらに復熱終了後の鋼材を0.2〜2℃/sの冷
却速度で(該冷却速度における変態開始温度(Ar3
−50℃)〜500℃の範囲に冷却した後、5〜40℃
/sの冷却速度で20〜300℃まで冷却して、請求項1
〜4のいずれか1項に記載の鋼材を製造することを特徴
とする脆性き裂伝播停止特性に優れた建築用低降伏比高
張力鋼材の製造方法。
5. A steel slab having a composition according to any one of claims 1 to 4, which is heated to a temperature of from the Ac 3 transformation point to 1250 ° C., before starting hot rolling or in the middle of hot rolling. ,
At this stage, at least two surface layer regions on the outer surface corresponding to 10 to 33% of the thickness of the slab are started to be cooled at a cooling rate of 2 to 40 ° C./s from a temperature of the Ar 3 transformation point or higher, and Ar 3
In the process of stopping cooling at the transformation point or lower and reheating once or more, finish rolling with a cumulative rolling reduction of 20 to 90% is completed until reheating after the last cooling is completed. After the rolling, the surface layer of the steel material after the completion of the rolling is reheated to a range of (Ac 1 transformation point-50 ° C) to (Ac 3 transformation point + 50 ° C), and the steel material after the completion of the reheating is 0.2 At a cooling rate of 22 ° C./s (transformation start temperature (Ar 3 ) at the cooling rate)
After cooling to the range of -50 ° C) to 500 ° C, 5 to 40 ° C
cooling at a cooling rate of 20 to 300 ° C at a cooling rate of 1 / s.
A method for producing a high-strength low-yield-ratio steel material for buildings having excellent brittle crack arrestability, characterized by producing the steel material according to any one of (1) to (4).
【請求項6】 請求項1〜4のいずれかに記載の成分の
鋼片をAr3 変態点以上、1250℃以下の温度に加熱
し、熱間圧延の開始前あるいは熱間圧延の途中段階で、
その段階での鋼片厚みの10〜33%に対応する少なく
とも2つの外表面の表層部領域をAr3 変態点以上の温
度から2〜40℃/sの冷却速度で冷却を開始し、Ar3
変態点以下で冷却を停止して復熱させることを1回以上
経由させる過程で、最後の冷却後の復熱が終了するまで
の間に累積圧下率が20〜90%の仕上げ圧延を完了さ
せ、該圧延完了後の鋼材の前記表層域を(Ac1 変態点
−50℃)〜(Ac3 変態点+50℃)の範囲に復熱さ
せて、復熱終了後の鋼材を放冷するか、あるいは復熱終
了後の鋼材を5〜40℃/sの冷却速度で20〜650℃
まで冷却した後、さらに0.1〜50℃/sの昇温速度で
(Ac1 変態点十10℃)〜(Ac3 変態点−30℃)
の範囲に加熱した後、該温度範囲で1〜60s保持した
後、0.5〜50℃/sで冷却する二相域熱処理を施し
て、請求項1〜4のいずれか1項に記載の鋼材を製造す
ることを特徴とする脆性き裂伝播停止特性に優れた建築
用低降伏比高張力鋼材の製造方法。
6. A steel slab having the composition according to claim 1 is heated to a temperature not lower than the Ar 3 transformation point and not higher than 1250 ° C., before starting hot rolling or in the middle of hot rolling. ,
At this stage, at least two surface layer regions on the outer surface corresponding to 10 to 33% of the thickness of the slab are started to be cooled at a cooling rate of 2 to 40 ° C./s from a temperature of the Ar 3 transformation point or higher, and Ar 3
In the process of stopping cooling at the transformation point or lower and reheating once or more, finish rolling with a cumulative rolling reduction of 20 to 90% is completed until reheating after the last cooling is completed. Reheating the surface layer of the steel material after the completion of the rolling to a range of (Ac 1 transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.), or allowing the steel material after the completion of the reheating to cool down, Alternatively, the steel material after the completion of reheating is cooled to 20 to 650 ° C. at a cooling rate of 5 to 40 ° C./s.
After cooling to a temperature of 0.1 to 50 ° C./s, (Ac 1 transformation point -10 ° C.) to (Ac 3 transformation point −30 ° C.)
After heating to the range described above, after holding for 1 to 60 s in the temperature range, a two-phase region heat treatment of cooling at 0.5 to 50 ° C./s is performed, and the heat treatment according to any one of claims 1 to 4. A method for producing a low-yield-ratio high-strength steel for architectural use having excellent brittle crack propagation arresting characteristics, characterized by producing a steel.
【請求項7】 450〜650℃で焼戻しを行うことを
特徴とする請求項5または6記載の脆性き裂伝播停止特
性に優れた建築用低降伏比高張力鋼材の製造方法。
7. The method according to claim 5, wherein tempering is performed at a temperature of 450 to 650 ° C.
JP17026196A 1996-06-28 1996-06-28 Low yield ratio high tensile strength steel for construction with excellent brittle crack arrestability and method of manufacturing the same Expired - Fee Related JP3499084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17026196A JP3499084B2 (en) 1996-06-28 1996-06-28 Low yield ratio high tensile strength steel for construction with excellent brittle crack arrestability and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17026196A JP3499084B2 (en) 1996-06-28 1996-06-28 Low yield ratio high tensile strength steel for construction with excellent brittle crack arrestability and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1017981A true JPH1017981A (en) 1998-01-20
JP3499084B2 JP3499084B2 (en) 2004-02-23

Family

ID=15901669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17026196A Expired - Fee Related JP3499084B2 (en) 1996-06-28 1996-06-28 Low yield ratio high tensile strength steel for construction with excellent brittle crack arrestability and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3499084B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323434A (en) * 1998-05-14 1999-11-26 Nippon Steel Corp Production of thick high tensile strength steel excellent in low temperature toughness
JP2000144310A (en) * 1998-11-02 2000-05-26 Nippon Steel Corp Steel for structural purpose excellent in corrosion fatigue resistance
JP2001172722A (en) * 1999-12-14 2001-06-26 Nippon Steel Corp Method for producing welded steel pipe excellent in formability
JP2003105439A (en) * 2001-10-01 2003-04-09 Kawasaki Steel Corp Low yield ratio steel for low temperature use, and production method therefor
JP2003293078A (en) * 2002-03-29 2003-10-15 Nippon Steel Corp Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe
JP2003321727A (en) * 2002-05-01 2003-11-14 Kobe Steel Ltd Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP2004115871A (en) * 2002-09-26 2004-04-15 Jfe Steel Kk Method for producing electroseamed steel pipe for high strength line pipe excellent in hydrogen-crack resistant characteristic and toughness
JP2004124228A (en) * 2002-10-07 2004-04-22 Jfe Steel Kk Method for producing electric resistance welded tube having low yield ratio for building and square column
JP2004190123A (en) * 2002-12-13 2004-07-08 Nippon Steel Corp Steel for crude oil tank having excellent fatigue crack propagation resistance
JP2006131056A (en) * 2004-11-04 2006-05-25 Mitsubishi Heavy Ind Ltd Marine steel structure and ship
KR100782785B1 (en) 2006-12-22 2007-12-05 주식회사 포스코 Hot-rolled dual-phase steel with fine-grain and the method for production thereof
JP2008056956A (en) * 2006-08-29 2008-03-13 Nippon Steel Corp Surface layer fine granular steel part and producing method therefor
JP2008088487A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and brittle-crack-stopping property, and manufacturing method therefor
JP2008111167A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Thick steel plate with excellent brittle crack propagation-arresting property, and its manufacturing method
CN102242310A (en) * 2011-08-05 2011-11-16 武汉钢铁(集团)公司 Precoating steel plate for building structure and production method thereof
KR101299047B1 (en) * 2011-04-27 2013-08-21 현대제철 주식회사 High strength steel and method for manufacturing the same
KR101298701B1 (en) * 2011-04-27 2013-08-21 현대제철 주식회사 Ultrahigh strength steel and method for manufacturing the same
WO2020218244A1 (en) * 2019-04-23 2020-10-29 Jfeスチール株式会社 Hot-rolled steel strip for cold-rolled square steel pipe, method for manufacturing same, and method for manufacturing cold-rolled square steel pipe

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323434A (en) * 1998-05-14 1999-11-26 Nippon Steel Corp Production of thick high tensile strength steel excellent in low temperature toughness
JP2000144310A (en) * 1998-11-02 2000-05-26 Nippon Steel Corp Steel for structural purpose excellent in corrosion fatigue resistance
JP2001172722A (en) * 1999-12-14 2001-06-26 Nippon Steel Corp Method for producing welded steel pipe excellent in formability
JP2003105439A (en) * 2001-10-01 2003-04-09 Kawasaki Steel Corp Low yield ratio steel for low temperature use, and production method therefor
JP2003293078A (en) * 2002-03-29 2003-10-15 Nippon Steel Corp Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe
JP2003321727A (en) * 2002-05-01 2003-11-14 Kobe Steel Ltd Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP2004115871A (en) * 2002-09-26 2004-04-15 Jfe Steel Kk Method for producing electroseamed steel pipe for high strength line pipe excellent in hydrogen-crack resistant characteristic and toughness
JP2004124228A (en) * 2002-10-07 2004-04-22 Jfe Steel Kk Method for producing electric resistance welded tube having low yield ratio for building and square column
JP2004190123A (en) * 2002-12-13 2004-07-08 Nippon Steel Corp Steel for crude oil tank having excellent fatigue crack propagation resistance
JP2006131056A (en) * 2004-11-04 2006-05-25 Mitsubishi Heavy Ind Ltd Marine steel structure and ship
JP2008056956A (en) * 2006-08-29 2008-03-13 Nippon Steel Corp Surface layer fine granular steel part and producing method therefor
JP2008088487A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and brittle-crack-stopping property, and manufacturing method therefor
JP4515429B2 (en) * 2006-09-29 2010-07-28 株式会社神戸製鋼所 Steel with excellent toughness and brittle crack stopping characteristics in weld heat affected zone and its manufacturing method
JP2008111167A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Thick steel plate with excellent brittle crack propagation-arresting property, and its manufacturing method
KR100782785B1 (en) 2006-12-22 2007-12-05 주식회사 포스코 Hot-rolled dual-phase steel with fine-grain and the method for production thereof
KR101299047B1 (en) * 2011-04-27 2013-08-21 현대제철 주식회사 High strength steel and method for manufacturing the same
KR101298701B1 (en) * 2011-04-27 2013-08-21 현대제철 주식회사 Ultrahigh strength steel and method for manufacturing the same
CN102242310A (en) * 2011-08-05 2011-11-16 武汉钢铁(集团)公司 Precoating steel plate for building structure and production method thereof
WO2020218244A1 (en) * 2019-04-23 2020-10-29 Jfeスチール株式会社 Hot-rolled steel strip for cold-rolled square steel pipe, method for manufacturing same, and method for manufacturing cold-rolled square steel pipe

Also Published As

Publication number Publication date
JP3499084B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
JP4445161B2 (en) Manufacturing method of thick steel plate with excellent fatigue strength
JP3499084B2 (en) Low yield ratio high tensile strength steel for construction with excellent brittle crack arrestability and method of manufacturing the same
JP3499085B2 (en) Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof
JPH09176782A (en) Building use high tensile strength steel excellent in fracture resistance and its production
JP2000129392A (en) High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP2001288512A (en) Method of producing high tensile strength steel excellent in toughness and ductility
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP4309561B2 (en) High-tensile steel plate with excellent high-temperature strength and method for producing the same
JPH10121200A (en) High strength steel material for shear reinforcing bar, and its production
JP3390596B2 (en) Low yield ratio high strength hot rolled steel sheet excellent in toughness and method for producing the same
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same
JP5747398B2 (en) High strength steel
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH0941077A (en) High tensile strength steel plate excellent in crack propagating arrest characteristic and its production
JP3462943B2 (en) Steel sheet having high fatigue strength at welded portion and method for producing the same
JP4105990B2 (en) High strength welded structural steel with excellent low temperature toughness of large heat input weld HAZ and method for producing the same
JPH093591A (en) Extremely thick high tensile strength steel plate and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees